

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Hollinghurst, Joe

Title:
Enabling Software Defined Networking in High Criticality Networks

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/161510911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Enabling Software Defined Networking

in High Criticality Networks

By

Joseph Hollinghurst

Department of Electrical and Electronic Engineering
University of Bristol

A dissertation submitted to the University of Bristol in ac-

cordance with the requirements of the degree of Doctor of

Philosophy in the Faculty of Engineering.

September 2017

Word count: forty-five thousand six hundred and ninety-two

Abstract

High-criticality networking solutions are often dedicated, highly specialised, even

bespoke in case of hard real-time guarantees. This is required to ensure (quasi)

deterministic behaviour of the network services as seen by critical applications.

However, dedicated networks incur significant expense, along with the inability to

update the system efficiently and effectively. Software-Defined Networking (SDN)

uses controllers to allow dynamic, user-controlled, on-demand configuration of the

network. This provokes interesting questions on the applicability of SDN concepts

and architectures in high-criticality networks.

Although SDN offers flexibility and programmability to the network infrastruc-

ture through the introduction of a controller, the controller introduces extra delay

into the system. This is due to new flows querying the controller for instructions of

how to route traffic. This becomes an increasing problem for large scale and delay

sensitive networks such as those found in high-criticality infrastructure. The delay

introduced can be minimised by optimal placement of the controller or decreased

further by introducing additional controllers. Although the problem of optimal

placement for multiple controllers is known to be NP hard, approximations can be

used. The analysis of three different methods has been conducted and investigates

the scalability, and how the accuracy of the methods varies with the complexity.

In the latter stage of the thesis the use of redundancy and coding is analysed

with the aim to reduce latency and increase reliability within the network. The

objective is to provide an analysis of the gains achievable through the use of re-

dundant messages and coding. Both redundancy and coding increase the network

load and hence the delay of each packet, but can reduce overall delay by exploiting

independent randomness across multiple paths. Both the average delay minimisa-

tion and probabilistic guarantees on delay exceeding some tolerance threshold are

considered.

1

Dedication

To my Wife, Robyn Hollinghurst née Davies.

2

Declaration

I declare that the work in this dissertation was carried out in accordance

with the requirements of the University’s Regulations and Code of Practice

for Research Degree Programmes and that it has not been submitted for any

other academic award. Except where indicated by specific reference in the

text, the work is the candidate’s own work. Work done in collaboration with,

or with the assistance of, others, is indicated as such. Any views expressed

in the dissertation are those of the author.

SIGNED: .. DATE:..........................

3

Acknowledgements

I would like to thank my long standing supervisors Ayalvadi Ganesh and Tim

Baugé for their dedication and support throughout my time at the University

of Bristol.

This work was supported by the Engineering and Physical Sciences Re-

search Council [grant numbers EP/I028153/1]; Thales UK; and the Univer-

sity of Bristol. I would like to thank Thales UK Research & Technology for

supporting this research through an EPSRC CASE Award

4

Contents

1 Introduction 10

1.1 Introduction to SDN and NFV 10

1.2 Industrial Motivation and High

Criticality . 12

1.3 Thesis Organisation . 14

1.4 Contributions . 15

2 Controller placement: Literature 16

2.1 Introduction to Literature Review 16

2.2 Problems in SDN . 17

2.2.1 Latency . 17

2.2.2 Security . 20

2.2.3 Reliability . 21

2.2.4 Scalability . 23

2.2.5 Metrics in Software Defined Networks 29

2.2.6 Summary of the SDN literature 29

2.3 The Controller Placement Problem 32

2.3.1 Integer Linear Programming (ILP) Methods 32

2.3.2 Heuristic Methods . 35

2.3.3 Summary . 40

3 Controller Placement: Algorithms and Evaluation 41

3.1 Introduction . 41

3.2 The Controller Placement Problem 42

3.3 Approximation Algorithms for K-Medians 45

5

3.4 Empricial Evaluation: Algorithms and Topologies 49

3.4.1 LP relaxation of k-medians 50

3.4.2 Local Search . 51

3.4.3 K-means++ Adaptation 52

3.4.4 Complexity of the algorithms 56

3.4.5 Topologies for Evaluation 57

3.5 Empirical evaluation: Results 58

3.5.1 Results for the Railway Network 59

3.5.2 Results for Internet Zoo Topologies 62

3.5.3 SDN-specific Topologies 64

3.6 Discussion and Conclusion . 70

4 Redundancy: Literature Review 72

4.1 Introduction . 72

4.2 Analytical Methods . 73

4.2.1 Queueing Theoretic Models 73

4.2.2 Network calculus: A viable option? 75

4.3 Redundancy via replication 77

4.3.1 Queueing with redundant requests: an exact analysis . 83

4.4 Redundancy via coding . 84

4.5 Enabling Redundancy, A Whistle Stop Tour 88

4.6 A Simplified Analytical Model 91

5 Redundancy: Replication 93

5.1 Introduction and Related Work 93

5.2 Models and Problem Formulation 95

5.3 Replication and Mean Latency 99

5.3.1 Exact latenices for M/M/1 queues 100

5.3.2 Approximate latencies for M/PH/1 queues 101

5.3.3 Channel or server variability 105

5.3.4 Comparing M/M/1 , M/PH/1 and On-Off Models . . 108

5.3.5 Optimal Replication Factor 110

5.3.6 Tail Bounds on Latency 114

6

5.4 Conclusion and Further work 117

6 Redundancy: Coding 120

6.1 Introduction and Related Work 120

6.2 Model and Problem Formulation 122

6.3 Coding and Mean Latency . 125

6.3.1 The M/M/1 queue . 125

6.3.2 The M/PH/1 queue 127

6.3.3 Channel or server variability 129

6.3.4 Comparison between M/M/1 , M/PH/1 and On-Off

Models . 130

6.3.5 Optimal Coding Rate 132

6.3.6 Probabilistic Delay Bounds 134

6.4 Conclusion . 140

7 Conclusion 141

7.1 Contributions . 141

7.2 Further Work . 142

A 145

A.1 Proof of Lemma 5.3.1 . 145

A.2 Hyper-Exponential Equations 146

A.3 Derivation for the Exceptional First Service Model 146

A.3.1 Derive g(s) and g0(s) 146

A.3.2 The Expected Service time for the exceptional first ser-

vice model . 150

A.3.3 LST and PDF of the Wait time for exceptional service 151

7

List of Figures

1.1 Traditional Networking Architecture vs. SDN Architecture . . 11

1.2 The links between aspects of High Criticality and SDN 14

2.1 The number of achievable flows/sec for Proactive and Reactive

controllers . 20

2.2 Basic Operation of DIFANE 25

2.3 Kandoo Hierarchy . 28

3.1 The Controller Placement Problem example solution for the

minimum average delay and minimum of the maximum delay . 43

3.2 Numerical Timings to find controller placements for various

values of k . 57

3.3 Performance comparison between the K-means++ method with

1 initialisation, Local Search with 200 Repetitions & the Lin-

ear Program . 60

3.4 Performance comparison between the K-means++ method with

an increasing number of initialisations and the Local Search

method with an increasing number of swaps 61

3.5 CDF over the Internet topology zoo of the normalised costs

using the k-means++ and local search methods, k = 4 63

3.6 Scatter plot over the Internet topology zoo of the normalised

costs using the k-means++ and local search methods, k =

4. Each index on the horizontal axis corresponds to a single

network, the plot is ordered with respect to the local search

normalised metric. 63

3.7 Internet2 Topology . 65

8

3.8 Intellifiber Topology . 66

4.1 Load Balancing of Multipath Source Routing in Ad Hoc Net-

works - Queuing Model . 75

4.2 Networking with Redundancy Queuing Theory Model 92

5.1 Latency CDF with exponential service under varied load: note

scale changes on vertical axis 102

5.2 CDF of the wait time with Hyper-Exponential service 105

5.3 CDF of the latency: On-Off server 108

5.4 Comparison between M/M/1 , M/PH/1 and On-Off server . . 110

5.5 Optimal Number of Replications 111

5.6 Optimal Mean vs. No Redundancy 112

5.7 CDF Comparison between the dynamic policy and the theo-

retical values . 113

5.8 The delay bound τε, with varied λk for the exponential service

model . 116

6.1 A binary (3, 2) code . 121

6.2 Example of a (3, 2) code . 121

6.3 Latency CDF with exponential service under varied load: scale

changes on vertical axis . 126

6.4 CDF of the latency with hyper-exponential service time 129

6.5 CDF of the latency with server variability 131

6.6 Comparison between M/M/1 , M/PH/1 and On-Off server . . 132

6.7 Optimal Coding Rate . 136

6.8 Optimal Mean vs. No Coding 137

6.9 The delay bound τε, with varied λ 138

6.10 Delay Bounds Magnified, On-Off server, ε = 0.01 139

A.1 The On-Off Channel for the exceptional first service model . . 147

9

Chapter 1

Introduction

1.1 Introduction to SDN and NFV

Networking has often lagged behind the pace of innovation within the rest

of the computing world. This is largely due to the fact that networking

elements are traditionally operated in hardware rather than software, and

therefore the time to market is much slower. A conventional networking

element consists of both a control plane and a data plane. The control plane

can be seen as the ‘brain’ of the network, which dictates how and where data

is sent. The data plane then forwards the traffic according to the decision

the control plane has made. As each element has both a control and data

plane it is difficult to influence the behaviour of the traffic as each node is

preprogrammed, and if a new application is required each element must be

individually updated in a distributed manner.

On the other hand, Software Defined Networking (SDN) separates the

control and data planes by introducing a controller. The controller can be

used as a centralised resource to disseminate instructions to the data plane as

shown in figure 1.1. This allows the networking elements to be easily repro-

grammable whilst maintaining the necessary line speed for communications.

Another benefit of SDN is the abstraction of the underlying infrastruc-

ture. This allows rapid innovation in networking functions as network engi-

neers do not need to be concerned with the hardware involved. Furthermore,

10

Figure 1.1: Traditional Networking Architecture vs. SDN Architecture

by using abstractions the underlying network can be heterogeneous in nature.

This enables the use of COTS (commercial off the shelf) hardware compo-

nents that can be interchanged dynamically within a network without the

need to reconfigure. This also contributes to the reduction in ‘vendor lock

in’, where by companies with existing networking infrastructure are forced to

purchase products from a specific manufacturer due to compatibility issues.

Alternatively, the SDN movement aims to be mainly open-source. This

is largely due to the ONF [1](Open Networking Foundation), OpenDaylight

and importantly the OpenFlow API (application programming interface).

Although OpenFlow is not the only API, it is the one most widely used.

It is therefore said that within the definition of SDN, OpenFlow is either

considered to be equal, or at least a major part of the SDN movement[2].

Network Function Virtualisation (NFV) is another aspect of SDN, NFV is

the idea that network functions are written in software (virtualised), rather

than requiring dedicated hardware. SDN and NFV are often banded to-

gether, as they are normally used in collaboration: SDN provides the under-

lying infrastructure, whilst NFV provides the networking functions. This has

the advantage of being able to use commercially available hardware combined

with software for specific purposes such as firewalls and traffic management.

Due to the vendor-neutrality and open source nature of SDN the cost of

setting up and running a network can be reduced. First of all, businesses pro-

viding networks can purchase hardware at a significantly reduced cost, and

the business focus then transfers to the services that the networks provide.

Secondly, businesses requiring networks benefit from the reduced cost of the

11

hardware, and also the programmability of the networks means the network-

ing solution can be tailored to the business needs, resulting in a much better

service. Furthermore, the centralised nature of SDN means that performance

metrics and statistics can easily be collected, making visibility much clearer.

Ultimately, this makes the network management easier, which in turn means

the network can be adapted to business needs and consequently the efficiency

is improved.

1.2 Industrial Motivation and High

Criticality

The industrial motivation behind this thesis is to exploit the programma-

bility of SDN within industry. The aim is to allow industries, other than

hardware manufacturers, to provide specialist networking services. This is

enabled by combining intellectual property with the heterogeneous, open

source, programmable networks that SDN creates.

Throughout this thesis we refer to high criticality networks. High crit-

icality networks are a subset of industrial networks, where the Quality of

Service (QoS) requirements differ substantially to those required in commer-

cial/enterprise networks.

A thorough explanation of the difference between enterprise (commer-

cial) networks and high criticality (industrial) networks is provided in [3].

In the paper the authors explain the key differences between the primary

functions of the networks, with high criticality networks often being used to

control physical equipment. On the other hand, commercial networks are

mainly used for data processing and transfer. This change in primary func-

tion causes a substantial difference in the QoS requirements. For example

if a failure occurs in a high criticality network the severity is much higher

than a commercial network as people’s safety may be at risk. Therefore high

criticality networks often require backup systems.

The reliability of the network is also more important in a high criticality

network. In a commercial network if data isn’t received it can often be

12

re-sent without any ramifications. However, for a high criticality network

the data may correspond to a warning message from a sensor, which may

cause substantial harm if it is not received. Similarly the speed at which

the message is received may be critical in this scenario, with the requirement

for the round trip time in industrial networks ranging from 250µs–10ms

(compared to 50ms+ in conventional networks). Hence, the reliability and

round trip time requirements are substantially stricter in a high criticality

network.

The type of traffic also differs between the network types, with high criti-

cality networks often consisting of deterministic periodic and aperiodic small

packets. Whereas commercial networks consist of larger aperiodic traffic,

that is often random or consists of bursts.

To satisfy the performance demands, high criticality infrastructure tra-

ditionally uses bespoke networking solutions which are often expensive and

inflexible in nature. This is an interesting contrast to SDN where COTS

hardware is used, which is less expensive, and relies on the programmability

of SDN to provide the relevant features. Also, the use of COTS hardware

adds uncertainty to the network as it is unknown whether the hardware com-

ponents can maintain the required performance for high criticality. Thus, the

motivation raises the research question of can a Software Defined Network be

tailored to satisfy the needs and demands of a high criticality network?

Although the motivation casts a wide net over the potential research

areas, there are two particular areas that are covered in this thesis. The two

areas consist of the controller placement problem and data redundancy. The

research areas were chosen by identifying potential extensions to research in

the current literature. This led to the contributions highlighted in section

1.4 which aim to aid the application of SDN in high-criticality.

13

Figure 1.2: The links between aspects of High Criticality and SDN

1.3 Thesis Organisation

Figure 1.2 represents the most important elements involved in high criticality.

The figure shows the two main research areas are linked to all the aspects

identified. First of all a comprehensive literature review on SDN is presented.

This was used to identify possible research questions in the area of high-

criticality which led to the research in Chapter 3. The research in these

chapters links to a physical aspect of SDN, the controller placement, rather

than any virtual aspects. Whilst undertaking the work on the controller

placement it was found that there is limited research in the modelling of

networks using mathematical techniques, due to the fact that simulation and

emulation is often used instead. Therefore another literature review was

undertaken to establish potential areas of further work. An area of research

that links to high-criticality is the use of redundancy in networks and this is

investigated in Chapters 5 and 6. Finally, conclusions and areas of further

work are presented in Chapter 7.

14

1.4 Contributions

The following papers contain many of the results seen in this thesis:

J. Hollinghurst, A. Ganesh, and T. Baugé, ’Controller placement meth-

ods analysis’, in Information Communication and Management (ICICM), In-

ternational Conference on. IEEE, 2016, pp. 239-244.

J. Hollinghurst, A. Ganesh, and T. Baugé, ’Latency Reduction in Com-

munications Networks Using Redundant Messages’, in the twenty-ninth In-

ternational Teletraffic Congress (ITC 29), IEEE , 2017.

15

Chapter 2

Controller placement:

Literature

2.1 Introduction to Literature Review

Chapter 3 investigates The Controller Placement Problem. The controller

placement problem was first formulated in [4], where the authors investi-

gate where an SDN controller should be placed, and how many controllers

are needed to support the network. These questions are supported by the

work in section 2.2 as the reviewed papers highlight the current challenges

in SDN that can be alleviated by better placement of the SDN controller.

The challenges include: Latency, Security, Reliability and Scalability, and

are investigated in detail in section 2.2.

As we are investigating the controller placement problem the latency

in this chapter refers to both controller-to-controller and controller-to-node

communication. Since the notion of a controller is introduced in software

defined networking these two parameters are SDN specific. The controller-

to-controller delay is important to keep network consistency, since an out-

dated database can cause the network to give false forwarding instructions.

The controller-to-node delay is important to maintain an agile, adaptive and

dynamic network, which is a key aspect of what SDN wants to deliver. This

is because the lower the latency, the quicker the response time can be be-

16

tween a packet arriving at a node and control instructions being given. A

lower latency also has advantages when looking at the security and reliability

of the network. The security can be improved with good placement of the

controllers as forwarding instructions can be updated quicker, so any threats

can be dealt with as soon as possible. More specifically the controller itself

is a target for attack since it is a centralised system. This leads to the intro-

duction of middle-boxes, which add complexity to the controller placement

as extra nodes are added to the network. With respect to reliability, it is

important that the network has a reliable control element for continuous ser-

vice. To that end, the controller placement problem can be altered to take in

to account the connectivity and probability of failure for components in the

network. This changes the objective function of the problem formulation and

introduces new metrics to quantify reliability in SDN. Finally, the scalability

of SDN is considered as, depending on the size of the network, it is unknown

if a centralised system can cope with the amount of flows querying the con-

troller. In terms of the controller placement problem this can be alleviated

by introducing multiple controllers to balance the number of flows on a per

controller basis.

2.2 Problems in SDN

2.2.1 Latency

The latency is considered both physically with the placement of the SDN

controllers and virtually for the data transmission within the network. Only

the controller delay is discussed in this section as this links to the controller

placement in Chapter 3. The literature that links latency and redundancy is

presented in Chapter 4 as the research composed is discussed in Chapters 5

and 6. Latency is a key component in the research conducted in this thesis

due to the importance latency has in high-criticality. In particular, it is often

the case that a specific latency must be adhered to depending on the scenario

[5]. One example that highlights this is the use of wireless sensor networks in

industry, where an increased latency can cause outdated information, which

17

may lead to wrong decisions being made [6].

Delay to the controller

In a Software Defined Network extra latency is introduced when communi-

cating with a central controller. This is because any unknown packet, flow

or event must first query the controller for forwarding instructions. An ac-

ceptable level of latency therefore needs to be adhered to in order to avoid

interruption or excessive set-up times. The controller placement can help by

increasing the amount of controllers, or placing the controllers in close prox-

imity to the forwarding elements (data plane). This gives rise to the questions

of how many controllers are needed and where should they be placed? These

questions were first asked in the controller placement problem [4]. In [4] the

authors look at both where the controller should be placed, and how many

controllers are needed to support the network. The metric used to do this

was the node-to-controller latency. The authors consider both the average la-

tency between all the nodes and their corresponding controller and the worst

case latency where the maximum latency is found between all the nodes and

their controllers. Many topologies were considered in the analysis provided

by the internet topology zoo[7]. It was found that optimal placement of the

controller was normally in densely populated areas of nodes for the average

latency, and in the centre of the network for the worst case delay. Further-

more, with these topologies the authors conclude that one controller often

suffices to meet required delay bounds. However, this is a generalisation and

may not necessarily be the case in networks with specific delay bounds.

Delay to the controller is also discussed as a metric in [8] where the

physical delay is considered due to the distance between the controllers and

nodes. The node-to-controller delay is considered negligible in data centres

due to close proximity of the controllers to the nodes. Whereas, for service

providers, the geographic distribution leads to the metric being much more

important as the physical delay is much larger. The controller placement is

therefore particularly important in WAN (Wide Area Network) environments

due to the physical constraints, this is an area researched in [9], which is

18

discussed in section 2.3.2. A larger geographic area can also mean a larger

network in terms of the number of nodes, and this relates to the scalability

of the placement algorithms which is investigated in Chapter 3.

Flow Set-up Time

The flow set-up time is an SDN specific parameter, and refers to the addi-

tional overhead required to initially send and receive forwarding instructions

between the controller and the forwarding elements. It is claimed that this

is exacerbated by the current hardware[10]. The hardware can be a problem

for the system due to lower performance CPU’s used for control applications

in switches [10]. This leads to a poor response time when a large number of

initial commands are sent from the controller. However, it is noted that this

will be dealt with by the switch vendors when making SDN specific switches.

Irrespective of the hardware used, the use of multiple controllers can min-

imise the risk of the flow set-up becoming an issue by spreading the initial

load on each controller. It is therefore important to look at the placement of

multiple controllers to make this possible.

Furthermore, it is shown in [10] that a proactive approach offers better

performance, particularly at scale. The performance is quantified in [11] by

considering the number of flows/sec that a controller can handle as a func-

tion of the number of switches in the network. The results are shown in

Figure 2.1 which indicates that a proactive controller can handle a larger

number of flows/sec for every network size (number of switches). Although

the proactive approach is shown to give better performance, this is at the

cost of increased complexity. It is also noted that although a proactive ap-

proach is more effective, reactive operations would still need to be in place for

unpredictable events. In order to have an effective proactive network there

needs to be adequate controller to controller communication. This is a con-

sideration in Chapter 3, whereby the optimisation metric can be altered to

keep the controllers closer together. The idea of a proactive network is also

a consideration when looking at controller placement for resilience. In this

case the placement of controllers is computed in such a way that if a failure

19

Figure 2.1: The number of achievable flows/sec for Proactive and Reactive
controllers

occurs control can be maintained without disruption, and hence the set-up

does not need to be re-initiated. This issue closely relates to that of fast

failure recovery, as discussed in [12], which compares a proactive approach

to failure recovery to that of a reactive approach using NOX [13].

Within some of the monitoring tools such as OpenTM[14] and when look-

ing at emulation[15], the performance is calculated based upon steady state

behaviour and ignores flow set-up. This is because a proactive set-up is

assumed or reactive set-up is disregarded. This assumption could signifi-

cantly impact performance as an initial set-up is likely to require the most

resources at any one time. This is because even though a proactive approach

can alleviate much of the initial burst (flow set-up) of requests for forwarding

instructions, a reactive approach means the flow set-up time can be much

larger as the requests would have an element of queuing. One way to get the

best of both worlds is to use hybrid systems, such as the ones considered in

[11].

2.2.2 Security

Although security is not an immediately obvious aspect of SDN related to

the placement of controllers, the use of middle boxes and backup controllers

20

can effect the way the placements are calculated. The use of middle boxes

in SDN is considered in the security survey by Scott et. al [16]. In an SDN

environment the controller would be able to control and install new rules on

middle boxes. By doing this it would take some computational complexity

away from the controller, as flow anomaly detection could be handled by

the middlebox. However, the network will become more complex due to the

additional nodes in the system which makes the controller placement more

difficult. The survey gives a detailed account of the current and potential

security threats in SDN and provides both positive and negative viewpoints.

In particular the work in [17] highlights the two main security threats: fal-

sifying a controller and Denial-of-Service (DoS) attacks. Within the survey

however security is mainly handled through anomaly detection, as when new

flows are sent to the controller, the controller can then decide whether or

not a flow is malicious. This introduces the problem of DoS attacks through

flooding the controller with new flows. A software approach to this problem

is FortNOX [18], which is a controller software package that detects threats

and conflicts in flows. The metric used to evaluate the performance of the

tool is the delay introduced, which has an average 7ms when analysing 1000

rules. This delay may be required due to the secure nature of the network,

but careful consideration of how much delay a network can tolerate needs to

be taken into account. A hardware approach however is the use of backup

controllers, which is also a consideration with reliability, this is because if a

controller fails or is attacked, a continuous service can still be maintained.

The use of backup controllers adds another element to the controller place-

ment problem, and this is the focus in [19], which is reviewed in section

2.3.1.

2.2.3 Reliability

Reliability is an aspect of networking that needs to be addressed for both

centralised and distributed systems. It is argued that a distributed system

improves the physical reliability [20] as clusters of off the shelf components

can be used, which are easy to replace if a failure occurs, and hence con-

21

sistency can be maintained. On the other hand, a centralised system will

improve reliability at a software level due to: automated management of

network devices, uniform policy enforcement, and fewer configuration errors

[21]. The fact that a distributed network is possible leads to the need for

resilient controller placement, this is a problem addressed through the use of

alternative metrics in the problem formulation. Furthermore, the centralised

nature of SDN may improve the reliability at a software level, but this needs

consistency amongst controllers if more than one is used in the network. This

relates to the convergence of controller consistency, and can only be achieved

if the latency of controller-to-controller communication is adequate. Relia-

bility can also refer to the resilience of the network, this means that fault

tolerance needs to be achieved, and if failures occur a suitable strategy needs

to be adopted to maintain connectivity, or at least provide a quick response.

Fault tolerance is a big issue with reliability and convergence must take

place within specified time frames to maintain network connectivity. The

controller placement is therefore an important factor to ensure the conver-

gence time is possible. In [22] a QoS-aware network operating system is

created, of which fault tolerance is a major part. A 50ms time frame needs

to be adhered to in order to maintain carrier grade fault tolerance [23]. This

is achieved using their operating system, but only for a limited amount of

forwarding elements and links. They conclude that in order to maintain QoS

for a carrier grade network they can only accommodate 50 forwarding ele-

ments (FEs) and 200 links. These figures are arrived at based on how long

it takes for a fault notification to reach the controller (1.85ms-2ms) and how

long it takes to recalculate a route, which is ultimately dependent on the size

of the network and the controller placement.

Ethane [24] introduces backup controllers for centralised systems. Within

the paper the authors describe three different methods for replicating the

controller. Cold-standby (booted when needed and spanning tree computed

when activated), warm-standby (booted when needed but spanning tree pre-

configured) and fully replicated (separate spanning tree for each controller

but flow-requests can be spread across them). Each method thus has a differ-

ent recovery time. The paper also looks at how link failures effect the system

22

and it was shown that a path converges in less than 40ms with cold-standby,

although the packets may be delayed by around a second due to the controller

handling a flurry of requests. The use of backup controllers leads to better

convergence times, but this also creates the problem of how to generate their

placements. One method for creating a list of backup controllers is presented

in [19], but to save replication this is discussed in section 2.3.1.

In summary, one focus on reliability is fault tolerance, which can be char-

acterised through the connectivity and probability of failure within a network.

The SDN approach gives the possibility of using proactive backup controllers

which can reduce convergence time in a network (CPRecovery [25] is one such

example). Also, due to the programmability and network wide view of the

controller, new paths can be created for node failures whilst avoiding loops

and black holes, which is an inherent problem in traditional networks. As

reliability is a major concern in high criticality applications a proactive ap-

proach to back up would be advantageous as this would ensure functionality.

Furthermore, the controller placement can be influenced to benefit reliabil-

ity, and this can easily be made an additional consideration by altering the

objective function.

2.2.4 Scalability

Many software applications have been developed to try and combat scalabil-

ity in SDN. Publications look at how to scale a network with little overhead,

or create a distributed system, which may require multiple controllers. SDN

also enables the possibility of developing new metrics for scalability. As well

as traditional metrics such as delay and throughput, parallel aspects can

be considered such as manageability(how easy it is to add nodes) and func-

tional scalability (how easy it is to add new functions) to the network[8]. The

SDN specific metrics can then be used in the controller placement objective

function as required. Scalability also has to be considered when looking at

the controller placement algorithms, this is because many of the available

algorithms are extremely computationally heavy, and can only be used on

networks of a limited size. The problem of scalability for the algorithms is

23

expanded in Chapter 3, where it is shown that approximations must be used

when considering larger networks.

One way to address scalability in SDN is to reduce the number of con-

trollers required. DevoFlow [26] aims to do this by limiting the data sent

to the controller using various techniques. These include: rule cloning, lo-

cal actions and efficient statistics collection. The performance is evaluated

according to the aggregate throughput of all the flows in the network. The

techniques used generally improved throughput, however, increased through-

put is not the main function of DevoFlow, reduced flow to the controller is.

When looking at the number of packets sent to the controller and the amount

of flow entries needed it is shown that DevoFlow reduces both metrics sig-

nificantly compared to the original OpenFlow procedures.

DIFANE [27] attempts a hierarchical system to dilute the amount of flows

going directly to the controller. It does this in the following way (numbers

match operations in Figure 2.2):

1. The controller installs the flow rules on to the authority switches.

2. A packet arrives but has no matching rule in the switch.

3. The packet is forwarded to the authority switch.

4. The rules are updated on the ingress switch and the packet is forwarded

directly to the egress switch.

