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Many wireless networks are subject to frequent changes in a combination of network

topology, traffic demand, and link capacity, such that nonstationary/transient conditions

always exist in packet-level network behavior. Although there are extensive studies on the

steady-state performance of wireless networks, little work exists on the systematic study of

their packet-level time varying behavior. However, it is increasingly noted that wireless net-

works must not only perform well in steady state, but must also have acceptable performance

under nonstationary/transient conditions. Furthermore, numerous applications in today’s

wireless networks are very critical to the real-time performance of delay, packet delivery ra-

tio, etc, such as safety applications in vehicular networks and military applications in mobile

ad hoc networks. Thus, there exists a need for techniques to analyze the time dependent

performance of wireless networks.

In this dissertation, we develop a performance modeling framework incorporating queu-

ing and stochastic modeling techniques to efficiently evaluate packet-level time dependent

performance of vehicular networks (single-hop) and mobile ad hoc networks (multi-hop). For

vehicular networks, we consider the dynamic behavior of IEEE 802.11p MAC protocol due

to node mobility and model the network hearability as a time varying adjacency matrix. For

mobile ad hoc networks, we focus on the dynamic behavior of network layer performance

due to rerouting and model the network connectivity as a time varying adjacency matrix. In

both types of networks, node queues are modeled by the same fluid flow technique, which fol-

lows flow conservation principle to construct differential equations from a pointwise mapping
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of the steady-state queueing relationships. Numerical results confirm that fluid-flow based

performance models are able to respond to the ongoing nonstationary/transient conditions

of wireless networks promptly and accurately. Moreover, compared to the computation time

of standard discrete event simulator, fluid-flow based model is shown to be a more scalable

evaluation tool. In general, our proposed performance model can be used to explore network

design alternatives or to get a quick estimate on the performance variation in response to

some dynamic changes in network conditions.
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1.0 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

With the explosion of demand for wireless communication services, wireless networking

has received significant attention over the past decades. Based on how packets are forward-

ed, wireless networks can be divided into two categories: single-hop and multi-hop wireless

networks. In single-hop networks, packets are simply delivered to the destination via direct

wireless connection. In multi-hop wireless networks, packets are forwarded by multiple wire-

less nodes. Since a wireless channel is inherently lossy and shared by mobile users, wireless

networks exhibit time varying behavior by nature.

Vehicular network is one example of single-hop wireless networks. In recent years, there

have been a dramatic growth in research and development in the dedicated short range com-

munication (DSRC) applications in vehicular networks. DSRC employs the 5.9 GHz frequen-

cy band to support reliable and timely delivery of safety-related messages, which includes

current status of a vehicle (e.g., location, speed and direction) as well as the event-driven

emergency information. The dissemination of safety messages among vehicles is based on

the single-hop broadcast service by each vehicle. IEEE 802.11p adopts enhanced distribut-

ed coordination function (EDCF) as the MAC protocol to broadcast safety messages with

different QoS supports in vehicular networks [1]. For 802.11p EDCF, the CSMA/CA mech-

anism plays a central role in MAC layer functionality. Due to high-speed vehicle mobility,

the number of exposed/hidden terminals of a target vehicle changes over time, so that non-

stationary/transient performance behavior often exists and at times dominates in vehicular

networks.

Unlike single-hop, multi-hop wireless networks use two or more wireless hops to convey
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information from a source to a destination. Typical example includes wireless mesh networks

(WMNs) [2], wireless sensor networks (WSNs) [3] and mobile ad-hoc networks (MANETs)

[4]. Multi-hop wireless networks are expected to become an important part of the commu-

nications landscape and may work in a fully autonomous scenario or as an extension to an

infrastructure network. In multi-hop wireless networks, the mobile nodes must cooperate

to dynamically establish routes using wireless links, and routes may involve multiple hops

with each node acting as a router. In many cases (e.g., MANET), the network nodes can

move arbitrarily and the network topology is expected to change often and unpredictably.

Hence, a basic challenge in building multihop wireless networks is designing highly adaptive

and failure recovery strategies to properly route traffic [5], [6], [7], [8], [9], [10]. Meanwhile,

multi-hop wireless networks also inherit the traditional problems of wireless communications

(e.g., broadcast communication channels, asymmetric channels and signal propagation, en-

ergy constraints in mobile nodes, links that are of poor quality in comparison to wired links,

etc). Therefore, all of these problems combined with the unique dynamic topology feature

make it challenging to develop and deploy multi-hop wireless networks.

Fundamental to the design of wireless networks is the ability to estimate and predict

the network performance. Traditionally, the performance of wireless networks is evaluated

using discrete event simulations. Popular network simulation tools used in wireless network

studies include OPNET [11], NS-2 [12], NS-3 [13], Qualnet [14], and GloMoSim [15]. The

basic simulation approach adopted in the majority of the literature [2], [16], [3], [4] is as

follows. For a given scenario (i.e., geographic space, number of nodes, mobility model,

transmission range, routing scheme, etc.), the network is simulated over a fixed time period.

Multiple runs are necessary with different random number seeds and the collected data has

to be averaged over the runs. The observations gathered during the transient period in each

run are usually eliminated to avoid initialization bias. In terms of simulation methodology,

this approach is considered as steady-state simulation [17].

However, the nature of wireless networks suggests that transient conditions are likely to

occur and possibly be common due to node mobility and nonstationary traffic. For single-hop

wireless networks, a node may move in/out of the carrier sensing coverage of another node,

causing the node pair to be exposed/hidden from each other. Consider IEEE 802.11 wireless
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networks as an example, since each node accesses the channel essentially via CSMA/CA,

its channel capacity depending on the number of exposed/hidden nodes changes over time.

For multi-hop wireless networks, node mobility can frequently result in link failure and

traffic rerouting. Since a significant factor in network performance after a link failure is the

transient congestion period, one would expect that transient conditions can dominate the

behavior of multi-hop wireless networks. Besides that, the on-demand traffic could be bursty

and embedded with variable idle periods. As a result, studying time varying performance of

wireless networks is important and meaningful.

Simulation study of the time varying performance of wireless networks is possible, though

computationally difficult [18]. To study the nonstationary behavior of a network, the mea-

surements of quantities observed over small intervals or at specific points in time are im-

portant. Hence, the time average used by steady-state simulation is not a proper approach,

while ensemble averages are more appropriate and this simulation approach is named nonsta-

tionary simulation. The idea is to construct ensemble average curves of quantities of interest

across a set of statistically identical but distinct independent simulation runs, along with the

calculated confidence interval. With many such points collected at different time instants,

the behavior of the system can be shown as a function of time. However, the principle d-

ifficulty in conducting simulation studies of this type is the large number of runs (typically

thousands) that must be generated in order to get a representative ensemble from which a

statistically accurate portrayal of the system behavior can be determined. Hence, very large

amounts of CPU time are required for even small sized networks and this approach is quite

difficult to scale. It is worth noting that parallel and distributed simulation techniques [19],

[20], [21] have been applied to the development of wireless networks simulators by scheduling

tasks and distributing the execution of those tasks to independent computing platforms that

operate in parallel. However, the scalability of wireless network simulations even for steady

state behavior is still a major problem by considering the trade-offs between execution time

and fidelity.

Network performance evaluation can also be achieved by defining the model using ana-

lytical techniques. The standard analytical model used in network performance evaluation

mainly deals with steady state conditions by using queuing and stochastic techniques. Since
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such a great amount of work exists in the solution of steady state queuing or stochastic mod-

els and their application to wireless networks, an obvious issue is how steady state results

can be used to model a network undergoing nonstationary conditions.

In summary, while significant progress has been made towards developing simulation tool-

s [11], [12], [13], [14], [15] and models [22], [23], [24], [25], [26] to estimate the steady-state

performance of wireless networks, relatively little work has appeared on the performance

models to capture their time varying behavior. Finally, it is important to remark that our

proposed analytical modeling framework is a viable option, if the goal is to design or tune the

parameters of the wireless network under study. To evaluate the performance of a wireless

network that cannot be measured, for example, during the design and development stages,

it is necessary to use analytical models, which make predictions about network behavior and

give quick results to eliminate inadequate and bad designs. Analytical models are always

approximate but tractable, and the mathematical expressions allow us to gain insight into

the interaction of different parameters. Since conducting the measurements is generally ex-

pensive or catastrophic, the analytical model has its advantage of flexibility and computation

efficiency [27], [28], [29].

1.2 PROBLEM STATEMENT

Wireless networks consist of time-varying demand (source) and time-varying capacity

(channels) in nature. The traffic load produced by sources is typically in time varying burst-

s. This is clearly evident for both real-time and non real-time traffic. For example, voice

conversations have periods of silence and speech interspersed, clearly de-marking periods of

high information followed by low-information segments. In fact, the traffic in many networks

is bursty at multiple time-scales, evident from abundance of traffic models studied in wire-

line and wireless networks. For multi-hop wireless networks, the traffic could be rerouted

dynamically due to node or link failure, so that the forwarded traffic to the next-hop node

may vary over time. Analogous to time-varying traffic load is the well-known property of

wireless channels, whose capacity is also nonstationary. The time-varying nature of the wire-
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less channels can be attributed to the physical environment and node mobility. The radio

signal is subject to large-scale and small-scale fading as well as multi-path effect, which will

result in signal power fluctuations in both time and frequency domains. In addition, the

bandwidth of the wireless medium shared by each node is strongly coupled with each other

and varies over time due to node mobility.

Although there are extensive studies on packet-level steady-state performance of wireless

network, little work exists on the systematic study of their time varying behavior. As a

result of this dissertation work, we expect to answer the following questions: What does the

packet-level time varying performance of wireless networks look like? How can one construct

an efficient analytical model to capture the time varying behavior?

1.3 FRAMEWORK

In this dissertation, we aim to develop an integrated performance modeling framework

to analyze both time varying and steady state behavior of wireless networks. As shown in

Figure 1, there are three key components needed to construct such a model and evaluate the

various network performance metrics.

TopologyTraffic Protocol

Fluid Flow 
Model Performance 

Metrics

Figure 1: Performance analysis framework.

• Traffic: Data traffic is typically bursty in nature while some types of streaming traffic such

as voice operates in an on-off manner with variable idle periods. Then, the nonstationary
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traffic load results in the time varying behavior of each queue in the network.

• Topology: In wireless networks, the topology can change depending on link connectivity be-

tween transmitter and receiver. When nodes in a networks are allowed to move arbitrarily,

it will lead to frequent changes in the connectivity of a queuing network.

• Protocol: A protocol is a set of rules that governs the communications between network

nodes. Since nodes must understand and use the protocol to exchange information over

the network, the service process of the queue at each node depends on the underlying

protocol. According to the protocol, we can gain insights into the performance of the

network.

nitialization Approximate 
Traffic Load

Obtain Network 
Topology
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Flow Model

Solve Differential 
Equations

End of
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Start Initialization Approximate Traffic 
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Figure 2: Performance analysis framework.

With the key components in the performance analysis already identified, Figure 2 depicts

the flow chart about how all the pieces can work together to obtain the time dependent

performance metrics of interest. We start by identifying initial network conditions. Using the

pointwise stationary approximation method [30], the nonstationary arrival rate is estimated

to be constant over a small time interval ∆t. The information about network topology is used

to determine the hearability/connectivity between any two nodes and how the traffic should

be routed towards the destination. Then, the fluid flow based network model consisting of

a set of differential equations is established by incorporating the underlying protocols with

traffic and topology. After that, we apply the Runge-Kutta algorithm to solve the differential

equations at the end of the time interval t + ∆t, which then becomes the initial condition

for the next time step [t + ∆t, t + 2∆t]. If necessary, the traffic load, the topology, the link
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capacity and all other network parameters will be adjusted to the new time step. Then,

the solution to the fluid flow model is calculated based on the updated parameters, and the

procedure will be repeated until the end of the simulation process. Please note that any

standard numerical integration method can be used to solve such mathematical problem

numerically; however, the Runge-Kutta algorithm is one of the widely used methods.

