118 research outputs found

    A cross-layer middleware architecture for time and safety critical applications in MANETs

    Get PDF
    Mobile Ad hoc Networks (MANETs) can be deployed instantaneously and adaptively, making them highly suitable to military, medical and disaster-response scenarios. Using real-time applications for provision of instantaneous and dependable communications, media streaming, and device control in these scenarios is a growing research field. Realising timing requirements in packet delivery is essential to safety-critical real-time applications that are both delay- and loss-sensitive. Safety of these applications is compromised by packet loss, both on the network and by the applications themselves that will drop packets exceeding delay bounds. However, the provision of this required Quality of Service (QoS) must overcome issues relating to the lack of reliable existing infrastructure, conservation of safety-certified functionality. It must also overcome issues relating to the layer-2 dynamics with causal factors including hidden transmitters and fading channels. This thesis proposes that bounded maximum delay and safety-critical application support can be achieved by using cross-layer middleware. Such an approach benefits from the use of established protocols without requiring modifications to safety-certified ones. This research proposes ROAM: a novel, adaptive and scalable cross-layer Real-time Optimising Ad hoc Middleware framework for the provision and maintenance of performance guarantees in self-configuring MANETs. The ROAM framework is designed to be scalable to new optimisers and MANET protocols and requires no modifications of protocol functionality. Four original contributions are proposed: (1) ROAM, a middleware entity abstracts information from the protocol stack using application programming interfaces (APIs) and that implements optimisers to monitor and autonomously tune conditions at protocol layers in response to dynamic network conditions. The cross-layer approach is MANET protocol generic, using minimal imposition on the protocol stack, without protocol modification requirements. (2) A horizontal handoff optimiser that responds to time-varying link quality to ensure optimal and most robust channel usage. (3) A distributed contention reduction optimiser that reduces channel contention and related delay, in response to detection of the presence of a hidden transmitter. (4) A feasibility evaluation of the ROAM architecture to bound maximum delay and jitter in a comprehensive range of ns2-MIRACLE simulation scenarios that demonstrate independence from the key causes of network dynamics: application setting and MANET configuration; including mobility or topology. Experimental results show that ROAM can constrain end-to-end delay, jitter and packet loss, to support real-time applications with critical timing requirements

    Adaptive Flow Control for Enabling Quality of Service in Tactical Ad Hoc Wireless Networks

    Full text link

    Spectrum Allocation Algorithms for Cognitive Radio Mesh Networks

    Get PDF
    Empowered by the cognitive radio technology, and motivated by the sporadic channel utilization, both spatially and temporally, dynamic spectrum access networks (also referred to as cognitive radio networks and next generation wireless networks) have emerged as a solution to improve spectrum utilization and provide more flexibility to wireless communication. A cognitive radio network is composed of wireless users, referred to as secondary users, which are allowed to use licensed spectrum bands as long as their are no primary, licensed, users occupying the channel in their vicinity. This restricted spectrum access strategy leads to heterogeneity in channel availability among secondary users. This heterogeneity forms a significant source of performance degradation for cognitive radio networks, and poses a great challenge on protocol design. In this dissertation, we propose spectrum allocation algorithms that take into consideration the heterogeneity property and its effect on the network performance. The spectrum allocation solutions proposed in this dissertation address three major objectives in cognitive radio mesh networks. The first objective is maximizing the network coverage, in terms of the total number of served clients, and at the same time simplifying the communication coordination function. To address this objective, we proposed a received based channel allocation strategy that alleviates the need for a common control channel, thus simplifying the coordination function, and at the same time maximizes the number of clients served with link reliability guarantees. We show the superiority of the proposed allocation strategy over other existing strategies. The second objective is improving the multicast throughput to compensate for the performance degradation caused by channel heterogeneity. We proposed a scheduling algorithm that schedules multicast transmissions over both time and frequency and integrates that with the use of network coding. This algorithm achieves a significant gain, measured as the reduction in the total multicast time, as the simulation results prove. We also proposed a failure recovery algorithm that can adaptively adjust the schedule in response to temporary changes in channel availability. The last objective is minimizing the effect of channel switching on the end-to-end delay and network throughput. Channel switching can be a significant source of delay and bandwidth wastage, especially if the secondary users are utilizing a wide spectrum band. To address this issue, we proposed an on-demand multicast routing algorithm for cognitive radio mesh networks based on dynamic programming. The algorithm finds the best available route in terms of end-to-end delay, taking into consideration the switching latency at individual nodes and the transmission time on different channels. We also presented the extensibility of the proposed algorithm to different routing metric. Furthermore, a route recovery algorithm that takes into consideration the overhead of rerouting and the route cost was also proposed. The gain of these algorithms was proved by simulation

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Energy-Aware IP Routing over SDN

    Get PDF
    The routing protocols play a vital role in saving energy, especially by minimizing the time a packet takes to travel from source to destination. The aim of energy-aware routing protocols is to select a route that engages routers in such a way that the overall energy consumption is minimized. In this paper, a relationship between resource utilization and energy consumption is stated, further, a resource-aware dynamic routing algorithm for SDN is proposed. The contribution of this paper is a queuing theory-based approach that measures the average waiting time of nodes and links based on their utilization and finds a path that costs the least time. The paper also proposes a framework for implementing routing algorithm over an SDN. Performance of the algorithm is verified using a GNS3 based implementation with an Opendaylight controller. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Time Dependent Performance Analysis of Wireless Networks

    Get PDF
    Many wireless networks are subject to frequent changes in a combination of network topology, traffic demand, and link capacity, such that nonstationary/transient conditions always exist in packet-level network behavior. Although there are extensive studies on the steady-state performance of wireless networks, little work exists on the systematic study of their packet-level time varying behavior. However, it is increasingly noted that wireless networks must not only perform well in steady state, but must also have acceptable performance under nonstationary/transient conditions. Furthermore, numerous applications in today's wireless networks are very critical to the real-time performance of delay, packet delivery ratio, etc, such as safety applications in vehicular networks and military applications in mobile ad hoc networks. Thus, there exists a need for techniques to analyze the time dependent performance of wireless networks. In this dissertation, we develop a performance modeling framework incorporating queuing and stochastic modeling techniques to efficiently evaluate packet-level time dependent performance of vehicular networks (single-hop) and mobile ad hoc networks (multi-hop). For vehicular networks, we consider the dynamic behavior of IEEE 802.11p MAC protocol due to node mobility and model the network hearability as a time varying adjacency matrix. For mobile ad hoc networks, we focus on the dynamic behavior of network layer performance due to rerouting and model the network connectivity as a time varying adjacency matrix. In both types of networks, node queues are modeled by the same fluid flow technique, which follows flow conservation principle to construct differential equations from a pointwise mapping of the steady-state queueing relationships. Numerical results confirm that fluid-flow based performance models are able to respond to the ongoing nonstationary/transient conditions of wireless networks promptly and accurately. Moreover, compared to the computation time of standard discrete event simulator, fluid-flow based model is shown to be a more scalable evaluation tool. In general, our proposed performance model can be used to explore network design alternatives or to get a quick estimate on the performance variation in response to some dynamic changes in network conditions
    corecore