5. Subsequent packets arrive, matching the flow rule.

6. The packet is forwarded according to the rule previously installed by

the authority switch.

DIFANE distributes the authority switches whilst having a single con-

troller, hence the system maintains a global view. The delay to obtain a

flow rule is therefore reduced as the authority switches are physically closer

to the ingress/egress switches. The amount of flow going to the controller

is also reduced, as new rule requests only go to the authority switch, which

24

Figure 2.2: Basic Operation of DIFANE

leads to enhanced scalability. A fundamental distinction between the con-

troller and switch is maintained as the controller is the only entity which can

create rules and the authority switches only distribute them. This creates

a sub-problem for the controller placement problem since now the author-

ity switches also need to be positioned. This could be solved by allowing

the controller placement problem to also have a hierarchical solution, by

first finding the placements of authority switches with respect to the for-

warding nodes, and then finding the controller placements with respect to

the authority switches. However, this would also mean that more than one

problem would need to be solved, which may cause excessive computation

depending on the algorithm used.

In [28] & [29] the authors take an approach to the scalability by looking

at how a controller can be logically centralised. They look at the trade-offs

in both optimality versus staleness and robustness to inconsistency versus

application complexity. When analysing the trade-offs both a strongly con-

sistent network view, and an eventually consistent view are considered. The

strongly consistent view gives more accurate data but with an increase in

overhead, leading to increased delay, which can cause suboptimal perfor-

25

mance. Whereas, the eventually consistent view uses data as it becomes

available, thus reacting quicker, but it may lead to incorrect behaviour. The

authors reach the conclusions that staleness significantly impacts optimal-

ity and robustness to inconsistency increases when the application logic is

aware of the flow duration. The question of staleness also links to whether

or not a controller placement should be dynamic or fixed. A fixed controller

placement means that a more complex algorithm can be used, which would

generally give a more optimal solution at the time of computation. On the

other hand, if a solution needs to be computed more than once the complex-

ity is a limiting factor, and faster algorithms, which are not necessarily as

good in terms of optimality, must be used.

HyperFlow [30] looks to combat the problem of scalability by using mul-

tiple physically distributed controllers and then synchronising them. The

paper looks at a way to efficiently communicate network state information

between controllers. It does this by making the following assumptions: any

change in the network wide view stems from the occurrence of a network

event, the evidence in [13] that only a fraction of network events change the

network-wide view (tens of events per second for networks of thousands of

hosts),ordering of events does not matter and applications only need to be

minimally modified. Using these assumptions they are then able to use a

publish/subscribe system called WheelFS[31] in order to efficiently synchro-

nise controllers. The synchronisity of controllers can also be a consideration

in the placement, since controllers can be forced to be physically placed closer

together as in Chapter 3. The authors also make an important claim that

HyperFlow enables OpenFlow deployment in mission critical networks, as

the network can increase or decrease the number of controllers to satisfy the

demands of the network.

Another way to solve the controller placement problem and maintain scal-

ability is to virtually slice the network. A controller can then be assigned to

each slice of the network as with FlowVisor [32]. A slice is configured by de-

termining and enforcing which slice each packet belongs to. FlowVisor is also

able to isolate bandwidth within each slice and the forwarding decisions for

each slice are independent for each controller. This benefits the network by

26

allowing it to determine how much bandwidth a particular flow can receive,

and is an important enabling feature when using redundancy as in Chapter

5. The authors also show that with message throttling isolation FlowVisor

is able to prevent saturation of the CPU in the controller. However, the

benefits come at the cost of increased delay when a new flow is determined.

An important metric to consider when deciding how many controllers

are needed is the amount of flows in a network. A method to try and bal-

ance flows amongst controllers is BalanceFlow[33], which has distributed con-

trollers with one ‘super controller’. Each controller contains an N x N matrix,

N being the number of switches it services, where the i, jth (ith row, jth col-

umn) entry represents the weighted average number of flow requests from

node i to node j. The super controller aggregates all the controller matrices

and if flow imbalance is detected, according to a threshold value dependent

upon the network, reallocates flows according to a cost function. The cost

function takes into account: number of flow requests already handled by the

controller, the flows about to be handled and the propagation delay. The

propagation delay is important as if flows were allocated to controllers with

a large propagation delay this could cause adverse effects for fault tolerance

and reaction delay. The propagation delay is therefore weighted in the cost

function with respect to the total number of flow requests in the network

divided by the minimum average node-to-controller latency and a scalar pa-

rameter which was found empirically. The only disadvantage to BalanceFlow

is an increased overhead, however the amount of overhead is not discussed

in the paper. Overall, BalanceFlow provides insight in to fundamental SDN

metrics, such as propagation delay, which can be used to create a mathemat-

ical formulation for the controller placement problem.

Kandoo [34] limits the amount of flow going to the root controller by

physically placing local controllers near to the switches as depicted in Figure

2.3. The local controllers then handle all the flows which only require local

information, which are frequent. Whereas, the root controller only handles

flows that require a network wide view such as rerouting. By doing this

the authors show that the messages per second received by the controller is

reduced by an order of magnitude. Another advantage is that the Kandoo

27

Figure 2.3: Kandoo Hierarchy

hierarchy can be combined with FlowVisor to further improve scalability. Al-

though the approach of Kandoo is similar to that of DIFANE and DevoFlow

the authors claim it is different as it does not extend switch capabilities, but

it brings the control plane closer to the switches.

Scalability is combated with two main types of solution, by reducing the

amount of flows going to the controller and second, by the introduction of

more controllers. Each idea is fundamentally the same, to reduce the amount

of flow on a per controller basis. A hybrid approach could therefore poten-

tially be realised by combining techniques such as the ones in DevoFlow with

a hierarchical controller system such as Kandoo. Whether a network has a

single or multiple controllers a control platform is required as an enabler, one

example is Onix [35], which allows a distributed system to appear centralised

by maintaining a Network Information Base (NIB). It should also be noted

that in a hierarchical system it is possible to add more controllers to satisfy

specific requirements, such as delay bounds and reliability measures. A dis-

advantage to this approach is the increased cost of additional controllers but

in order to adhere to specific requirements this may be necessary in an SDN

system.

28

2.2.5 Metrics in Software Defined Networks

This section briefly discusses the metrics that are currently being used for

monitoring purposes in SDN. The metrics are important, as it shows what

characteristics of networking can be measured, and therefore optimised or

improved. In relation to Chapter 3 the metrics are a useful consideration

in to what factors can be included in an objective function for the con-

troller placement. Table 2.1 lists the metrics identified in [36], the table also

shows which metrics each monitoring software tool uses. A common problem

amongst monitoring software is identified in the paper, in that they only use

a limited amount of metrics when comparing networks. This is also shown

by the fact that although there are a large number of metrics identified only

six are ever evaluated.

2.2.6 Summary of the SDN literature

The chapter started by taking an in depth view of the problems SDN faces

and analysing the current methods used to tackle certain problems. By un-

dertaking the literature review it became clear (to the extent of the knowledge

gained) that no methods currently exist to answer the question of whether or

not SDN is an applicable technology for high-criticality networks. However,

by combining the ideas and concepts of the methods within the chapter it

may be possible to create a system with specific guarantees allowing SDN to

be exploited for the use in high-criticality situations.

The monitoring tools and metrics for SDN are in a primitive stage. This

causes the problem of having no standard metrics for comparison. However,

data collection is fundamental in traffic engineering, irrespective of the metric

used. The lack of standardisation is therefore not a big problem as long as

the metrics are useful for their specific tasks.

The delays introduced by querying the controller and the flow setup time

are SDN specific metrics and are therefore important in this thesis. This is

why the controller placement is a critical application to be considered, as

the aim for optimal placement of the controllers is to minimise the latency

between controllers and their connected networking nodes, hence minimising

29

Table 2.1: Considerations and Metrics of OpenFlow Monitoring Software
Considerations
and Metrics

Tools

Cacti[37] Cbench[38] MSActivator[39] OFPeck[40] OpenSeer[41] OpenView[42]
Multi-tenancy X X X X X X
Packet loss rate X X X X X
Latency/latency
variation

X X X X X

Outage downtime X X
OpenFlow proto-
col response times

X X X

OpenFlow pro-
tocol activation
times

X X

OpenFlow con-
troller availability
metrics
OpenFlow con-
troller reliability
metrics
OpenFlow con-
troller capacity
metrics
OpenFlow con-
troller accuracy
metrics
OpenFlow con-
troller security
metrics
OpenFlow switch
availability met-
rics
OpenFlow switch
reliability metrics
OpenFlow switch
capacity metrics
OpenFlow switch
accuracy metrics
OpenFlow switch
security metrics

the time required for a networking node to query a controller, and conse-

quently flow setup times. By optimally placing the controllers it can then be

seen to what extent SDN can be used in applications, as optimal placement

will provide the best available physical structure for a given network. This

information can then be used to determine whether a particular solution is

viable or not.

The amount of flows through a controller or switch posed concerns in

the early stages of SDN but as hardware developed with SDN in mind this

no longer looks to be an issue. Many companies are building ‘SDN ready’

switches with OpenFlow support. OpenFlow looks to be the standard API

for SDN, this is largely due to the support from industry. A more pertinent

30

question as discussed in [2] is the lack of a standard northbound API and

subsequently the Open Daylight project was created.

Reliability and security are big issues for SDN due to the nature of a

central control point. Reliability is often addressed through the use of repli-

cation and redundancy and this also seems to be the case for SDN. The main

concern is how efficiently normal operation can resume and whether or not it

can be resumed under the strict deadlines required for the application of the

system. Papers have shown proactive approaches offer good performance and

as long as the synchronisation is consistent, should offer similar performance

to that of existing networks, and is therefore applicable to high-criticality.

The security issues show SDN will give both advantages and disadvan-

tages. The advantages being that anomaly detection will become easier due

to the unknown packets querying the controller. However, this also becomes

a disadvantage due to the possibility of DoS attacks. Overall the programma-

bility and flexibility of SDN allows for the security to be easily upgraded for

specific purposes, whether it be by introducing middle boxes or otherwise.

Another concern is insider attacks, however this would be a concern for any

system and is not SDN specific.

Scalability for SDN is widely considered with many papers looking at

different architectures. The only thing to note on this subject is the fact

that a hybrid system could be realised by combining reduced flow to the

controller and multiple controllers. The main problem is the synchronisation

between the controllers and the question of staleness. This will remain a

problem as with any distributed system, but the best method it seems is

an ad-hoc approach where updates occur when a network-wide event occurs.

This is because it reduces the amount of synchronisation required, and thus

traffic, whilst maintaining central control between switches and their local

controllers.

As discussed the reliability and delay of the system become more pertinent

for high-criticality networks so the controller placement is the place to start.

The following section introduces the controller placement and outlines the

current literature on the techniques for solving the problem.

31

2.3 The Controller Placement Problem

The controller placement problem was first formulated in [4], as stated pre-

viously the authors look at both where the controller should be placed, and

how many controllers are needed to support the network. In order to solve

the problem a full search method is used, whereby every possible combi-

nation of controller placements is assessed, and the best solution is used.

However, the full search method is infeasible for larger networks due to the

extensive computation involved. Importantly the work posed as a catalyst

for further research in the area of controller placements, and many extensions

have been proposed. Much of the work to date can largely be categorised by

the method it is solved, the two main categories are that of Linear Program-

ming and approximation heuristics. The nuances of the individual papers are

often within the optimisation criteria and aim to find an optimal solution ac-

cording to a specific networking characteristic. Some of the characteristics

include: node-to-controller delay, reliability (also survivability) and energy

usage. The most insightful papers ([43], [44],[45] and [46]) compare their

own solutions to that of others, and include the results of both such that a

comparison can be made. For example, it is useful to see how an optimised

solution for reliability compares to one optimised for delay, as the trade-off

between different optimisations can be seen. In particular, if a solution for

reliability is found, it may be the case that the node-to-controller delay may

or may not be at an acceptable level and therefore both aspects need care-

ful consideration. The reviews that follow look at the current literature on

controller placement, this then sets up and leads on to the work in Chapter

3.

2.3.1 Integer Linear Programming (ILP) Methods

The following methods use Integer Linear Programming to solve the con-

troller placement problem. This means the problem is formulated as a set of

linear constraints with an objective function. All of the papers in this section

(Section 2.3.1) use pre-coded Linear Programming solvers, such as CPLEX

[47], and the novelty lies in the formulation of the problem. In particular, the

32

objective function can be altered to change the optimality criteria depending

on the required optimisation.

The paper by Muller et al. [19] proposes a new controller placement strat-

egy called Survivor which has the following benefits: reduction of connectivity

loss, more realistic controller placement strategy and smarter recovery mech-

anisms. This is achieved by splitting the problem in to two sub-problems,

first of all the placement of controllers is dealt with, and then a list of backup

controllers is formulated. To find the placement of controllers an ILP is used,

but unlike other controller placement formulations the objective function is

to maximise the average connectivity of disjoint paths between the forward-

ing nodes and the controllers. The constraints in the ILP ensure that the

placement, capacity, and connectivity of controllers provides a suitable solu-

tion with respect to survivability. A heuristic for the second sub-problem is

proposed and two metrics are considered. One of the metrics is the distance

between controllers, and a list of backup controllers for each individual con-

troller is formulated based on this. The other metric is the residual capacity,

whereby the list of backups is composed by looking at the spare capacity of

the controllers. The method is evaluated on three different WAN networks

(Internet2 (10 nodes, 15 links), RNP (27 nodes, 33 links) and GEANT (40

nodes, 61 links)) and compared against a Min Cut Centroid method of con-

troller placement. It is shown that the Survivor method performs better with

respect to the probability of maintaining connectivity and the probability of

becoming overloaded when a failure occurs. One major downfall of the eval-

uation however is that the controller to node latency is not considered. This

is a disappointment as the paper gives a one sided view on how the proposed

method improves a certain aspect of controller placement, but does not com-

pare this to the conventional method. This would then provide a welcome

indication of the trade-off between survivability and minimum latency.

A simple method for a resilient version of the controller placement prob-

lem is investigated in [48]. The problem is formulated as an integer linear

program (ILP), but is solved using a commercial program GUROBI. The

objective function used considers both the total cost for the deployment of

the controllers and the expected routing costs from the controllers to the

33

switches. The resilience is created within the constraints as each switch

must be managed by a controller at a specified resilience level. Each con-

troller also has a capacity, which adds another constraint to prevent the total

incurred load from the switches from exceeding the controller’s capacity. Fur-

ther constraints ensure connectivity between the switches and controllers. In

the evaluation only 5 networks are used, with the amount of nodes and links

ranging from 11 - 42 and 18 – 77 respectively. This is a limited selection

of networks and it is mentioned that further work would consider heuris-

tics to support larger networks. The paper also only evaluates the proposed

method, so there is no comparison or trade-off analysis performed. This is

unfortunate as it would be particularly interesting to compare this method to

a delay only one as the resilience is a constraint, and not part of the objective

function.

In [49] the controller placement problem is again formulated as an integer

linear program, much like many other methods. The key difference is that

an extra constraint is added to balance the load on each controller. The

constraint also ensures that each controller can not exceed a certain load,

and the load is said to be balanced optimally if each controller has an equal

share of traffic. Within the new constraint both the load and the delay are

considered, and the trade off between the two can be controlled by altering

the variables. The ILP is solved with and without the new constraint on

10 different networks of limited size, with the largest having 65 nodes, it is

therefore noted that further work would be to use a heuristic. The variable

controlling the trade-off is altered and it is shown there is a clear trade-off

between load balancing and finding the minimal delay.

Another ILP formulation is given in [50]. The difference in this paper is

that three optimization criteria are summed within the objective function.

These include the following costs: setup of a controller, linking controllers

to switches and linking controllers together. The cost of linking nodes is

quantified using a cost parameter along with the distance between the nodes.

Similarly a cost is associated for the setting up of each of the controllers, with

a binary variable used to indicate whether to use a particular controller or

not. The problem is solved using CPLEX, and the results are shown for

34

networks with up to 200 nodes and 20 controllers. It is mentioned that the

optimiser had a 30 hour restriction to solve the problem and was unable to

find the optimal solution for four of the 27 networks tested. Theses networks

were the larger ones tested and therefore for practical implementations it is

stated that heuristics must be used. An observation of the paper is that the

number of controllers being placed significantly effected the runtime of the

method, this would be another aspect that would benefit from heuristics.

An energy aware formulation is proposed in [43], where the problem is

constructed as a Binary Integer Program (BIP). A BIP is simply an ILP

with the restriction that the solution space is limited to 0s and 1s. The only

real difference to other methods is that each link has an assigned amount of

energy that is required for transmission. The objective is then to minimise

the amount of energy used when assigning the controller placements. Much

like other papers it is noted that a linear program is infeasible for larger

networks, so a genetic algorithm is proposed. The energy savings are quan-

tified by the amount of active links that are required in the solution. It is

shown that the percentage of links used is reduced when using the BIP and

Genetic algorithm, but at the cost of increased delay in the network when

compared to a conventional controller placement algorithm. This paper has

many strengths in it’s evaluation due to the comparisons between other meth-

ods, both in terms of the objective and the algorithms used. Importantly the

optimality trade-off between an optimal solver, the BIP, and an approxima-

tion, the genetic algorithm, is shown, but also this is compared to a random

placement and a capacitated controller placement (CCPP). Furthermore, the

objective of the CCPP is to minimise the maximum latency between nodes

and controllers so a comparison between the energy aware solutions and a

conventional delay based method can be seen.

2.3.2 Heuristic Methods

It is mentioned in many of the ILP formulations that heuristics must be used

when considering larger networks. This is the case because of the computa-

tional complexity of linear programming. On the other hand, heuristics have

35

the benefit of reduced complexity, but at the expense of optimality. Again,

the better papers include a comparison between the proposed method and

previous methods. This both highlights and quantifies the advantages and

disadvantages of the methods, which allows you to see the trade-off between

scalability and optimality. This is an aspect of the work in Chapter 3. Simi-

larly to the ILP formulations, many of the novel aspects between the following

papers are the metrics considered.

In [44] the focus is on the reliability of the controller placements rather

than latency. The analysis is done by applying a probability of failure to

each path and seeing how a controller would perform under this restriction.

The reliability metric is defined as the expected percentage of control path

loss, where the control path loss is defined as the number of broken control

paths due to network failures. The optimisation target is then to minimize

the expected percentage of control path loss, rather than the latency. The

proposed algorithms are random placement, simulated annealing and a va-

riety of greedy algorithms with different parameters. The performance of

the algorithms is analysed through a comparison against an integer linear

program (which is assumed to be optimal). The solutions with the relia-

bility metric are compared to the conventional solutions based on latency.

It is shown that a solution for an improved average and worst case latency

requires an increased expected percentage of control path loss, albeit not a

huge increase in average or worst latency. The main downfall of the paper

is that the analysis is only performed on a limited number of networks, in

this case only seven, with a limited range of the number of nodes (34 – 315)

and links (32-1945). Although the NP-hardness of the problem is proven by

observing the relationship to the Dominating Set problem, the question of

the scalability of the algorithms is not addressed. Also, from experience, it

is unlikely the same analysis could be performed for larger networks due to

the requirement of an optimal solution being found using an integer linear

program, see Chapter 3.

The case for Software defined networking in a mobile setting has some

nuances that are addressed in [51]. The main purpose of the paper is to look

at how a dynamic allocation policy compares to that of a static one (pre-

36

determined, fixed placement). In this case the number of controllers can

vary in order to satisfy certain QoS constraints. The authors use a particle

swarm intelligence optimizitation (PSO) along with a grey wolf optimizer

and chaotic mapping. The grey wolf optimiser is so called because it uses a

hierarchial method that has tiers depending on how good a solution is. The

solutions can then be honed to converge to the best solution (as a wolf pack

would do when finding prey). The use of chaotic mapping is a technique to

stop convergence to a local optimum (this is similar to choosing a random

start point for the algorithm, but is more selective). The emphasis of the

paper is on the algorithm which is split in to two functions. One to find

the best controller placements and the other to connect the switches to the

controllers (as with other ways of finding controller placement). The new

algorithm is compared to a simple PSO algorithm and is shown to be better

in performance by 1% with 68% less computation. The major downfall of

the paper is that only one fixed topology is used for analysis with 10 nodes.

This is because the emphasis is on finding a solution when there is a varying

arrival rate at the controller.

The authors in [52] propose a k-means based approach for controller place-

ment, and formulate an ’optimised’ version. The results show that the opti-

mised version improves performance over a standard version of k-means. The

optimised version simply chooses an initial controller, then finds the node fur-

thest away to be used as a controller in the next iteration. This causes the

algorithm to become deterministic in the solution, where as for the original

k-means++ the centres are chosen according to a probability distribution,

which means the solution can change each time. The authors claim this is

an improvement since only one instance is needed, where as the k-means re-

quires more instances to find the best solution (100 instances are used by the

authors in this particular paper). Using a deterministic algorithm in this way

may be unwise as it may not always lead to the best solution. Furthermore,

the algorithms are only used on two networks, which shows the results are

very limited and perhaps untrustworthy. The paper states that the minimum

maximum distance is reduced using this method, but in the algorithm the

sum of latencies is used as the metric. This makes the objective unclear and

37

perhaps the fact that the maximum latency is reduced could be coincidental.

An advantage of using heuristics is the speed at which solutions can be

found, this is particularly useful in a mobile scenario. This is the case in

[45] where controllers are required to facilitate Device – to – Device (D2D)

transfers to alleviate resources and energy consumption in the network. The

problem is initially formulated as an ILP. The objective is to find the min-

imum number of controllers, and their corresponding locations, such that

every user is able to connect to at least one controller. One key difference

in this paper is that the state space is a 2-dimensional plane, rather than

a fixed network. In order to solve the problem a convex hull algorithm is

used rather than linear programming. This recursively partitions the state

space, and places controllers within the partitions such that each device is

connected to a controller. The algorithm is compared to a näıve approach

that simply splits the space in to squares and places a controller in the middle

of each square, and a random approach where the controllers are placed such

that they are within a certain distance of the users. The algorithms are eval-

uated with different values of the range they can cover, and it is shown the

proposed algorithm performs the best, and is less computationally expensive

than the random approach. A significant strength of this paper is the use

of different methods for comparison as it shows the benefit of using a more

intelligent approach. However, a significant weakness is the fact that there

is no optimal solution given for comparison, so the optimality gap remains a

question for further research.

The work in [46] computes controller placement based on different metrics.

Initially a full search method is used, but then heuristics are implemented

since finding placements for large networks is infeasible in terms of computa-

tion for a full search method. The only algorithm implemented is simulated

annealing, hence the main work is the fact that multiple metrics are used,

rather than a focus on the algorithms. The metrics consider delay, resilience

(in terms of node or controller failures), load balancing (within the control

plane), and a mixture of these requirements. The solutions for multiple mix-

tures of requirements are presented, and a Pareto curve is shown so a user

can choose a solution dependent on their own requirements for a controller

38

placement. This leads to the point that a lot of the work has a focus on the

Graphical User Interface (GUI) rather than the actual algorithms, but has

the advantage that it is openly available for anyone to use.

The controller placement in a WAN is considered in [9] and uses a spec-

tral clustering approach to sub-divide the network and then place controllers.

The algorithm aims to perform cuts on the network according to a min-max

objective function, but in reality simply uses a k-means algorithm to per-

form the partitioning. The sub-clusters generated from the partitioning are

then subjected to a full search to find the controller placement, which is

optimised according to the average latency. The metric is said to consider

propagation delay, load balancing and reliability, but this is a by-product of

the partitioning rather than a specific design characteristic. This is because

by partitioning the network according to k-means the clusters are more bal-

anced in size. This is opposed to only considering a delay metric over the

whole network, which can cause sub-clusters to have a more uneven amount

of nodes. The results show that the proposed method performs better when

compared to simply considering average latency. However, this is not the

case for each individual controller. A better comment would have been to

say that the method generates a more consistent metric for each controller.

This is because the results show the latency for each controller, and it is clear

that the spectral method has less variability between each controller. Where

as, the average-latency method has one controller that performs particularly

badly in each test, but also some controllers that perform better, which gives

a wider spread. This also means that the spectral method performs better

in this case overall, but maybe not necessarily better in other situations.

Finally, the algorithm is supposed to be used for a WAN topology, but the

scalability of the algorithm is not considered. In particular, the algorithm is

only tested on one topology, with only 36 nodes, which limits the viability

of the method.

39

2.3.3 Summary

The main aspect that is missing from each controller placement paper is that

of scalability and a comparison of the different methods with respect to the

size of the network. This is the main theme for the research in Chapter

3 where a numerical and theoretical comparison between full search, linear

programming, local search and a k-means method is performed in terms of

complexity. The accuracy of the methods is also analysed to show the trade-

off between the complexity and accuracy of the methods. Chapter 3 explains

the methodology of how the controller placement problem is solved, and the

modelling used to formulate the problem.

40

Chapter 3

Controller Placement:

Algorithms and Evaluation

3.1 Introduction

The literature review made it apparent that end-to-end delay 1 and reliability

are two of the main concerns for high criticality application. While SDN

introduces programmability to the system, it does so by including one or

more controllers, which introduce additional delay and reliability issues. In

terms of delay, the flow setup time is often overlooked in the literature, which

focuses on stability over the long term[14, 15]. Although this emphasis may

be appropriate for some applications, it is not the case for high criticality

applications, which typically require tight delay guarantees.

On the question of system reliability, many publications look only at

the reliability of the controller [24, 12, 25], which may not coincide with

application-level reliability, especially for high criticality applications. Specif-

ically, it is not just the failure of controllers that can cause delay guarantees

to be violated, but also the failure of links, which could increase path lengths

in the network. Improving reliability is often a major motivation for adding

more controllers in an SDN system, even when their contribution to reducing

delay is small [53]. This is an important topic, but not one we study in this

1including both node-to-controller and node-to-node delay

41

thesis.

In Section 3.2, we recapitulate a precise formulation of the controller

placement problem from [4], and show that one version of it is equivalent

to the k-medians problem, which we also state. We then introduce approxi-

mation algorithms for the k-median problem and the topologies we evaluate

relating to SDNs. Finally, we present our results for the approximation al-

gorithms we define in 3.4 in terms of accuracy (optimality) and complexity

(time to find a solution).

3.2 The Controller Placement Problem

Given a network topology, the controller placement problem is formulated

informally [4] as:

1. How many controllers are needed?

2. Where in the topology should they go?

The question of how many controllers are needed depends on the delay

bounds that need to be met; the more controllers there are, the more stringent

the delay bounds that can be met. However, too many controllers incur

additional cost, and they could even potentially slow down the system due

to the controllers requiring synchronisation, an issue looked at in [25].

The question of where in the topology the controllers should go depends

on the objective. Two natural objectives are considered in [4]: minimising

the average delay, and minimising the maximum delay. In general, these can

lead to different optimal placements, as depicted in Figure 3.1.

In order to address the above questions fully, we need a precise and for-

mal mathematical statement of the problems, which we now provide. Let

G = (V,E,w) be an arbitrary directed and edge-weighted network, with

vertex set V , edge set E, and non-negative edge weights we, e ∈ E. The

weights represent the latency or propagation delay across the corresponding

edges, which might consist of both transmission and queueing delays. We will

address the topic of queueing delays further in Chapters 5 and 6. Now, for

42

Figure 3.1: The Controller Placement Problem example solution for the min-
imum average delay and minimum of the maximum delay

u, v ∈ V , we denote by d(u, v) the distance between u and v, defined as the

weight of a minimum-weight path from u to v. If the graph G is undirected

and the edge weights are symmetric, i.e., w(u,v) = w(v,u) for all u, v ∈ V , then

the distances will also be symmetric, i.e., d(u, v) = d(v, u). We now define

two objective functions for the controller placement problem, following [4]:

for a subset S ⊂ V of nodes at which controllers are placed, the resulting

average and maximum latencies are given by

Lave(S) =
1

|V |
∑
v∈V

min
u∈S

d(v, u), Lmax(S) = max
v∈V

min
u∈S

d(v, u). (3.1)

The controller placement problem is then the following optimisation problem:

min
S⊆V

L(S) subject to |S| ≤ k, (3.2)

where L(S) could be either Lave(S) or Lmax(S), and k is the number of

controllers available. It is clear that the inequality constraint can be replaced

43

by an equality constraint without loss of generality, as placing additional

controllers can never increase either of the objective functions.