1.4 CONTRIBUTIONS

The contribution of this dissertation work is summarized as follows.

Chapter 3 (Vehicular Networks)

• We propose a fluid flow based model of vehicular networks to describe the dynamic

queuing behavior for both routine traffic and emergency traffic. Based on this approach,

we also develop the time varying model to evaluate the real-time packet delay and packet

delivery ratio, which are the most critical performance metrics for safety applications in

vehicular networks.

• We study the nonstationarity of vehicular network performance impacted by the traffic

load, vehicle velocity as well as vehicle density in a two-way highway scenario. We

point out that the transient period could dominate the network behavior in cases of

imbalanced vehicle density, high-speed mobility and heavy traffic load.

Chapter 4 (Multi-hop Wireless Networks)

• We propose fluid flow based queuing models for a single node with Poisson, CBR and

general traffic loads, respectively. For the case of CBR traffic load, we extend the queuing

analysis by considering a large number of input traffic streams to the queue, and the

utilization function of the queue is approximated in a computationally efficient way.

• We develop a novel time varying performance model for multihop wireless networks with

Poisson, CBR and general traffic loads, on the basis of single-node fluid flow model. An

adjacency matrix, representing topology change, is integrated into the model using either

deterministic or stochastic based network connectivity modeling techniques. We then

codify our performance modeling procedure into an executable and efficient algorithm,
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which is shown to be a more scalable than an equivalent discrete event simulator.

• We carefully evaluate the performance of a sample network impacted by node mobility,

traffic load and wireless link quality by our model. It shows that the fluid flow model

can respond to the ongoing nonstationary conditions properly. In addition, we study the

network performance with a series of parametric configurations, which result in the same

steady steady results but distinct time varying behavior. We then propose a measure of

“instantaneous variation” to quantify the nonstationarity of network behavior.

In general, our proposed time varying performance model can be used to explore wire-

less network design alternatives or to get a quick estimate on the performance variation in

response to some dynamic changes in network conditions.

1.5 DISSERTATION OUTLINE

The remainder of this dissertation is organized as follows: Chapter 2 provides a literature

review of network performance evaluation methods followed by the related queuing and

stochastic modeling survey. Chapter 3 provides the details of the time varying performance

model for IEEE 802.11p vehicular networks. Following the same modeling principle, we

introduce our model to evaluate the dynamic behavior of multihop wireless networks in

Chapter 4. Chapter 5 presents conclusions and future work.
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2.0 LITERATURE REVIEW

The performance of wireless networks is generally evaluated using measurement, simula-

tion or analytical model. Measurement involves running experiments on an existing system

or prototype and gathering data on metrics of interest. Simulation is a process of conduct-

ing experiments on a computer model of a system over a range of scenarios and parameter

values. The third one, analytical model is a description of a system using mathematical

concepts and analysis techniques. Quantitative characterizations of the traffic, topology and

protocol are crucial in the creation and validation of analytical models of wireless networks.

Beside steady-state measures, the time dependent performance modeling techniques are also

necessary to capture the dynamics of the network. In the following, we will discuss the above

issues based on an extensive literature review.

2.1 MEASUREMENT-BASED PERFORMANCE EVALUATION

Measurement studies on wireless network involve running experiments on a real net-

work [31], [32] or a prototype testbed [33], [34]. The key strength of measurement is to

provide accurate performance results including details of all network components. Hence,

measurement-based network performance evaluation studies can reveal some useful discov-

eries that might be hidden in simulation or analytical-based methods.

The measurement results in [35], [36] are used to challenge six common assumptions in

wireless simulation studies, namely: (1) the world is two dimensional, (2) a radio’s transmis-

sion area is circular, (3) all radios have equal range, (4) channels are symmetric (i.e., if node

A can hear B, then B can hear A), (5) perfect transmission channels (i.e., if node A can hear
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node B then A can hear B perfectly) and (6) signal strength is a simple function of distance.

To study these axioms and their impact on simulation studies, they use data collected from

a large MANET experiment in which 33 laptops with WiFi network cards roamed a field

for over an hour while exchanging broadcast beacons and operating different ad hoc routing

protocols. The measurement results demonstrate the weakness of these assumptions, and

show how these assumptions cause simulation results to differ from the reality. However, in

the case of the best-effort model, the simulation produced good results that were reasonably

matched to their particular outdoor experiment scenario. It was suggested that the axiomat-

ic assumptions are undoubtedly invalid in many situations; however, it is possible for the

realistic stochastic model that carefully describes the chosen target environment to return

acceptable results in the context of those conditions and assumptions. In [37], Tala et al.

proposed an experimental methodology for empirical studies in wireless networks, in order to

detect measurement problems early, increase reliability and obtain reproducible results. The

stages of the proposed methodology include: experimental design, description of scenarios,

sanity check, validation test, multiple runs and capture, traces processing, analysis, packing

and storage, and documentation and reports.

For single-hop wireless network, such as 802.11 network, Bianchi et al. [38] shows in an

experimental assessment of six widespread commercial 802.11 cards that the commercially

available wireless cards often do not comply with the IEEE 802.11 standards. These six

PCMCIA commercial cards include ASUS WL-107g (Ralink RT2500 chipset), Intel Centrino

(2200BG chipset), Digicom Palladio (Realtek RTL8180 chipset), Dlink DWL-650 (Intersil

PRISM II chipset), Dlink DWL-G650 Air-Plus (Atheros chipset), and Linksys WPC54G

(Broadcom chipset). The measurement study shows that neither one performs exactly as

expected in terms of backoff operation, and they experience different performance either when

accessing the channel alone as well as when competing against each other. In some cases,

implementation issues seem to affect the proper card operation. In other cases, manufacturers

rely on backoff parameters different from the standard specification, this perhaps being

done on purpose to provide an indeed unfair advantage of these cards with respect to the

competitors. Therefore, non-standard behavior at commercial wireless cards makes it very

difficult to set up the experiments for standard-based model validation.
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An example of multihop wireless network measurement testbed is at the Quail Ridge

Nature Reserve, called QuRiNet [39], [40]. The network is originally used for environmental

research study of the flora and fauna in the region by the Department of Ecology at UC Davis.

This QuRiNet claims to be different from other measurement-based simulation in terms of its

location and its usage, so that the validity of theoretical ideas under practical situation can

be tested, when complicated issues such as hilly terrain, forest growth, or long distance are

involved. Preliminary results on the network utilization, round trip time performance, signal

strength and network capacity were provided. Due to geographical factors, they found out

that the same setting from indoor laboratory testbed did not work on QuRiNet. In order

to achieve the expected performance, several parameters in QuRiNet such as the power

level of wireless cards, the antenna type, or the placement of antennas should be adjusted

accordingly. One observation of the project was asymmetric signal strengths and throughput

values between the same two nodes. Even on the same link, there are large variations on

both signal strength and throughput at different points of time during a day. It is however

important to point out that many communication problems observed from measurement

testbed cannot be easily modeled by commonly used simulation tools.

The general criticism of measurement studies is the expense, the great deal of effort

required to consider all cases/parameter values and the difficulty in generalizing results.

Furthermore, measurements are generally non-repeatable because the environments can be

very different, especially for wireless networks. Constructing a wireless network testbed for

a given scenario remains limited in terms of the experimental scenarios that can be studied.

For these reasons, protocol scalability, sensitive to user mobility patterns and speeds are

difficult to investigate on a real testbed.

2.2 SIMULATION-BASED PERFORMANCE EVALUATION

In contrast to measurement based studies, simulation models do not require a testbed,

since one models the system on the computer and experiments with a computer model. Sim-

ulation permits the study of system behavior over a range network scenarios and parameter
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values and allows the modeler control of the time scale. Popular network simulation tools

used in wireless network studies include OPNET [11], NS-2 [12], NS-3 [13], Qualnet [14],

and GloMoSim [15]. They all provide advanced simulation environments to test and debug

different networking protocols.

The use of simulation techniques in the performance evaluation of communication net-

works is a well studied research area [17]. As noted by Pawlikowski and his team in [41],

the statistical nature of simulation results is often ignored in communication network studies

calling into question the credibility of the conclusions in much of the literature. Specifical-

ly, as noted in [41] recommended simulation methodology (i.e., independent multiple runs,

deletion of the initial transient period, confidence intervals on results, avoiding repetition of

the random numbers generated, etc.) is not followed in the majority of simulation studies

reported in the literature. Note that, even with the existence of many simulation tools,

a recent analysis of wireless network research literature where simulation was used as the

main analysis technique showed that the proper simulation methodology was rarely followed

[42], thus as noted above calling into question the credibility of the results. Most recently,

Sarkar and Gutiérrez revisited the credibility issue of simulation study in telecommunication

networks in [43] based on a comprehensive survey of IEEE publications. They found that

a significant amount of authors did not provide enough information about the confidence

interval (CI) and confidence level (CL) or relative statistical error (SE) of the results pre-

sented in the survey paper, some of them even did not mention the name of simulation tools

used. Thus, there is no significant change since [41] with respect to quality and credibility of

the simulation studies revised and the deep crisis of credibility still remains. Furthermore,

some of the literature questions the validity/fidelity of simulations based on simulation tool-

s. In particular, [44] presents the simulation results of the simple flooding algorithm using

OPNET, NS-2, and GloMoSim. Important divergences between the simulator results were

measured. The observed differences are not only quantitative (not the same numerical val-

ue), but also qualitative (not the same general behavior) making some past observations of

many wireless network simulation studies based on these tools an open issue.

Related to simulation models in recent research studies, excellent discussions of the mod-

eling issues in building more accurate models are given in [45], [46]. The major issues in the
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design and modeling of wireless networks include the geographic space in which the mobiles

move, geographic boundary policy, number of nodes and their position distribution, signal

propagation models, signal interference models, mobility models, network protocols, and the

traffic workload characteristics. In order to construct a model that matches the goal of the

simulation project, all issues should be carefully considered to sufficiently include relevant

elements that capture the major effects and prevent any unnecessary detail that will intro-

duce overheads and a delay in the simulation process. Since mobility plays a central role in

the wireless network model design, much of the effort in the literature has focused on the

mobility and boundary policy. Typical simulation studies assume a fixed number of active

mobile nodes implemented in a closed two-dimensional limited area of interest with some

boundary policies defined for users arriving at the edge of the simulated area.

Packet-level simulation of computer networks becomes prohibitively expensive as link

speeds, workloads, and network size increase. In addition, the performance measures deter-

mined from a simulation are random in exactly the same manners as measurements; hence

confidence intervals must be used when discussing performance measures estimated by sim-

ulations. To assure independently and identically distributed data generated in simulation

studies and increase credibility of statistical simulation results [41], large amount of comput-

er run time for multiple independent runs with confidence intervals on results are required.

In [47], Vasan et al. proposed time-stepped stochastic simulation by generating a sample

path of the system state at discrete time steps rather than at each packet transmission. This

method can achieve the modeling accuracy of packet-level simulation in a fraction of the

computational cost. Kim and Hou in [48] develop a time-efficient fluid-flow based simulator

for WLAN with the consideration of the characteristics of IEEE 802.11 protocol behavior,

and examine fluid simulation performance in terms of events generated, execution time re-

quired, relative error incurred, and time step value adopted in the simulation. In addition,

parallel simulation and distributed simulation approaches exploit the idea of concurrency

among events to achieve a reduction in execution time [20]. Researchers have also tried to

apply the concept of parallel and distributed simulation techniques to the development of a

more realistic simulation tool for nonstationary network behavior, however the scalability is

still believed an open issue.
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In summary, the drawbacks of simulation are the accuracy of simulation model and

the time and effort involved in considering all cases/parameter values and analyzing the

corresponding output data. Similar to measurement, it is difficult to generalize the results

and evaluate its sensitivity by simulation studies. Furthermore, the accuracy and fidelity of

simulation models might be questionable, such as the radio propagation model in wireless

networks. Another concern is the time to develop and execute the discrete event simulation.

