28,759 research outputs found

    Community next steps for making globally unique identifiers work for biocollections data

    Get PDF
    Biodiversity data is being digitized and made available online at a rapidly increasing rate but current practices typically do not preserve linkages between these data, which impedes interoperation, provenance tracking, and assembly of larger datasets. For data associated with biocollections, the biodiversity community has long recognized that an essential part of establishing and preserving linkages is to apply globally unique identifiers at the point when data are generated in the field and to persist these identifiers downstream, but this is seldom implemented in practice. There has neither been coalescence towards one single identifier solution (as in some other domains), nor even a set of recommended best practices and standards to support multiple identifier schemes sharing consistent responses. In order to further progress towards a broader community consensus, a group of biocollections and informatics experts assembled in Stockholm in October 2014 to discuss community next steps to overcome current roadblocks. The workshop participants divided into four groups focusing on: identifier practice in current field biocollections; identifier application for legacy biocollections; identifiers as applied to biodiversity data records as they are published and made available in semantically marked-up publications; and cross-cutting identifier solutions that bridge across these domains. The main outcome was consensus on key issues, including recognition of differences between legacy and new biocollections processes, the need for identifier metadata profiles that can report information on identifier persistence missions, and the unambiguous indication of the type of object associated with the identifier. Current identifier characteristics are also summarized, and an overview of available schemes and practices is provided

    A Linked Data Approach to Sharing Workflows and Workflow Results

    No full text
    A bioinformatics analysis pipeline is often highly elaborate, due to the inherent complexity of biological systems and the variety and size of datasets. A digital equivalent of the ‘Materials and Methods’ section in wet laboratory publications would be highly beneficial to bioinformatics, for evaluating evidence and examining data across related experiments, while introducing the potential to find associated resources and integrate them as data and services. We present initial steps towards preserving bioinformatics ‘materials and methods’ by exploiting the workflow paradigm for capturing the design of a data analysis pipeline, and RDF to link the workflow, its component services, run-time provenance, and a personalized biological interpretation of the results. An example shows the reproduction of the unique graph of an analysis procedure, its results, provenance, and personal interpretation of a text mining experiment. It links data from Taverna, myExperiment.org, BioCatalogue.org, and ConceptWiki.org. The approach is relatively ‘light-weight’ and unobtrusive to bioinformatics users

    Biodiversity informatics: the challenge of linking data and the role of shared identifiers

    Get PDF
    A major challenge facing biodiversity informatics is integrating data stored in widely distributed databases. Initial efforts have relied on taxonomic names as the shared identifier linking records in different databases. However, taxonomic names have limitations as identifiers, being neither stable nor globally unique, and the pace of molecular taxonomic and phylogenetic research means that a lot of information in public sequence databases is not linked to formal taxonomic names. This review explores the use of other identifiers, such as specimen codes and GenBank accession numbers, to link otherwise disconnected facts in different databases. The structure of these links can also be exploited using the PageRank algorithm to rank the results of searches on biodiversity databases. The key to rich integration is a commitment to deploy and reuse globally unique, shared identifiers (such as DOIs and LSIDs), and the implementation of services that link those identifiers

    Large-scale event extraction from literature with multi-level gene normalization

    Get PDF
    Text mining for the life sciences aims to aid database curation, knowledge summarization and information retrieval through the automated processing of biomedical texts. To provide comprehensive coverage and enable full integration with existing biomolecular database records, it is crucial that text mining tools scale up to millions of articles and that their analyses can be unambiguously linked to information recorded in resources such as UniProt, KEGG, BioGRID and NCBI databases. In this study, we investigate how fully automated text mining of complex biomolecular events can be augmented with a normalization strategy that identifies biological concepts in text, mapping them to identifiers at varying levels of granularity, ranging from canonicalized symbols to unique gene and proteins and broad gene families. To this end, we have combined two state-of-the-art text mining components, previously evaluated on two community-wide challenges, and have extended and improved upon these methods by exploiting their complementary nature. Using these systems, we perform normalization and event extraction to create a large-scale resource that is publicly available, unique in semantic scope, and covers all 21.9 million PubMed abstracts and 460 thousand PubMed Central open access full-text articles. This dataset contains 40 million biomolecular events involving 76 million gene/protein mentions, linked to 122 thousand distinct genes from 5032 species across the full taxonomic tree. Detailed evaluations and analyses reveal promising results for application of this data in database and pathway curation efforts. The main software components used in this study are released under an open-source license. Further, the resulting dataset is freely accessible through a novel API, providing programmatic and customized access (http://www.evexdb.org/api/v001/). Finally, to allow for large-scale bioinformatic analyses, the entire resource is available for bulk download from http://evexdb.org/download/, under the Creative Commons -Attribution - Share Alike (CC BY-SA) license

    BioGUID: resolving, discovering, and minting identifiers for biodiversity informatics

    Get PDF
    Background: Linking together the data of interest to biodiversity researchers (including specimen records, images, taxonomic names, and DNA sequences) requires services that can mint, resolve, and discover globally unique identifiers (including, but not limited to, DOIs, HTTP URIs, and LSIDs). Results: BioGUID implements a range of services, the core ones being an OpenURL resolver for bibliographic resources, and a LSID resolver. The LSID resolver supports Linked Data-friendly resolution using HTTP 303 redirects and content negotiation. Additional services include journal ISSN look-up, author name matching, and a tool to monitor the status of biodiversity data providers. Conclusion: BioGUID is available at http://bioguid.info/. Source code is available from http://code.google.com/p/bioguid/

    Lost in translation: data integration tools meet the Semantic Web (experiences from the Ondex project)

    Full text link
    More information is now being published in machine processable form on the web and, as de-facto distributed knowledge bases are materializing, partly encouraged by the vision of the Semantic Web, the focus is shifting from the publication of this information to its consumption. Platforms for data integration, visualization and analysis that are based on a graph representation of information appear first candidates to be consumers of web-based information that is readily expressible as graphs. The question is whether the adoption of these platforms to information available on the Semantic Web requires some adaptation of their data structures and semantics. Ondex is a network-based data integration, analysis and visualization platform which has been developed in a Life Sciences context. A number of features, including semantic annotation via ontologies and an attention to provenance and evidence, make this an ideal candidate to consume Semantic Web information, as well as a prototype for the application of network analysis tools in this context. By analyzing the Ondex data structure and its usage, we have found a set of discrepancies and errors arising from the semantic mismatch between a procedural approach to network analysis and the implications of a web-based representation of information. We report in the paper on the simple methodology that we have adopted to conduct such analysis, and on issues that we have found which may be relevant for a range of similar platformsComment: Presented at DEIT, Data Engineering and Internet Technology, 2011 IEEE: CFP1113L-CD
    • …
    corecore