An alternative formulation of the controller placement problem is to spec-

ify a bound on the objective function of interest (average or maximum) delay,

and ask for the minimum number k of controllers required to meet this con-

straint, as well as a placement that does so. This variant of the problem can

be solved by repeatedly solving the controller placement problem for different

k. A bisection search approach to solving for k implies that we need solve

only about log2 |V | iterations of the controller placement problem for fixed

k. Thus, the computational complexities of the two versions of the problem

are not too dissimilar.

One natural generalisation of the optimisation problem in (3.2) is to con-

sider a budget constraint, with different costs for placing a controller at dif-

ferent nodes; in other words, the constraint in (3.2) becomes
∑

v∈S cv ≤ C,

where cv is the cost of placing a controller at v, and C is the total budget.

This is known as the facility location problem. Another generalisation would

be to consider weighted sums in defining Lave, i.e., to set

Lave(S) =
1

|V |
∑
v∈V

min
u∈S

wvd(v, u),

where wv is a weight representing the amount of traffic flowing through node

v. We don’t consider these variants further, beyond mentioning that all the

algorithms we study can be easily adapted to them.

We now establish the equivalence of the controller placement problem

with the average latency criterion to the k-medians problem in the special

case that the distances d(u, v) are symmetric, i.e., d(u, v) = d(v, u) for all

u, v ∈ V . Assuming this is not too restrictive in our setting, as we are

typically interested in round-trip delays d(u, v) + d(v, u), the time for a node

to query the controller about a packet or flow, and get a response specifying

rules for handling it. Round-trip delays are symmetric by definition.

The version of the k-medians problem most relevant to us is as follows.

We are given a finite set V and a distance function ρ : V × V → R+ which

satisfies the properties of a metric, namely:

44

1. ρ(x, y) = ρ(y, x) for all x, y ∈ V .

2. ρ(x, y) ≥ 0 for all x, y ∈ V , with equality if and only if x = y.

3. For all x, y, z ∈ V , ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Then, the k-medians problem is the following:

min
S⊂V

∑
v∈V

min
u∈S

ρ(u, v) subject to |S| = k. (3.3)

Comparing (3.3) with (3.2), where L(S) is specified in (3.1), we see that

the problem of minimising average latency is equivalent to the k-medians

problem, with ρ(u, v) = d(u, v)/|V |.

3.3 Approximation Algorithms for K-Medians

In the last section, we showed that the controller placement problem with

the average latency criterion reduces to the k-median problem. Unfortu-

nately, the k-median problem is known to be NP-Hard [54]. This leads us

to consider approximation algorithms for the k-median problem, which have

been the subject of a considerable amount of research. Below, we summarise

a selection of the approximation algorithms that have been proposed for

this problem, and their approximation guarantees. The problems will be

parametrised by two variables, the number of vertices in the network, de-

noted by n, and the number of medians required, denoted by k. In practical

SDN applications, n could be of the order of thousands to millions, while k,

the number of controllers, could be anywhere between one and a few tens,

or even a few hundreds. Thus, it can be helpful to consider asymptotic mea-

sures of complexity and performance of the algorithms, as both n and k tend

to infinity.

We reproduce a survey of results from [54], where methods to find both

the optimal solution on specific topologies and numerous approximations are

described. The k-median problem can be solved exactly on paths and trees,

in polynomial time: see (Table 3.1).

45

Table 3.1: Exact algorithms on specific topologies.
Author Complexity Notes
Tamir[55] O(n2k) Solves on a tree

from the leaves
towards the
root.

Tamir[55] O(kn) Input graph is a
path.

One approach to solving the k-medians problem on general graphs is

then to embed the graph into a tree, and solve the resulting problem on

the tree using the methods of Tamir from (Table 3.1). However, such an

embedding introduces some distortion; the distances between nodes on the

graph is not exactly preserved in the tree embedding, but only up to some

multiplicative factor. Thus, the solution of the problem on the tree only

provides an approximation to that on the original graph. A number of such

algorithms, along with their approximation guarantees (the ratio of the cost

obtained by the algorithm to the true minimum cost) are shown in (Table

3.2).

Table 3.2: Algorithms exploiting tree structures.
Author Approximation

Guarantee)
Notes

Bartal[56] O(log2n) Network is formed in to tree
structures then solved opti-
mally.

Bartal[57] O(log(n)log(log(n))) Improved version using par-
titionable metrics.

Fakcharoenphol,
Rao, Talwar[58]

O(log(n)) Decompose the graph by
growing the clusters diame-
ters then forming trees.

Charikar et al.[59] O(log(n)log(log(n))) Find the trees using a re-
laxed linear programming
approach.

It can be seen from this table that the approximation ratios are rather

large, and grow with n. This raises the question of whether there are efficient

algorithms that can achieve constant approximation ratios, or even ratios

46

arbitrary close to 1. Algorithms of this form are presented in (Tables 3.3 and

3.4). In Table 3.4 ε is an arbitrary parameter for specifying precision, and

provides a trade off between complexity and the approximation guarantee.

Table 3.3: Constant factor approximations.
Author Approximation

Guarantee
Notes

Charikar et al[60] 62
3

Uses linear programming to form
trees, then is solved optimally on
the trees (forest) formed.

Jain and Vazirani[61] 6 Uses a primal-dual schema which
makes the algorithm more efficient
as linear programming is no longer
used.

Charikar and Guha[62] 4 Uses Lagrangian relaxation (moves
a constraint to the objective func-
tion) over two problems and then
combines them.

Arya et al [63] 3 + 2/p Local search is used, with p swaps.

Table 3.4: Arbitrary precision algorithms
Author Complexity Approximation

Guarantee
Notes

Arora et al[64] nO(1+ 1
ε
) 1 + ε Divides the network

in to segments. ε is
an arbitrary parame-
ter for specifying pre-
cision

Arora et al[64] n(O(log(n/ε))2k 1 + ε Approximates the
median locations but
only for small k.

Finally, we look at algorithms that also relax the constraint on the number

of medians. Such a relaxation reduces the complexity of the algorithms. An

algorithm is described as being α-OPT with β-k-medians if it uses no more

than β-k-medians and if its cost is no more than α times the optimal cost. A

selection of such algorithms is presented in Table 3.5, where ε has the same

interpretation as the previous table.

A number of different extensions of the k-median problem have also been

47

Table 3.5: βk Median approximations.
Author Complexity Optimality

(αOPT)
Medians (βk) Notes

Lin and
Vitter[65]
[66]

Polynomial 1+ε β =
(1+1/ε)(ln(n)+1)

Linear programming
with relaxations then
rounding.

Korupolu
et al[67]

Polynomial 1+ε β = 10 + 17/ε Uses local search and
permutes until a so-
lution is settled.

Korupolu
et al[67]

Polynomial O(ε3) β = (5 + 1/ε) Uses local search and
permutes until a so-
lution is settled.

Indyk[68] O(n2) (1+γ)3(2+ε) β = 2 γ is a confidence pa-
rameter , the algo-
rithm uses a sample
of points in the net-
work, runs on the
sample then takes
the points furthest
away from the medi-
ans and runs again.

studied in the literature. The k-median with diameter, the capacitated or

robust k-median problem and the facility location problem are all of partic-

ular relevance to the SDN setting. The k-median problem with a diameter

imposes a minimum distance between locations of medians. The capacitated

k-median imposes a limit on the maximum number of nodes in each cluster

(closest to each median). Identifying medians with controller locations, both

have the potential to improve reliability by reducing the number of nodes

effected by the failure of a given link or a given controller. In the facility

location problem, there is a cost for placing a controller at each node and a

budget, but no explicit bound on the number of controllers. This could be

realistic in the SDN setting, where the system operator only has access to

some node locations for placing controllers, and where these locations may

greatly differ in cost for legal or logistical reasons.

48

3.4 Empricial Evaluation: Algorithms and Topolo-

gies

In this section, we present three different algorithms for the controller place-

ment problem, and evaluate their performance and complexity on a large

number of different topologies. The first algorithm we study is a linear pro-

gramming (LP) relaxation of the k-medians problem, which is itself an integer

linear programming (ILP) problem; this algorithm was proposed in [65]. The

second is a local search heuristic, which is a novel contribution of this thesis.

The last is an algorithm for the k-means rather than the k-medians problem,

known as k-means++, which was proposed in [69]. Both the local search of

k-medians, and the k-means algorithm, have not previously been applied to

controller placement in SDN, to the best of our knowledge. Our final con-

tribution in this chapter is an empirical evaluation of these three algorithms

on a wide range of Internet topologies, including two of particular relevance

to SDN implementations.

As in the last section, we will use n to denote the number of nodes in the

network and k to denote the number of controllers. Throughout this section,

we assume that we are given an undirected graph G = (V,E), together with

a symmetric matrix of shortest distances between all pairs of nodes in G. If

only edge lengths are given, then shortest distances can be calculated easily

using any of a number of well-known algorithms. As these distances will be

used repeatedly by any of our algorithms, it would make sense to calculate

and store them, and we will do so as part of a pre-processing stage. For

an arbitrary graph on n nodes, the complexity of this pre-processing step is

O(n3) using standard algorithms such as the Floyd-Warshall algorithm; it

could be substantially less for sparse graphs.

We now present the algorithms that we will evaluate. The topologies used

for evaluation are described in the final subsection of this section.

49

3.4.1 LP relaxation of k-medians

In Section 3.2, we reduced the controller placement problem to a k-median

problem, stated formally in equation (3.3). The latter is, in fact, an instance

of an integer linear programming (ILP) problem, which we now state:

Minimise
∑
u∈V

∑
v∈V

ρuvxuv

subject to
∑
v∈V

xuv = 1 ∀ u ∈ V∑
v∈V

yv ≤ k

xuv ≤ yv u, v ∈ V

xuv, yv ∈ {0, 1} u, v ∈ V

(3.4)

The variables xuv and yv introduced in the optimisation problem have the

following interpretation: yv is the indicator that a controller is placed at node

v, or equivalently that node v is chosen as one of the medians, while xuv indi-

cates that node u belongs to the cluster around the median v, or equivalently

is served by the controller at v. If we ignore the integrality constraints, then

we allow fractional assignment of nodes to controllers, but constrain these

fractions to add up to 1. We also allow fractional placements of controllers,

but require that these fractions add up to no more than k controllers. Thus,

relaxing the integrality constraints to non-negativity constraints, we obtain

the linear programming (LP) problem:

Minimise
∑
u∈V

∑
v∈V

ρuvxuv

subject to
∑
v∈V

xuv = 1 ∀ u ∈ V∑
v∈V

yv ≤ k

xuv ≤ yv u, v ∈ V

xuv, yv ≥ 0 u, v ∈ V

(3.5)

50

An existing method is to solve this LP and then randomly round the solution

to find an integer solution. The method is summarised in algorithm 1.

Algorithm 1 Linear Program

Inputs Network: G = (V,E), distance matrix ρ(u, v)u,v∈V , number of
controllers: k , number of iterations: R.
Solve the linear program in eq. 3.5 using an LP solver (e.g. CPLEX or
built-in MATLAB function)
for i = 1 : R do

Randomly choose S with |S| = k from the non-zero elements of y
for v ∈ V do

Identify the closest node in S, breaking ties arbitrarily: φS(v) ∈
argmin{ρ(u, v), u ∈ S}

end for
Calculate the total cost Ctotal =

∑
v∈V ρ(v, φS(v))

if First iteration then
C∗total = Ctotal
S∗ = S

else
if Ctotal < C∗total then
C∗total = Ctotal
S∗ = S

end if
end if

end for
Outputs
C∗total : the minimum sum latency
S∗ : an optimal controller placement

3.4.2 Local Search

The first novel algorithm we present for solving the controller placement prob-

lem uses a local search method. In the local search method initial clusters are

formed randomly then nodes are swapped between clusters in each iteration.

The algorithm is called a local search as improvements between iterations

are achieved by swapping nodes that are found close to the current cluster

of interest i.e. the node that has been searched for and is being swapped

is local to the current cluster of interest. If the total cost is decreased by a

51

swap, then the configuration is updated, otherwise the previous configura-

tion is used and another swap is performed. This approach is repeated for

the number of iterations specified by the user as shown in the pseudo-code

in algorithm 2.

The Local Search Algorithm provides a fast method for finding a solution,

which is a significant advantage if a controller placement is required in a

dynamic setting. The speed at which the method can compute a solution is

also an advantage as the algorithm can be initiated multiple times, and the

best cost is taken from a number of instances. This is an advantage as the

possibility of the final solution converging to a local optimum is reduced.

3.4.3 K-means++ Adaptation

The k-means algorithm is arguably the most well known clustering algorithm

to date, yet to the best of our knowledge we are the first to propose using

it as an approximation for solving the controller placement problem. We

now give a formal mathematical formulation of the k-means problem. Let

G = (V,E) be a graph and let ρ = ρ(u, v)u,v∈V be a symmetric matrix

of pairwise distances between vertices, satisfying the properties of a metric.

Then the k-means problem is as follows:

min
S⊂V

∑
v∈V

min
u∈S

ρ2(u, v) subject to |S| = k. (3.6)

A commonly used approach to tackling this problem is to start with an

arbitrary initial clustering of the nodes into k clusters, and alternate between

two steps. In one step, given a clustering, one finds a node in each cluster

that minimises the sum of squared distances from other nodes (i.e., solve a

1-means problem for each cluster). In the other step, given a collection of

k centres, one computes a new clustering by associating each node with its

closest centre. Both steps reduce the sum of squared distances and so, by

monotonicity, the algorithm converges. However, it may converge to a local

rather than a global optimum.

We follow the k-means++ algorithm described in [69] to choose the initial

52

Algorithm 2 Local Search

Require: Network G = (V,E), number of controllers k , number of swaps:
R
Randomly Form Initial clusters of equal size, M = {M1, · · · ,Mk}
Initialise the set of controller locations S = ∅
Start sub-function
for j = 1 : k do

Solve the controller placement problem with k = 1 exactly for each
cluster: vj = argminv∈Mj

∑
u∈Mj

ρ(u, v)
Save the controller location vj in S such that S = S ∪ vj
Save the placement cost Cj =

∑
u∈Mj

ρ(u, vj)
end for
Compute the total cost: C =

∑
j=1,··· ,k Cj

Save the controller locations as S = {v1, . . . , vk}
End sub-function
for i = 1 : R do

Choose a random cluster from M1, · · · ,Mk: denote it Mrandom

Find the nearest node /∈ Mrandom from the remaining clusters (M \
Mrandom)
Label the nearest node m , and its corresponding cluster Mnearest

Redefine Mrandom as Mrandom ∪m
Redefine Mnearest as Mnearest \m
Let M ′ be the set of new clusters with m interchanged
Compute the new total cost and controller locations using the sub-
function, call them C ′ and S ′ = {v′j, · · · , v′k}
if C ′ < C then

Keep the new clusters: M = M ′

Set C = C ′

Update the controller locations: S = S ′

end if
end for
return Clusters: M , Controller locations: S, Total cost: C

53

clustering. It works as follows:

1. Choose one centre u uniformly at random from the vertex set, V . Set

S = {u}.

2. For each vertex v ∈ V \S, compute D(v, S), the distance between v and

the nearest centre that has already been chosen: D(v, S) = min
u∈S

ρ(u, v).

3. Choose one vertex v ∈ V \ S at random as a new centre, using a

weighted probability distribution where v is chosen with probability

proportional to D(v, S)2.

4. Repeat steps 2 and 3 until k centres have been chosen, i.e., until |S| = k.

After the initial centres have been chosen, we alternate the following steps

as explained above:

1. Assignment step: Partition the vertex set V into clustersM1,M2, . . . ,Mk

by assigning nodes to the closest centre. In other words, given centres

u1, u2, . . . , uk, assign vertex v to Mi if d(ui, v) < d(uj, v) for all j 6= i.

Break ties arbitrarily. Then, Mi∩Mj = ∅ for all j 6= i, and ∪ki=1Mi = V .

2. Update Step: Calculate the centres of the new clusters:

ui = argminv∈Mi

∑
w∈Mi

ρ2(v, w) (3.7)

The algorithm ends when the assignments no longer change. In practice, one

might need to set a bound on the number of iterations as convergence could

be very slow.

As we are concerned with the k-median problem, we find clusters ac-

cording to the k-means criterion for a certain number of iterations, then

terminate by finding the median of each of the final clusters. The median of

each cluster is found by solving the 1-median problem exactly on each clus-

ter, which is not computationally expensive. Our method can be formulated

as in algorithm 3.

54

Algorithm 3 K-means adaptation

Require: Network: G = (V,E), number of controllers: k , number of ini-
tialisations: R
Initialisation step: Form clusters by using the k-means and k-means++
algorithms
Choose one centre u1 uniformly at random from the vertex set, V . Set
S = {u1}.
for i = 2 : k do

For each vertex v ∈ V \S, compute D(v, S), the distance between v and
the nearest centre that has already been chosen: D(v, S) = min

u∈S
ρ(u, v).

Choose one vertex ui ∈ V \ S at random as a new centre, where v is
chosen with probability proportional to D(v, S)2.
Update S with the new centre such that S = S ∪ ui

end for
Initialise the while loop S∗ = ∅ , M∗

i = ∅ for i = 1, · · · , k
while S 6= S∗ AND Mi 6= M∗

i for i = 1, · · · , k do
Assignment step: Partition the vertex set V into clusters
M1,M2, . . . ,Mk by assigning nodes to their closest centre (the centres
are contained in the set S = {u1, · · · , uk}).
for Each v ∈ V \ S do

Assign vertex v to Mi if d(ui, v) < d(uj, v) for all j 6= i. Break ties
arbitrarily.

end for
Update Step: Calculate the centres of the new clusters M1, · · · ,Mk:
for i = 1 : k do
ui = argminv∈Mi

∑
w∈Mi

ρ2(v, w)
end for
Save the current configuration: Let S∗ = S , M∗

i = Mi for i = 1, · · · , k
end while
Reinitialise S = ∅ as we require the optimal k-medians for the clusters Mi

for i = 1, · · · , k
for j = 1 : k do

Solve the controller placement problem with k = 1 exactly for each
cluster: vj = argminv∈Mj

∑
u∈Mj

ρ(u, v)
Save the controller location vj in S such that S = S ∪ vj
Save the placement cost Cj =

∑
u∈Mj

ρ(u, vj)
end for
Compute the total cost: C =

∑
j=1,··· ,k Cj

Save the controller locations as S = {v1, . . . , vk}
return Clusters: M1, · · · ,Mk, Controller locations: S , Total metric: C

55

3.4.4 Complexity of the algorithms

We briefly comment on the complexity of the algorithms described above.

The theoretical complexity estimate of each algorithm is then complemented

with numerical timings.

Distance Computation The pre-processing step common to all our algo-

rithms requires the computation of pairwise distances between nodes given

the edge lengths. This requires solving the all-pairs shortest path problem.

Standard algorithms for this problem, such as the Floyd-Warshall algorithm

and Dijkstra’s algorithm have a complexity of O(n3) on arbitrary graphs.

The algorithms can be significantly quicker on sparse graphs.

Linear Programming The complexity of linear programming is domi-

nated by the interior point algorithm described in [70]. This method has

complexity O(n4/ln(n)) [71]. Common implementations of LP generally use

the simplex method, whose worst-case complexity is not polynomial in n,

but which works well in practice.

Local Search Given an initial choice of cluster centres, it takes nk steps

to identify the closest centre for each of n nodes, incurring a cost of nk for

forming the initial clusters. Subsequently, each swap involves two clusters,

whose centres need to be updated. Once the centres are updated, it needs

to be checked for every node whether it needs to be reassigned to a different

cluster, but the only possible reassignments are to the two clusters affected,

not all k of them. Thus, a swap only requires O(n) time, and not O(nk).

As the local search method has a user defined amount of repetitions, R, the

complexity becomes O(n(k +R)).

K-means++ The initialisation phase of k-means++ requires O(n) com-

putations to pick each of k centres, which adds up to a total of O(nk). The

iteration phase has been shown to be bounded in complexity by 2Ω
√
n, which

is the dominant term [72]. This is a worst case theoretical bound and the

practical results show much better performance.

56

Numerical timings For each of the methods described, the numerical

timings are calculated by implementing the algorithms in MATLAB version

2012a. The system used an intel i7 3GHz processor with 8GB RAM run-

ning on a 64-bit version of windows 7. The initial network used to test the

numerical timings is made up of a single 16 node network with unit length

links. The 16 node network is then duplicated to create a network of size 32,

64, 128, 256, 512 and 1024. The algorithms were all run 100 times on the

different sized networks for k = 2, 3, 4, 5 and the average time over the 100

runs is presented in Figure 3.2. The size of the networks tested for the Linear

Program was limited to 128 nodes due to timing constraints, but the timings

for the local search and k-means++ were calculated on all of the different

sized networks. In Figure 3.2 200 swaps were performed for the local search

algorithm and the k-means++ method used 1 initialisation.

(a) Linear Program (b) Local Search (c) K-means++ Adaptation

Figure 3.2: Numerical Timings to find controller placements for various val-
ues of k

3.4.5 Topologies for Evaluation

The topological challenges of software defined networks make the controller

placement problem unique. In traditional networks for example, a control

element is co-located within each networking device, meaning the controller

placement problem does not exist. Furthermore, although the controller

placement problem can be widely used in different networking scenarios such

as transportation, the focus of a solution is different. For example, in a

transportation network the geographical scale may be large (national, inter-

national, etc.), but the number of nodes/locations may be limited (e.g. due

57

to property costs). In this scenario the solution can also be computed over a

longer time period due to external factors such as planning permission, and

an optimal solution would likely be required to minimise the financial cost

to the organisation.

What makes the controller placement problem specific in SDNs is the

large scale, flexibility (in terms of where controllers can be placed), and

requirement for fast computation. In this case we may not be able to get an

optimal solution due to complexity limitations, and therefore approximation

algorithms must be used, this is the aim of the approximation algorithms

proposed in this thesis. To highlight these requirements the first network

we evaluate our algorithms on is a large rail network. This was chosen as

it is directly applicable to the problem of using SDNs in high criticality

infrastructure.

A topology frequently used for SDN research is the internet2 network

[9, 4, 73]. The internet2 network is relevant to SDNs as it has a layered,

hierarchical, structure. Further examples of networks can be found on the

internet topology zoo [7], and we show a worked example solution from the

Intellifibre network. We chose the Intellifiber network as it is owned by a

company that promotes the use of SD-WAN (Software Defined Wide Area

Networks) as a networking solution. In particular, this network will show the

application of our approximation algorithms at a larger scale than the inter-

net2 topology. Example solutions to the internet2 and Intellifibre networks

are presented in Section 3.5.3. This highlights the relevance and applicability

of our algorithms to SDN, particularly at a larger scale, which is not possible

using conventional methods such as a full search approach.

3.5 Empirical evaluation: Results

We evaluated each of the three algorithms described earlier in this chapter

on a number of different topologies. We looked at the trade-off between their

speed and performance, i.e., how quickly they produced a feasible solution,

and its total cost. The cost function we looked at was the sum of the latencies,

which is equivalent to the average latency (up to a scaling factor).

58

For each of the methods described, the solutions are calculated by imple-

menting the algorithms in MATLAB version 2012a. The system used an intel

i7 3GHz processor with 8GB RAM running on a 64-bit version of windows

7. We calculated the total cost of the best solution found by each of the

algorithms. We took the LP-based algorithm as our baseline, and compared

the total cost achieved by the other two algorithms to that achieved by the

LP algorithm.

3.5.1 Results for the Railway Network

The first test network we looked at was a large rail network. This was chosen

for the applicability of SDNs in high criticality infrastructure, see Section 1.2

for an explanation of high criticality. The network is formed of 124 stations

(nodes), which we take as the vertices in our network and assume at most

1 controller would be required in each location. A feature of this network

is that each vertex only has 1, 2 or 3 edges linking to other vertices. This

means the network is sparse in nature. In each test the algorithms were run

100 times in order to compute the statistics in Figure 3.3 and Table 3.6.

A number of results were found, first of all it is apparent that the linear

programming method was superior to the other methods in terms of accuracy.

Figure 3.3 shows that the linear programming method gives the smallest total

cost. Furthermore, the metric is consistent over each initialisation, shown by

the small standard deviation. This is believed to be because the non-integer

linear program provides a good initial solution, so the rounding to an integer

solution does not effect the cost in each instance.

Second, it can be seen that the number of repetitions improves the local

search method significantly, up to a point where it is competitive with the

linear program. At 10 and 100 repetitions the algorithm performs particu-

larly badly, but when increasing the number of repetitions to 200 a significant

improvement in performance can be seen. Increasing the repetitions further

to 500 and then 1000, the minimum cost is very close to that obtained by

linear programming. This is an interesting point as the complexity of the

local search method is significantly less than that of linear programming, and

59

so it can be used on much larger scale problems.

Although the cost improves with the number of repetitions for the lo-

cal search method, this is not the case for the k-means++ method. When

looking at Figure 3.4 it can be seen that having a larger number of initial-

isations does not improve the minimum cost. This could be caused by the

method finding a local minimum from the initialisation each time or due to

the rounding involved to find the median. Furthermore, the standard devia-

tion of the method is smaller than that of the local search method, indicating

less variation, which in this case is not always a good thing as the variation

can lead to an improved solution.

In order to show the differences in the methods table 3.6 shows the raw

statistics of 100 instances of each method. The local search method was run

with 1000 repetitions and the k-means with 1 initialisation. In particular, the

interquartile range (IQR) shows significant differences between the methods.

While the IQR for linear programming has a value of 0 for all the values of k,

the local search and k-means methods have a large IQR for values of k = 4

and above. The variance in the results for the local search method is believed

to be because of the random initial clusters, this also partially determines

how good the solution becomes after the swaps have occurred. The variance

is slightly reduced in the case of the k-means due to the probability weighting

applied to the initial clusters.

(a) Means (b) Minimums (c) Standard Deviations

Figure 3.3: Performance comparison between the K-means++ method with
1 initialisation, Local Search with 200 Repetitions & the Linear Program

60

(a) K-means++ (b) Local Search

Figure 3.4: Performance comparison between the K-means++ method with
an increasing number of initialisations and the Local Search method with an
increasing number of swaps

Table 3.6: Raw data
Linear Programming k = 2 k = 4 k = 6 k = 8
Mean 17693.67 11004.04 8099.15 6311.207
Standard Deviation 0 0 0 0
Min 17693.67 11004.04 8099.15 6311.207
Max 17693.67 11004.04 8099.15 6311.207
Interquartile Range 0 0 0 0

Local Search k = 2 k = 4 k = 6 k = 8
Mean 17693.67 12465.46 9245.76 7227.499
Standard Deviation 0 1046.997 880.6258 556.6958
Min 17693.67 11004.04 8475.173 6321.83
Max 17693.67 13458.47 12195.89 8647.53
Interquartile Range 0 2188.92 558.4767 994.2567

K-means++ k = 2 k = 4 k = 6 k = 8
Mean 17750.43 13335.10 11199.17 9339.12
Standard Deviation 0 993.05 853.52 1034.32
Min 17750.43 11216.09 8743.77 6612.96
Max 17750.43 14926.76 13460.34 11527.81
Interquartile Range 0 1167.42 657.1 1716.47

61

3.5.2 Results for Internet Zoo Topologies

In order to test the accuracy of the algorithms further a sample of topologies

from the Internet topology zoo were used [7]. Although these networks are

not all SDN specific they are closely related to SDN due to the potential

application of SDN to internet topologies. The sample taken consisted of

127 different topologies, with sizes varying from 13 to 113 nodes. In order to

show the performance of both the k-means++ and local search on a single

graph the CDF is presented for the minimums of both algorithms in Figure

3.5 and a scatter plot in Figure 3.6, with a normalised metric with respect to

the linear program. The normalised metric for the k-means++ algorithm is

calculated by taking the metric for the k-means++ on a particular network

and subtracting the metric from the Linear Program for the same network,

and then dividing by the Linear Program metric. The normalised metric is

also calculated for the local search algorithm in the same way. In this way,

by assuming the linear program metric is closer to optimal i.e. a smaller

value the normalised metric will always lie in the range [0, 1]. Furthermore, a

normalised metric close to 0 implies the metrics are similar, and a normalised

metric of 1 suggests a large disparity. The mathematical formulation for the

normalised metric , C∗ is:

C∗ =
Ccomp − CLP

CLP
(3.8)

where

CLP is the total metric for the Linear Program

and

Ccomp is the total metric for the comparator (k-means or local search)

In our tests the local search method used 200 swaps and the k-means

used 1 initialisation to maintain a similar timing constraint, the value of k =

4 was used to give significant variation between methods. The main result

from Figure 3.5 shows that the local search method generates a metric the

same as the linear program for 70% of networks, where as the k-means++

62

algorithm only remains the same for 25%, showing the local search method

outperforms the k-means++ in this scenario. A similar trend can be seen

in the scatter plot (Figure 3.6), where each index on the horizontal axes

represents an individual network.