2.3 ANALYTICAL-BASED PERFORMANCE EVALUATION

Network performance evaluation can also be achieved by defining a system model and

solving the model using analytical techniques. Analytical models are usually computationally

inexpensive, and expressions can be obtained in a fast manner. Analytical modeling is

a viable option if the goal is to explore design alternatives, and it is sufficient to have

approximate estimates of the expected behavior and performance [46], [22]. The standard

analytical network model used in network performance evaluation mainly deals with the

steady state conditions of queuing theory models [49]. Performance metrics must be carefully

defined to evaluate and understand the critical features of the considered system. A good

performance metric should have the following characteristics: (a) the performance metric

should allow an unambiguous comparison to be made between systems, (b) it should be

possible to develop models to estimate the metric, (c) it should be relevant or meaningful,

and (d) the model used to estimate the metric should not be difficult to estimate [50].

It is worth noting that the fidelity of an analytical model depends on the quality of

input data and on the modeling accuracy of the involved mechanisms. In the area of wireless

network performance analysis, there are three main components need to be carefully studied,

those are traffic, topology and protocol. From queuing theory perspective, traffic load defines

the arrival process of each queue, while topology and protocol determine the service process

in single-hop networks and also affect the next stage arrival process in multihop networks.

From the view of OSI seven-layer stack model, traffic comes from the application layer and

topology defines the network connectivity in physical layer. The protocol actually defines the
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implementation of data communication at each layer and the interaction between different

layers. In the following, we will give a comprehensive discussion on how to model each of

them using statistical tools and characterize the individual effect on network performance.

2.3.1 Traffic Load

Regardless of how good the analytical model may be, it cannot give accurate results if the

input data are inaccurate or not representative of the traffic load in the real world. Moreover,

the essential features of traffic loads can be helpful in providing early predication about the

design. One of the most intriguing aspects of the traffic modeling is its multi-level temporal

nature. It is widely accepted that a model which characterizes traffic at the session level,

connection level and packet level adequately captures the basic behavior of a real-time traffic

source. The session level describes the user session between association and disassociation

with the network infrastructure. Within a user session, the connection level is a traffic flow

connection (TCP/UDP) from one IP address to another IP address. Packet level accounts

for the correlation among successive arrival of packets, which is a finer level of modeling.

2.3.1.1 Session-Level Characterization The session level captures the interaction be-

tween users and the network. It is widely recognized that the arrival of user session can be

modeled as a time varying Poisson process [51], [52], [53]. The preliminary data analysis of

the real-word measurement in [52] revealed significant variation in the number of connection

arrivals across different venues. To capture such variation, for instance, within the coffee

shop venues, the authors observe the number of customer arrival over 96 time slots of a

day in 60 different venues. Then they average the observed slot arrival counts over the last

five weekdays and over all the venues to get an average intra-day profile. The empirically

obtained result is very close the equivalent non-stationary Poisson model. In addition, the

session duration, defined as the time between which a device associates and disassociates

with the network, is also widely studied [51], [52], [53]. The measurement study in a public

Wi-Fi network in [52] shows that 78% of the sessions are of duration at most 10 minutes,

and a very small fraction of connections maintain for above 6 hours. Thus, the connection
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durations are heavy tailed and can be expressed using a power law distribution.

2.3.1.2 Connection-Level Characterization The connection level characterizes the

user behavior with the time series representing TCP/UDP connections established by a

user. As such, the burstiness of the traffic generated by individual user can be modeled as

an on/off process, where the duration of a connection corresponds to an on period and the

idle interval between two consecutive connections corresponds to the off time. Naturally,

this on/off process can be characterized by two traffic metrics, i.e. the connection duration

and the inter-arrival time between two consecutive connections established by the same user.

A general agreement among various measurement studies shows that both inter-arrival of

connection and the connection duration follow the heavy tailed distribution [51], [52], [53],

[54]. In [54], authors select 100 users and perform a study on the per-user behavior. They

find that the user behavior among different users is independent when it is characterized by

the use of time series. In addition, the probability distribution of the inter-arrival time of

connections generated by a user is constructed based on the 120-day trace in campus-wide

WLANs. The complementary cumulative distribution function (CCDP) of measurement

data is then compared with the result generated from Pareto distribution.

2.3.1.3 Packet-level Characterization Packet level model characterizes the time be-

tween successive arrivals of packets generated by source. Depending on the type of traffic,

different traffic models have been suggested, such as Poisson, constant bit rate, on-off traffic,

and etc. [55].

The Poisson process has been shown to be a plausible representation of a number of

physical phenomena, e.g. the occurrence of telephone calls and the arrival of customers

at a service facility. Poisson process is also used as a simplified traditional traffic model

for circuit-switched data and the general packet data [56], [55]. The Poisson process is

actually a mathematical model of a completely random arrival pattern. Poisson traffic is

characterized by assuming that the packet arrivals are independent and the inter-arrival time

is exponentially distributed. Another reason for its popularity is the analytical tractability

that this process provides. One important property is that the superposition of independent
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Poisson processes is a Poisson process. There are several ways to verify whether a particular

arrival process is Poisson [57]. An easy visual way consists in plotting the histogram of the

inter-arrival times and verifying whether it is an exponentially decreasing function. One

special case of the Poisson model is represented by time-dependent Poisson processes. This

representation is suitable for situations where the mean rate varies over time.

The constant bit rate (CBR) traffic source sends fixed size packet at constant intervals.

CBR is tailored for connections where the end-systems require predictable response time

and a static amount of bandwidth continuously available for the lifetime of the connection

[58]. Many of the real-time services by CBR traffic require an inherent reliance on time

synchronization between the traffic source and destination [59]. In the case of streaming

video as a CBR, the source could be under the CBR data rate target. So in order to

complete the stream, it’s necessary to add stuffing packets in the stream to reach the data

rate wanted [55].

For on-off traffic model, the source generates packet during on time and keeps silent

in off state. This model exhibits the burstiness nature of traffic in telecommunications

[55], [60]. For example, in the traditional voice or VoIP applications, a user is not always

talking and in fact there is a considerable length of “silence” between “bursts” or “talk-

spurts” [61]. If we allow the inter-arrival time between packets to be a general distribution

during on period, we then have an Interrupted Renewal Process (IRP). IRP degenerates into

an Interrupted Poisson Process (IPP) when the general distribution becomes exponential.

When the distribution is deterministic with a constant value, the IRP becomes an Interrupted

Deterministic Process (IDP).

More sophisticated arrival process models such as the Markov arrival process (MAP),

Markov modulated Poisson process (MMPP) and batch Markovian arrival process (BMAP)

can capture the burstiness and correlation of network traffic at the packet level [62], [55].

These models are generally non-renewal process, but the numerical techniques such as the

matrix geometric method are still available to solve them. However, the computational

complexity required for solving queues characterized by a larger set of parameters often

becomes prohibitive.
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2.3.2 Network Topology

The network topology depends on the position of all nodes and the link connectivity

between any two nodes. Given an initial placement of the mobile nodes in the network,

their time varying positions are determined by node mobility trajectories. In addition, the

wireless link connectivity between two nodes is a function of a variety of factors, such as

the distance between the nodes, antenna radiation pattern, power level, geographic terrain,

propagation environment, interference, receiver sensitivity, etc. In the following, we will

discuss the wireless link connectivity and node mobility separately.

2.3.2.1 Wireless Link Connectivity It is well known in the wireless communication

literature that radio signal propagation is subject to path-loss, multipath fading and shad-

owing [63]. The path loss is the loss in signal strength of an electromagnetic wave that would

result from a line-of-sight path through the medium, since the waves propagate outwards

from the transmitter in an expanding sphere. Multipath fading comes from the destructive

inference of the radio signals reaching the receiver by two or more paths. Shadowing occurs

when large objects block paths of propagation. Both path loss and shadowing are considered

as large-scale fading, which impacts the range of communications between nodes and the

interference levels. Multipath fading is regarded as small-scale fading that impact the rates

for transmission, bit error rates and packet delivery rates. In addition, the quality of the

wireless link is also affected by the physical layer interference signal in the same frequency

band as well as the MAC layer packet collision under the contention based access scheme.

2.3.2.2 Node Mobility In a wireless network with mobile nodes, nodes’ movement

speed, direction, and acceleration/deacceleration, can have a significant effect on the net-

work design to support mobility. Unfortunately, movement in the physical world is often

unrepeatable. Live use of a mobile system can provide meaningful insight, but cannot form

the sole basis of experimental evaluation. Instead, the community has turned to simulating

the movement of nodes and users. Of course, one must derive a model of movement to drive

such a simulation. Typically, simulation studies assume a closed system, where the num-
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ber of users moving inside a two dimensional simulated area (e.g., rectangular) is constant.

Rules are defined for users arriving at the edges of the area. The random waypoint mobility

model is the model most commonly used to define the way users’ movement [44-46]. The

random waypoint mobility model has become the most popular mobility models in the mo-

bility research of single-hop and multi-hop wireless networks, because of its simplicity and

wide availability [64], [65], [66].

In single-hop wireless networks, node mobility can affect the network performance in

three ways. Since the mobile nodes could move in/out of the coverage area of each other,

the dynamic number of associated nodes will impact the bandwidth shared by each user

[67]. Moreover, if the IEEE 802.11 CSMA/CA-based MAC protocol is implemented in the

network, node mobility can aggravate the detrimental effect of hidden nodes on the network

performance. As the nodes move around, the network hearing graph varies over time and

the current collision avoidance could become ineffective in the next second [68], [69].

In multihop wireless networks, since the mobile nodes must cooperate to dynamically es-

tablish routes using wireless links, traffic has to be rerouted if any link on the path is broken.

Hence, the network performance heavily depends on the underlying network topology. The

node mobility models used in multihop wireless network studies include the random walk

mobility model, the random waypoint mobility model, the random direction mobility model,

the reference point group mobility model, and others. [64]. Among these, the random way-

point mobility model is the “benchmark” mobility model to evaluate network performance.

The shortcomings of simulating the random waypoint mobility model are the long warm up

period and heavy computation required to compute node position and determine link con-

nections between each node pair. A computationally simpler approach is to model mobility

by directly manipulating the elements of the adjacency matrix according to a probabilistic

model [70], [71]. The link connectivity model has fewer parameters, thus simplifying the

design of experiments. To be specific, only the average link lifetime parameters, namely Tup
and Tdown, are sufficient to fully characterize the model. Moreover, the idea of using only

these two variables seems to provide a better control in link stability characteristics than

typical mobility models. The state of each link can be aggregated in an adjacency matrix

to represent the topology of the network. The elements in the matrix are two-state random
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variables that specify the status of the link which can either be symmetric bidirectional

links or asymmetric ones. Though the link connectivity model based on a two-state Markov

chain addresses the computation burden of the random waypoint model, it comes with one

drawback that it does not support high-fidelity models of mobility and physical layer char-

acteristics. However, it is believed that the practical effect of computational time reduction

outweighs the potential loss of fidelity when compared to actual node mobility models.

2.3.3 MAC Protocol

Much work has been done to analyze different layers of the protocol stack on the per-

formance of wireless networks. Since the wireless medium is inherently a shared resource,

controlling channel access becomes a central theme that determines the fundamental capac-

ity of the wireless network and has a dramatic impact on system complexity and cost. In

this dissertation work, we focus on the performance study of MAC layer protocol in wire-

less networks. Wireless MAC protocols can be broadly categorized as contention-based and

contention-free, depending on the channel access mechanisms.

