118 research outputs found

    Segment Routing based Traffic Engineering

    Get PDF
    In modern networks, the increasing volume of network traffic and the diverse range of services with varying requirements necessitate the implementation of more advanced routing decisions and traffic engineering. This academic study proposes a QoS adaptive mechanism called ”Sepitto”, which utilizes Segment routing protocols, specifically SRv6, to address network-traffic control and congestion avoidance. Sepitto leverages data-plane traffic to convey Linux Qdisc statistics, such as queue size, packet drops, and buffer occupancy, in each Linux-based virtual router. By incorporating this information, edge routers become aware of the current network status, enabling them to make informed decisions regarding traffic paths based on QoS classes. SRv6 is employed to direct traffic along desired paths, avoiding congested links and minimizing queuing delays and overall latency. Moreover, Sepitto offers network administrators an interface to customize decision-making processes based on their policies, assigning costs to network graph edges by associating the provided statistics to a certain cost. To incorporate these costs, the implementation employs the Dijkstra algorithm to determine the path with the lowest cost. Performance analysis of Sepitto reveals minimal overhead compared to traditional routing methods, while effectively mitigating network congestion. The results demonstrate that Sepitto reduces traffic round-trip time during congestion while maintaining differentiated treatment for various QoS classes

    Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies

    Full text link
    High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture

    Operational Research: methods and applications

    Get PDF
    This is the final version. Available on open access from Taylor & Francis via the DOI in this recordThroughout its history, Operational Research has evolved to include methods, models and algorithms that have been applied to a wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first summarises the up-to-date knowledge and provides an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion and used as a point of reference by a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    Operational research:methods and applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order

    Process Mining Handbook

    Get PDF
    This is an open access book. This book comprises all the single courses given as part of the First Summer School on Process Mining, PMSS 2022, which was held in Aachen, Germany, during July 4-8, 2022. This volume contains 17 chapters organized into the following topical sections: Introduction; process discovery; conformance checking; data preprocessing; process enhancement and monitoring; assorted process mining topics; industrial perspective and applications; and closing

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    System-Level Analysis of Blockage Dynamics in Millimeter-Wave Communications

    Get PDF
    The new generation of wireless technology, termed as the fifth generation (5G), introduces a large amount of novel features. An operation in the millimeter-wave (mmWave) spectrum becomes one of those features unlocking a wide bandwidth. The latter allows for a notable increase in the peak data rate by up to tens of gigabits per second and decreases latency to as low as few milliseconds. These improvements provide an opportunity to support high-rate and low-latency applications, such as augmented and virtual reality, eHealth, and many others. Though mmWave communications have great potential, they suffer from severe attenuation caused by signal blockage. In addition to large-scale blockers (i.e., buildings), small-scale blockers such as human bodies bring new challenges to the operation over mmWave bands. Large attenuation losses, as well as the unpredictable mobility of human body blockers, can significantly decrease a service quality when communicating over a mmWave link. Thereby, there is a need to properly model the blockage process, evaluate its impact on mmWave network performance, and estimate performance gains brought by different blockage mitigation techniques. The thesis proposes a mathematical methodology to characterize and evaluate the effect of blockage dynamics in mmWave networks. With the help of stochastic geometry and probability theory, it delivers mathematical models of static and dynamic small-scale blockage, as well as static large-scale blockage. It then introduces system-level performance evaluation frameworks accounting for the main features of mmWave communications, such as blockage and multipath propagation. The mathematical frameworks can also evaluate the impact of several blockage mitigation techniques in realistic deployment scenarios

    Criticality of infrastructure networks under consideration of resilience-based maintenance strategies using the example of inland waterways

    Get PDF
    Transportation infrastructures as backbone of modern, globalized, and networked societies ensure flows of people and goods and thus sustain social and economic prosperity. Concurrently, more and more infrastructure construction assets are facing the problem of systematic obsolescence due to deficient structural conditions, maintenance backlogs, and a lack of or misallocation of resources for the construction and maintenance of infrastructure buildings. This problem construct necessitates a resilience-based maintenance strategy for the asset portfolio. In particular, inland navigation as a mode of transport features large transport volumes and few redundancies. Combined with its increasing importance due to its comparatively high environmental friendliness, a predestined, yet in the literature underrepresented research subject results. This dissertation aims to investigate essential factors of infrastructure management and thereby identify the potential for improvement in the complex construct of maintenance management and related areas. The emphasis is on enhancing the resilience of inland waterways as a complex System-of-Systems with all its interdependencies. Thus, a holistic risk and resilience assessment is essential and is underlined with the aspects infrastructure availability and business decisions (Study A, B, C and D) and stakeholder communication and risk analysis (Study E, F, G) which are addressed by seven studies published as companion articles. Study A deals with assessing the reliability of transport infrastructure networks as part of supply chains, highlighting the importance of available and thus maintained infrastructure assets for functioning supply chains. Study B aims to identify critical warning times before closures of transport infrastructure networks and therefore suggests a mixed-methods approach, making it possible to derive and evaluate critical thresholds. Study C examines the corresponding company decisions, i.e., decisions as reaction towards neglected maintenance of public transport infrastructure, which comprises risk coping strategies, examined by empirical investigations. Study D extends this problem observation by showing that companies could see incentives for outsourcing if they face a lack of access to available transport infrastructure. Hence, the study analyzes facility relocation problems in dependence on infrastructure availability. Study E heads toward stakeholder communication and risk analysis and examines the processes across stakeholders, using an approach of collaborative serious gaming, which simultaneously enhances situation awareness and communication among stakeholders. Study F provides the implementation of a systemic approach and its visualization as a GIS-based risk dashboard, shedding light on interdependencies among critical infrastructures and cascading effects. Study G closes with an examination of the evaluation of the potential of infrastructure funds. For this purpose, the study conducts an online survey to determine investors’ willingness to pay for various fund mechanisms, integrating the option of private coverage. Despite the geographic focus of the case studies on Germany, valuable insights can be gained for infrastructure management that can also apply to other countries. In addition to the case study findings, general recommendations for infrastructure owners are derived. As a result, it can be stated that it is essential that maintenance strategies have to be more resilience-based than traditional strategies, which are mainly based on fixed time intervals for maintenance. Moreover, the application of both serious gaming and GIS visualization can help to enhance situation awareness and thus the resilience of infrastructure systems. An essential finding for which this dissertation provides methodological approaches is that considering the local area’s attractiveness for business locations should receive more attention regarding investment decisions. Thereby a focus should be set on the realistic threat of relocations as response to deteriorating infrastructure conditions. Eventually, public debates should strengthen the knowledge about infrastructure and its funding, while deficits in alongside mechanisms in infrastructure funding must be encountered. Consequently, this dissertation provides insights into the potential of infrastructure management. Mainly, it offers the potential to improve the resilience of the waterway transportation system and address stakeholders accordingly
    corecore