Figure 3.5: CDF over the Internet topology zoo of the normalised costs using
the k-means++ and local search methods, k = 4

Figure 3.6: Scatter plot over the Internet topology zoo of the normalised
costs using the k-means++ and local search methods, k = 4. Each index on
the horizontal axis corresponds to a single network, the plot is ordered with
respect to the local search normalised metric.

63

3.5.3 SDN-specific Topologies

A topology frequently used for SDN research is the internet2 network [9, 4,

73]. The internet2 network is relevant to SDNs as by design it has a layered,

hierarchical, structure. An example solution to the controller placement for

this topology is depicted in figure 3.7. The solution shows that each controller

is based near to the centre of it’s surrounding connected nodes, and that each

controller has a similar number of nodes connected to it. This is an expected

result, as both of these characteristics will help to minimise the overall metric

that was defined in equation 3.3.

The algorithms presented in this chapter have been tested for their accu-

racy on 127 networks from the internet topology zoo [7] in section 3.5.2. Here

we present a specific example in figure 3.8, which is taken from the Intellifiber

network. The Intellifiber network is owned by Windstream Communications,

which promotes the use of SD-WAN (Software Defined Wide Area Networks)

as a networking solution. In particular, this network shows the application

of our algorithms at a larger scale than the internet2 topology (in terms of

the number of nodes: internet2 has 39 nodes with 102 edges, intellifiber has

73 nodes with 190 edges). The use of a larger network shows the ability of

the k-means and local search algorithms to find a solution to the controller

placement problem in a much shorter time frame than the linear program-

ming method. Furthermore, when the number of nodes is increased further

it becomes infeasible to calculate a solution using the linear programming

method due to the complexity of the algorithm.

To quantify how well the local search and k-means algorithms perform in

terms of optimality on these networks the minimum metrics are presented and

compared to the linear programming method (the assumed optimal method)

in tables 3.7, 3.9, 3.8 and 3.10. Different instances of the local search and

k-means were used to generate solutions to show a comparison between using

a different number of swaps or initialisations. The local search 100, 500 and

1000 methods simply use a different number of total swaps to generate a

solution. The local search repeat method used 100 swaps, but was initialised

10 times and the minimum metric over the 10 runs was taken. The k-means

64

(a) Internet2

(b) Internet2, k = 4

Figure 3.7: Internet2 Topology

65

(a) Intellifiber (b) Intellifiber, k = 4

Figure 3.8: Intellifiber Topology

, k-means 10 and k-means 100 used 1,10 and 100 initialisations respectively,

with the metric recorded being the minimum one created from all the ini-

tialisations. To compute how long the algorithms take to find a solution the

methods were repeated 10 times and the average time taken is recorded in

Tables 3.9 and 3.10.

Although the metrics are not optimal when compared to the linear pro-

gramming method the computation time is significantly less. This is due to

the complexity of the algorithms as discussed in section 3.4.4. This aims to

prove that although the approximation algorithms are not guaranteed to be

optimal, they are applicable to software defined networking since large scale

deployments may require fast computation times. In particular, this would

be a requirement in SDNs where reactive, or dynamic controller placement

is required [74, 75].

We can examine the tables more easily by looking at the percentage in-

crease (or decrease) between the metrics and timings. We can see there is

a significant difference between the timing results, where in some case the

k-means algorithm only takes 0.001% of the time taken by the linear pro-

gram to compute a solution. This is at the expense of optimality, in the

case where the timing was 0.001% (Intellifibre network k-means algorithm,

k = 8) there is an increase in the metric value of 24.14%. There is a similar

66

pattern for the other methods, but as the complexity of the k-means and

local search algorithms is increased using a larger number of initialisations

and swaps respectively, the computation time increases. However, although

the complexity is increased the optimality of the metric becomes closer to

the linear program. As an example, the case for k = 7 from the internet2

network in Table 3.11 shows in general that the methods with an improved

metric (closer to 100%) have an increased timing cost.

Another noticeable difference is that the metrics for the k-means and

local search algorithms become increasingly worse in terms of the optimality

of the metrics as the number of controllers, k , is increased. This is likely to be

caused by the nature of the algorithms, and would need careful consideration

if large values of k were required. In terms of the nature of the algorithms the

linear program considers the whole network simultaneously when computing

the metric, where as the k-means and local search first consider the nodes in

each cluster before calculating a global metric. This may be the cause of the

k-means and local search algorithms performing worse when k is increased.

Table 3.7: Internet2 metrics (Sum Latency)
k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

Linear Program 883.62 557.92 435.66 376.15 326.95 278.83 247.39 217.2
Local Search 100 896.15 559.96 450.75 407.37 360.04 331.78 297.74 277.3
Local Search 500 896.73 559.03 441.49 395.06 362.03 315.28 290.09 281.06
Local Search 1000 884.54 559.4 448.41 400.46 338.87 313.21 286.3 266.46
Local Search Repeat 883.62 557.92 436.32 378.23 332.08 286.97 257.39 235.33
k-means 890.17 608.86 479.32 424.35 350.22 332.83 304.42 265.19
k-means 10 887.51 589.45 445.74 376.15 337.78 301.43 269.01 248.19
k-means 100 887.51 589.45 445.74 376.15 341.03 303.08 269.03 235.48

Table 3.8: Intellifibre metrics (Sum Latency)
k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

Linear Program 490.37 383.16 323 289.45 264.58 244.85 222.9 201.37
Local Search 100 499.33 407.59 424.96 423.02 411.17 390.2 401.51 367.94
Local Search 500 527.2 385.23 344.55 308.43 283.15 264.42 248.16 232.04
Local Search 1000 490.37 386.87 347.78 307.15 286.15 261.99 243.78 231.27
Local Search Repeat 490.37 385.15 344.37 329 330.76 316.78 312.84 274.26
k-means 498.06 396.92 367.52 330.4 312.42 299.52 276.7 259.38
k-means 10 498.06 392.08 349.41 320.08 312.52 285.1 259.74 240.36
k-means 100 498.06 392.08 349.41 323.8 313.52 288.1 257.69 242.44

67

Table 3.9: Internet2 Timings (seconds)
k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

Linear Program 8.4435 8.4639 9.7184 10.017 11.797 10.445 10.48 9.6987
Local Search 100 0.015786 0.014202 0.015599 0.015171 0.014523 0.015426 0.020338 0.017647
Local Search 500 0.081009 0.067923 0.065046 0.069998 0.068997 0.071275 0.084785 0.078133
Local Search 1000 0.16142 0.12984 0.12933 0.15187 0.13464 0.13938 0.15692 0.15694
Local Search Repeat 0.14743 0.13551 0.13871 0.15013 0.14431 0.16958 0.17187 0.16294
k-means 0.0039841 0.0033936 0.0036259 0.0040863 0.0041911 0.0045355 0.0049368 0.0045713
k-means 10 0.012966 0.016283 0.019265 0.021508 0.020372 0.024755 0.026973 0.023377
k-means 100 0.10488 0.13174 0.1773 0.19806 0.20001 0.21891 0.23643 0.22678

Table 3.10: Intellifibre timings (seconds)
k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

Linear Program 269.87 283.8 379.84 392.83 410.43 530.74 1099.6 392.44
Local Search 100 0.020734 0.017936 0.017772 0.018748 0.018228 0.018852 0.021773 0.020182
Local Search 500 0.089442 0.082976 0.077945 0.075096 0.075438 0.076666 0.088991 0.083214
Local Search 1000 0.18712 0.16122 0.15001 0.15223 0.1494 0.15227 0.16976 0.16289
Local Search Repeat 0.19635 0.17866 0.17774 0.18406 0.1792 0.18699 0.2128 0.20394
k-means 0.0077553 0.0081417 0.0088793 0.0099368 0.0094055 0.01006 0.010755 0.010501
k-means 10 0.021404 0.025882 0.030345 0.038851 0.041884 0.046948 0.050511 0.053648
k-means 100 0.16548 0.20204 0.25949 0.32549 0.35996 0.4059 0.45631 0.46344

68

Table 3.11: Percentage changes for the metrics and timings between the
Linear Program and k-means/local search methods

Internet2 Metrics
k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

Linear Program 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Local Search 100 101.42% 100.37% 103.46% 108.30% 110.12% 118.99% 120.35% 127.67%
Local Search 500 101.48% 100.20% 101.34% 105.03% 110.73% 113.07% 117.26% 129.40%
Local Search 1000 100.10% 100.27% 102.93% 106.46% 103.65% 112.33% 115.73% 122.68%
Local Search Repeat 100.00% 100.00% 100.15% 100.55% 101.57% 102.92% 104.04% 108.35%
k-means 100.74% 109.13% 110.02% 112.81% 107.12% 119.37% 123.05% 122.09%
k-means 10 100.44% 105.65% 102.31% 100.00% 103.31% 108.11% 108.74% 114.27%
k-means 100 100.44% 105.65% 102.31% 100.00% 104.31% 108.70% 108.75% 108.42%

Internet2 Timings
k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

Linear Program 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Local Search 100 0.19% 0.17% 0.16% 0.15% 0.12% 0.15% 0.19% 0.18%
Local Search 500 0.96% 0.80% 0.67% 0.70% 0.58% 0.68% 0.81% 0.81%
Local Search 1000 1.91% 1.53% 1.33% 1.52% 1.14% 1.33% 1.50% 1.62%
Local Search Repeat 1.75% 1.60% 1.43% 1.50% 1.22% 1.62% 1.64% 1.68%
k-means 0.05% 0.04% 0.04% 0.04% 0.04% 0.04% 0.05% 0.05%
k-means 10 0.15% 0.19% 0.20% 0.21% 0.17% 0.24% 0.26% 0.24%
k-means 100 1.24% 1.56% 1.82% 1.98% 1.70% 2.10% 2.26% 2.34%

Intellifibre Metrics
k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

Linear Program 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Local Search 100 101.83% 106.38% 131.57% 146.15% 155.40% 159.36% 180.13% 182.72%
Local Search 500 107.51% 100.54% 106.67% 106.56% 107.02% 107.99% 111.33% 115.23%
Local Search 1000 100.00% 100.97% 107.67% 106.12% 108.15% 107.00% 109.37% 114.85%
Local Search Repeat 100.00% 100.52% 106.62% 113.66% 125.01% 129.38% 140.35% 136.20%
k-means 101.57% 103.59% 113.78% 114.15% 118.08% 122.33% 124.14% 128.81%
k-means 10 101.57% 102.33% 108.18% 110.58% 118.12% 116.44% 116.53% 119.36%
k-means 100 101.57% 102.33% 108.18% 111.87% 118.50% 117.66% 115.61% 120.40%

Intellifibre Timings
k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

Linear Program 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Local Search 100 0.008% 0.006% 0.005% 0.005% 0.004% 0.004% 0.002% 0.005%
Local Search 500 0.033% 0.029% 0.021% 0.019% 0.018% 0.014% 0.008% 0.021%
Local Search 1000 0.069% 0.057% 0.039% 0.039% 0.036% 0.029% 0.015% 0.042%
Local Search Repeat 0.073% 0.063% 0.047% 0.047% 0.044% 0.035% 0.019% 0.052%
k-means 0.003% 0.003% 0.002% 0.003% 0.002% 0.002% 0.001% 0.003%
k-means 10 0.008% 0.009% 0.008% 0.010% 0.010% 0.009% 0.005% 0.014%
k-means 100 0.061% 0.071% 0.068% 0.083% 0.088% 0.076% 0.041% 0.118%

69

3.6 Discussion and Conclusion

In this chapter, we presented two algorithms that have not previously been

used to find a solution to the controller placement problem. These were the

local search method and the k-means adaptation, which were described in

sections 3.4.2 and 3.4.3 respectively. We compared these algorithms to an

existing linear programming method that was described in section 3.4.1. It

was found that although the linear programming method produced the best

solution with respect to the optimisation problem defined in equation 3.2,

the solution required a large computation time that would not be adequate

for an agile environment.

Another method for finding controller placements would be to use the

facility location problem. In the facility location problem instead of having

a specified number of controllers ,k, the number of controllers is increased

until a specified constraint is satisfied. In this case the number of controllers

would vary depending on the tightness of the constraint. This is relevant to

our application as an unspecified number of controllers may be required for

safety and reliability requirements. However, the facility location problem

requires more computation in general, as it is an iterative process to find the

correct number of controllers to satisfy the given metric. Further work would

therefore be to compare the difference in computation time required between

the k-median and facility location problems.

In conclusion, this chapter addresses the important issue of scalability for

the placement of controllers. As the k-median problem is a known NP hard

problem, the scalability of the placement of controllers is linked directly to

the complexity of the algorithms used to find a solution. It was found the

complexity varied significantly between the methods discussed; the linear

programming method was found to be useful for networks of a limited size

and the local search method and k-means++ the most scalable approaches.

However, the scalability is traded off with the accuracy of the methods. It was

found that although the local search method approaches the metric found by

the more complex linear program, the standard deviation varies considerably.

The main reason for this could be the randomness involved in finding initial

70

clusters, but using a more intelligent way of finding initial clusters increases

the complexity as with the k-means++ method. This can also hinder the

optimality of the algorithms as it was shown the k-means++ has a reduced

variance in solutions, but the solutions are not necessarily as good. Overall,

it was found there is a definite trade-off between complexity and accuracy.

71

Chapter 4

Redundancy: Literature

Review

4.1 Introduction

The work in Chapter 3 addresses a design problem of how to minimise la-

tency in the control plane in SDNs. We now turn our attention to latency

in the data plane, and how SDNs can be used to reduce this. One approach,

which SDN shares with other networking paradigms, is optimal routing. By

routing packets along the minimum latency path between source and desti-

nation, delays are reduced. There has already been a substantial amount of

work on this problem, and we do not pursue it further. Instead, we observe

that SDN can enable a new approach not available in traditional networks;

that of replicating data packets and using distinct routes for the replicates.

In particular, the redundancy can be dynamic, and responsive to changing

traffic patterns, due to the programmability that SDN provides.

To introduce the topic of redundancy, a literature review on the current

research in this area is performed, which includes both mathematical mod-

elling methods such as queuing theory, and also simulation and emulation

work. The mathematical methods give a solid theoretical basis for studying

delays in systems with redundancy, while much of the emulation aims to give

real world examples of the benefits. The novel contributions of this thesis

72

to analysing the impact of redundancy on latency are presented in Chapters

5 and 6; Chapter 5 focuses on redundancy achieved through straightforward

replication of packets, whereas Chapter 6 studies a more sophisticated ap-

proach based on erasure coding.

4.2 Analytical Methods

4.2.1 Queueing Theoretic Models

A queueing theoretic analysis of SDN is carried out in [76], which looks at

the interaction of the switch and controller with the OpenFlow protocol. The

OpenFlow protocol takes the following actions when a new flow arrives in

the system:

1. A packet (or part of a packet) of the flow is sent by the switch to the

controller, assuming that the switch is not configured to drop unknown

packets.

2. The controller computes the forwarding path and updates the required

nodes in the data path by sending entries to be added to the flow tables.

3. All subsequent packets of the flow are forwarded based on pre-calculated

forwarding decisions and do not need any control plane action.

From this it is observed that for the model to represent an OpenFlow based

SDN the following two points must be obeyed: (1)A packet coming to any

node in the data plane will visit the controller at most once and (2) only a

fraction of the external traffic and not a fraction of the net input traffic will

go to the controller. The following additional assumptions are made:

• The overall traffic arrival process at the switch and the controller is

Poisson.

• Service times of a packet at the switch and the controller are exponen-

tially distributed, independent and identically distributed (iid) across

packets.

73

• Switches have infinite buffers.

• A single queue at the switch is assumed instead of a separate queue per

line card.

These assumptions are made in order to model the system as a Jackson

network. The analysis then utilises known results for Jackson networks, such

as the average packet sojourn time, and the distribution of time spent by a

packet in the network.

The analysis is first carried out for the simplest network, with one con-

troller and one switch. This is then extended later to include two switches,

showing how the model can be enhanced for use on larger networks. The

performance measures are then compared against a discrete event simulator

and shown to be a good approximation. The arrival and service rates used

are taken from practical systems; however, it is noted that the Poisson and

exponential assumptions are limiting factors of the model. The accuracy

would be increased if network traces or different distributions were used in-

stead. This is a common problem in applying queueing theory to Internet

traffic, and is discussed in section 4.5.

Queuing theoretic methods are also used to characterise the performance

of SDN systems in [77].This paper describes Multipath Source Routing (MSR),

which is an extension to a load balancing mechanism in an ad-hoc network

known as Dynamic Source Routing (DSR). The initial model proposed looks

at a source and destination with N paths in-between, each having cross traf-

fic as shown in Figure 4.1. It is assumed that each flow entering the system

is split amongst a subset of the paths; in this sense, no redundancy is added,

but the flow is simply split amongst different paths. This is in contrast to

DSR where only a single path is used per flow. The optimisation problem

is then how to distribute each sub-flow amongst the subset of paths. The

mean system delay is used as an objective function, and it is shown that by

balancing load across multiple paths, MSR is superior to DSR in terms of

end-to-end delay. It is further shown that the variation of the delay is also

reduced with MSR. The analysis performed is relatively straight forward, but

is an example of the application of queueing theory to SDN.

74

Figure 4.1: Load Balancing of Multipath Source Routing in Ad Hoc Networks
- Queuing Model

4.2.2 Network calculus: A viable option?

Network calculus provides a way of modelling the network by using bounds

on the arrivals and departures. The main advantage of this is that a complex

network can be modelled more simply, which can then be used to give bounds

on the delay and buffer size of the system. However, the model bounds the

arrivals and departures with a curve, so the bounds are very conservative.

This means that systems have to be heavily over-provisioned to give the re-

quired bounds supplied by network calculus; one such example is the AFDX

system used in aircraft [78]. The main text on network calculus, [79], de-

scribes the basics but also extends the theory to more complicated analysis

such as: schedulers, smoothing, shapers and systems with losses. However,

the derived bounds remain very conservative, especially when variation is

introduced as the bounds must cover all eventualities.

Perspectives on network calculus: no free lunch, but still good

value [80] In this particular paper it is shown that tight bounds can be

found on single queues using network calculus. However, this is not extended

in general to networks of queues, although significant progression on this is

75

made in [81]. Some of the benefits of network calculus over queueing theory

are explained such as: arrivals do not necessarily have to be Poisson, schedul-

ing can be abstracted by suitable constructed service processes, convolution

of multi node networks in to a single node, and the fact that analysis is much

easier as the non-linear queueing system is approximated to a ‘somewhat

looking’ linear system.

However, some of these benefits are not unique to network calculus. For

example, the Poisson arrival process is not a necessity for queueing theory

but it does make analysis easier, particularly for closed form expressions and

existing theory. Although scheduling can be abstracted in network calculus,

methods exist to incorporate scheduling methods in queueing theory, which

makes analysis harder, but is not impossible. It is common for bounds to be

formed rather than exact analysis; for example, this is part of the analysis

of MDS queueing systems which is looked at in section 4.4. Furthermore,

the convolution of nodes can be performed in queueing theory; for example,

aggregate arrival and departure rates can be used to analyse multiple queues

in a single node. Finally, the main advantage of network calculus is the fact

that the system can be approximated to a linear looking system, which does

make the analysis easier, but also means there is a trade-off between accuracy

and ease of analysis.

An analytical model for software defined networking: A network

calculus-based approach [82] This paper looks at the use of network

calculus to analyse SDN, whereby both the controller and switches are con-

sidered. The paper provides bounds for the delay and buffer size based on

a deterministic model; these bounds can be calculated quickly as they are

analytical. A good summary of network calculus and queueing theory are

provided in the paper, in particular network calculus provides worst case

bounds, whereas queueing theory provides more accurate average quantities.

An important observation from the paper is that the arrivals at packet

level and flow level are different. In particular, the arrival rates at the con-

troller and network nodes need to be carefully considered. As stated in the

paper the analysis provides a quick method for finding the worst case bounds

76

for an SDN system, but the work needs to be extended to improve the accu-

racy; for example, using stochastic network calculus. Another simplification

is the use of the multiplexing rule where multiple switches are expressed as

a single node: this further reduces the accuracy of the system but makes it

easier to analyse.

Overall, network calculus is a useful tool when analysing networks. On

one hand the analysis is simpler, but on the other the accuracy is reduced.

The accuracy is further decreased when looking at networks of queues. This

leads me to believe that queueing theory is a better approach for modelling

a network, although network calculus may be used to give bounds on the

systems.

4.3 Redundancy via replication

The basic idea is to transmit multiple copies of each packet along disjoint

paths. The latency is the time until at least one of these copies arrives at

the destination. If delays along distinct paths are modelled as independent

random variables, then the latency becomes the minium of independent ran-

dom variables; its expectation is smaller than that of any single one of these

random variables. This suggests that replication should reduce latency, but

this simple argument overlooks the impact of the increase in traffic caused

by replication. If we assume that all flows adopt the same strategy, then

there will be a significant increase in traffic, and it is unclear whether repli-

cation offers any benefit. One of the contributions of this thesis is to show

that it does, if the system is sufficiently lightly loaded. But first, we review

some of the work to date on this topic. Much of this work has focused on

server farms and storage systems rather than communication networks. In

particular, there does not appear to be work specifically advocating the use

of replication in SDN networks.

Low latency via redundancy [83] In [83] the authors look at the trade-

off between latency and load by first looking at how replication can improve

latency, which is achieved by taking the minimum latency of all the requests

77

across all queries. A utilisation threshold value is found and analysed, which

is where the replication starts to increase latency for a given arrival rate (due

to congestion).

The authors initially use a queueing model. The model assumes N servers

where all the servers are identical and independent. k copies of the request

are made and sent to k of the N servers. Initially it is assumed redundancy

does not cost anything for the user i.e. there is no additional delay, but

there is an increase in server utilisation. Simulations are also performed

on the model and it is found that the queuing analysis closely resembles

the simulation when N, the number of servers, is increased. Emulation is

then used to compare against the modelled system. This is achieved by

measuring the response times from a set of client nodes using Emulab. The

main findings of the paper can be summarised in to two subcategories, that

of queuing theory with simulation, and that of emulation.

The main results from the queueing theory and simulation are:

• Replication improves the mean latency but is of most benefit in the tail

i.e. extreme values of delay.

• If the overhead of replication equals the mean latency then replication

can not improve the mean latency, but it may reduce the variation.

• If redundancy has no user cost then there is strong evidence to suggest

the utilisation threshold value (the point at which it is not valuable

to replicate) has to be more than 25%, and this is independent of the

service distribution. In other words, it is always worthwhile to use

replication when the utilisation is below 25%.

• The performance improvement is greater when there is more variability

in the service time distribution; this is confirmed with a number of

theorems.

For emulation ,the findings confirm the analysis performed on the queuing

model, however, specific values are also given for the latency improvements.

It is also shown that for a small file size changing the mean file size or

78

distribution does not significantly change the improvement in latency (due

to the bottleneck being the latency when locating a file on disk). This is a

key observation as it shows when modelling the service time for small files

that the seek time is an important measure.

Overall, the paper analyses how replication affects the utilisation and at

what point replication is useful. The second point is that replication is more

valuable when there is little overhead. This limits the number of applications

for which replication is useful. The two most beneficial uses were the ones

with little overhead but big reward. These were DNS requests and connection

establishment. This is because the reliability in these scenarios is key for the

rest of the process to work, but the initial amount of data required is small.

Another finding was that the biggest difference between using redundancy

and not lies in the tail of the distribution, meaning that replication causes

the distribution to be less variable.

The main criticism of the paper is that it is assumed that all traffic is

replicated, not only a proportion of traffic, such as TCP connections. This

means the theorems on the utilisation threshold will become invalid if only a

fraction of traffic is replicated, as is likely in a real system. This point is ex-

pressed in [84], the paper below. Furthermore, although the emulation work

looks at a range of the number of copies sent, the analysis of the theoretical

model is restricted to 2 copies. This is a severe limitation and it would be

interesting to extend the analysis to an arbitrary number of copies.

More is Less: Reducing Latency via Redundancy [84] Unlike the pa-

per above, this paper only uses hardware to show replication offers improved

performance. An important observation of the paper is that, for given net-

works, as the fraction of flows duplicated is increased, the total load does

not increase linearly with it, e.g., duplicating the smallest 33% of flows only

increases the total load by 2%. This is important as it is noted in another

paper that the data centre applications that are latency critical are often

small in size.

Contrary to the point that the flows which benefit most from replica-

tion are the ones that are least expensive to replicate, the authors comment

79

that some latency-sensitive tasks are large, such as real-time video streams.

Another problem is that if the overhead is high, a replicated request could

be marked as lower priority, so it can be dropped if it interferes with other

work. The authors also make the argument that the need for consistent re-

duced latency outweighs the need to save bandwidth, for example in the wide

area internet where the network is underutilised. Hence, the extra capacity

could be used for redundancy. Another point explained in the paper is that

although replication has been used as a way to deal with failures in DTNs

(delay tolerant networks) and multi-homed web proxy overlays, it has not

been widely deployed. This makes replication an important application for

an SDN, as redundancy may be employed dynamically via the controller in

order to improve the network.

The future research directions considered in the paper offer an interesting

perspective and potential use cases, they include:

• Automating Redundancy: replicating the first k packets of a TCP flow

in order to reduce latency, even if it is slight.

• Path Selection: The authors ask whether or not it would be more

beneficial to choose multiple paths that are the most independent rather

than the ones with the best mean performance, similar to [85].This

would mean the flows would be more reliable as the probability of

failure would be reduced.

• Selfishness: to look at the effect of letting users replicate their own

flows and seeing how this affects performance. This is interesting as

an individual replication packets would only have a slight effect on the

total load of the network, but would become more prevalent as the

number of users replicating increases.

• Security: whether replication would make malicious attacks more diffi-

cult as a user would be able to identify corrupt data (Replicated packets

would be inconsistent).

80

Examples where redundancy might be useful Examples of where

replication may be used in a network are repeated in the papers [83, 84]

so a summary of the examples is given here.

• Connection establishment (TCP): the aim of redundancy for TCP

is to reduce the probability of failure. It has been shown in another

paper that by sending back to back copies the probability of failure

reduces from ∼ 0.0048 to ∼ 0.0007 (although not from p to p2 in

general).

• DNS: By querying multiple DNS servers simultaneously, it can be

tested whether or not the latency of a reply decreases. It was found

the method worked, but when increasing the number of servers queried

further, the savings have diminishing returns.

• Memcached: It was found when the data was cached that although

replication improved the mean latency, it was only by a little.

• Replication in data centres: It was found improvement was great-

est at intermediate loads, as at low load there was enough capacity

for replication to not make a difference, and at high loads there is a

hindering affect.

• Multipath routing: It was shown that the mean latency of the net-

work was reduced using multipath routing, although not by very much,

and the most benefit comes in the tail of the distribution.

• Quality of Service: It is noted that there are many benefits to repli-

cation as a mode of quality of service compared to previous methods

(e.g. intserv). It has the following advantages: ease of deployment,

no requirement for data plane QoS support, reuse of existing pricing

models, flexibility to be applied to a sub-set of traffic and unpredictable

events can be dealt with, such as router failures.

The most promising example, other than for connection establishment

and DNS requests, seems to be for QoS. This is because other methods of

81

QoS can be complex when compared to redundancy. Furthermore, dynamic

redundancy in SDN could be applied to specific flows such as TCP in order

to enhance reliability and latency without significantly effecting the load

on the network. Varying amounts of redundancy could also be used for

varying states of QoS in order to create differentiated services. This is also

particularly relevant to SDN as the control element enables dynamic control

of the network, which means dynamic redundancy can be used to influence

the QoS.