2.3.3.1 Contention-based MAC The first contention based MAC protocol is ALOHA

[72]. A node is permitted to transmit packet any time. To confirm the successful transmis-

sion, the intended receiver then sends an acknowledgement within a certain time-out period.

Otherwise, the transmitter assumes a collision and has to retransmit the packet. Before

retransmission, the transmitter waits for a random period of time to avoid continuously re-

peated conflicts. After ALOHA, “Slotted ALOHA” improves channel efficiency by slotting

time into equal length pieces. Each node is synchronized and transmits only at the beginning

of a slot [73]. Analytical results from [74], [75] show that the effective channel capacity can be

increased by slotting channel access into time segments. Another approach, Carrier Sensing

Multiple-Access (CSMA) is superior to both slotted and pure ALOHA [76]. In order to avoid

collisions, a CSMA node senses the carrier to detect any transmission on the channel. Given

a slotted implementation, if the channel is busy in a slot, the node would not transmit. If

the channel becomes idle, the node schedules the transmission. CSMA-based MAC protocols
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have two well known problems: hidden and exposed terminals. Tobagi and Kleinrock pro-

posed a solution to eliminate hidden terminals using a busy-tone sent by a receiving node in

a separate band [77]. To maintain in-band carrier sensing, Karn [78] proposed “virtual carri-

er sensing” in his Multiple Access with Collision Avoidance (MACA) protocol that employs

Ready-to-Send (RTS) and Clear-to-Send (CTS) to reserve the channel and silence potential

hidden terminals before the DATA-ACK exchange. In addition, a binary exponential backoff

scheme is used in MACA. Recently, Cai et al. [79] incorporated reactive jamming scheme

with the IEEE 802.11 DCF to improve network throughput of WLAN in the presence of

hidden terminals.

The basic access mode of the IEEE 802.11 DCF [80] is essentially “physical carrier

sensing” coupled with the binary exponential backoff mechanism for collision avoidance. The

protocol employs a fixed carrier sensing (CS) threshold to determine whether the medium

is free for transmission. There are two packet transmission schemes employed by DCF,

namely, the basic access and the optional RTS/CTS access mechanism. For multihop wireless

networks, the authors in [26] examine the interactions of the 802.11 DCF protocol and ad hoc

forwarding. They found that the theoretical maximum capacity per node in a large random

network with random traffic scales as O(1/
√
n), where n is the total number of nodes. In

addition, the authors conclude that 802.11 DCF is more efficient for scheduling local traffic.

In this work, we will focus on the performance analysis of 802.11 DCF in single-hop networks.

The performance of 802.11 MAC has been studied extensively. The seminal paper of

Bianchi [22] is the first work to model the binary exponential backoff mechanism of the DCF

protocol in saturation conditions by a two dimensional Discrete Time Markov Chain. To

improve the accuracy of Bianchi’s Markov chain model, Chatzimisios [81] and Wu [82] take

into account the retransmission limit where a packet is dropped after reaching a maximum

number of retransmissions. Zhang [83] and Xiao [23] include the backoff counter freezing

probability into their models. Q.Ni et al [84] considered the saturation throughput for both

congested and error-prone Gaussian channels. Parallel to the Markovian modeling efforts,

other analytical models predict the saturation performance of 802.11 without fully describing

the detailed behavior of the binary exponential backoff [85] and [86]. Because non-saturation

conditions are more typical in WLAN, analysis of IEEE 802.11 DCF in non-saturated case has
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also attracted remarkable attention. Zhai, etc. [87] and Xu, etc. [88] scale the transmission

probability of a saturation model by the probability of having at least one packet in the

queue (i.e., the queue utilization), and model the MAC layer system as M/M/1/K and

M/G/1/K queue. The novelty of their approach is to derive the probability distribution of

the MAC layer service time by using the Z-transform of the state transition diagram. In

addition, some Markovian models like Engelstad [89] and Huang [90] use additional states to

model the behavior of a tagged node when it does not have any packets to send. Tickoo [24]

developed a non-Markovian G/G/1 queuing model by considering arbitrary traffic arrival

patterns and packet size distribution. Garetto and Chiasserini [91] study the number of

contending nodes using a multidimensional Markov chain which includes, in addition to

the backoff process, the number of packets in the queue as well as the number of nodes

in the network. Developing an analytical model is desirable not only because of the wide

deployment of 802.11 devices, but also because the CSMA/CA mechanism continues to play

a core role in new standard in 802.11 family, such as 802.11p.

2.3.3.2 Contention-free MAC In contention-free protocols, the nodes are following

some particular schedule which guarantees collision-free transmission times. Generally,

contention-free protocols are capable of providing QoS guarantees by Frequency Division

Multiple Access (FDMA) [92], Time Division Multiple Access (TDMA) [92], Code Division

Multiple Access (CDMA) [93] or various reservation-based schemes.

For single hop wireless network, the access point has centralized control on who and when

they access the medium. The downlink transmissions from base station can be heard by all

the wireless nodes in the network. For example, the point coordination function (PCF)

defined in IEEE 802.11 [80] use centralized polling techniques to achieve contention-free

transmission of each node. Coutras et [94] and Sikdar [95] analyze the performance of PCF

in support of multimedia services.

For multihop wireless network, it is challenging to implement distributed channel access

control in the presence of unpredictable channel conditions and node movements. TDMA-

based MAC [96], [97] lies in the usage of time slots in a time frame structure. Since each

frame has to start exactly at the same time at each node, network-wide synchronization in-
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curs extra overhead and it is difficult to achieve mobility. For CDMA-based MAC [98], how

to assign spreading codes in a distributed multihop wireless networks is a major challenge.

In addition, Power controlled MAC protocols, such as GAF [99], SPAN [100] and ASCENT

[101], have been considered by in settings that are based on collision avoidance and trans-

mission scheduling. Since all the above contention-free protocols rely on deterministically

quantified resource availability information and resource reservation, their one-hop packet

transmission time could be roughly approximated as deterministic.

2.3.4 Steady-state Performance Modeling for Wireless Networks

2.3.4.1 IEEE 802.11p Vehicular Networks Several recent studies have proposed a

variety of models to study the the steady-state performance of IEEE 802.11p based vehicular

networks. In [102], Chen et al. constructed a continuous-time Markov chain (CTMC) to

model the operation of the IEEE 802.11p MAC backoff counter for broadcast. This model

was then extended to consider enhanced distributed channel access (EDCA) mechanism

including both emergency and routine services with different priorities in [103]. In [104],

Hassan et al. analyzed the MAC service process by decoupling the resulting packet collision

probability into the exposed-terminal and hidden-terminal cases. Then, [105] developed a

semi-Markov process (SMP) to approximate the service time of broadcast packet and used

fixed point iteration to solve the SMP model. In summary, while extensive work has been

made towards developing analytical models to estimate the steady state performance of

vehicular networks, little work has appeared on the performance model to capture their

nonstationary/transient behavior.

2.3.4.2 MultihopWireless Networks The steady-state performance of multihop wire-

less network has been studied extensively via various models. In [106], Haan modeled a

multihop wireless network as a polling system, where the server offered service to a sequence

of queues one-by-one. However, this model cannot exactly describe the stochastic process

of MAC protocol in the networks. To consider the actual packet service process in wireless

networks, Vassis et al. in [107] evaluated the steady-state performance of IEEE 802.11 ad
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hoc networks, which consist of only exposed terminals with finite traffic load. This paper

adopts the CSMA/CA modeling technique in [108] to derive channel utilization and media

access delay at each hop. The major limitation of this work is to assume that all nodes in

the network are hearable to each other; however, such an assumption may not be valid in

practice. In [109], Jin et al. developed an analytical model to evaluate the performance of

802.11 ad hoc networks in imperfect wireless channels due to fading channel and probabilistic

carrier sensing capability. In this work, authors assume a saturated MAC queue and restrict

the analysis within a fixed homogenous topology where all senders have the same probabil-

ity to transmit to avoid further complications in the model. A more general performance

analysis is provided in [110] to estimate the throughput of 802.11 ad hoc networks, with

the considerations of hidden terminals, imperfect carrier sensing as well as the unsaturated

traffic loads. The experimental measurements validates the accuracy of the analytical mod-

el. However, the end-to-end packet delay in multi-hop networks has not been addressed and

only the performance of network throughput is analyzed in the work.

With the aid of queuing model, Ray et al. [111] derived analytical expression for end-to-

end packet delay following IEEE 802.11 standard and approximate each wireless node as an

M/D/1 queue. They then extended the analysis to model a static ad hoc network with a

linear topology. Medepalli and Tobagi derived the average service time needed for a packet at

each node by modeling the transmission queue of IEEE 802.11 MAC to be M/M/1 in [112].

They showed that anM/M/1 approximation compared favorably with a more detailed model

while significantly simplifying the analysis. In [25], a more general M/G/1 queuing model

was developed to obtain the single-hop media access delay distribution, which is then used

to study the end-to-end delay in the static multihop scenario. Bisnik and Abouzeid proposed

an open G/G/1 queuing network in [113] to model two-dimensional static ad hoc networks

and the diffusion approximation technique is used to obtain the steady-state performance.

In summary, while extensive work has been made towards developing analytical models to

estimate the steady state performance of ad hoc wireless networks, little work has appeared

on performance models of mobile ad hoc networks to capture their time varying queuing

behavior.
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2.4 TIME DEPENDENT BEHAVIOR MODELING TECHNIQUES

In comparison to the general literature on the steady state models of communication

networks using queuing theory, there is relatively little work on modeling their transient or

nonstationary behavior. Note that a distinction is made between transient and nonstationary

behavior since transient behavior describes the system transition from one stationary state

to another, whereas nonstatinary behavior occurs when the arrival and/or service rate vary

continuously with time. In this dissertation work, we use the term time dependent to cover

both of them.

2.4.1 General Techniques

In order to apply steady state queuing results to model a system under transient or

nonstationary conditions, there are four different approximation techniques in the context of

a simple Markovian queuing model with time varying arrivals, namely the simple stationary

approximation (SSA), the peak approximation (PA), the quasi-static approximation (QSA)

and the pointwise stationary approximation (PSA).

The simple stationary approximation (SSA) is to replace the time varying load by its

mean value and then use the steady-state queuing results. The peak approximation (PA) is

similar, but peak values for the load are used in the steady-state analysis. The quasi-static

approximation (QSA) approach approximates time varying behavior by approximating the

nonstationary load over a set of small time intervals by a constant during each time interval

(usually the mean value over the time interval) and using steady-state results for each time

interval. The pointwise stationary approximation (PSA) is similar except that the load is

sampled at various time points and the steady-state value is used at each time point. In

[114], it was shown that for even modest amounts of nonstationarity (i.e., deviations from the

average load of 10%) the Mean Value and Peak Value approach can lead to large errors. The

error of the QSA and the PSA have not been thoroughly studied, but results in [115] show

that the accuracy will depend upon the rapidity and magnitude of changes in the load and

is quite poor in many cases. In wireless networks, we note that both the arrival and service
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rates of queues could vary rapidly as the load and topology changes, such that the QSA

and PSA methods may not be sufficiently accurate and transient/nonstationary modeling

techniques are desired.