Best-Path vs. Multi-Path Overlay Routing [86] The paper studies

the benefits of using best path vs multipath routing on a testbed. It does this

by looking at the loss rate and latency of both methods. It was shown that

the benefits of using multiple paths could be replicated by introducing a delay

for replicated packets on the best path method. An average improvement of

6ms was achieved for latency optimised best path routing whereas there was

a 2-3ms improvement for the multiple path method. It was also stated that

the latency reduction was insignificant for both methods when the latencies

were below 50ms. Presumably this is because as the latencies decrease there

is a smaller number of ‘good’ paths available, or one path is much better

than the others.

A limitation in this paper is the method of replication used, for both

methods all the packets are replicated, rather than a select few. Furthermore,

the number of paths replicated on is limited to two. Both of these points

could be extended by looking at what happens when only a limited number of

packets are replicated and increasing the number of paths used for replication.

Dispersity Routing [87, 88] In dispersity routing the packets are split

into parts and sent over individual links, so each link transmits only a fraction

of the packet. Thus, it isn’t exactly replication, but it does show some of the

benefits of using multiple independent paths for transmission. The first paper

shows analytically that dispersity routing reduces the mean and variance of

delay in a network. The second paper extends and updates the previous one,

to investigate dispersity routing in current networks (2007). It discusses how

82

dispersity routing has become less useful for wired networks but may still

be useful for wireless networks. This is because advances in wired networks

in terms of reliability and capacity outweigh the enhancements dispersity

routing would create. However, it is argued that this is not the case for

wireless networks, which still suffer from relatively low capacity and high

error probabilities.

4.3.1 Queueing with redundant requests: an exact anal-

ysis

In most of the work cited so far in this section, performance evaluation is

either carried out through simulation, or only bounds are provided, or the

analysis is carried out subject to a number of strong simplifying assumptions,

on top of the modelling assumptions. One of the very few works to perform

an exact analysis of a queueing model with replication is [89].

The paper analyses redundancy by looking at queueing models. The key

insight for the paper is viewing the servers as having a single queue/buffer,

in which the jobs are queued in the order they arrive (FCFS).

The main theorem is used to show the redundant data experiences a

response time distribution identical to an M/M/1 queue (even though it is

not M/M/1). This is an unexpected result as there are extra arrivals in the

system.

It is shown that for the fully redundant traffic streams that exist in the

system, the distribution of time responses are not effected even if other traffic

streams become redundant. Another contribution of the model is that non-

redundant data sees better performance if the other data is simply redundant

rather than using an opt-split or jsq (join shortest queue) protocol. This is

because there is no prioritising of the additional redundant data, which would

cause the non-redundant data to be delayed. Furthermore, as the number of

servers increases, the redundant traffic benefits and the non-redundant traffic

suffers less. This is due to the fact that there are more servers serving both

classes.

The paper also hypothesises that the response time distribution is related

83

to the degree of redundancy. It says that fully redundant traffic streams see

exponentially distributed response times where as partially redundant or non-

redundant traffic see generalised hyper-exponential distributions. This could

simply be because the redundant classes see a sum of service times due to

each element of a redundant class being sent to a separate server, with each

having an exponential service time.

A criticism of the paper is that the arrival rates and service rates for the

modelled queues are seen as aggregate rates, for example a total service rate

may consist of a full rate from one server and a partial rate from another.

It is also assumed that the packets are not replicated when using join the

shortest queue or opt-split methods, hence the packets will only be served

by a maximum of one server, rather than many (which is the assumption of

the redundancy model) and therefore the comparison is not completely fair.

A limitation of the paper is that although the analysis is exact for a single

node, the closed form becomes convoluted for large networks, so simulation is

used. This limits the applicability of the exact analysis. Another limitation

shown is that having a shared server which serves all the arrivals becomes

overloaded when the number of independent arrival flows increases. This

simply shows that a load threshold has to observed.

Perhaps one of the most useful sections from this particular paper is the

section on related literature. The section shows other queuing models for

redundancy are available but explains that exact analysis remains ’elusive’.

The following points provide direction for further study: coupled processor

systems, fork join systems, and systems with flexible servers. All the models

share the same theme that they need flexibility in the network to be able

to be implemented. The most promising model from the related literature

section looks to be the (n, k, r) system model and this is similar to methods

looked at in section 4.4.

4.4 Redundancy via coding

An alternative to replication is to split a packet into chunks and supplement

these with additional coded chunks in such a way that the packet can be

84

recovered from only a subset of them. An (n, k) erasure code has the property

that it starts with k chunks, and adds n − k coded chunks, such that the

original k chunks can be recovered from any subset of k out of the n chunks.

When this idea is applied to coded transmission, it means that the message

packet is split into k chunks, coded into n chunks in total, and these are

transmitted along independent paths; the packet is recovered as soon as the

kth chunk reaches the receiver (assuming negligible reconstruction overhead).

Thus, the latency is now the kth smallest of n independent transmission delays

rather than the smallest. On the other hand, the traffic overhead is smaller,

as the traffic intensity is only increased by a factor of n/k. There have been a

number of recent packets studying this idea, mainly in data centre scenarios.

We survey some of the main ones below.

On the latency and energy efficiency of erasure-coded cloud storage

systems [90] The focus of this paper is the analysis of how a varied coding

rate effects the latency and network utilisation on cloud storage systems. As

coding is used, the model incorporates the fact that the data is split into

parts. This paper uses existing queueing theory on Fork-Join systems to give

bounds for the latency; the bounds are shown to be good when compared

against simulations. Latency is shown to be inversely proportional to energy

efficiency. The title is therefore a bit misleading as the authors focus on the

latency rather than energy efficiency in the analysis.

The analysis of the paper shows that increasing the coding rate reduces

the network bandwidth, but increases latency. This means, in the limit, the

minimum latency is found when the data is not coded as only one server

needs to be accessed to complete the process. Furthermore, it was shown

that there exists an optimal number of servers which maximize energy effi-

ciency and provide near minimal latency. This shows the number of servers

is a consideration when looking at the latency, not just the coding rate and

amount of redundancy. Another contribution was that the authors showed

an optimal code rate exists for heavy-tailed service distributions. Lastly, it

was shown that increasing redundancy for a data class helps to reduce its

average latency and as a consequence, the overall latency decreases.

85

The limitations of the paper are within the model used. The model as-

sumes no penalty for removing redundant requests, but once a process is

completed, the other requests in that group immediately exit the system.

This is an unrealistic assumption and is considered in other papers. Fur-

thermore, the model looks at multiple servers with separate queues but it

is assumed that there is complete synchronisation between servers, so all

servers know when a process has been completed. This is also an unrealistic

assumption, although a solution using wireless synchronisation is considered

in [91].

The MDS queue [92], [93], [94] These papers analyse a data storage

system using MDS (Maximum Distance Seperable) codes with the use of

queueing theory. The analysis looks at two simpler methods that bound the

performance of an MDS queueing system. Quasi-birth-death (QBD) pro-

cesses are used to analyse the simpler methods, and their stationary distri-

butions are found using a software tool: SMCSolver. It is shown the approx-

imation methods give performance characteristics very close to a simulated

MDS queueing system.

The model has a total of n servers whereby requests enter into a (common)

buffer of infinite capacity. Although the file sizes are assumed to be identical,

the service distribution being exponential is attributed to the variability of

the storage disks. As the system uses MDS codes, each request comprises a

batch of k jobs that can be served by an arbitrary set of k distinct servers on a

first come first served basis (FCFS). However, the assumption that there is a

single buffer for all the servers is a limitation as this is similar to assuming an

M/M/C rather than an M/M/1 queue, which means requests can be serviced

simultaneously.

Two theorems in [94] show the effects of including replication in the sys-

tem. The first proves that having more redundancy reduces the latency

and the second shows that optimum amount of redundancy is equal to the

amount of servers available. However, the two theorems do not consider

having a penalty for removing requests.

When the model is extended to have a penalty in [93] and [94], whenever

86

a job being processed by a server is cancelled, the server must stay idle

for a time which is distributed exponentially with a rate 10x the service

distribution. This, in some sense, corresponds to a cancellation cost of 10%.

It is shown that with a penalty, there is a threshold for the arrival rate where

the latency starts to increase with an increased amount of redundancy. A

summary of the findings when using a penalty are given in [93], the results

are displayed in table 4.1.

[93] and [94] also include general service times where heavier tails than the

exponential are considered. By looking at different service distributions, it is

concluded that if a server has a sufficiently high service rate then redundancy

has little effect as it will not improve the performance. Conversely, when a

service rate is lower, then redundancy will improve the service as there is

more chance for the request to be completed.

n k Arrivals Service (i.i.d.) Buffers Penalty Load Optimal policy
Any 1 any memoryless centralized 0 Any send to all
Any any any memoryless centralized 0 Any send to all
Any 1 any heavy-everywhere centralized 0 High send to all
Any 1 any light-everywhere centralized Any High no redundancy
Any 1 any memoryless centralized >0 High no redundancy
Any any any memoryless distributed 0 Any send to all
Any 1 any heavy-everywhere distributed 0 High send to all
Any 1 any light-everywhere distributed Any High no redundancy
Any 1 any memoryless distributed >0 High no redundancy

Table 4.1: Service distributions: heavy (light) everywhere means it is heavy
(light) tailed compared to exponential. I.e. for a light tail distribution the
bulk of the probability is close to zero, for a heavy tailed more probability
is at the tail than the exponential so it is more likely for something to take
longer.

An interesting aspect of the most recent paper ,[92], is the discussion on

degraded reads whereby partial data can be recovered from any d (d 6 n)

servers, i.e. if a failure has occurred while less than n servers remain. It is

shown that the degraded reads have a lower latency than that of reconstruct-

ing the entire file. This is an interesting point which could be applicable to

87

certain applications where latency is of high criticality but the data can still

be understood by approximation, an example would be audio applications.

Overall the papers give a good insight into how to analyse a system

through approximation, specifically by bounding the latency through sim-

pler methods, and then comparing this to a simulated version of the more

complex method. The models are also extended to analyse a penalty for re-

moving redundant requests and the papers show it is an important aspect to

consider. Furthermore, the papers use different service distributions which

are important to improve the accuracy of the model. However, only a fixed

rate penalty is considered which limits the analysis and a variable penalty

could be considered in future work.

A retrial queue with redundancy and unreliable server [95] In this

paper a system is considered where the servers have no buffers. Instead, the

data sent is retransmitted if it is not served i.e. a retrial queue. Further to

this, the model is extended to consider redundant packets where a separate

arrival process is considered for the redundant requests. The paper is not

particularly well written or clear but the references to other papers are useful.

The analysis uses queuing theory and performance measures are derived, but

ultimately the paper would only be useful when considering a system with

no buffers.

4.5 Enabling Redundancy, A Whistle Stop

Tour

It has become clear that if we want to increase reliability and reduce latency

in the network a key mechanism needed is for independent paths in the

network. Although not explored in depth, it is useful to know there exists

polynomial complexity methods for finding the k shortest paths in a network.

This is useful as existing algorithms can be used for any work requiring more

than one path in a network. These methods fall into two categories: where

loops in the path are allowed and where loops are not allowed (loop-less).

88

One basic method for finding loop-less paths is explored in [96] where the

shortest path is found with a complexity order of O(KN3), where K is the

number of paths required and N is the size of the network. Another method

for finding k-shortest paths (may contain loops) [97] has complexity order

O(m+nlog(n)+k) wherem is the number of edges, n is the number of vertices

and k is the specified number of paths. A method to find disjoint paths is

described in [98], and a protocol that finds the path with the minimum delay

and then uses a path that is ’maximally disjoint’ for the second path is

described in [85]. Overall, as long as methods for finding k-paths exists, the

redundancy approach can be used.

An extension in some of the papers is to include a delay to simulate a

penalty for removing redundant requests. A practical example is explored in

[91], where wireless cards are used to transfer information between servers.

The paper gives multiple algorithms for online and offline methods. A perfect

channel is assumed in the model, which they state to be unrealistic. Along

with many of the other papers, the mechanism is tailored for data centres.

In conclusion, this provides evidence that some of the techniques required

for redundancy in networking is possible with the enabling features described

above. Further ways redundancy can be achieved is to fully exploit SDN as

an enabler. An SDN can employ the rules for packets to be sent along mul-

tiple paths, as provided by the k-shortest paths algorithms, and redundant

requests may be eliminated using such methods as a low bit rate, or inexpen-

sive wireless channel to provide additional information to the nodes in the

network.

Next, we look at some of the assumptions that are often made when

modelling networking behaviour to help simplify the analysis. One very

common assumption is that the arrival process in a network can be modelled

as a Poisson process.

Where mathematics meets the internet [99] Although the paper dates

back to 1998, and the internet is constantly expanding, many of the comments

in the paper are useful. For example, it is noted that Poisson arrivals are

well suited aggregated arrivals, which supports the Palm-Khintchine theorem

89

that states the superposition of many independent and properly normalized

renewal processes forms a Poisson process. However, a Poisson process may

be ill-suited to internet traffic modelling due to the burstiness involved. Ev-

idence is given to support this claim where it is shown the Poisson based

model traffic smooths out as the time scale is increased, however, this is not

the case for the measured data.

In order to find a distribution that is a better fit for internet traffic,

Fractal distributions are introduced. It is shown that fractal distributions

give much more realistic results, especially at different time scales, which is

not true for Poisson. However, the downside is that the measured data is

inconsistent as the data changes when the time and location of the traffic is

changed.

Another contribution of the paper is that it shows the exponential growth

of internet traffic between 1985 and 1995, a trend which has continued. Also,

it is stated that there is solid evidence that the arrival times of humans to the

internet is Poisson. This shows that the underlying arrival process may be

Poisson but the computer systems themselves change the traffic distribution.

In conclusion, the paper provides a good insight in to another method

for predicting internet traffic, rather than a Poisson process. Although void-

ing the Poisson assumption makes analysis in queueing theory much more

difficult it may improve the accuracy. The distributions may then also be

applied to simulation models for queuing and compared against the Poisson

model and traffic traces.

A nonstationary Poisson view of Internet Traffic [100] This paper

looks at whether the Poisson assumption is now valid for an increased amount

of traffic, as the previous comparison was 10 years previous. In order to fight

for the Poisson process, multiple traces are used to analyse the traffic pattern.

It is found that backbone traffic is well described by an exponential distribu-

tion, with packet sizes and inter arrival times appearing independent. This

is confirmed using the Box-Ljung statistic which provides a 95% confidence

interval. Furthermore, for links that are overprovisioned, the distribution

tends to contain most probability in the ‘idle’ position. It is found that the

90

distributions of the duration of the busy/idle period, as well as the number

of packets or bytes in a busy period, are well approximated by exponential

distributions. Linear least squares fitting shows the CCDF (complementary

cumulative distribution function) of two of the traces is well described by an

exponential with confidence 99.99% and 99.89%. The conclusion, therefore,

is that the Poisson assumption is well suited to backbone traffic, probably

due to the aggregation of flows.

4.6 A Simplified Analytical Model

The literature review demonstrates that adding redundancy is a promising

approach to reducing latency in both storage and communication systems.

In order to quantify the potential benefits, we need an analytical model of

the system with redundancy. Below, we present one such model, which does

involve significant simplifying assumptions. While this is a drawback, it is

still an advance on much of the work to date, which assumes both Poisson

arrivals and exponential service times. We relax the latter assumption.

The model proposed is shown in Figure 4.2. The figure shows an arrival

rate, λ, corresponding to the rate that flows enter the system. Each flow is

replicated k times and feeds k independent paths, which results in a total ar-

rival rate of kλ. Each path then has an independent service, but importantly

the wait time for any particular flow is the first flow to traverse the system,

so the wait time can be taken as the minimum over all of the paths. Using

this as a base model the effects of having k-paths with redundancy can be

analysed using queueing theory. This is formalised in Chapter 5 where the

theoretical analysis is presented.

91

Figure 4.2: Networking with Redundancy Queuing Theory Model

92

Chapter 5

Redundancy: Replication

Much of the work in this chapter was published in the Proceedings of the

29th International Teletraffic Congress (ITC 29), which was technically co-

sponsored by the IEEE Communications Society (IEEE ComSoc) and the

ACM Special Interest Group on Communications (SIGCOMM) [101].

5.1 Introduction and Related Work

The work in this chapter is motivated by high-criticality applications run-

ning over wired or wireless networks, which require guaranteed low latency.

One technique that has been studied to reduce latency in wired networks is

redundancy, as reviewed in the last chapter. By sending multiple copies of

the same data, the latency may be reduced as it is the minimum time to

receive any one of the transmitted replicates. The downside is the increased

load on the network. This leads to a trade-off between the number of repli-

cates and the delay. It should be noted that redundancy is not the same as

retransmission since the redundant packets are transmitted at the same time

as the original.

The programmability of SDN makes it possible to transmit multiple copies

of a packet along distinct and specified routes - something that cannot easily

be achieved by existing protocols such as TCP. The work in this chapter

therefore promotes the use of replication in networking using mathematical

93

arguments and exploits SDN as the enabling technology. This is an idea that

has been tested and applied in data centres for the back-up of data, where

SDN has been used to simultaneously route the replicated data to a primary

and back-up server [102]. A system and method for creating a replication-

aware SDN is described in a patent filed by Cisco Technology Inc. showing

the applicability of replication to SDN [103]. SDN has also been considered

as an enabling technology when problems arise using replication, such as

deleting unnecessary replicates [104]. This shows the work presented in this

chapter is theoretically possible, and is achievable using SDN as an enabler.

The current literature mainly focuses on data centres, and much of it, es-

pecially analytical results, is restricted to exponential service times. In addi-

tion, temporal variability in channel conditions, which is common in wireless

networks, is not considered. The contributions in this chapter are as follows.

After presenting results for exponential service times as a baseline, the frame-

work is first generalised to consider phase-type service distributions. These

provide a rich modelling framework as they can be used to approximate the

distribution of any non-negative random variable. Secondly, explicit mod-

els of time-varying channels are considered, motivated by wireless networks.

In both cases, an approach to deriving exact expressions for the latency is

outlined. However, these expressions are extremely unwieldy, and an approx-

imation scheme based on approximating delays by the dominant exponential

term is presented. It is also used to derive an optimal replication factor

that minimises the expected delay for any given load. Extensive simulation

results are presented to validate the approximation scheme. Finally, applica-

tions that require stringent latency guarantees are considered. By analysing

the tail of the delay distribution, probabilistic guarantees on the latency are

derived, and tested against simulations.

Related work on redundancy dates back to Maxemchuk [87], who first

proposed dispersity routing. The original analysis assumes exponentially

distributed interarrival and service times, but the work is extended in [105]

by looking at blocking probabilities of switches. The work presented in this

chapter differs by looking at retransmission probabilities instead, motivated

by wireless networks with unreliable and time-varying channels.

94

Vulimiri et al. [83] study the use of redundant requests to multiple servers

in data centres. A variety of service distributions are considered, but the anal-

ysis is restricted to replicating each request exactly twice; the main metric

considered is the threshold value of load at which replication is no longer

beneficial. Shah et al. [106] look at the average latency with exponential,

heavy tailed and light tailed service distributions. The analysis performed

aims to give the optimal policy, but is limited to a binary answer of ‘send to

all’ or ‘no redundancy’. In contrast to these papers, the work presented in

this chapter identifies the optimal level of replication across the whole range

of loads.

Gardner et al. [107] analyse the benefits of redundancy when there are

also independent non-redundant arrivals in the system. They also compare

redundancy with the opt-split and JSQ (join-Shortest-Queue) policies. The

paper gives exact analysis for the models presented, but only exponential

service times are considered. The model studied allows for the cancellation

of redundant requests when they are no longer needed, i.e., when a copy

has completed service. Such cancellation may not be possible in real-world

systems. Therefore, the work presented in this chapter does not allow for

cancellation of work that has entered the system. It also considers phase

type service distributions, and analyses both the mean and the tail of the

latency distribution.

5.2 Models and Problem Formulation

The analysis in this chapter pertains to the latency of a single index flow

in a general communication network, wired or wireless, that carries a large

number of flows between many different source-destination pairs, and along

multiple routes. However, these details are abstracted out. The analysis

focuses on a single source-destination pair, and assumes that a fixed number

k of vertex-disjoint paths between them are given. In other words, the routes

to be used are fixed in advance and cannot be changed based on dynamic

traffic information. Each packet of the flow is replicated across all k paths;

the special case k = 1 corresponds to no replication. The metric of interest

95

is the delays incurred by packets from this index flow, with all other packets

being treated as cross-traffic.

The main modelling assumption is now as follows: it is assumed that each

route can be modelled as a single-server first-in-first out (FIFO) queue, and

that these queues are mutually independent. While independence is a strong

assumption, it is expected that it is not too unrealistic in large and well-

connected networks. If the number of nodes and links is large, and there is

a large number of available vertex-disjoint routes between any pair of source

and destination nodes, then it is expected that distinct routes carry traffic

multiplexed from mostly non-overlapping subsets of source-destination pairs,

and hence are largely independent. An implicit second assumption is that

each route carries traffic from a large number of flows, and that the contri-

bution of any single one of these flows to the total traffic is negligible. Thus,

even though the index traffic stream is common to the routes along which

it is replicated, this introduces no dependence because its own contribution

to the total traffic along any of these routes is negligible; the waiting times

it incurs are almost entirely due to the service times of cross-traffic. An

additional assumption in this chapter is that, once a packet is replicated, it

remains in the system until served. This is in contrast to purging replicated

packets where, once any of the replicated packets are served, the remaining

replicates are removed. As a result, having replicated packets increases the

total load on the network, and therefore a penalty is incurred for replication.

There is thus a trade-off between replication and delay, which is the focus of

the analysis in this chapter.

Given the above assumptions, a very simple the system model of k parallel

queues is obtained. Packets of the index flow arrive into the system according

to a Poisson process. Each packet is replicated across k parallel queues, where

k is a specified parameter; the case k = 1 corresponds to no replication. Next,

each of the queues is itself modelled as an M/G/1 queue; in other words,

the jth queue sees Poisson arrivals at rate λj, the customers (packets) have

independent and identically distributed (iid) service times denoted S
(j)
i , i ∈ Z

with a general distribution, and they are served in their order of arrival.

While the aggregate arrival rate λj into the jth queue will depend on the

96

replication factor k, the dependence is not made explicit in the notation. Let

ρj = λjE[S
(j)
1] denote the load in the jth queue; we assume that ρj < 1 for all

j between 1 and k, i.e., that all queues are stable. Under this assumption,

each queue has an invariant distribution under which waiting times are almost

surely finite. Let W (j) denote a random variable with invariant distribution

of the waiting time in the jth queue. Then, the latency in steady state has

the same distribution as the random variable

W =
k

min
j=1

W (j). (5.1)

This random variable, and its distribution, are the primary object of study

in this chapter. By the independence assumption on the queues, we have

P(W > x) = P
(k⋂
j=1

W (j) > x
)

=

j∏
j=1

P(W (j) > x). (5.2)

Closed form expressions for the CDF of W (j)(·) are typically not available,

except in the M/M/1 queue, and so the evaluation of the above expres-

sion is not completely trivial. Expressions for the Laplace transform of this

distribution are more readily available.

The main novel contribution of this chapter is to derive tractable approx-

imations and tail bounds on the distribution of the latency, W , for service

times belonging to the class of phase-type distributions, defined below. It

is also demonstrated how a scenario of practical interest, namely an On-Off

channel, can be modelled using a combination of phase-type service time

distributions, and an M/G/1 queue with exceptional first service. The ana-

lytical results for all the models studied are supplemented with simulations,

and are also used to obtain expressions for the optimal value of k, the repli-

cation factor.

We first recall results on the waiting time distribution of the M/G/1

queue. We lighten notation by focusing on a single queue and dropping un-

necessary subscripts and superscripts. Consider a single-server FIFO queue

into which customers (or packets) arrive according to a Poisson process of

97

intensity λ. The time required to serve customer i is random, and is denoted

Si; the random variables Si are assumed to be iid, with cumulative distri-

bution function (CDF) G(·). The Laplace-Stieltjes transform (LST) of the

service time distribution is denoted by g(·), and is defined as follows:

g(x) = E
[
e−xS1

]
=

∫ ∞
0

e−xtdG(t). (5.3)

The traffic intensity (or load) is defined as ρ = λE[S1], where E[S1] is the

mean service time. It is assumed that ρ < 1, i.e., that the queue is sta-

ble. Let W denote a random variable with the waiting time distribution in

steady state, and let W ∗(s) = E[e−sW] denote its LST. Then, we have by the

Pollaczek-Khinchin (P-K) formula (see [108], for example) that

W ∗(s) =
(1− ρ)s

s− λ(1− g(s))
. (5.4)

Next, we introduce the class of phase-type distributions, to which we will

apply the above result. A phase-type distribution is defined as the distri-

bution of the time to absorption in a finite-state absorbing Markov process

started in a specified distribution. In more detail, a phase-type (PH) distri-

bution is parametrised by a sub-probability vector α ∈ Rm (a vector with

non-negative elements whose sum is no bigger than 1) and a subgenerator

matrix S ∈ Rm×m, namely an m × m matrix all of whose off-diagonal ele-

ments are positive, none of whose row sums is positive, and at least one of

whose row sums is negative. The phase-type distribution with these param-

eters, denoted PH(α, S), is defined as the time to absorption of the Markov

process with generator

Q =

(
0 0

s0 S

)
,

and initial distribution (α0,α), whose unique absorbing state is the first

state. Here α0 ≥ 0 is such as to make the elements of the row vector (α0,α)

sum to 1, and the column vector s0 is such as to make the rows of Q sum to

zero, so that it is a generator matrix. It is possible to explicitly write down

the CDF G(·), and its LST g(·), for the phase-type distribution. It is given

98

by

G(t) = 1−αetS1,

g(x) = α0 +α(xI − S)−1s0,
(5.5)

where I is the m×m identity matrix. Note that the distribution G(·) has an

atom of size α0 at zero, and is continuous on (0,∞). The Exp(µ) distribution

is a special case with α = 1 and S = −µ.

Phase-type distributions can be used to model a wide variety of applica-

tion scenarios. The service time of a packet includes not only the physical

transmission time, which would only depend on the packet size and the link

bandwidth, but also a random “contention time”. The contention time might

either be the time to be scheduled at a switch in a wired network, or the time

to access the channel under a medium access control (MAC) protocol in a

wireless network. These times could have rather general distributions, and

phase-type distributions have the advantage of being able to approximate

the probability distribution of any non-negative random variable. Similarly,

wireless channels are inherently time-varying due to conditions such as fad-

ing. Consequently, the service time over such a channel would exhibit wide

variability, which can be captured by phase-type distributions.

5.3 Replication and Mean Latency

In this section, the impact of replication on mean latency in three different

queueing models is studied. It is assumed throughout that packets of the

index flow arrive into the network according to a Poisson process, and are

replicated across k routes. Different models for the service time at a queue

are considered. In order to account for both the costs and benefits of repli-

cation, it is assumed that all traffic into the network, including cross-traffic

encountered by the index flow, is replicated by the same factor, k. Hence the

total arrival rate into a queue is denoted by kλ.

99

5.3.1 Exact latenices for M/M/1 queues

Service times are assumed to be iid with an Exp(µ) distribution. While this

is a highly simplistic assumption, it can be partially justified on the basis

that the service time is comprised mostly of the time to serve packets of all

queued cross traffic; the latter is known to have exponentially decaying tails

in considerable generality (see, e.g, [109]). Thus, the model is not as unreal-

istic as it might first appear, especially for high-bandwidth wired networks

multiplexing a large number of independent flows, each of which individu-

ally contributes a small fraction of the total traffic. The service rates µi

in different bottleneck queues would typically be different. For notational

convenience, and to facilitate graphical display of the results, the number of

parameters in the models is reduced by taking µi = µ, a constant. This is

also the most interesting parameter setting as the benefits of replication are

greatest when delays are similar across the available routes. If mean delays

differ vastly across the routes, then the same route will usually achieve the

minimum, and the benefits of diversity will be minimal.

The LST of an Exp(µ) service time distribution is g(s) = µ
µ+s

. The effect

of replicating every packet across k edge-disjoint routes is to increase effective

arrival rates by k. Therefore, we denote the arrival rate into the queue by

kλ and the traffic intensity by kρ. Substituting these into the P-K formula

(5.4), the LST of the waiting time distribution is given by

W ∗(s) = (1− kρ) + kρ
µ(1− kρ)

µ(1− kρ) + s
. (5.6)

Inverting W ∗(s), the probability density of the waiting time is given by

fW (t) = (1− kρ)δ(t) + kρ(µ− kλ)e−(µ−kλ)t,

where δ denotes the Dirac delta. In other words, the waiting time distribution

is a mixture of an atom at zero, and an Exp(µ − kλ) distribution. The

corresponding CDF is

FW (t) = 1− kρe−(µ−kλ)t. (5.7)

100

Let Lk denote the latency, which is the minimum of k iid waiting times.

Substituting (5.7) in (5.2), we obtain that

P(Lk > t) =
k∏
i=1

kρe−(µ−kλ)t.

Thus, the CDF and mean of the latency are given by

FLk(t) = 1− (kρ)ke−k(1−kρ)µt,

E[Lk] =
(kρ)k

k(1− kρ)µ
.

(5.8)

The CDFs are plotted in Figure 5.1 for λ = 0.1, 0.2 and 0.3, and k = 1,

2 and 3. Observe that the CDF plots can cross each other, meaning that no

single value of the replication factor k may be optimal for all t. However,

at a low load the CDF plots for k = 2 and 3 are above those for k = 1 for

a wide range of t, demonstrating that replication significantly increases the

probability of meeting a specified delay bound t.

5.3.2 Approximate latencies for M/PH/1 queues

The exponential distribution is a special case of the much larger class of

phase-type distributions, which were described in Section 5.2. The following

lemma yields the LST of the waiting time distribution in an M/PH/1 queue;

it is an immediate consequence of the P-K formula, and is well known, so

the proof is relegated to the appendix.

Lemma 5.3.1. Consider an M/PH/1 queue with Poisson(λ) arrival process,

and iid service times with a PH(α, S) distribution of order m. The LST of

the waiting time distribution is given by:

W ∗(s) =
1 + λαS−11

1− λα(sI − S)−11
, (5.9)

where I denotes the m×m identity matrix, and 1 a column vector of all ones

of length m.

101

(a) λk = 0.1

(b) λk = 0.2

(c) λk = 0.3

Figure 5.1: Latency CDF with exponential service under varied load: note
scale changes on vertical axis

Proof. The proof is contained in Appendix A.1.

The lemma shows that W ∗(s) is a rational function (ratio of polynomials)

in s. For generic values of the matrix S, the denominator polynomial has

distinct roots zi(λ), i = 1, 2, . . . ,m, and so W ∗(·) admits the partial fraction

expansion

W ∗(s) = c0(λ) +
m∑
i=1

ci(λ)

s− zi(λ)
, (5.10)

where the dependence of the roots zi and the coefficients ci on λ has been

made explicit in the notation. The zi could be complex in general. But if

102

they are all real, all ci are positive and all zi negative, then the LST is easily

inverted to yield the waiting time density

fW (t) = c0(λ)δ(t) +
m∑
i=1

ci(λ)ezi(λ)t, t ≥ 0. (5.11)

In words, the waiting time is a mixture of an atom at zero (which must

have mass 1 − ρ, as this is the probability of the queue being empty) and

Exp(−zi(λ)) distributions. This observation motivates the proposition of the

following approximation for the waiting time distribution. Define

η(λ) = − m
max
i=1

Re(zi). (5.12)

Assume that η(λ) > 0. Then, η(λ) captures the dominant term, or more

precisely the slowest decaying exponential, in the expression for the waiting

time density. This leads to the approximation of the waiting time density

and CDF by

fW (t) ≈ (1− ρ)δ(t) + ρη(λ)e−η(λ)t, FW (t) ≈ 1− ρη(λ)e−η(λ)t, (5.13)

which has the same form as in the M/M/1 case, with η(λ) = µ − λ. It

is easy to calculate the latency using this approximation. As the arrival

rate increases to kλ and the traffic intensity to kρ for k-fold replication, the

latency has CDF and mean are given by

FLk(t) ≈ 1− (kρ)ke−kη(kλ)t, E[Lk] ≈
(kρ)k

kη(kλ)
. (5.14)

Example: Hyper-exponential service times

The special case of a hyper-exponential service time distribution, namely

a mixture of exponentials, is now illustrated. Consider a two-component

mixture with density

f(t) = pµ1e
−µ1t + (1− p)µ2e

−µ2t.

103

This is a PH(α, S) distribution with

α =
(
p 1− p

)
, S =

(
−µ1 0

0 −µ2

)
,

and can be used to model highly variable service time distributions by taking

µ1 and µ2 to be very far apart. Straightforward but tedious calculations now

yield that the LST of the waiting time distribution is given by

W ∗(s) =
(1− ρ)(s+ µ1)(s+ µ2)

(s+ µ1)(s+ µ2)− λs− λ(pµ2 + (1− p)µ1)
, (5.15)

where

ρ = λE[S] = λ
(p
µ1

+
1− p
µ2

)
.

This can be inverted explicitly to get the waiting time density and CDF

fW (t) = (1−ρ)δ(t) +
e−x1t − e−x2t

z1 − z2

, FW (t) = 1− x2e
−x1t − x1e

−x2t

x1x2(z1 − z2)
(5.16)

where z1 and z2 are the roots of the denominator polynomial in (5.15), and

xi = −(1− ρ)zi(zi + µ1)(zi + µ2).

Note that η(λ) = min{x1, x2} is the dominant exponential term in the waiting

time distribution.

It is straightforward to calculate the latency when replication is employed,

using the explicit waiting time distribution given in (5.16). The correspond-

ing CDFs are plotted in Figure 5.2, for the parameters µ1 = 1, µ2 = 0.1,

p = 0.999, and three different values of the arrival rate. To demonstrate the

validity of the approximation by the dominant exponential given in (5.16),

Figure 5.2(d) shows the CDFs of the approximation and the exact density,

which are seen to be very close.

The results seen in the figures are similar to those in the exponential case,

and show that the benefits of replication are most apparent at low loads.

104

(a) λ = 0.1

(b) λ = 0.2

(c) λ = 0.3

(d) Dominant exp. approx. - λ = 0.2

Figure 5.2: CDF of the wait time with Hyper-Exponential service

5.3.3 Channel or server variability

The model of exponential service times is now returned to but, motivated by

wireless channels, whose capacity varies over time due to phenomena such

105

as fading, assume that the server works at a variable rate. The service rate

is modelled as a Markov process that evolves independently of the arrival

process. Let R denote the rate matrix (generator) of this Markov process, on

a finite state space {1, 2, . . . ,m}, and let µi denote the service rate when the

Markov process is in state i. This model shares many similarities with the

phase-type service distribution. In fact, conditional on the initial state of the

Markov process, the service time is of phase type. However, the initial state

itself is dependent on the length of the busy period that has elapsed, and so

service times are not iid and the P-K formula cannot be applied. The model

can be analysed using matrix-geometric methods, but rather than introduce

those here, a special case that is of interest in its own right is considered,

and which can be handled by transform methods.

This is the case of an On-Off channel or server. Let α denote the rate at

which the channel goes from the Off to the On state, and β the rate for going

from On to Off. Thus, the invariant or steady-state probability of being in

the On state is α/(α + β). The service rate in the On state is denoted µ; it

is 0 in the Off state. Note that the channel necessarily has to be in the On

state at a service completion time. Hence, a customer that is at the head of

the queue when a service completes starts its service immediately thereafter.

The service time of this customer can be worked out easily. The minimum of

the times to service completion or the channel going Off has an Exp(µ+ β)

distribution. With probability µ/(µ+ β), this time corresponds to a service

completion. With the residual probability, the customer has to wait a further

Exp(α) time for the channel to return to the On state, and resume service.

On resumption, the customer needs a further Exp(µ) service time, due to

the memoryless property of the exponential distribution. This description

lends itself to an easy calculation of the LST of the service time distribution,

which turns out to be

g(s) =

µ
µ+β

µ
µ+s

1− β
µ+β+s

α
α+s

. (5.17)

Detailed derivations are left to the appendix in A.3.

Now, the above description applies to all customers served during a busy

cycle except the one that initiated it. That customer, which entered an empty

106

queue, had a non-zero probability of arriving when the channel was Off, and

having to wait to begin service. Consequently, its service time LST is given

by

g0(s) = (1− q)g(s) +
αq

α + s
g(s),

where q =
β

α + β + λ
.

(5.18)

Here, q is the probability that the first customer to arrive after the queue

becomes empty finds the channel in the Off state.

This model is known as the M/G/1 queue with Exceptional First Service,

and an analogue of the P-K formula is given in [110] for the LST of the waiting

time distribution:

W ∗(s) = A
s− λg0(s) + λg(s)

s− λ+ λg(s)
,

where A =
α(µ− λ)(µ+ β)− λβ(µ+ α + β)

µ(µ+ β)(α + qλ)
,

(5.19)

for q given in (5.18).

Substituting for g and g0 from (5.17) and (5.18) in (5.19), an explicit,

albeit complicated, expression for the LST of the waiting time is found. The

expression can be inverted (with numerical root finding if necessary) to get an

explicit expression for the waiting time distribution. The inverted expression

is not displayed here as it is rather complicated, so it is left to the appendix in

Section A.3.3. This can be used in turn to obtain the latency after replication,

using the same procedure as for exponential and phase-type service times.

Also, similarly to the phase-type case, the inversion leads to an expression

that is a sum of exponential terms, therefore a dominant exponential term

can be found. The resulting CDFs for the latency and dominant exponential

approximation are plotted in Figure 5.3.3. The parameters chosen are α =

0.9, β = 0.1 and µ = 1. This corresponds to a channel that is available 90%

of the time, but the Off period is ten times as long as the service time, on

average. Thus, it exhibits considerable variability in the service time, like

the hyperexponential model considered earlier.

107

(a) λ = 0.1

(b) λ = 0.2

(c) λ = 0.3

(d) Dominant exp. approx. - λk = 0.2

Figure 5.3: CDF of the latency: On-Off server

5.3.4 Comparing M/M/1 , M/PH/1 and On-Off Models

The previous literature largely investigates exponential service time distri-

butions i.e. the M/M/1 queue. The extension to phase type and on-off

108

channel/server service distributions increases the variability, and thus the

realism of the models is improved. This section aims to show the extent to

which the novel methods we present differ in terms of the wait time distri-

bution. To show the variability between the methods we have chosen the

parameters so that the expected service time, Es, is very nearly the same in

all the models, and equal to 1. An arrival rate λ = 0.2 has been chosen as

this was the most interesting case from the previous sections. A full list of

the parameters used to create Figure 5.4 is detailed in Table 5.1.

Table 5.1: Comparison parameters
Parameter M/M/1 M/PH/1 On-Off

λ 0.2 0.2 0.2
µ 1 µ1 = 1.1 , µ2 = 0.0109 1.001001
Es 1 ≈1 ≈1
p / α N/A p = 0.999 α = 0.999

To describe the parameters for the M/PH/1 and On-Off server queues

in Table 5.1 consider the methods of service as having two different phases

of service. If we describe the periods where the server runs the majority

of the time as the ’normal’ service , and the rest of the time as ’abnormal’

service then in the example here both the M/PH/1 and On-Off server queues

run under normal service 99.9% of the time. This is quantified by the p or

α parameter in Table 5.1; we keep the distinction between p and α as p

refers to a probability in the M/PH/1 queue, whereas α refers to a rate

in the On-Off server queue. As we fix the p or α parameter, the service

rate parameters (µ in Table 5.1) must be increased to ensure the expected

service time approximates 1. In other words, as the server is either not

running at full capacity when it is in ’abnormal’ service for the M/PH/1, or

is not performing any service when the server is Off, then when the server

is in ’normal’ service, it must have an increased service rate to ensure the

expected service time remains at 1.

When inspecting Figure 5.4 the results show how the increased variability

of the M/PH/1 and On-Off server methods affects the wait time distribution

when compared to the M/M/1 queue. In particular there is a significant de-

crease in the probability of having a smaller wait time for both the M/PH/1

109

and On-Off queues when compared to the M/M/1. This is an unsurprising

result, and shows the importance of having realistic communication chan-

nel assumptions. Specifically, if the channel was assumed to behave like an

M/M/1 queue the benefits of replication would be considerably overesti-

mated.

(a) 2 Replicates (b) 3 Replicates

Figure 5.4: Comparison between M/M/1 , M/PH/1 and On-Off server

5.3.5 Optimal Replication Factor

Having developed models to represent the network, an important factor to

consider is by how much to replicate, since replicating by too much can cause

excessive queuing caused by congestion, but not replicating enough will under

utilise the available capacity. A simple way to look at the optimal replication

factor is to look at the mean wait time whilst varying the load and number

of replications. The optimal replication factor will then be the number of

replicates that give the minimum mean wait time for a given load. This is

the approach taken to produce Figures 5.5 and 5.6. Figure 5.5 shows a clear

pattern, in that for a light load the number of replicates should be high, and

for a heavy load the number of replicates should be reduced. To quantify the

benefit of replication Figure 5.6 shows the optimal expected wait time, with

the expected wait time for the unreplicated case also plotted for comparison.

A further point to consider is the limit to which replication reduces the

expected wait time. Intuitively, redundancy should improve the wait time up

110

(a) Exponential

(b) Hyper-exponential

(c) Exceptional First Service

Figure 5.5: Optimal Number of Replications

to a load value of 0.5 since at this point replicating by the minimum amount,

2 copies, would cause the load to become 1. However, there is variance to

the service time, hence the maximum load to which replication reduces the

expected wait time is less than 0.5. A further point to consider is that the

111

(a) Exponential

(b) Hyper-exponential

(c) Exceptional First Service

Figure 5.6: Optimal Mean vs. No Redundancy

more variable cases of the hyper-exponential and exceptional first service

models reduce the limit at which redundancy is useful.

In practice, the external arrival rate may not be known and so a simple

dynamic redundancy policy is proposed. This is a distinct advantage of using

112

SDN as an enabler, as a dynamic redundancy policy may be programmed at a

controller, and the rules can be forwarded to the networking elements. In the

method used here, an ’instantaneous arrival rate’ is calculated to make the

decision of by how much to replicate. A simple way to do this is to calculate

the interarrival time between the current and previous arrivals, taking the

inverse of this then gives the IAR (instantaneous arrival rate) i.e. let the

time at which the tth arrival enters the system be denoted at then:

IAR =
1

at − at−1

(5.20)

Once the IAR is calculated, it is passed to a decision process that matches

the IAR to a level of redundancy taken from Figure 5.5. In the simulation a

cap of three replicates was used to represent a cap in the resources available.

For the simulation, the arrivals are taken from a Poisson Process with the

arrival rate set at 0.2 (0.2 was chosen as it is a more interesting case as seen

in figure 5.1), and the service is exponential with rate 1.

The simulation results are shown in Figure 5.7 and agree with the theory

in Section 5.3.1. The CDF shows that the simple dynamic policy performs

better in this instance than all the other policies. Furthermore, the extreme

valued times are mainly seen by the no-redundancy case. Finally, it is im-

portant to note there is a consequence of replicating by too much. To see

this, observe that there is a crossover between the double and triple redun-

dancy in the CDF, this indicates the double redundancy outperforms the

triple redundancy for larger values of t.

Figure 5.7: CDF Comparison between the dynamic policy and the theoretical
values

113

5.3.6 Tail Bounds on Latency

In some applications, the primary goal is not necessarily to reduce mean

latency, but to guarantee packet delivery within a specified bound on the de-

lay. Safety applications and virtual reality are two example situations which

require delay guarantees to function correctly. In this work, probabilistic

guarantees are considered, i.e., the objective is to ensure that some high

proportion of packets, e.g., 99% or 99.9% (ε = 0.01 and ε = 0.001 in the

analysis), suffer delay no greater than a specified bound.

We have found explicit equations for the CDF of the latency with repli-

cation for the M/M/1 , M/PH/1 and Channel/Server variability models in

this chapter. While the exact expressions are rather complicated, the tail

bounds are much simpler; the dominant exponential term, which was pro-

posed as an approximation for the mean latency, becomes exact in the tail.

This is made precise below, and used to quantify the benefit of replication

in providing probabilistic delay guarantees.

Let Wλ denote a random variable with the stationary waiting distribution,

whose dependence on λ, the arrival rate into the queue, has been made

explicit in the notation. Define

ηλ = − lim sup
τ→∞

1

τ
logP(Wλ > τ). (5.21)

In fact, the limit exists above in all the models we consider. Letting Lk denote

latency with k-fold replication, and noting that this increases the arrival rate

to kλ, we have

P(Lk > t) = P(Wkλ > t)k,

by the assumption that delays in the k parallel queues over which the packet

is replicated are iid. Hence, it follows from (5.21) that

lim sup
τ→∞

1

τ
logP(Lk > τ) ≤ −kηkλ. (5.22)

Next, we define τε to be the threshold value of delay for which we can provide

a probabilistic guarantee that the latency is bounded by τε with probability

114

at least 1− ε; more precisely,

τε = inf{t > 0 : P(Lk > t) < ε}. (5.23)

This definition, together with eq. (5.22), motivates the following approxima-

tion for τε:

τε ≈
− log ε

kηkλ
. (5.24)

We evaluate this quantity numerically for different values of k, for each of

the queueing models we studied earlier in this chapter.

The threshold τε can be calculated exactly for the M/M/1 queue, using

the exact expression for the latency CDF given in (5.8). Straightforward

calculations yield that, for k-fold replication,

τε =
1

k(µ− kλ)
log

1

ε
−

log µ
kλ

µ− kλ
.

Observe that the approximation in (5.24) coincides with the first term in the

RHS above, but does not capture the second term. For the M/PH/1 queue,

exact calculations are still possible, though messy. But the approximation in

(5.24) is easy to calculate. First, observe from (5.13) and (5.21) that ηλ, the

tail decay exponent of the waiting time distribution in the M/PH/1 queue,

is equal to η(λ), which was defined in (5.12). Next, using the approximation

for the latency CDF given in (5.14), we obtain the approximation

τε =
− log ε

kη(kλ)
+

log(kρ)

η(kλ)
;

the approximate expression for τε in (5.24) matches the first term in the

RHS above while failing to capture the second, correction term. The above

expression can be evaluated numerically for hyper-exponential service times.

Finally, an approximation for τε in the On-Off server model can also be

obtained numerically from the approximations for the latency CDF obtained

earlier.

The results for ε = 0.01 and 0.001 are shown in Figure 5.8 for the expo-

115

nential case and Tables 5.2 & 5.3 for the hyper-exponential and On-Off cases.

Note that N/A is displayed in the tables when the traffic intensity exceeds 1.

An important aspect of these results is that there are crossover points, where

a higher level of redundancy does not necessarily provide better reliability in

terms of delay (the best policy is highlighted in bold).

(a) ε = 0.01

(b) ε = 0.001

Figure 5.8: The delay bound τε, with varied λk for the exponential service
model

116

Table 5.2: Hyper-exponential, τε
τε, ε = 0.01 No Replication 2 Copies 3 Copies
λ = 0.1 2.6100 0.8880 0.4920
λ = 0.2 3.9370 2.3930 2.6790
λ = 0.3 5.2670 4.7490 N/A
λ = 0.4 6.9010 11.6600 N/A
λ = 0.5 9.1470 N/A N/A

τε, ε = 0.001 No Replication 2 Copies 3 Copies
λ = 0.1 5.4440 2.3720 1.6140
λ = 0.2 8.6230 4.4810 4.7490
λ = 0.3 13.5750 8.1490 N/A
λ = 0.4 19.0150 19.2210 N/A
λ = 0.5 24.4600 N/A N/A

Table 5.3: Exceptional First Service, τε
τε, ε = 0.01 No Replication 2 Copies 3 Copies
λ = 0.1 3.4700 1.5900 1.1300
λ = 0.2 5.3400 4.0600 5.7200
λ = 0.3 7.2400 9.3200 N/A
λ = 0.4 9.6800 >30 N/A
λ = 0.5 13.3400 N/A N/A

τε, ε = 0.001 No Replication 2 Copies 3 Copies
λ = 0.1 5.1400 3.5600 2.7200
λ = 0.2 7.5000 6.9500 9.3200
λ = 0.3 10.1000 14.6800 N/A
λ = 0.4 13.6100 >30 N/A
λ = 0.5 19.0500 N/A N/A

5.4 Conclusion and Further work

In this chapter, the use of SDN as a technology for replicating packets and

routing the replicas across multiple disjoint paths was proposed. A very

simple queueing theoretic model was proposed to abstract the impact of such

replication in a communication network. This model was used to study the

effect of packet replication on the latency, namely the time to receive any one

of the replicas. Delay distributions were calculated using the P-K formula

and the LST for different service models. It was found that the expressions

for the distributions can be very complex, but that a simple approximation

using a dominant exponential term led to satisfying results. The analysis

117

of the distributions indicated that an optimal policy is dependent upon the

network load. Simulations then showed that a simple dynamic replication

policy can be used to further reduce the latency in a system. Furthermore,

the analysis highlighted that the benefits are more pronounced in the tail of

the distribution. This observation led to the study of the tail exponent of the

latency distribution, and its use to provide probabilistic guarantees that the

latency does not exceed a specified value. Such guarantees can be valuable

in latency sensitive applications. Again, the optimal amount of replication

was found to depend upon the network load.

One of the main limitations of the work carried out in this chapter is that

the mathematical abstraction is overly simplistic. The assumption of inde-

pendence among the parallel queues was justified on the grounds that they

would see independent cross-traffic, and that the impact of the index flow

would be negligible. While some portion of the cross-traffic would undoubt-

edly be independent, it is likely that some portion would also be common, as

nearby sources and destinations are likely to use paths that overlap signifi-

cantly. Similar, while the impact of the index flow, which is common to all

the paths, might be small, it is not completely negligible. A more realistic

model that accounts for a fraction of the traffic being common could be a

topic for further research. There has, in fact, been little rigorous mathe-

matical work on the problem studied in this chapter. One significant recent

contribution is the work of Gardner et al. [111].

Secondly, the analysis has been restricted to phase-type service distribu-

tions. While this is indeed a rich class of distributions, it excludes heavy-

tailed distributions such as the Pareto, whose tails decay polynomially rather

than exponentially. Extending the analysis to such distributions would be

an interesting direction for future work.

It was assumed in this chapter that, when replication is employed, all

network traffic is replicated to the same extent. This assumption leads to

significantly understating the benefits of replication. As the motivation be-

hind this chapter was to argue that replication has benefits, this was the

most conservative assumption to make. But in practice, it is likely that

only a small fraction of high-priority and delay sensitive traffic would be

118

replicated. It would not be difficult to extend the analysis in this chapter

assuming that replication is only applied to a fixed fraction of the network

traffic.

119

Chapter 6

Redundancy: Coding

6.1 Introduction and Related Work

The motivation for the work in this chapter is the same as in the previous one:

to leverage some of the functionality provided by SDN in order to achieve

lower latencies for high-criticality traffic. The mechanism employed is again

the use of redundant messages and multipath routing. But instead of simply

replicating the data, redundancy is added in the form of linear combinations

of the data, an idea with a long history in error-correction coding. These

redundant bits can be used to recover the message despite some number

of errors or erasures. Coding has traditionally been used to improve the

reliability of communication, but here it is proposed as a mechanism to reduce

latency.

The notation (n, k) code refers to a code in which k message symbols

are used to generate n coded symbols; typically, n > k, i.e., coding adds

redundancy to the message, which can be used to reconstruct it despite a

certain number of errors or erasures. An (n, k) code can be used to code

a single packet by first splitting it into k pieces, and then adding n − k

redundant pieces, giving a total of n pieces to be sent across the network.

A simple example is shown in figure 6.1, which depicts a (3, 2) code. A

packet is first split into k = 2 pieces, which are then used to generate a

third coded piece; here, + is to be interpreted as bitwise addition modulo 2,

120

or equivalently the XOR operation. The figure shows how the message can

be recovered from any two of the three pieces. Thus, the loss or erasure of

one piece does not compromise the message (though the loss of two pieces

or an error in one piece would). As the two pieces are each half the size

of the original packet, the overall impact is to increase the amount of data

transmitted by 50%. More generally, an (n, k) code increases the load by a

factor of n/k.

Figure 6.1: A binary (3, 2) code

Figure 6.2: Example of a (3, 2) code

Coding has both advantages and disadvantages when compared to repli-

cation. One of the main advantages is the ability to increase the load frac-

tionally, by a factor of n
k
, whereas replication is limited to only increasing the

121

load by an integer value. This is particularly beneficial when considering the

optimal rate as discussed in section 6.3.5, as a fractional rate can be achieved,

leading to a smoother transition between optimal levels when compared to

replication. On the other hand, latency is potentially larger as we need to

wait for the first k out of n pieces, rather than for a single packet (though

note that the pieces are smaller than a packet). The other disadvantage is

that the encoding and decoding operations add an overhead that contributes

additional latency.

The programmability of SDN equips it to support both multipath routing

and network coding. These capabilities have been exploited in prior work;

see [112, 113]. Coding inside the network is not considered here, but only

coding by the source. Network coding in a high-bandwidth network would

impose substantial demands, and it may also be undesirable for reasons of

security and privacy to allow network elements to modify data packets. In

any case, it offers no benefits over source coding for unicast or point-to-point

communication. The main contribution of this chapter is an analysis of the

potential benefits of implementing redundancy via coding, when applied to

latency reduction. Some preliminary steps towards such an analysis using

SDN as an enabling technology were taken in [114], and a SDN with the

capability of network coding is presented. Our work exploits the fact that

SDN can be used as an enabling technology for network coding as presented

in [114] and extends the analytical work.

6.2 Model and Problem Formulation

The model is virtually identical to the one in the previous chapter, and so

is only recapitulated briefly. We study the latency of a single index flow,

which has n vertex-disjoint routes available to it. Packets of the flow are

split into k pieces, coded using an (n, k) erasure code, and the n coded

pieces are transmitted along n disjoint paths. It is assumed that the packet

can be reconstructed from any k pieces. Thus, ignoring overheads due to

encoding and decoding, the latency is the time until the kth piece is received.

It is assumed that the total delay along each route is well approximated

122

by the service time in an M/G/1 queue. By further assuming that the

delay is largely due to cross-traffic, and that the cross-traffic along distinct

routes comes from independent flows, the M/G/1 queues may be treated

as independent. This is justified by the assumption that each route carries

traffic from a large number of flows, and that the contribution of any single

one of these flows to the total traffic is negligible. Thus, even though the

indexed traffic is common to the routes along which it is replicated, this

introduces no dependence because its own contribution to the total traffic

along any of these routes is negligible; the waiting times it incurs are almost

entirely due to the service times of cross-traffic. This is also the argument

made in [83] where it is assumed the number of servers is large, and thus

the contribution to the total load of a single replicated packet is small. This

is also quantified empirically in the paper by showing how applications with

small packet sizes, but diverse paths benefit from redundancy such as DNS

requests. Finally, it is assumed that there is no route purging, i.e, data that

is in transit cannot be cancelled even if it is no longer relevant. In order to

fairly account for the increase in traffic due to the added redundancy, it is

assumed that all traffic in the network uses the same coding scheme, and

hence that the network load is increased by the fixed factor n/k. In practice,

only a small fraction of high-priority traffic may have redundancy added;

moreover, there may be multiple priority classes with different amounts of

added redundancy. While it is not difficult in principle to extend the analysis

to such settings, the simplest assumptions lead to the most transparent and

interpretable results.

Given the above assumptions, a very simple system model of n parallel

queues is obtained. Packets of the index flow arrive into the system according

to a Poisson process. Each packet is split into k pieces, which are used

to generate n coded packets, transmitted across n parallel queues. Next,

each of the queues is itself modelled as an M/G/1 queue; in other words,

the jth queue sees Poisson arrivals at rate λj, the customers (packets) have

independent and identically distributed (iid) service times denoted S
(j)
i , i ∈ Z

with a general distribution, and they are served in their order of arrival.

While the aggregate arrival rate λj into the jth queue will depend on the

123

parameters k and n, the dependence is not made explicit in the notation.