2.4.2 Time Dependent Queuing System

The transient/nonstationary behavior of the queuing system is usually studied by solving

differential/difference equation of a Markov process/chain model. The differential/difference

equation is normally a function of pi(t), which is the time varying probability of i customers

in the queuing system. However, only in some special simple cases are the transform ex-

pressions invertible to yield a closed form expression and even then the result is usually

computationally complex to evaluate. In general, one must try to numerically invert the

transform expression and this is known to be a difficult numerical analysis problem. There

has been an effort to determine the transient behavior numerically rather than by deriv-

ing a closed form expression. Numerical approaches have largely focused on two methods:

uniformization [116] and numerical analysis techniques (e.g., numerical integration of the

underlying differential equation model) [117]. Note that these techniques provide accurate

results and enable multiple types of performance measures (relaxation times, mean behavior

and distributional behavior) to be studied. The primary disadvantage of both methods is

that the computational complexity grows with the queue state space and one is limited to

considering Markovian type systems.

In order to study the transient/nonstationary behavior of general queueing systems in an

efficient manner, several approximate analysis methods have been proposed such as diffusion

models [118], fluid flow models [30], and service time convolution [119]. The accuracy of

these approximations along with the performance measures that can be determined vary

according to the system under study. Note that very little work has been done on comparing

the accuracy and computational complexity of these approximations.
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2.4.3 Fluid Flow Background

We note that the fluid flow concept has been proposed for constructing computationally

efficient simulation models for both wired [120], [121] and wireless networks [48], [122],

[123]. On the wired network side, the basic idea of [120] is to model a few network nodes

(e.g., a source-destination pair) in detail with packet-based discrete event simulation and

enlarge part of an IP network by fluid flow models which interface with the discrete event

simulation. This approach was shown to be accurate at the IP level and scalable. In [121], the

authors use fluid flow techniques in combination with packet-level discrete event simulation

to model the dynamics of TCP traffic, which is adaptive to the available bandwidth on the

network. They illustrate that the proposed fluid flow model produces very similar behavior

as the packet-level model, but can provide significant computation speedups. On the wireless

network side, Kim and Hou in [48] develop a fluid flow based simulator for a WLAN with

the consideration of the characteristics of IEEE 802.11 protocol behavior, and examine fluid

simulation performance in terms of events generated, execution time required, relative error

incurred, and time step value adopted in the simulation. In [122], a fluid flow model is

presented to analyze the performance of backlog-based CSMA policies in the wireless network

environment with multiple arrival rates. Most recently, the fluid flow approximation is

applied in [123] to model a TCP connection with time division multiplexing and scheduling

in WiMAX wireless networks.

In this dissertation, a fluid flow based modeling approach is developed to efficiently

approximate the mean transient/nonstationary packet-level behavior of wireless networks.

The purpose of this work is to develop a technique that can be used for network performance

evaluation and the design of dynamic network controls. Since many network controls are

designed and implemented on the basis of average quantities, such as the average delay on

the links, this dissertation work focuses on determining the mean transient/nonstationary

behavior of networks. With the concept of pointwise stationary fluid flow approximation

(PSFFA) [30] and [30], this fluid flow modeling approach has bee used to approximate the

mean transient/nonstationary behavior of a variety of queuing systems in a series of papers

[115], [124], [125], [126], [127], [128]. The idea of PSFFA is to model the average number in
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the queuing system as a function of time by a single nonlinear differential equation, which is

solved numerically using standard numerical integration techniques (e.g., Runge Kutta). The

detailed description of PSFFA is given in Section 3.3.1. The use of the PSFFA to determine

the transient/nonstationary behavior of finite and infinite capacity queuing systems with

general arrival and service distributions is discussed in [115]. In fact, it is even possible to

develop the fluid flow model from measurement data. The PSFFA is quite general in nature

and shown to be reasonably accurate for the cases considered and a considerable improvement

over the Pointwise Stationary Approximation (PSA) [115]. Furthermore, PSFFA models

can be coupled using flow conservation principles to study a wide range of real queuing

systems or networks (e.g., ATM [124], MPLS [129], and MANET [125], [127], [128]). The

principal advantages of this approach are its generality, its simplicity in modeling large

queuing networks and computational efficiency. Additionally, PSFFA model could be used

as the basic mathematical model for developing network dynamic control mechanisms along

the lines illustrated in [129], [126], [130], [131].
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3.0 TIME DEPENDENT PERFORMANCE ANALYSIS OF IEEE 802.11P

VEHICULAR NETWORKS

In recent years, there has been a dramatic increase in research and development activity

in vehicular networks. In such networks, a challenging environment is presented for protocol

and application design due to their low latency and high packet delivery ratio requirements

in a highly mobile environment. The IEEE 1609 working group has defined 5.850-5.925 GHz

band as the Dedicated Short Range Communications (DSRC) spectrum band. As a key

enabling technology for the next generation inter-vehicle safety communications, the IEEE

802.11p protocol is currently attracting significant attention [1]. For IEEE 802.11p based

DSRC applications, there are two types of safety messages including event-driven (emer-

gency) messages and periodic (routine) messages. Event-driven messages are triggered by

vehicle abnormal or environment hazards, such as hard brakes, car accidents, and hazardous

road conditions. After receiving this type of messages, the approaching vehicles can take

appropriate actions to avoid potential accidents or non-safe situations. Periodic (routine)

messages contain the state of vehicles (e.g. position, speed, and direction), and vehicles

actively broadcast these messages to the neighboring vehicles. The former messages require

more stringent QoS requirements (e.g. reliability, latency, etc.) than the latter one, and

thus are granted higher transmission priority in 802.11p enhanced distributed coordination

function (EDCF) MAC.

One of the key characteristics of vehicular networks is the high speed node mobility.

Mobile vehicles move into/out of the carrier sensing range of other vehicles and they result

in dynamic changes of network hearing topology. Since the wireless channel is accessed via

contention-based 802.11p MAC [1], the available bandwidth shared by the individual vehicle

is strongly coupled with each other and becomes a time-varying function of the network
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hearing topology. Consider the scenario of a eight-lane freeway as shown in Figure 3, one

would expect that the transient/nonstationary effects on a tagged vehicle come from the

high-speed movement of the vehicles in the opposite direction, since they continuously join

the carrier sensing range of a tagged vehicle. Once the network hearing topology is updated,

the performance metric might go through a transient period and then reach steady state.

Since each vehicle moves fast, the highly-dynamic network hearing topology perturbates the

stationary state frequently and the network might spend significant time in the transient

state. Moreover, the steady-state simulation study on vehicular networks cannot capture

their transient/nonstationary behavior. While nonstationary simulation method can be used

to study the time varying behavior, they are computationally inefficient [17]. Therefore,

building an efficient analytical model that considers the fine details of node mobility as well

as 802.11p MAC operation to estimate the real-time performance of vehicular networks,

presents a significant challenge as well as practical interest. The major notations used in

this chapter are summarized in Table 1. Carrier sensing 
range of tagged 
vehicle

Draw hetergeneous vehicle density

Figure 3: A vehicular ad hoc network on freeway.

This Chapter is organized as follows. Section 3.1 models the network hearing topology by

an adjacency matrix. The modeling details for the packet service process of the IEEE 802.11p

MAC is provided in Section 3.2. Section 3.3 presents our time dependent performance

modeling approach for vehicular networks. In Section 3.4, our modeling approach is codified

into an executable algorithm. The numerical solution of our differential equation based

30



Table 1: Notation list
Notation Definition

Bj,k
i (z) Vehicle i’s backoff process at stage k of ACj class packet

cji Coefficient of variation of vehicle i’s service time for ACj class packet

Dj
i Vehicle i’s ACj packet delay (sec)

Gj
i Vehicle i’s transmission link utilization function for ACj class traffic

hij Vehicle i’s hearability of vehicle j

M Number of nodes in vehicular networks

N1 Maximum times that the contention window of AC1 class can be doubled

PDRj
i Vehicle i’s ACj packet delivery ratio

p1
i Internal collision probability of AC1 with AC0 class packets in vehicle i

pexposedir Vehicle i’s packet collision probability with its exposed vehicle r

phiddenir Vehicle i’s packet collision probability with vehicle r’s hidden terminals

pcir Vehicle i’s overall collision probability with vehicle r

Sji (z) PGF of vehicle i’s service time for ACj class packet

T (z) PGF of one packet transmission time

Tv Vulnerable period due to packet collision with hidden terminals (sec)

TSji A random variable of in vehicle i’s service time for ACj class packet (sec)

U j
i (z) PGF of one-slot backoff decrement time for ACj class packet in vehicle i

W i,k Vehicle i’s contention window size at stage k

xji Number of ACj class packets in vehicle i

λji Arrival rate of ACj class packets into vehicle i (pkt/s)

µji Average service rate for ACj class packet in vehicle i (pkt/s)

ε Link propagation delay (sec)

ρ Link utilization

τr Transmission probability of vehicle r

σji Standard deviation of service time for ACj class traffic in vehicle i (sec)

ε One slot duration defined in IEEE.802.11p (sec)

θ Initial transient period of a queueing system
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model and the computation complexity are discussed in Section 3.5. Our model is then

compared by discrete event simulation in Section 3.6. Section 3.7 analyzed the computation

complexity of our model followed by numerical results on a series of sample networks. Section

3.8 applied the proposed model to study the time varying behavior of vehicular networks in

a variety of scenarios. The summary of this chapter is given in Section 3.9.

3.1 MODELING NETWORK HEARABILITY

Consider a network with M vehicles, all vehicles are not necessarily within the carrier

sensing range of each other. Then, the network hearing topology at any time t is modeled

by a M ×M square matrix as H(t).

H(t) =



h11(t) h12(t) · · · h1M(t)

h21(t) h22(t) · · · h2M(t)
... ... ...

hM1(t) hM2(t) · · · hMM(t)


(3.1)

where,

hij(t) =

 1, if vehicle i can hear vehicle j at time t (i 6= j)

0, otherwise

By definition, vehicle i can “hear” vehicle j if vehicle j is within the carrier sensing

range of vehicle i (i.e. hij = 1). Otherwise, vehicle j is a hidden node of vehicle i (i.e.

hij = 0). Taking Figure 3 as an example, vehicles can be enumerated increasingly from

left to right on a single lane, and then from bottom to top across different lanes (i.e. the

leftmost vehicle on the bottom lane is No. 1 and its right-side neighboring vehicle on the

same lane is No. 2, the rightmost vehicle on the top lane is No. M). Due to their mobility,

vehicles might move out of/into the carrier sensing range of other vehicles and hence result

in a dynamic network hearing topology. Hence, the time varying hearing matrix captures

the mobility feature in vehicular networks. If all nodes have the same transmission power,

carrier sensing threshold and propagation environment, then matrix H(t) is symmetric (e.g.
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hij(t) = hji(t)). Information about the node movement and hearability with respect to

each other can be determined from experimentally gathered trace data, a discrete event

simulation of a mobility model or stochastic/probabilistic models of mobility effects on link-

pair hearability. The IEEE 802.11p essentially adopts the CSMA/CA with exponential

back-off mechanism to control packet access. The exposed nodes can sense the channel busy

once a packet is transmitted on the medium and then freeze the backoff, while the hidden

nodes always consider the channel as idle and thereby cause packet collision much more often

than the exposed one. The network hearing topology has been shown to play a significant

role in determining the performance of wireless networks with CSMA/CA based MAC [69].

3.2 MODELING PACKET SERVICE PROCESS OF IEEE 802.11P MAC

3.2.1 An overview of IEEE 802.11p MAC

IEEE 802.11p adopts the enhanced distributed channel access (EDCA) mechanism pro-

posed in IEEE 802.11e to support contention-based prioritized QoS. The EDCA mechanism

defines four access categories (ACs) that provide support for data traffic with four priorities.

Each AC queue works as an independent DCF station with EDCA mechanism to contend

for Transmission Opportunities (TXOP) using its own EDCA parameters. Prioritization of

transmission in EDCA is implemented by arbitration interframe space (AIFS), which can

be considered as an extension of the backoff procedure in DCF. As shown in Figure 4, aside

from the original short interframe spacing (SIFS), PCF IFS (PIFS), and DCF IFS (DIFS),

new AIFS values for different ACs are introduced in EDCA. The frames from the higher

layer arrive at the MAC layer with different priorities, and then enter different queues. The

backoff instances in a node can be considered as being independent of each other without

virtual internal collisions. For each AC, if the channel is idle for a period time equal to an

AIFS, it transmits. Otherwise, if the channel is sensed busy, the AC will persist to monitor

the channel until the idle duration up to the AIFS. At this point, the AC generates a random

interval according to its CW value and starts a backoff procedure. The backoff counter de-
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creases again only when the channel keeps idle for an AIFS time, which is a duration derived

from the value AIFSN[AC] by

AIFS[AC] = AIFSN [AC]× SlotT ime+ SIFS (3.2)

where the value of AIFSN[AC] is set in the EDCA parameter table, SlotTime is the duration

of a slot time, and SIFSTime is the length of SIFS. In Table 2 taken from the IEEE 802.11p

standard [1], the AC with a smaller AIFSN has higher priority to access the channel. As-

signing a shorter CW size to a higher priority AC ensures that a higher priority AC has a

better chance to access the channel than a lower priority AC.
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802.11p. Moreover, the proposed model is relatively simple
to be explicitly solved for the validation of all four ACs. The
proposed analytical model can be used for the analysis of large-
scale scenarios or as the validation tool for different network
simulators to implement the IEEE 802.11p.

III. SYSTEM MODEL

The major specifications of the IEEE 802.11p standard that
distinguish it from similar standards such as the IEEE 802.11a,e
are briefly discussed in this section. We focus on the aspects of
the physical (PHY) and MAC sublayers that are relevant to the
analysis in this paper.

A. PHY Layer in 802.11p

The PHY layer of the IEEE 802.11p is similar to that of the
IEEE 802.11a as it operates at 5.9 GHz, which is very close to
that of 802.11a at 5 GHz. The PHY layer in 802.11p adopts
an orthogonal frequency-division multiplexing transmission
technique similar to that of 802.11a; however, the bandwidth
of a single channel in 802.11p is scaled down to 10 MHz
from that of 802.11a. This is motivated by the characteristics
of the propagation environment in HVC systems. Unlike the
traditional applications of wireless local area networks, where
the velocity of the nodes is relatively low, in a vehicular
communication environment, the relative velocity of the nodes
could be significantly higher. Thus, the delay spread of multiple
paths could be significantly higher, which could exacerbate
intersymbol interference when the signal bandwidth is high.
As a result, a 10-MHz bandwidth is a reasonable choice for
vehicular environments.

B. MAC Sublayer in 802.11p

The EDCA proposed in IEEE 802.11e [15] is designed for
contention-based prioritized QoS support. The EDCA mech-
anism defines four ACs that provide support for data traffic
with four priorities. Each AC queue works as an independent
DCF station (STA) with enhanced distributed channel access
function (EDCAF) to contend for Transmission Opportunities
(TXOP) using its own EDCA parameters. Fig. 1 shows the
prioritization mechanism inside each STA, where there are four
transmit queues and four independent EDCAFs for different
traffic categories. The value of AIFS for each AC is denoted
by AIFS[AC]. Each AC queue uses different AIFS, CWmin,
and CWmax.

Prioritization of transmission in EDCA is implemented by a
new interframe space (IFS), i.e., AIFS, which can be considered
as an extension of the backoff procedure in DCF. As shown in
Fig. 2, aside from the original short interframe spacing (SIFS),
PCF IFS (PIFS), and DCF IFS (DIFS), new AIFS values for dif-
ferent ACs are introduced in EDCA. The duration AIFS[AC] is
a duration derived from the value AIFSN[AC] by the relation in

AIFS[AC]=AIFSN[AC] × aSlotT ime + aSIFSTime (1)

where AIFSN[AC] is the value set by each MAC protocol in
the EDCA parameter table, aSlotT ime is the duration of a slot
time, and aSIFSTime is the length of SIFS. Different ACs

Fig. 1. Prioritization mechanism inside a single STA.

Fig. 2. Some IFS relationships (obtained from [16]).

TABLE I
DEFAULT EDCA PARAMETERS IN IEEE P802.11p/D8.0

are allocated with different AIFSNs. The AC with a smaller
AIFS has higher priority to access the channel. In addition,
different CWmin and CWmax sizes are assigned to different
ACs. Assigning a shorter CW size to a higher priority AC
ensures that higher priority AC a higher chance to access the
channel than a lower priority AC.

The default EDCA parameter setting for station operation is
shown in Table I. According to the latest version of the draft
standard of 802.11p [16], CWmin is 15, and CWmax is 1023.

Each station has four AC queues acting as four independent
stations. If the channel is sensed idle for the duration of AIFS[x]
and if the ACx queue has backlogged data for transmission,
the backoff timer for the EDCAF will be checked. Otherwise,
the EDCAF shall try to initiate a transmission sequence. If it
has a nonzero value, the EDCAF shall decrease the backoff
timer. However, since each STA has four EDCAFs, there is a
probability that more than one AC queue initiates a transmis-
sion sequence at the same time. Hence, a collision may occur
inside a single STA. A scheduler inside STAs will avoid this
kind of internal collision by granting the EDCF-TXOP to the
highest priority AC. At the same time, the other colliding ACs
will invoke the backoff procedure due to the internal collision
and behave as if there were an external collision on the wireless
medium. However, an STA does not set the retry bit in the
MAC headers of low-priority queues for internal collisions. An
external collision occurs when more than one AC is granted

Figure 4: IEEE 802.11 EDCA procedure.

Table 2: IEEE 802.11p EDCA parameters for AC0 and AC1

AC CWmin[AC] CWmax[AC] AIFSN

3 CWmin CWmax 9

2 CWmin CWmax 6

1 (CWmin + 1)/2− 1 CWmin 3

0 (CWmin + 1)/4− 1 (CWmin + 1)/2− 1 2
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3.2.2 Markov Chain for IEEE 802.11p MAC service process

For safety applications in vehicular networks, there are typically two types of messages in

each vehicle to be broadcasted including emergency messages and routine messages. Hence,

in this paper, we only consider two types of messages which are set priorities with AC0 (e-

mergency messages) and AC1 (routine messages), respectively. We assume the routine safety

message is generated periodically with rate λ0 packets per second, and the packet arrival

rate λ1 for emergency safety message is a Poisson process. Figure 5 shows the prioritization

mechanism inside each transmitter, where there are two transmission queues associated with

two independent traffic categories. Within one node, each ACi MAC queue behaves like a

virtual transmitter. If two ACs of a transmitter try to access the channel in the same time

slot, a virtual collision occurs. In this case, the packets with the highest priority will be

transmitted and the lower priority packets enter another backoff stage with doubled CWs

immediately. If the number of failed retransmissions reaches the retry limit, the packet will

be discarded.

Transmission attempt

AIFS[0]
CWmin[0]
CWmax[0]

AC0

Internal collision scheduler

AIFS[1]
CWmin[1]
CWmax[1]

AC1

Figure 5: Prioritization mechanism inside a single transmitter.

To model the service process of 802.11p MAC, we apply the probability generating func-

tion (PGF) approach to transform the Markov chain into the z domain in Figure 6, by

following the similar approach in [132]. Figure 6(a)-(b) illustrates the PGF of service time

for AC0 and AC1 traffic. We denote Sji (z) as the PGF of packet service time TSji for vehicle
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i’s class j traffic (j = 0, 1). Sji (z) includes the backoff time Bj,k
i (z) as well as the transmis-

sion time of one packet T (z). Because the higher-priority AC0 traffic is free from virtual

internal collision, the PGF of its backoff time is simply B0,0
i (z) with constant contention

window size W 0,0. However, the lower-priority AC1 may suffer from internal collisions with

higher-priority AC0, and such a collision triggers another backoff stage of AC1 by doubling

its contention window size. Here, we denote the virtual internal collision probability of ve-

hicle i’s AC1 traffic as p1
i , which depends on the transmission attempt probability of AC0

with a certain network hearing topology. Let N1 be the maximum number of times that

the contention window of AC1 can be doubled. When N1 is reached and more internal col-

lisions occur, the transmitter will continue to trigger backoff stages with the maximum-size

contention window until the retry limit L is reached (e.g. B1,L
i (z)). Since p1

i is the virtual in-

ternal collision probability of AC1 traffic with AC0 of the tagged vehicle i, p1
i also represents

the probability of a low-priority AC1 packet to enter another backoff stage with double-size

contention window. Figure 6(c) describes vehicle i’s backoff process Bj,k
i (z) at stage k of

ACj traffic with contention window size W i,k. U j
i (z) refers to the PGF of the average time

that a backoff counter decreases by one slot unit. From Figure 6, we can derive B0,0
i (z),

B1,k
i (z), S0

i (z) and S1
i (z) as follows.

B0,0
i (z) = 1

W 0,0

W 0,0−1∑
n=0

[U0
i (z)]n (3.3)

B1,k
i (z) =


1

W 1,k

W 1,k−1∑
n=0

[U1
i (z)]n, k ∈ [0, N1]

1
W 1,N1

W 1,N1−1∑
n=0

[U1
i (z)]n, k ∈ [N1, L]

(3.4)

S0
i (z) = T (z)B0,0

i (z) (3.5)

S1
i (z) = (1− p1

i )T (z)
L∑
n=0

[
(p1
i )
n

n∏
k=0

B1,k
i (z)

]
+ (p1

i )
L+1

L∏
k=0

B1,k
i (z) (3.6)

Given Sji (z), we can obtain the arbitrary nth moment of TSji , where the unit of TSji is

one-bit transmission time. For example, the mean and the variance of the service time of

vehicle i are given by
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Figure 6: z-transformed 802.11p MAC service process for vehicle i.

(µji )−1 = E[TSji ] = dSji (z)
dz

|z=1, j = 0, 1 (3.7)

(σji )2 = V ar[TSji ] =
d2Sji (z)

dz2 + dSji (z)
dz

−
(
dSji (z)
dz

)2 |z=1, j = 0, 1 (3.8)

For an IEEE 802.11p vehicular network, since packet transmissions are based on carrier

sensing and access contention, the packet service times distribution at different vehicles in

a vehicular network are strongly coupled and dependent on the number of vehicles in each

other’s carrier sensing range. Thus, given the network hearing topology H(t), the first and

second moment of packet service time (µji )−1 and (σji )2 can be solved by coupling Equations

(3.3)-(3.8) for all vehicles in a network. The details of the solution procedure can be found

in [132]. The results for packet service time distribution provided in this section will be used

as the basis to construct the time dependent queueing model in the next section.
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3.3 MODELING DYNAMIC BEHAVIOR OF VEHICULAR NETWORKS

We now adopt a fluid-flow based approximation technique to describe the dynamic be-

havior of the transmission queue at each vehicle, with the help of the PSFFA approximation

concept [30]. Specifically, the PSFFA method models the average number in the queuing

system by a non-linear differential equation which is derived from a point-wise mapping of

the steady-state queuing relationship and can be solved numerically using a standard numer-

ical integration technique. To understand how the fluid flow model approach can be used

to characterize the dynamic queuing behavior of each vehicle in IEEE 802.11p vehicular

networks, we first give a brief discussion on the principle of fluid flow model.