Let ρj = λjE[S
(j)
1] denote the load in the jth queue; it is assumed that ρj < 1

for all j, i.e., that all queues are stable. Under this assumption, each queue

has an invariant distribution under which waiting times are almost surely

finite. The LST of the waiting time distribution is given by the Pollaczek-

Khinchine (P-K) formula:

(W j) ∗ (s) =
(1− ρj)s

s− λ(1− gj(s))
, (6.1)

where gj(s) = E[exp(−sS(j)
1)] is the LST of the service distribution in the jth

queue. Let W j denote a random variable with the invariant distribution of

the waiting time in the jth queue. Assuming W 1,W 2, . . . ,W n are indepen-

dent, denote the corresponding order statistics by W (1) ≤ W (2) ≤ . . . ≤ W (n).

Then, the latency in steady state, denoted Ln,k, has the same distribution as

the kth order statistic, i.e., we can define

Ln,k = W (k). (6.2)

This random variable, and its distribution, are the primary object of study in

this chapter. In general, expressions for the distribution of this quantity are

hard to derive, and very complicated. In order to obtain tractable results that

shed light on the relation between the coding parameters and the resulting

latency, we assume that the queues are symmetric, i.e., that they all have

the same arrival rates and service time parameters. With this assumption,

the W j are iid, and the distribution of the latency is given by

P(Ln,k < x) =
n∑
i=k

(
n

i

)
FW (j)(x)i(1− FW (j)(x))n−i. (6.3)

In the remainder of this chaper, we evaluate this expression for all the queue-

ing models studied in the previous chapter, and compare the benefits of cod-

ing to those of replication.

124

6.3 Coding and Mean Latency

The impact of coding on latency is studied in this section, using three dif-

ferent queueing models, with different service distributions. It is assumed

throughout this section that packets of the index flow arrive according to a

Poisson process of rate λ, and are coded across n routes using an (n, k)-code.

A known result using the M/M/1 queue is first presented in 6.3.1. This is

then compared to the novel models we propose in sections 6.3.2 and 6.3.3

that extend the service distribution to phase type and exceptional first ser-

vice. A comparison between all of these methods is also presented in 6.3.4.

The analysis from sections 5.3.5 and 5.3.6 is also repeated which provides

novel results for the optimal coding rate and probabilistic delay bounds with

respect to the coding models.

6.3.1 The M/M/1 queue

The simplest model investigates service times that are assumed to be iid with

an Exp(µ) distribution. The justification for this is stated in chapter 5, but

in short the assumption is that multiplexing a large number of independent

flows, each of which individually contributes a small fraction of the total

traffic, can lead to a service distribution with an exponentially decaying

tail. The service rates µi would normally be different, but for notational

convenience, and to facilitate graphical display of the results, let µi = µ

for each queue. This is also the convention taken in chapter 5, so a direct

comparison can be made for each method by maintaining this choice of service

parameter.

The CDF for the wait time distribution for the M/M/1 was found in 5

and is

FW (t) = 1− ρe−(µ−λ)t. (6.4)

Now consider the effect of replicating every packet across n edge-disjoint

routes. This will increase the total arrival rate into each queue by the factor

125

r = n
k
. Substituting (6.4) in (6.3), it is found that

FLn,k(t) =
n∑
i=k

(
n

i

)(
1− rρe−(µ−rλ)t

)i (
rρe−(µ−rλ)t

)n−i
(6.5)

(a) λ = 0.1

(b) λ = 0.3

(c) λ = 0.5

Figure 6.3: Latency CDF with exponential service under varied load: scale
changes on vertical axis

The resulting CDFs with no replication, (3, 2) coding and double repli-

cation are plotted in Figure 6.3, with various values of λ; λ = 0.1, 0.3 and

0.5. The CDF plots still cross each other, meaning that no single value of the

replication factor or coding rate, r, may be optimal for all t. In particular,

when λ = 0.3, the no replication case performs the best at small t, but then

126

there are crossover points where both the double replication and (3, 2)-coding

policies improve the probability of the latency being smaller than the speci-

fied value. Another simple observation is that at the lowest load presented,

λ = 0.1, the CDF plots for (3, 2) coding and double replication are above

those for no replication. This demonstrates the same finding as in Chapter 5,

that replication, and in this case coding, significantly increase the probability

of meeting a specified delay bound t at a low load.

6.3.2 The M/PH/1 queue

Phase-type distributions can be used to offer a much more realistic service

distribution. This is because unlike the exponential case, where the service

rate is specified by a single parameter µ, a phase-type distribution is made

up of a number of parameters which can be varied to create a much more ac-

curate representation of service. In particular, phase-type distributions can

offer more variability, and this variability can represent phenomena within

networking. An example would be a fault in the network causing retrans-

mission, or re-routing, this action may happen with a small probability, but

would result in a longer delay. In a phase-type distribution this could be

represented by giving one phase a larger average delay with a small starting

probability (the fault), and another phase a smaller average delay with the

remaining probability (normal service).

The analysis from 5.3.2 is repeated to give the wait-time distribution

when a phase-type service distribution is employed. Ultimately, the waiting

time density can be written as:

fW (t) = c0δ(t) +
m∑
i=1

cie
zit, t ≥ 0.

As this shows the waiting time is a sum of exponential distributions with

parameters −zi and constant multiplied by a delta function (which must

have mass 1 − ρ, as this is the probability of the queue being empty), then

127

again the distribution can be approximated by a single exponential.

fW (t) ≈ (1− ρ)δ(t) + ρηλe
−ηλt,

where,

ηλ = − m
max
i=1

Re(zi).

We have made the dependence of the roots, and hence of η, on the arrival

rate λ explicit in the notation. Assume that ηλ > 0. Then ηλ is the slowest

decaying exponential, which makes it the dominant term in the expression

for the waiting time density. As the approximation has the same form as in

the M/M/1 case, it makes it much easier to calculate the latency using the

approximation, and the latency has CDF given by

FLn,k(t) =
n∑
i=k

(
n

i

)(
1− rρe−η knλt

)i (
rρe

−η k
nλ
t
)n−i

Example: Hyper-Exponential Service Times

The approach is now illustrated for the special case of a hyper-exponential

service time distribution with both the LST inversion and the exponential

approximation as in 5.3.2. To demonstrate the validity of the approximation

Figure 6.4(d) shows the CDFs of the dominant exponential approximation

and the exact density. The CDFs are very close in value.

To calculate the latency when coding or replication is employed, the ex-

plicit waiting time density produced in section 5.3.2 can be used along with

equation 6.3. This leads to a complicated expression, but the correspond-

ing CDFs are plotted in Figure 6.4, with the parameters µ1 = 1, µ2 = 0.1,

p = 0.999. This corresponds to a system where the service rate is 1 for 99.9%

of the time, but only 0.1 the remainder of the time. This aims to model a

fault, i.e. packet loss or fading, that has a latency that is 10x longer than

the ‘normal’ amount. The results are similar to those in the exponential

case, showing that: the benefits of coding are most apparent at low loads,

crossover points exists for a moderate load, and there is a limit to the benefit

of coding when the load is increased further.

128

(a) λ = 0.1

(b) λ = 0.3

(c) λ = 0.5

(d) Dominant exp. approx. - λ = 0.3

Figure 6.4: CDF of the latency with hyper-exponential service time

6.3.3 Channel or server variability

The server variability model is motivated by the fact that a server or net-

working element may malfunction, which would cause a build up of packets,

resulting in an exceptional first service. Or in other words, once the server

129

returns back to an online state, the first service will be different to the ser-

vice when the network is running as normal. The analysis for the latency

distribution is a repeat of that in section 5.3.3. This can be used in turn to

obtain the latency after coding, using the same procedure as for exponential

and phase-type service times. Also, similarly to the phase-type case, the

inversion leads to an expression that is a sum of exponential terms, there-

fore a dominant exponential term can be found. The resulting CDFs for the

latency and dominant exponential approximation are plotted in Figure 6.5.

The parameters chosen are α = 0.9, β = 0.1 and µ = 1. This corresponds to

a channel that is available 90% of the time, but the Off period is ten times as

long as the service time, on average. Thus, it exhibits considerable variability

in the service time, like the hyper-exponential model considered earlier.

6.3.4 Comparison between M/M/1 , M/PH/1 and On-

Off Models

The previous chapter explained the extension from M/M/1 queues with repli-

cation to queues with phase type and on-off channel/server service distribu-

tions. This section aims to show the extent to which the coding method

differs in terms of the latency distribution. To show the variability between

the methods we have again chosen parameters such that the expected service

time (Es) for each method approximates 1. In contrast to the previous chap-

ter, an arrival rate of λ = 0.2 and λ = 0.3 are shown using a (3, 2) coding

scheme. A full list of the parameters used to create the Figure 6.6 is detailed

in Table 6.1. See section 5.3.4 for an explanation of the parameters.

When inspecting Figure 6.6 the results show how the increased variability

of the M/PH/1 and On-Off server methods effects the wait time distribution

when compared to the M/M/1 queue. In particular there is a decrease in

the probability of having a smaller wait time for both the M/PH/1 and On-

Off queues when compared to the M/M/1. Although this is an unsurprising

result, the difference between all the service distributions is less severe for the

3-2 coding method compared to using replication as presented in section 5.3.4.

A possible cause for this would be the fact that 2 packets must be received

130

(a) λ = 0.1

(b) λ = 0.3

(c) λ = 0.5

(d) Dominant exp. approx. - λk = 0.3

Figure 6.5: CDF of the latency with server variability

for the service to be completed, rather than just 1 as in the replication case.

This may reduce the variability for each service method and subsequently

between methods as there is a reduced probability of two packets taking an

extreme (either very small or very large) amount of time to be served.

131

Similarly to the replication case the M/M/1 method approaches a prob-

ability of 1 first, meaning that a higher proportion of packets would arrive

within a specified time under the M/M/1 assumption. This relates to the

work in section 6.3.6, showing the probabilistic delay bounds for each of the

methods.

Table 6.1: Comparison parameters
Parameter M/M/1 M/PH/1 On-Off

λ 0.2 / 0.3 0.2 / 0.3 0.2 / 0.3
µ 1 µ1 = 1.1 , µ2 = 0.0109 1.001
Es 1 ≈1 ≈1
p / α N/A p = 0.999 α = 0.999

(a) (3, 2) Coding, λ = 0.2 (b) (3, 2) Coding, λ = 0.3

Figure 6.6: Comparison between M/M/1 , M/PH/1 and On-Off server

6.3.5 Optimal Coding Rate

The optimal replication factor was a beneficial addition to the analysis of

redundant messages. The main reason for this is the information can be used

to develop an optimal policy for replication, as for any particular load on the

network there is a level of redundancy that gives the minimal delay. It was

also explained that the programmability of SDN is an enabling technology for

dynamic redundancy policies, and this extends to the possibility of a dynamic

coding policy. For this to be possible the analysis is now further refined to

132

consider the network coding rate, rather than the amount of replication.

The aim is that this will give a smoother curve for the optimal rate, rather

than a stepped function as was the case with the optimal replication factor.

The disadvantage is not only the increased complexity that a coding scheme

would cause, but also the fact that k parts of the n messages sent must be

received. In the analysis it is assumed any code rate from 5 to 1 is possible,

but realistically the code rate is limited by the coding schemes available and

therefore the analysis is only indicative of the achievable gain of coding.

By comparing Figures 6.7 it can be seen the optimal coding rate follows

a trend much like the optimal replication factor. For a small load the rate

is large and for a higher load the optimal rate is small. The main differing

feature is that due to using coding, the coding rate n
k

can be a non-integer

value, rather than having a fixed replication factor. The possibility of a

non-integer rate means that there is more flexibility when choosing an opti-

mal scheme. However, observe that the optimal rate for the minimum mean

delay in each case is actually an integer value, with one exception in the ex-

ponential model. This indicates that the optimal policy in terms of reducing

the delay is to actually use replication rather than coding, and more benefit

when employing coding may be in terms of improving the reliability of the

transmission.

Moreover, similarly to the replication case, there is a cut off point where

it is no longer beneficial to employ coding or replication, this is indicated

when the optimal rate is 1 at a load of approximately 0.3. This is also an

observation in Figure 6.8 as the optimal mean converges and becomes equal

to the uncoded case. The benefit of coding and replication can be quantified

by the reduction in delay. The maximum benefit for the exponential service

for example is seen at a load of 17.5% (λ = 0.175), where the delay is reduced

from 0.2204 to 0.0675 i.e. a gain of 3.3x. The results for all the methods

are shown in Table 6.2. An interesting point from the table is that the load

of the biggest gain is similar between the methods, indicating that there is

an optimal load for using coding. Logically it might seem sensible that the

most benefit of coding is at the lowest load, but since the delay is small at

low load then the overall benefit is reduced. In contrast, at a higher load the

133

optimal policy is not to use any coding, this is due to the increased delay

caused by the extra load on the system.

Table 6.2: Coding Delay Gain

Service Load at Biggest Gain Gain Limit of Gain
Exponential λ = 0.175 3.3x λ = 0.296
Hyper-Exp λ = 0.151 3.1x λ = 0.294
Vacation λ = 0.14 1.17x λ = 0.19

6.3.6 Probabilistic Delay Bounds

As in Chapter 5 the bounded delay i.e. the probability that a delay does not

exceed a given bound, is an important factor to consider. This is because

certain applications rely on a delay not exceeding a threshold for their func-

tionality. This is different to the problem of complete packet loss which is

an area that has been widely researched, and many protocols have been de-

veloped to combat this [115, 116]. An example would include VOIP or video

conferencing, where if a delay threshold is exceeded the transmission would

no longer be useful due to synchronisation problems. In order to analyse

the delay bounds a similar analysis to that in section 5.3.6 is performed. As

a quick reminder ε is the threshold value, so a value of ε = 0.01 indicates

that 99% of packets would be received within time, t, for a given value of λ.

Similarly, ε = 0.001 indicates 99.9% of packets would be received.

As the expressions are more complicated for coding than the replication

case, the numerical equivalents are presented for each method in Figures 6.9

and 6.10. The graphs in Figure 6.9 show the distinction between choosing a

value of ε = 0.01 and ε = 0.001. The curves show a similar pattern for each

service distribution, in that the bound on t is increased for the smaller value

of ε. This is simply a direct consequence of the fact that a higher proportion

of packets will arrive within a larger time frame, t. What is more interesting is

that there is a crossover point between the coding schemes, as there was with

the CDFs for the wait time, this shows that although the double replication

134

and 3-2 coding schemes perform better initially, as the load increases it is

more beneficial in terms of latency to send only one packet.

When there is more variability in the service distribution the arrival rate

threshold reduces. This is most obvious in Figure 6.9 when comparing the

hyper-exponential and exceptional first service models. In particular, al-

though the crossover point is unclear for the exceptional first service model

the crossover is clearly less than that for the hyper-exponential. To highlight

the difference between the coding schemes Figure 6.10 shows a magnified

portion of the graph for the exceptional first service model at a low load.

The magnified version shows that the double replication scheme performs

the best initially as the t value is the lowest up to a load of λ ≈ 0.15, but

then the 3-2 coding scheme performs better until λ ≈ 0.275. If the other

graphs were also magnified this pattern would remain the same, this empha-

sises the fact that the coding scheme directly effects the reliability of delay

and is dependent upon the load.

A final point is that the difference between the coding schemes becomes

much more evident at higher loads. It is hypothesised that this is a conse-

quence of the total load on the network, or traffic intensity , approaching

100%. This is evident for the double replication scheme in the On-Off server

case when λ ≈ 0.31 as the value of t begins to rapidly approach the maximum

limit of the graph i.e. t = 30. Similarly, this is why the 3− 2-coding scheme

t-value does not increase more rapidly until λ ≈ 0.4 as the total arrival rate

is only multiplied by the coding rate, which is 3
2
, rather than 2. Finally, the

no replication scheme does not increase rapidly at all on the graphs shown

as the traffic intensity remains less than 100% for the maximum value of λ

shown (λ = 0.5).

1The λ value is only 0.3 as the double replication increases the total arrival rate by 2,
which means the effective arrival rate is ≈ 0.6.

135

(a) Exponential

(b) Hyper-exponential

(c) Server variability

Figure 6.7: Optimal Coding Rate

136

(a) Exponential

(b) Hyper-exponential

(c) Server Variability

Figure 6.8: Optimal Mean vs. No Coding

137

(a) ε = 0.01, Exponential (b) ε = 0.001, Exponential

(c) ε = 0.01, Hyper-exponential (d) ε = 0.001, Hyper-exponential

(e) ε = 0.01, Exceptional First Service (f) ε = 0.001, Exceptional First Service

Figure 6.9: The delay bound τε, with varied λ

138

Figure 6.10: Delay Bounds Magnified, On-Off server, ε = 0.01

139

6.4 Conclusion

The purpose of this chapter was to extend the results from Chapter 5 by

using network coding. The results from Chapter 5 showed that there was an

achievable gain, in terms of a reduction in latency, when using redundancy

with a network load below a certain threshold. The results presented in this

chapter showed that this is also possible when coding is employed. However,

although the coding schemes can increase the network load by a non-integer

value, it was found that in general the optimal policy in terms of delay is

to use replication rather than coding as the first packet to arrive can be

used immediately. Furthermore, the use of network coding can increase the

complexity of the transmission and the impact of this in terms of delay

remains an open question for further work.

140

Chapter 7

Conclusion

Many conclusions have been drawn within each chapter of the thesis. This

section therefore aims to summarise the contributions made in the area of

networking, and explore areas of further work.

7.1 Contributions

The motivation for the work in this thesis is to support high-criticality ap-

plications by improving latency. One approach to this might be through

routing, which in turn motivated interest in SDN. Within this area, the the-

sis investigated the problem of controller placement. Another approach is

through data replication, and both replication and coding based approaches

were investigated.

The thesis started by investigating the open questions for SDN in high

criticality, and highlighting the areas of importance. After identifying that

a high-criticality network requires bounds on the latency, and a high level

of reliability, new methods for the controller placement were investigated.

Due to this fact, a number of approximation algorithms were studied. This

led to the work in Chapter 3 that analysed the accuracy and scalability

(complexity) of multiple approximations for the controller placement.

The first theme of the thesis was to use a physical aspect of SDN to help

the enabling of SDN in high criticality. However, the second theme of the

141

thesis was related to using SDN as an enabler. The use of replicating data

in a network with the hope of reducing latency was then introduced. In

order analyse the potential reduction in latency a queuing theory model was

derived. A general approach was realised and the model included complicated

service distributions with characteristics related to wireless channels. One of

the outputs of the analysis was an optimal replication factor, which was

calculated with respect to the mean delay for a given load on the network.

The other main output was the reliability in terms of the delay. Both aspects

were shown to have crossover points when the level of replication and load

were altered. This showed that the best policy is not always straightforward

and gives rise to the potential of dynamic policies in the future. The work in

Chapter 5 then led to an extension to the modelling of network coding using

queuing theory.

Modelling network coding requires similar, but more complicated analysis

to that of replication. The contributions with respect to modelling network

coding showed that network coding can provide a smoother transition be-

tween increasing the load and reducing latency. This is due to the possibility

of a non-integer coding rate. Normally, the analysis on network coding is

limited to that of reliability, but by utilising the queuing model the gains

in terms of latency can also be seen, both in terms of mean delay and the

reliability in terms of the delay.

7.2 Further Work

This thesis provides advancements in the potential use of SDN in high-

criticality networking. However, the work presented here has many potential

extensions. The controller placement for example is limited by the fact that

it is formulated as a k -median problem. This means that a specific value

of k must be considered before a placement solution is calculated. This is

a severe limitation and future work would be to alleviate this restriction.

One such suggestion to remove this restriction is structuring the problem as

a facility location problem. This would mean a total acceptable cost would

be required as an input and the minimum number of controllers would be

142

placed in order to fulfil this.

The modelling with respect to queuing theory can be extended in a num-

ber of ways. The limitation of the work in this thesis is the strict assumptions

made, which make the analysis more tractable in a closed form, but also make

the model more unrealistic. In particular, the assumption of independence

between queues is unrealistic as when the messages are replicated, there is a

dependence created across the service times on each path. This is because the

service time is likely to be similar for a specific packet as it has the same size

and structure as its replicates. Potential future work for this would therefore

be to break the independence assumption, but this would likely lead to much

more complicated analysis.

Another extension to the queuing models would be to change the arrival

distribution. The assumption that the packets arrive according to a Poisson

process makes the analysis much easier, especially since the known results for

the M/G/1 class of queues can be used. However, there is still a debate to

how well internet traffic is modelled by a Poisson process, and other arrival

distributions may be better suited. For example, batch arrivals may better

characterise the burstiness of networking traffic, and therefore provide a more

accurate analysis.

When coding is employed the analysis relies on the order statistic to gain

a wait time distribution. Although this provides a closed form expression

this may be a limitation if more complex coding schemes are considered. For

example the analysis only considers a simple (3, 2)-coding scheme. Although

this provides an indication of the wait-time for a coding scheme, much more

complicated coding schemes are used in practice. One such class of codes are

fountain codes, or in particular Raptor codes. Raptor codes work by sending

coded packets until ’enough’ packets are received to decode the original mes-

sage. In this case using order statistics may not be the best way to analyse

the delay distributions and therefore provokes further work.

As the results presented in this thesis are generally focused on analytical

results, there is a scope for further work in both emulation and simulation.

Some work has already been done in this area for redundancy as introduced

in [83] and [84]. However, a fully deployed system employing redundancy

143

seems to remain elusive, and simulation/emulation results in specific areas

may help aid the progression in this area.

144

Appendix A

A.1 Proof of Lemma 5.3.1

Lemma A.1.1. Consider an M/PH/1 queue with Poisson(λ) arrival pro-

cess, and iid service times with a PH(α, S) distribution of order m. The

LST of the waiting time distribution is given by:

W ∗(s) =
1 + λαS−11

1− λα(sI − S)−11
, (A.1)

where I denotes the m×m identity matrix, and 1 a column vector of all ones

of length m.

Proof. Observe that S1 + s0 = 0, as s0 was chosen to make the rows of the

rate matrix describing the phase type distribution sum to zero. Consequently,

(sI − S)1 = s1 + s0,

(sI − S)−1s0 = 1− s(sI − S)−11.

Also, α0 +α1 = 1, as (α0,α) is a probability vector. Substituting these into

the LST of the service time distribution given in (5.5), after simplification

the following expression is obtained

1− g(s) = sα(sI + S)−11.

Substituting this into the P-K formula (5.4), and noting that ρ = λE[S],

where the mean service time is given by E[S] = −αS−11, the claim of the

145

lemma is obtained after some straightforward manipulations.

A.2 Hyper-Exponential Equations

The wait time with hyper-exponential service can be written as follows:

W ∗(s) =
(1− λ(p

µ1
+ 1−p

µ2
))

1− λ(p
µ1+s

+ 1−p
µ2+s

)

=
(1− λ(p

µ1
+ 1−p

µ2
))(s+ µ1)(s+ µ2)

(s+ µ1)(s+ µ2)− λp(s+ µ2)− λ(1− p)(s+ µ1)

(A.2)

When inverting the LST it is found that the PDF is a mixture of expo-

nentials given by:

fW (t) = (1− ρ)δ(t) +
e−tx1

s1 − s2

− e−tx2

s1 − s2

FW (t) = 1− ρ− 1 + e−tx1

x1(s1 − s2)
+

1 + e−tx2

x2(s1 − s2)

where:

si are the roots of the denominator of W ∗(s)

xi = −si(1− ρ)(si + µ1)(si + µ2) i ∈ 1, 2

ρ = λE[S] = λ

(
p

µ1

+
1− p
µ2

)
(A.3)

A.3 Derivation for the Exceptional First Ser-

vice Model

A.3.1 Derive g(s) and g0(s)

Deriving the distribution for the service time is this first hurdle when con-

sidering the vacations model due to the consideration of the availability of

the server/channel and subsequently retransmissions. The path state model

in Figure A.1 is a representation of the state (available or unavailable) of

the server/channel, in this case the path being available and unavailable is

146

Figure A.1: The On-Off Channel for the exceptional first service model

defined by the exponential distribution with rate α and β respectively. In

the proposed model the equations for g(s) and consequently g0(s) are de-

rived using this path state model and are given in Lemmas A.3.1 and A.3.2

respectively.

Lemma A.3.1. The LST of a service distribution with retransmissions is

given by:

g(s) = E(e−sT) =

µ
µ+β

µ
µ+s

1− β
µ+β+s

α
α+s

(A.4)

Proof. If the server was always available, the distribution would be easy as

it would be an M/M/1 queue, with service rate µ.

However, in this model this is not the case. Therefore the first thing to

consider is the probability that a packet is served before the server becomes

unavailable. This is P(Service time < Time it takes the server to go offline) =

P(Service finishes|Server remains available) = µ
µ+β

since this is the same as

the probability that the service time is the minimum of the service time and

the time to go offline. Similarly, the probability that the transmission does

not complete is therefore µ
µ+β

.

This means that if the usual service time, call it T0, is exponential with

service rate µ then the actual service time is restricted by the fact that the

message must complete service before the path becomes unavailable. Hence,

T is not a straight forward distribution.

Consider the variable Xi where Xi ∼ exp(µ + β) + exp(α) , where the

first term of Xi corresponds to the server going off before finishing , and the

second term corresponds to the server being in the off state.

The distribution of the service time can now be derived by applying the

147

respective probabilities with the corresponding events as follows:

T =

exp(µ) w.p.
(

β
µ+β

)0
µ

µ+β

exp(µ) +X1 w.p.
(

β
µ+β

)1
µ

µ+β

...

exp(µ) +X1 + ...+Xn w.p.
(

β
µ+β

)n
µ

µ+β

(A.5)

In general the distribution can now be represented as:

T = exp(µ) +
N∑
i=0

Xi where X0 = 0 (A.6)

and N has the given distribution:

P(N = n) =
µ

µ+ β

β

µ+ β

N

;n = 0, 1, 2... (A.7)

Since the distribution for T is effectively a sum of exponential distribu-

tions the LST of T can be calculated to give:

E(e−sT |N = n) =
µ

µ+ s
(

µ+ β

µ+ β + s

α

α + s
)n (A.8)

Summing over all values of n then gives:

E(e−sT) =

µ
µ+β

µ
µ+s

1− β
µ+β+s

α
α+s

(A.9)

�

Lemma A.3.2. The LST of a exceptional first service distribution with re-

transmissions is given by:

g0(s) = (1− q)g(s) + qg(s)
α

α + s

q =
β

α + β + λ

(A.10)

148

Proof. Using the LST for the service distribution with retransmissions from

Lemma A.3.1 the equation for the exceptional first service can be found. The

difference is that there must be a consideration to whether or not service

starts in an available or unavailable state. First, let

q = P(New arrival sees channel in the off state)

then:

g0 = (1− q)g(s) + qg(s)
α

α + s
(A.11)

Since when the server is in the off state there is an additional amount of

time before the service starts, but it is known that this quantity is exponential

distributed with rate α.

It is now left to derive q , but since the path state model is known the

probability can be calculated by conditioning on the channel being available

at time t = 0 and integrating over all values of t as follows:

q =

∫ ∞
0

λe−λtP(Channel is off at time t|On at time 0)dt

=∗
∫ ∞

0
λe−λt

(
0 1

)
eQt

(
1

0

)

=

∫ ∞
0

λe−λt

α+ β

(
0 1

)(1 α

1 −β

)(
1 0

0 e−(α+β)

)(
β α

1 −1

)(
1

0

)
dt

=
λβ

α+ β

∫ ∞
0

e−λt(1− e−(α+β)t)dt

=
λβ

α+ β

(
1

λ
− 1

α+ β + λ

)
=

β

α+ β + λ

(A.12)

149

∗where Q is the rate matrix of the path state model

Q =

(
−α α

β −β

)

=

(
1 α

1 −β

)(
0 0

0 −(α+ β)

)(
β α

1 −1

)
1

α+ β

The diagonalisation of Q is used in the derivation

of q to decompose the matrix exponential.

(A.13)

The distribution of g0 is now completely characterised.