3.3.1 The Principle of Fluid Flow Model

In this work, we consider a single server first-come-first-serve (FCFS) queuing system

with nonstationary arrival process, where λ(t) represents the ensemble average arrival rate

at time t. The model is developed by focusing on the dynamics of the packet buffered at a

transmission link. Let x(t) be defined as the state variable representing the ensemble average

number in the system at time t, ẋ(t) = dx/dt is the rate of change of the state variable with

respect to time. According to the flow conservation principle, the rate of change of the

ensemble average number in the system equals the difference between the flow in and the

flow out of the system at time t, denoted by fin(t) and fout(t):

ẋ(t) = −fout(t) + fin(t) (3.9)

For an infinite waiting space queue, the flow in equals to the arrival rate fin(t) = λ(t) in

the unit of customers per time unit. The flow out can be related to the ensemble average

utilization of the server as fout(t) = µ(t)ρ(t), where µ refers to the average service rate

in number of customers per time unit and ρ is the server utilization. The Equation (3.9),

sometimes referred to as the fluid flow equation, is quite general and can model a wide range

of queuing systems as shown in [115]. The fluid flow equation can be written in terms of the

average arrival rate and the departure rate as:

ẋ(t) = −µ(t)ρ(t) + λ(t) (3.10)
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The server utilization ρ(t) in (3.10) depends on the stochastic modeling assumptions of the

queue under study such as traffic arrival process and packet length distribution. In general,

the exact expression of ρ(t) is difficult to determine. In [115], an approximation approach was

proposed by matching the equilibrium point in the differential equation to the corresponding

steady state queuing theory result. To adopt the point-wise mapping approach, the server

utilization function is approximated by the non-negative function G(x(t)), which represent

the ensemble average utilization of the server at time t in the form of the state variable.

Thus, Equation (3.10) can then be written as:

ẋ(t) = −µ(t)G(x(t)) + λ(t) (3.11)

Generally, the resulting function G(x(t)) is nonlinear and a closed form solution is not

possible. However, one can solve for x(t) in Equation (3.11) using numerical methods. Given

an initial condition of the state variable at time zero as x(0) and an approximation of the

arrival rate as a constant λ over a small time step [t, t + ∆t], we can determine the state

variable at the end of the time interval x(t+ ∆t) by numerically integrating (3.11), and then

set x(t+ ∆t) as an initial condition for the next time step [t+ ∆t, t+ 2∆t]. The arrival rate

for the new time step can be adjusted if necessary, and this procedure is repeated for each

time interval along the time horizon. Numerical studies in [115] have shown that results

from PSFFA models are reasonably accurate. The extended fluid flow model for the queuing

system with finite buffer size is derived in [115].

3.3.2 Fluid Flow Model for Vehicular Networks

We model the packet transmission process at each vehicle as a generally distributed

“service” process, and the packet service time as an i.i.d variable with mean 1/µ and variance

σ2. For the AC0 emergency traffic load at a vehicle, we assume the packet inter-arrival time

follows an exponential distribution with mean 1/λ. The queue utilization ρ is equal to λ/µ.

Then, each vehicle in network is modeled as an M/G/1 queue. The most well-known result
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of the M/G/1 steady-state queuing model is the Pollaczek-Khintchine (P-K) formula [49],

which gives the average number of packet in the queuing system of a vehicle as

x = ρ+ ρ2(1 + c2)
2(1− ρ) (3.12)

where c2 is the squared coefficient variation of service time and c2 = σ2µ2. One can ana-

lytically invert the P-K formula (3.12) to find ρ as a function of x (i.e. G(x)), resulting in

G(x) = x+ 1−
√
x2 + 2c2x+ 1

1− c2 (3.13)

For the AC1 routine safety message periodically generated in a vehicle, we use a D/G/1

queue to model the system, but the closed-form formula for the queue length distribution is

not readily available. Instead, we adopt the well-known Kramer and Lagbenbach-Belz (KLB)

G/G/1 formula [133] and assign the squared coefficient variation of the arrival process by

zero to approximate the expected number of packets in a D/G/1 queuing system

x ≈ ρ+ ρ2c2e
−2(1−ρ)

3ρc2

2(1− ρ) (3.14)

Numerical results in [133] indicate that KLB formula provides very good approximation for

D/G/1 queue. Since it is extremely difficult to analytically invert the KLB equation (4.18) to

get a closed form for server utilization ρ = G(x). We thus numerically determine (x, ρ) from

the KLB equation (4.18) for a given parameter c, and then apply a curve fitting approach

based on the (x, ρ) data pair to find the utilization function ρ = G(x(t)) in the form of a

polynomial, that is

G(x) = an(c)xn + an−1(c)xn−1 + ...+ a0(c) (3.15)

Given the models above, we now consider a network withM vehicles, an arbitrary vehicle

i generates AC0 emergency (class 0) and AC1 routine (class 1) traffic with the mean rate

λ0
i (t) and λ1

i (t), respectively (i.e. f jin_i(t) = λji (t), ∀i = 1, 2, . . . ,M , ∀j = 0, 1). Let xji (t)

represent the average number of packets in the corresponding subqueuing system j of vehicle

i at time t and ẋji (t) is the change rate of x
j
i (t). In a vehicular network, nodes move into/out

of each other’s carrier sensing range and result in the dynamic change of network hearing

topologyH(t). As a result, vehicle i’s class j packet service rate µji (t) and coefficient variation
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of service time cji are time varying functions of the number of vehicles in its carrier sensing

range. Thus, we incorporate the network hearing topology H(t) to write the flow out term

of Equation (3.10) as

f jout_i(t) = −µji (H(t))Gj
i

(
cji (H(t)), xji (t)

)
, ∀i = 1, 2, . . . ,M, ∀j = 0, 1 (3.16)

After substituting G(x(t)) (3.13) back into the general fluid flow model (3.11), we finally

determine the fluid flow model for an arbitrary vehicle i with AC0 emergency traffic (class

0) as

ẋ0
i (t) = −µ0

i (H(t))
x0
i (t) + 1−

√
x0
i (t)2 + 2c0

i (H(t))2x0
i (t) + 1

1− c0
i (H(t))2 + λ0

i (t), ∀i = 1, 2, . . . ,M (3.17)

Similarly, we can also obtain the fluid flow model for an vehicle i with AC1 routine traffic

(class 1)

ẋ1
i (t) = −µ1

i (H(t))
[
an
(
c1
i (H(t))

)
x1
i (t)n + an−1

(
c1
i (H(t))

)
x1
i (t)n−1 + ...+ a0

(
c1
i (H(t))

)]
+λ1

i (t), ∀i = 1, 2, . . . ,M (3.18)

where the service rate µji and the coefficient variation of service time cji are calculated for all

vehicles based on the network hearing topology H(t) at every time step [t, t + ∆t]. Finally,

the differential equation based fluid flow models (3.17) and (3.18) can be solved numerically

using standard numerical integration techniques (e.g., Runge-Kutta algorithm).

3.3.3 Performance Metrics

To study the performance of safety message broadcast in DSRC based vehicular commu-

nications, there are two important performance metrics: packet delay and packet delivery

ratio (PDR), as analyzed below.
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3.3.3.1 Packet Delay The packet delay is defined as the period between the time of

generating a packet at sender vehicle and time of receiving that packet. Note that IEEE

802.11p operates in the broadcast mode, which does not support retransmission and packet

response from the receiver. Since IEEE 802.11 EDCA essentially follows the non-preemptive

priority scheduling, Little’s law is applicable for each individual class of queueing system

[134]. From Little’s law, the average number in the queuing system is equivalent to the

product of the average arrival rate and the average sojourn time in the system. We denote

xji as the average number of packets in vehicle i’s subqueuing system j, λji is the corresponding

arrival rate and W j
i is the average sojourn time of class j packets, then W j

i = xji/λ
j
i . With

the assumption of constant arrival and service rates over a small step, the change in average

sojourn time can be related to the rate of change in average number of packets in the system

Ẇ = ẋ/λ. Let Di denote the average packet delay at vehicle i on this path, and ε represents

the link propagation delay. Hence, we can finally write the delay of vehicle i’s class j packet

at time t as

Dj
i (t) =

∫
Ẇ j
i (t)dt+ ε =

∫ ẋji (t)
λji (t)

dt+ ε, ∀i = 1, 2, . . . ,M, ∀j = 0, 1 (3.19)

3.3.3.2 Packet Delivery Ratio The packet delivery ratio is interpreted as the proba-

bility of the transmitted packet to reach all intended receiving vehicles within the coverage

of a given sender vehicle. It illustrates the reliability of packet transmission over the wireless

medium. Following the basic approach in [132], we derive the performance measure of packet

delivery ratio as follow. In the following analysis, we assume that the network hearability

between two vehicles is a binary value, as indicated in Section 3.1. Suppose the tagged

vehicle i transmits a packet, we first calculate the exposed collision probability pexposedi,r with

the packet sent by vehicle r within vehicle i’s carrier sensing range (i.e. hir = 1)

pexposedir = τrhir (3.20)

where τr denotes the transmission probability of the exposed vehicle r for both AC0 and AC1

traffic. Then, we consider the packet collision probability due to hidden terminals during

the vulnerable period. Here, the vulnerable period Tv is the time period when hidden nodes
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can start a transmission that would collide with the packet from the tagged transmission

node. We denote tdata as the transmission time of data packet. For IEEE 802.11p, this

vulnerable time interval spans over (−tdata, tdata) with respect to the transmission start time

of the tagged node and the vulnerable period Tv equals to 2tdata. Here, we assume that all

vehicles in the network are timely synchronized and packet size is identical for both ACs so

that transmission time of one packet tdata is a constant. To avoid collision with the packet

transmitted by the tagged vehicle i, we consider the condition that no packet is sent out by

the hidden vehicle j during Tv with probability (1− τj)
Tv
ε , where ε denotes the duration of

one slot time defined in the IEEE 802.11p standard. Since each vehicle can only possibly

transmit a packet at the beginning of a time slot, Tv/ε represents the number of chances

vehicle j could transmit. As a result, the packet collision probability between the tagged

vehicle i and all its hidden nodes within the reception range of node r in anM -node vehicular

network is given by

phiddenir = hir

1−
N∏

j=1,j 6=i
(1− τj)

Tv
ε

(1−hij)hrj

 (3.21)

With the assumption that the events of packet collision with exposed terminals and hidden

terminals are independent with each other, we have the overall collision probability of the

transmitted packet from vehicle i to vehicle r as follow:

pcir = 1− (1− pexposedir )(1− phiddenir ) (3.22)

Finally, the delivery ratio of the tagged vehicle i’s class j packet at time t can be calculated

by dividing the total class j traffic received at all exposed vehicles with the overall class j

traffic broadcasted from the tagged vehicle i

PDRj
i (t) =

N∑
r=1

f jout,i(t)hir(t)(1− pcir(t))
N∑
r=1

f jin,i(t)hir(t)
, ∀i = 1, 2, . . . ,M, ∀j = 0, 1 (3.23)
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3.4 PERFORMANCE MODELING ALGORITHM

We now codify our modeling procedure into the following algorithm to estimate the time

dependent behavior of tagged vehicle i in a vehicular network over the desired time interval

[t0, tf ].

1. Configure the vehicular network including packet length, traffic arrival rate, mobility

model, vehicle density and PHY/MAC layer parameters.

2. At time t, determine the network hearability by a M ×M square matrix H(t). If t = t0

or H(t) 6= H(t − ∆t), then go to step 3 to calculate the updated mean and variance of

MAC service time. If H(t) = H(t−∆t), retain the current MAC service time distribution

and jump to step 4.

3. Derive the PGFs of vehicle i’s MAC service time (i.e. S0
i (z) and S1

i (z)) for AC0 routine

traffic and AC1 emergency traffic, respectively, according to Equation (3.3)-(3.6). Then,

calculate the first and the second moment of the MAC service time (i.e. µji and σji ),

according to Equation (3.7)-(3.8).