Using the results from Lemmas A.3.1 and A.3.2, the equations to charac-

terise the exceptional first service model can be found and are presented in

equation A.14. The final LST for the wait time and the inverse are particu-

larly complex, so the derivations are shown in a separate section: A.3.3.

g(s) =

µ
µ+β

µ
µ+s

1− β
µ+β+s

α
α+s

G =
α(µ+ β) + β(µ+ β + α)

µα(µ+ β)

g0(s) = (1− q)g(s) + qg(s)
α

α + s

q =
β

α + β + λ

G0 = G+
q

α

ρ = λG

Ws = A
s− λg0(s) + λg(s)

s− λ+ λg(s)

A =
1− ρ

1 + (λG0)− ρ

(A.14)

A.3.2 The Expected Service time for the exceptional

first service model

The expected service time can be calculated using the LST. First by taking

the derivative of g(s) and g0(s) , and then evaluating at s = 0.

150

g(s) =

µ
µ+β

µ
µ+s

1− β
µ+β+s

α
α+s

E(Ws) =
dg(s)

ds
|s=0

Let

A =
αβ

(α + s)(β + µ+ s)
− 1

Then

E(Ws) =
µ2

A(β + µ)(µ+ s)2
−
µ2(αβ

(α+s)(β+µ+s)2 + αβ
(α+s)2(β+µ+s)

)

A2(β + µ)(µ+ s))

(A.15)

E(Ws0) =
dg0(s)

ds
|s=0

dg0(s)

ds
=

µ2(β
α+β+λ

− 1)

A(β + µ)(µ+ s)
− αβµ2

A(β + µ)(α + s)(µ+ s)(α + β + λ)

(A.16)

E(Ws0) =
dg0(s)

ds
|s=0

=
µ(β

α+β+λ
− 1)

(β
β+µ
− 1)(β + µ)

− βµ

(β + µ)(β
β+µ
− 1)(α + β + λ)

(A.17)

A.3.3 LST and PDF of the Wait time for exceptional

service

By substituting all the equations given in A.14 in to Ws the LST for the

wait time can be found. Since the exceptional first service model is used the

equation is particularly complicated and is given in equation A.18.

151

LST for the wait time

Ws =A
WNum
s

WDen
s

WNum
s =s(β + µ)(µ+ s)(s2 + (α + µ+ β)s+ αµ)

− λµ2((α + s)(q + 1)− α(q − 1))(β + µ+ s)

WDen
s =µ2(α + s)(β + µ+ s)− (β + µ)(µ+ s)(λ− s)(s2 + (α + µ+ β)s+ αµ)

(A.18)

Inverting this transform produced a horrendous equation, A.19. However,

a key result was the fact that the equation is still a sum of exponentials.

This meant it could be approximated by the slowest decaying exponential,

as discussed in the main text.

Inverse LST

fW (t) = Σr∈R
A

A′
{δ(t) + (βλr2 + β2λr + λµr2 + λµ2r + αλµ2 + β + λµ2 + β2λµ

+ αβλr + λµ3q + αλµr + 3βλµr + λµ2qr + 2αβλµ+ βλµ2q)exp(rt)}
(A.19)

A′ = 2αµ2 − β2λ+ 2βµ2 + β2µ+ 3βr2 + 2β2r − λµ2 + 3µr2 + 4µ2r + µ3

− αβλ+ 2αβµ+ 2αβr − αλµ− 3βλµ− 2βλr + 2αµr + 6βµr − 2λµr

(A.20)

where R is the set of roots from:

(µ+ β)s3 + (αβ + 3βµ+ αµ+ 2µ2 + β2 − λµ− βλ)s2

− (3βλµ+ 2αβµ− αλµ− αβλ+ 2βµ2 + β2µ+ 2αµ2 + µ3 − λµ2 − β2λ)s

− 2αβλµ+ αβµ2 − β2λµ− βλµ2 − αλµ2 + αµ3

(A.21)

A benefit to using the LST is that the mean can be found by differentiating

152

it and evaluating at s = 0. In particular: E(Wt) = dWs

ds
|s=0.

E(Wt) =
dWs

ds
|s=0

=− (((λ(β(α+ β + µ) + α(β + µ)))

(αµ(β + µ))− 1)

(
λβ

((β+µ)(β
(β+µ)

−1)(α+β+λ))
− (β/(α+β+λ)−1)

((β+µ)(β
(β+µ)

−1))

)
+

(µ(β/(α+ β + λ)− 1)(β/(β + µ)2 + β/(α(β + µ))))

((β + µ)(β/(β + µ)− 1)2)

+ (βµ)/(α(β + µ)(β/(β + µ)− 1)(α+ β + λ))

− (βµ(β/(β + µ)2 + β/(α(β + µ))))

((β + µ)(β/(β + µ)− 1)2(α+ β + λ)))

− λ/((β + µ)(β/(β + µ)− 1))

+
(λµ(β/(β + µ)2 + β/(α(β + µ))))

((β+µ)(β/(β+µ)−1)2)−1))

λ+
(λµ)

((β+µ)(β/(β+µ)−1))
) λβ

(α(α+β+λ))

+ (β(α+ β + µ) + α(β + µ))/(αµ(β + µ)))

− (λ(β(α+ β + µ) + α(β + µ)))/(αµ(β + µ)) + 1))

− ((λ((µ(β/(α+ β + λ)− 1))/((β + µ)(β/(β + µ)− 1))

− (βµ)/((β + µ)(β/(β + µ)− 1)(α+ β + λ)))

+
(λµ)

((β+µ)(β/(β+µ)−1)))((λ(β(α+β+µ)+α(β+µ)))
(αµ(β+µ))−1)(λ/((β+µ)(β/(β+µ)−1))

− (λµ(β/(β + µ)2 + β/(α(β + µ))))

((β+µ)(β
(β+µ)

−1)2)+1))

((λ+(λµ)/((β+µ)(β
(β+µ)

−1)))2 λβ
α(α+β+λ)

+ (β(α+ β + µ) + α(β + µ))/(αµ(β + µ)))

− (λ(β(α+ β + µ) + α(β + µ)))/(αµ(β + µ)) + 1))

(A.22)

153

Bibliography

[1] “ONF: Open Networking Foundation,” https://www.opennetworking.

org, accessed: 2014-09-30.

[2] T. D. Nadeau and K. Gray, SDN: Software Defined Networks: An

Authoritative Review of Network Programmability Technologies. ”

O’Reilly Media, Inc.”, 2013.

[3] B. Galloway and G. P. Hancke, “Introduction to industrial control net-

works,” IEEE Communications surveys & tutorials, vol. 15, no. 2, pp.

860–880, 2013.

[4] B. Heller, R. Sherwood, and N. McKeown, “The controller placement

problem,” in Proceedings of the first workshop on Hot topics in software

defined networks. ACM, 2012, pp. 7–12.

[5] J. Åkerberg, M. Gidlund, and M. Björkman, “Future research chal-

lenges in wireless sensor and actuator networks targeting industrial

automation,” in Industrial Informatics (INDIN), 2011 9th IEEE In-

ternational Conference on. IEEE, 2011, pp. 410–415.

[6] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks:

Challenges, design principles, and technical approaches,” IEEE Trans-

actions on industrial electronics, vol. 56, no. 10, pp. 4258–4265, 2009.

[7] M. R. Hung Nguyen, Nickolas Falkner. Internet topology zoo. [Online].

Available: http://www.topology-zoo.org/

154

[8] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability

of software-defined networking,” IEEE Communications Magazine,

vol. 51, no. 2, pp. 136–141, 2013.

[9] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, “The sdn controller place-

ment problem for wan,” in Communications in China (ICCC), 2014

IEEE/CIC International Conference on. IEEE, 2014, pp. 220–224.

[10] M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Lit-

tle, J. Van Reijendam, P. Weissmann, and N. McKeown, “Maturing

of openflow and software-defined networking through deployments,”

Computer Networks, vol. 61, pp. 151–175, 2014.

[11] M. P. Fernandez, “Comparing openflow controller paradigms scalabil-

ity: Reactive and proactive,” in Advanced Information Networking and

Applications (AINA), 2013 IEEE 27th International Conference on.

IEEE, 2013, pp. 1009–1016.

[12] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “En-

abling fast failure recovery in openflow networks,” in Design of Reliable

Communication Networks (DRCN), 2011 8th International Workshop

on the. IEEE, 2011, pp. 164–171.

[13] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,

and S. Shenker, “Nox: towards an operating system for networks,”

ACM SIGCOMM Computer Communication Review, vol. 38, no. 3,

pp. 105–110, 2008.

[14] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic ma-

trix estimator for openflow networks,” in International Conference on

Passive and Active Network Measurement. Springer, 2010, pp. 201–

210.

[15] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity switch

models for software-defined network emulation,” in Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined

networking. ACM, 2013, pp. 43–48.

155

[16] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A

survey,” in Future Networks and Services (SDN4FNS), 2013 IEEE SDN

For. IEEE, 2013, pp. 1–7.

[17] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,

J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for

sdn? implementation challenges for software-defined networks,” IEEE

Communications Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[18] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A

security enforcement kernel for openflow networks,” in Proceedings of

the first workshop on Hot topics in software defined networks. ACM,

2012, pp. 121–126.

[19] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P.

Barcellos, “Survivor: an enhanced controller placement strategy for

improving sdn survivability,” in Global Communications Conference

(GLOBECOM), 2014 IEEE. IEEE, 2014, pp. 1909–1915.

[20] A. Manzalini, R. Saracco, C. Buyukkoc, P. Chemouil, S. Kuklin-

ski, A. Gladisch, M. Fukui, E. Dekel, D. Soldani, M. Ulema et al.,

“Software-defined networks for future networks and services,” in White

Paper based on the IEEE Workshop SDN4FNS, 2013.

[21] “Software-defined networking: The new norm for networks,” ONF

White Paper, 2012.

[22] K. Jeong, J. Kim, and Y.-T. Kim, “Qos-aware network operating

system for software defined networking with generalized openflows,”

in Network Operations and Management Symposium (NOMS), 2012

IEEE. IEEE, 2012, pp. 1167–1174.

[23] B. Brungard, M. Betts, and N. Spreche, “Mpls-tp re-

quirements section 2.5 58a,” http://tools.ietf.org/html/

draft-ietf-mpls-tp-requirements-10#section-2.5.2, 2009.

156

[24] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and

S. Shenker, “Ethane: Taking control of the enterprise,” in ACM SIG-

COMM Computer Communication Review, vol. 37, no. 4. ACM, 2007,

pp. 1–12.

[25] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A replication com-

ponent for resilient openflow-based networking,” in Network Operations

and Management Symposium (NOMS), 2012 IEEE. IEEE, 2012, pp.

933–939.

[26] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,

and S. Banerjee, “Devoflow: Scaling flow management for high-

performance networks,” ACM SIGCOMM Computer Communication

Review, vol. 41, no. 4, pp. 254–265, 2011.

[27] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based

networking with difane,” ACM SIGCOMM Computer Communication

Review, vol. 40, no. 4, pp. 351–362, 2010.

[28] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,

“Logically centralized?: state distribution trade-offs in software de-

fined networks,” in Proceedings of the first workshop on Hot topics in

software defined networks. ACM, 2012, pp. 1–6.

[29] ——, “Sdn control simulator,” github.com/cryptobanana/sdnctrlsim.

[30] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control

plane for openflow,” in Proceedings of the 2010 internet network man-

agement conference on Research on enterprise networking, 2010, pp.

3–3.

[31] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek,

and R. Morris, “Flexible, wide-area storage for distributed systems

with wheelfs.” in NSDI, vol. 9, 2009, pp. 43–58.

157

[32] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,

N. McKeown, and G. Parulkar, “Flowvisor: A network virtualization

layer,” OpenFlow Switch Consortium, Tech. Rep, pp. 1–13, 2009.

[33] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Balanceflow: con-

troller load balancing for openflow networks,” in Cloud Computing and

Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference

on, vol. 2. IEEE, 2012, pp. 780–785.

[34] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient

and scalable offloading of control applications,” in Proceedings of the

first workshop on Hot topics in software defined networks. ACM, 2012,

pp. 19–24.

[35] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,

R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A

distributed control platform for large-scale production networks.” in

OSDI, vol. 10, 2010, pp. 1–6.

[36] S. Asadullah, J. D. (Editor), B. Khasnabish, G. Reffet, E. R.

(Editor), M. S. (Editor), and P. Smacchia, “Migration tools and met-

rics,” https://www.opennetworking.org/images/stories/downloads/

sdn-resources/technical-reports/migration-tools-and-metrics.pdf,

accessed: 2017-06-01.

[37] Cacti, “Cacti network logging and graphing too,” http://www.cacti.

net/, accessed: 2014-08-06.

[38] R. Sherwood, “Cbench: An openflow controller benchmarker,” http:

//archive.openflow.org/wk/index.php/Oflops, accessed: 2014-09-12.

[39] UBIQUBE, “Msactivator,” http://www.ubiqubesolutions.com/?page

id=25, accessed: 2014-07-10.

[40] “Openflow ofpeck,” http://archive.openflow.org/wk/index.php/

Ofpeck, note = Accessed: 2014-09-11.

158

[41] “Openflow openseer,” http://archive.openflow.org/wk/index.php/

OpenSeer, note = Accessed: 2014-09-11.

[42] HP, “Hp openview performance manager,” https://h20392.www2.

hp.com/portal/swdepot/displayProductInfo.do?productNumber=

PERFMINFO, accessed: 2014-05-16.

[43] Y. Hu, T. Luo, N. C. Beaulieu, and C. Deng, “The energy-aware con-

troller placement problem in software defined networks,” IEEE Com-

munications Letters, vol. 21, no. 4, pp. 741–744, 2017.

[44] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-

optimized controller placement for software-defined networks,” Com-

munications, China, vol. 11, no. 2, pp. 38–54, 2014.

[45] N. Kumar, S. N. Swain, and C. S. R. Murthy, “Convex hull inspired

distributed controller placement for assisting d2d transfers in lte-a

networks,” in Wireless Communications and Networking Conference

(WCNC), 2017 IEEE. IEEE, 2017, pp. 1–6.

[46] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,

and M. Hoffmann, “Heuristic approaches to the controller placement

problem in large scale sdn networks,” IEEE Transactions on Network

and Service Management, vol. 12, no. 1, pp. 4–17, 2015.

[47] I. CPLEX, “Ilog cplex homepage 2017,” Available at [online]:

https://www-01.ibm.com/software/info/ilog/, 2017.

[48] M. Tanha, D. Sajjadi, and J. Pan, “Enduring node failures through re-

silient controller placement for software defined networks,” in Global

Communications Conference (GLOBECOM), 2016 IEEE. IEEE,

2016, pp. 1–7.

[49] Y. Hu, T. Luo, W. Wang, and C. Deng, “On the load balanced con-

troller placement problem in software defined networks,” in Computer

and Communications (ICCC), 2016 2nd IEEE International Confer-

ence on. IEEE, 2016, pp. 2430–2434.

159

[50] A. Sallahi and M. St-Hilaire, “Optimal model for the controller place-

ment problem in software defined networks,” IEEE Communications

Letters, vol. 19, no. 1, pp. 30–33, 2015.

[51] A. Farshin and S. Sharifian, “A chaotic grey wolf controller allocator

for software defined mobile network (sdmn) for 5th generation of cloud-

based cellular systems (5g),” Computer Communications, 2017.

[52] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J. Li, “A k-means-based

network partition algorithm for controller placement in software de-

fined network,” in Communications (ICC), 2016 IEEE International

Conference on. IEEE, 2016, pp. 1–6.

[53] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan, “Reliability-

aware controller placement for software-defined networks,” in Integrated

Network Management (IM 2013), 2013 IFIP/IEEE International Sym-

posium on. IEEE, 2013, pp. 672–675.

[54] M. Shindler, “Approximation algorithms for the metric k-median prob-

lem,” Written Qualifying Exam Paper, University of California, Los

Angeles. Cited on, p. 44, 2008.

[55] A. Tamir, “An o (pn2) algorithm for the p-median and related problems

on tree graphs,” Operations Research Letters, vol. 19, no. 2, pp. 59–64,

1996.

[56] Y. Bartal, “Probabilistic approximation of metric spaces and its al-

gorithmic applications,” in Foundations of Computer Science, 1996.

Proceedings., 37th Annual Symposium on. IEEE, 1996, pp. 184–193.

[57] ——, “On approximating arbitrary metrices by tree metrics,” in Pro-

ceedings of the thirtieth annual ACM symposium on Theory of comput-

ing. ACM, 1998, pp. 161–168.

[58] J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on ap-

proximating arbitrary metrics by tree metrics,” in Proceedings of the

160

thirty-fifth annual ACM symposium on Theory of computing. ACM,

2003, pp. 448–455.

[59] M. Charikar, C. Chekuri, A. Goel, and S. Guha, “Rounding via trees:

deterministic approximation algorithms for group steiner trees and k-

median,” in Proceedings of the thirtieth annual ACM symposium on

Theory of computing. ACM, 1998, pp. 114–123.

[60] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys, “A constant-factor

approximation algorithm for the k-median problem,” in Proceedings

of the thirty-first annual ACM symposium on Theory of computing.

ACM, 1999, pp. 1–10.

[61] K. Jain and V. V. Vazirani, “Approximation algorithms for metric

facility location and k-median problems using the primal-dual schema

and lagrangian relaxation,” Journal of the ACM (JACM), vol. 48, no. 2,

pp. 274–296, 2001.

[62] M. Charikar and S. Guha, “Improved combinatorial algorithms for the

facility location and k-median problems,” in Foundations of Computer

Science, 1999. 40th Annual Symposium on. IEEE, 1999, pp. 378–388.

[63] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and

V. Pandit, “Local search heuristics for k-median and facility location

problems,” SIAM Journal on computing, vol. 33, no. 3, pp. 544–562,

2004.

[64] S. Arora, P. Raghavan, and S. Rao, “Approximation schemes for eu-

clidean k-medians and related problems,” in Proceedings of the thirtieth

annual ACM symposium on Theory of computing. ACM, 1998, pp.

106–113.

[65] J.-H. Lin and J. S. Vitter, “Approximation algorithms for geometric

median problems,” Information Processing Letters, vol. 44, no. 5, pp.

245–249, 1992.

161

[66] ——, “e-approximations with minimum packing constraint violation,”

in Proceedings of the twenty-fourth annual ACM symposium on Theory

of computing. ACM, 1992, pp. 771–782.

[67] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Analysis of a local

search heuristic for facility location problems,” Journal of algorithms,

vol. 37, no. 1, pp. 146–188, 2000.

[68] P. Indyk, “Sublinear time algorithms for metric space problems,” in

Proceedings of the thirty-first annual ACM symposium on Theory of

computing. ACM, 1999, pp. 428–434.

[69] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of care-

ful seeding,” in Proceedings of the eighteenth annual ACM-SIAM sym-

posium on Discrete algorithms. Society for Industrial and Applied

Mathematics, 2007, pp. 1027–1035.

[70] Y. Zhang, “Solving large-scale linear programs by interior-point meth-

ods under the matlab environment,” Optimization Methods and Soft-

ware, vol. 10, no. 1, pp. 1–31, 1998.

[71] K. M. Anstreicher, “Linear programming in o ([n3/ln n] l) operations,”

SIAM Journal on Optimization, vol. 9, no. 4, pp. 803–812, 1999.

[72] D. Arthur and S. Vassilvitskii, “How slow is the k-means method?” in

Proceedings of the Twenty-second Annual Symposium on Computational

Geometry, ser. SCG ’06. New York, NY, USA: ACM, 2006, pp. 144–

153. [Online]. Available: http://doi.acm.org/10.1145/1137856.1137880

[73] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-

Gia, “Pareto-optimal resilient controller placement in sdn-based core

networks,” in Teletraffic Congress (ITC), 2013 25th International.

IEEE, 2013, pp. 1–9.

[74] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-

wood, “On controller performance in software-defined networks.” Hot-

ICE, vol. 12, pp. 1–6, 2012.

162

[75] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,

R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in soft-

ware defined networks,” in Network and Service Management (CNSM),

2013 9th International Conference on. IEEE, 2013, pp. 18–25.

[76] A. Chilwan, K. Mahmood, O. N. Østerbø, and M. Jarschel, “On model-

ing controller-switch interaction in openflow based sdns,” International

Journal of Computer Networks & Communications, vol. 6, no. 6, p. 135,

2014.

[77] L. Zhang, Z. Zhao, Y. Shu, L. Wang, and O. W. Yang, “Load balancing

of multipath source routing in ad hoc networks,” in Communications,

2002. ICC 2002. IEEE International Conference on, vol. 5. IEEE,

2002, pp. 3197–3201.

[78] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Methods

for bounding end-to-end delays on an afdx network,” in Real-Time

Systems, 2006. 18th Euromicro Conference on. IEEE, 2006, pp. 10–

pp.

[79] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of deter-

ministic queuing systems for the internet. Springer Science & Business

Media, 2001, vol. 2050.

[80] F. Ciucu and J. Schmitt, “Perspectives on network calculus: no free

lunch, but still good value,” in Proceedings of the ACM SIGCOMM

2012 conference on Applications, technologies, architectures, and pro-

tocols for computer communication. ACM, 2012, pp. 311–322.

[81] F. Ciucu, A. Burchard, and J. Liebeherr, “Scaling properties of statis-

tical end-to-end bounds in the network calculus,” IEEE Transactions

on Information Theory, vol. 52, no. 6, pp. 2300–2312, 2006.

[82] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour,

and D. Simeonidou, “An analytical model for software defined network-

ing: A network calculus-based approach,” in Global Communications

Conference (GLOBECOM), 2013 IEEE. IEEE, 2013, pp. 1397–1402.

163

[83] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and

S. Shenker, “Low latency via redundancy,” in Proc. of the 9th ACM

conf. on Emerging networking experiments and technologies. ACM,

2013, pp. 283–294.

[84] A. Vulimiri, O. Michel, P. Godfrey, and S. Shenker, “More is less:

reducing latency via redundancy,” in Proceedings of the 11th ACM

Workshop on Hot Topics in Networks. ACM, 2012, pp. 13–18.

[85] S.-J. Lee and M. Gerla, “Split multipath routing with maximally dis-

joint paths in ad hoc networks,” in Communications, 2001. ICC 2001.

IEEE International Conference on, vol. 10. IEEE, 2001, pp. 3201–

3205.

[86] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan, “Best-path

vs. multi-path overlay routing,” in Proceedings of the 3rd ACM

SIGCOMM Conference on Internet Measurement, ser. IMC ’03.

New York, NY, USA: ACM, 2003, pp. 91–100. [Online]. Available:

http://doi.acm.org/10.1145/948205.948218

[87] N. F. Maxemchuk, “Dispersity routing,” in Proc. of ICC, vol. 75, 1975,

pp. 41–10.

[88] N. Maxemchuk, “Dispersity routing: Past and present,” in Military

Communications Conference, 2007. MILCOM 2007. IEEE. IEEE,

2007, pp. 1–7.

[89] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä,

and A. Scheller-Wolf, “Queueing with redundant requests: First exact

analysis,” 2014.

[90] A. Kumar, R. Tandon, and T. Clancy, “On the latency and energy

efficiency of distributed storage systems.”

[91] Y. Cui, S. Xiao, C. Liao, I. Stojmenovic, and M. Li, “Data centers as

software defined networks: Traffic redundancy elimination with wireless

164

cards at routers,” Selected Areas in Communications, IEEE Journal

on, vol. 31, no. 12, pp. 2658–2672, 2013.

[92] N. B. Shah, K. Lee, and K. Ramchandran, “The mds queue: Analysing

the latency performance of erasure codes,” in 2014 IEEE International

Symposium on Information Theory. IEEE, 2014, pp. 861–865.

[93] ——, “When do redundant requests reduce latency?” in Communica-

tion, Control, and Computing (Allerton), 2013 51st Annual Allerton

Conference on. IEEE, 2013, pp. 731–738.

[94] ——, “The mds queue: Analysing latency performance of codes and

redundant requests,” Technical Report, Tech. Rep., 2012.

[95] A. Aissani, “A retrial queue with redundancy and unreliable server,”

Queueing systems, vol. 17, no. 3-4, pp. 431–449, 1994.

[96] J. Y. Yen, “Finding the k shortest loopless paths in a network,” man-

agement Science, vol. 17, no. 11, pp. 712–716, 1971.

[97] D. Eppstein, “Finding the k shortest paths,” in Foundations of Com-

puter Science, 1994 Proceedings., 35th Annual Symposium on. IEEE,

1994, pp. 154–165.

[98] D. Sidhu, R. Nair, and S. Abdallah, “Finding disjoint paths in

networks,” SIGCOMM Comput. Commun. Rev., vol. 21, no. 4, pp.

43–51, Aug. 1991. [Online]. Available: http://doi.acm.org/10.1145/

115994.115998

[99] W. Willinger and V. Paxson, “Where mathematics meets the internet,”

Notices of the AMS, vol. 45, no. 8, pp. 961–970, 1998.

[100] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, “A nonstation-

ary poisson view of internet traffic,” in INFOCOM 2004. Twenty third

Annual Joint Conference of the IEEE Computer and Communications

Societies, vol. 3. IEEE, 2004, pp. 1558–1569.

165

[101] J. Hollinghurst, A. Ganesh, and T. Baugé, “Latency reduction in

communication networks using redundant messages,” in Teletraffic

Congress (ITC 29), 2017 29th International, vol. 1. IEEE, 2017, pp.

241–249.

[102] R. Kanagavelu, B. S. Lee, R. F. Miguel, L. N. Mingjie et al., “Software

defined network based adaptive routing for data replication in data cen-

ters,” in Networks (ICON), 2013 19th IEEE International Conference

on. IEEE, 2013, pp. 1–6.

[103] S. Satapathy, “System and method for software defined network aware

data replication,” May 3 2016, uS Patent 9,330,156.

[104] G. Xu, J. Yang, and B. Dai, “Challenges and opportunities on network

resource management in dcn with sdn,” in Big Data (Big Data), 2015

IEEE International Conference on. IEEE, 2015, pp. 1785–1790.

[105] N. F. Maxemchuk, “Dispersity routing in high-speed networks,” com-

puter networks and ISDN systems, vol. 25, no. 6, pp. 645–661, 1993.

[106] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant re-

quests reduce latency?” IEEE Trans. on Comms, vol. 64, no. 2, pp.

715–722, 2016.

[107] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyy-

tia, “Reducing latency via redundant requests: Exact analysis,” ACM

SIGMETRICS Perf. Eval. Review, vol. 43, no. 1, pp. 347–360, 2015.

[108] J. N. Daigle, “The basic m/g/1 queueing system,” Queueing Theory

with Applications to Packet Telecommunication, pp. 159–223, 2005.

[109] A. J. Ganesh, N. O’Connell, and D. J. Wischik, Big queues. Springer,

2004.

[110] H. Takagi, Queueing analysis: a foundation of performance evaluation,

vol. 1 : vacation and priority systems, ser. Queuing Analysis.

166

[111] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, and B. Van Houdt,

“A better model for job redundancy: Decoupling server slowdown and

job size,” MASCOTS, 2016.

[112] D. Szabó, F. Németh, B. Sonkoly, A. Gulyás, and F. H. Fitzek,

“Towards the 5g revolution: A software defined network architecture

exploiting network coding as a service,” SIGCOMM Comput.

Commun. Rev., vol. 45, no. 4, pp. 105–106, Aug. 2015. [Online].

Available: http://doi.acm.org/10.1145/2829988.2790025

[113] S. Liu and B. Hua, “Ncos: A framework for realizing network coding

over software-defined network,” in Local Computer Networks (LCN),

2014 IEEE 39th Conference on. IEEE, 2014, pp. 474–477.

[114] D. Szabo, A. Gulyas, F. H. Fitzek, and D. E. Lucani, “Towards the

tactile internet: Decreasing communication latency with network cod-

ing and software defined networking,” in European Wireless 2015; 21th

European Wireless Conference; Proceedings of. VDE, 2015, pp. 1–6.

[115] W.-T. Tan and A. Zakhor, “Real-time internet video using error re-

silient scalable compression and tcp-friendly transport protocol,” IEEE

Transactions on Multimedia, vol. 1, no. 2, pp. 172–186, 1999.

[116] A. Boukerche, R. W. N. Pazzi, and R. B. Araujo, “A fast and reliable

protocol for wireless sensor networks in critical conditions monitoring

applications,” in Proceedings of the 7th ACM international symposium

on Modeling, analysis and simulation of wireless and mobile systems.

ACM, 2004, pp. 157–164.

167