4. Numerically solve the fluid flow model (3.17) and (3.18) to get the new xji (t+ ∆t) at the

end of the time interval [t, t+∆t], which becomes the initial condition for [t+∆t, t+2∆t].

Meanwhile, f jin,i(t+ ∆t) and f jout,i(t+ ∆t) are also obtained.

5. Estimate vehicle i’s class j packet delay Dj
i (t+ ∆t) by integrating the time-varying packet

sojourn time Ẇ j
i (t+ ∆t) plus the link propagation delays ε, according to Equation (3.19).

6. Evaluate vehicle i’s class j packet delivery ratio PDRj
i (t+ ∆t) by dividing the overall

delivered traffic with the total offered traffic, according to Equation (3.23).

7. Increment time t = t+ ∆t. If t < tf , go back to step 2; else stop.

Any standard numerical integration method can be used to solve differential equations

such as (3.17) and (3.18). Here, we use the fourth-fifth order Runge-Kutta algorithm in

Matlab to generate numerical results in Section 3.6.
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3.5 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL

EQUATIONS (ODE)

3.5.1 Order of Accuracy and Stiffness

Since our fluid flow model is essentially consisted of ODEs, we hereby provide a discussion

on two important concepts involved in numerically solving ODEs, those are order of accuracy

and stiffness.

Order of accuracy evaluates how well the numerical algorithm approximates the solution.

A numerical solution to a differential equation is said to be nth-order accurate if the error

is proportional to the step size h to the nth power. For example, the order of accuracy of

fourth-order Runge-Kutta method is O(hn). Usually, the algorithm increases the step size

to improve the computation efficiency when the solution varies less. Alternatively, when the

solution curve displays much variation, step size has to be reduced to guarantee the local

error per step is within the tolerance level.

An ordinary differential equation problem is stiff if the solution being sought is varying

slowly, but there are nearby solutions that vary rapidly, so the numerical method must take

small steps to obtain satisfactory results. The reason of stiffness is that the equation includes

some terms that can lead to rapid variation in the solution. Stiffness is an computation

efficiency issue. If one does not care about how much time a computation takes, stiffness

is not an issue. Nonstiff methods can solve stiff problems, but a long computation time is

required. Instead, stiff methods are able to compute solutions more efficiently.

3.5.2 ODE Solvers in MATLAB

In MATLAB, differential equations can be solved numerically with the commands listed

in Table 3. The algorithms used in the ODE solvers vary according to order of accuracy and

the type of ODE (stiff or nonstiff) they are designed to solve.

In general, ode45 is the best function to apply as a “first try” for most problems [135].

ode45 uses the fourth-fifth order Runge-Kutta algorithm, while ode23 adopts the same al-

gorithm with the second and third order formulas. Since ode23 works with lower order
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Table 3: ODE Solvers in MATLAB

Solver Order of Accuracy Stiffness Algorithm

ode45 Medium Nonstiff Runge-Kutta

ode23 Low Nonstiff Runge-Kutta

ode113 Low to high Nonstiff Adams

ode15s Low to medium Stiff NDFs (BDFs)

ode23s Low Stiff Rosenbrock

ode23t Low Moderately Stiff Trapezoidal

formulas, ode23 generally gives less smooth solution than ode45 [136]. ode113 uses Adams

integration algorithm, which is more efficient than ode45 and ode23 at stringent error toler-

ances or a computationally intensive ODE [137]. Regarding the stiff differential equations,

the previous solvers will not be able to find an accurate solution, or may need excessive

computation times for taking very small time steps. In that case, ode15s is a better choice,

since it is a multistep variable-order solver based on the numerical differentiation formu-

las (NDFs) and optionally the backward differentiation formulas (BDFs) [138]. ode23s is a

one-step solver, and it may be more efficient than ode15s at crude tolerances [139]. ode23t

is used if the problem is only moderately stiff and you need a solution without numerical

damping [138]. All of these numerical approaches are able to solve a single ODE or any size

of an ODE system under the condition of Picard-Lindelöf theorem, which guarantees the

existence and uniqueness of the solutions [140].

3.6 MODEL COMPARISON BY DISCRETE EVENT SIMULATION

In order to evaluate the accuracy of our analytical model, we compare the modeling

results with the corresponding simulation results. The simulation of a vehicular network is

conducted in OPNET while the equivalent fluid-flow based analytical model is solved by using
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Runge-Kutta numerical integration technique in MATLAB. In the experiment, each vehicle

is equipped with an IEEE 802.11p-compliance RF transceiver, and the traffic load is set to be

Poisson. Due to low arrival rate of safety message with short packet size, we assume all the

transmission queues have infinite buffer size which can keep all backlogged packets. All the

PHY/MAC layer parameters used in both the simulation and analytical model are adopted

from the IEEE 802.11p standard [1] and listed in Table 4. Here, the data rate is set to be

3 Mbps with BPSK modulation, which is a reasonable choice for a freeway scenario [141].

Such a simple modulation mechanism only requires low sensitivity, and thus enlarges vehicle’s

transmission coverage area and improve the receiver’s robustness to multipath fading and

Doppler shift. Also, we consider that every broadcast packet includes 400 bytes security fields

containing a digital signature plus a certificate, which are very important for inter-vehicle

communications in practice.

Table 4: IEEE 802.11p Parameters

Packet payload size 300 bytes

MAC header size 224 bits

PHY header size 48 bits

Data rate 3 Mbps

Short Inter-frame Space SIFS 32 µs

Time slot duration ε 13 µs

AC0 Inter-frame Space AIFS[0] 58 µs

AC1 Inter-frame Space AIFS[1] 71 µs

Minimum contention window size 16

Retry limit 1

We first examine the accuracy of our steady state performance model for both AC0 and

AC1 traffic in a vehicular network. The packet service time distribution for both traffic

classes are calculated according to the derivation in Section 3.2. Then, we model the pack-

et transmission queues for AC0 emergency traffic and AC1 routine traffic as M/G/1 and

D/G/1, respectively. Figure 7(a)-(b) depicts the steady-state number of packets in both
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AC0 and AC1 queueing systems as a function of various traffic load of AC0. As seen from

the figure, the average number of packets in both AC0 and AC1 queueing systems is in the

direct proportion to the increase of AC0 traffic load, but with different growth rate. Since

the traffic load of AC0 enters its corresponding queue, the number of packets in AC0 queuing

system is inevitably impacted by the arrival rate. Meanwhile, since 802.11p EDCF assigns

AC1 traffic with lower priority than AC0 to access the channel, the intensity of AC0 traffic

load can also influence the queue size of AC1 traffic. In Figure 8(a)-(b), the steady-state

sojourn time for both queueing systems are evaluated according to Little’s law. Due to the

high-priority access of AC0, the growth of AC0 traffic load is alleviated by consuming more

portion of the bandwidth so that the queueing delay of AC0 packets does not rise up sig-

nificantly. At the same time, less bandwidth is shared by AC1 traffic and thus the delay of

AC1 packets is prolonged. As shown by the legends of both figures, we parameterize each

curve by the duplet [number of vehicle in the same carrier sensing range N , traffic load of

AC1 λ1 (packet/sec)]. By varying theses parameters in different scenario, we demonstrate

the individual and combinational effects of all these parameters on the system performance.

As we can see from Figures 7-8, the good match between the analytical results and the

steady-state simulation results shows that our analytical steady-state model can accurately

describe the IEEE 802.11p MAC.

Next we evaluate the tagged vehicle’s time dependent performance due to node mobility

in a vehicular network for both traffic classes. In this experiment, we consider a typical

eight-lane freeway with four lanes in each direction, and each lane is 400 meters long and

3.5 meters wide, as shown in Figure 9. The packet transmission range of all vehicles is

100 m, and their speed is uniformly distributed within 35-40 meters/second (i.e. 78.3-89.5

miles/hour). All vehicles move according to the freeway mobility model given in [142].

We create three scenarios with various vehicle densities and traffic loads and examine their

effect on tagged vehicle’s performance (i.e. packet delay and PDR) in Figures 10-14. In

these figures, the vehicle density of the lanes towards the same and opposite directions of

tagged vehicle is denoted as [ds, do], and the generation rate of AC0 and AC1 class traffic

is represented by [λ0, λ1]. By using fluid flow model, we are able to look into the real-time

performance of the tagged vehicle, according to the instantaneous network topology. The
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Figure 7: Average number of packets in AC0 and AC1 queuing systems vs. traffic load of

AC0 packet.
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Figure 8: Average sojourn time in AC0 and AC1 queuing systems vs. traffic load of AC0

packet.

49



equivalent simulation model is set up and conducted by following nonstationary simulation

method [17]. The steady state results are also shown by averaging the simulation results

over the time. In addition, we plot the results obtained from the pointwise stationary model

[114], which approximates the nonstationary queuing system by using steady-state formula

at each time step.

Tagged vehicle                   Exposed vehicle                   Hidden vehicle         

Tagged vehicle                   Exposed vehicle                   Hidden vehicle         

(a) t = 0 second
Tagged vehicle                   Exposed vehicle                   Hidden vehicle         

Tagged vehicle                   Exposed vehicle                   Hidden vehicle         

(b) t = 1 second

Figure 9: Network hearing topology of the tagged vehicle at sampled time points.

In Figures 10-11, the packet delay consists of the medium access delay and the packet

transmission delay. Since the packet transmission delay is fixed due to a constant packet size

in our experiment, the variation of packet delay comes from the change of medium access

50



delay because of the dynamic hearing topology. As shown in Figure 3, when vehicles moving

towards left continuously get into the carrier sensing range of the tagged vehicle, more and

more vehicles contend to access the channel. As a result, the medium access delay of the

tagged vehicle rises up every time when new vehicles move into its carrier sensing range.

Due to the light traffic load and high-priority service for AC0 emergency traffic, its packet

delay is about half of the delay experienced by AC1 routine traffic.

In addition, the packet delivery ratio (PDR) for both classes is evaluated in Figures 13-

14. Initially, the packet collision probability steps up, once additional vehicles move into the

carrier sensing range of tagged vehicle and compete to access the channel. But meanwhile,

less hidden terminals of the tagged vehicle exist in the network. In another words, the tagged

vehicle can sense more and more peers in the network, so that the collision probability is

gradually decreased and thus improve the PDR after 0.3 second due to the elimination of

hidden terminals. The dynamic behavior of the packet collision probability is plotted in

Figure 12. In Figures 13-14, the dropping spike of PDR at each topology transition comes

from the fact that a newly-joined vehicle cannot receive the packet immediately from the

tagged vehicle. Because of the longer medium access delay of AC1 routine traffic, such

spikes are more significant than AC0 emergency traffic. But still, the PDR of both classes

are similar because all the transmitted packets by the tagged vehicle experience the similar

collision probability, which depends on the transmission probability of the rest vehicles in

the network.

In Figures 10-14, we first examine the effect of vehicle density on the nonstationarity of

network performance by comparing the numerical results in scenario 1 and 2. By changing

the vehicle density from a balanced case [0.08 0.08] vehicle/m to an imbalanced case [0.1

0.01] vehicle/m, we observe that the network behavior becomes more nonstationary. In

reality, such an imbalanced vehicle density phenomenon occurs often. For example, during

the rush hour in the morning, the lanes towards downtown are much more crowded than

the lanes in the opposite direction. With imbalanced vehicle density (i.e. low density on the

tagged vehicle direction and high density on the opposite direction), the change of number

of vehicles within carrier sensing range of the tagged vehicle is significant so that it triggers

large variations of tagged vehicle’s behavior. Then, we increase the AC0 traffic load of each
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(b) Scenario 2
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(c) Scenario 3
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Figure 10: Delay of AC0 packets transmitted by the tagged vehicle for various scenarios of

([ds, do], [λ0, λ1]).
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(b) Scenario 2
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Figure 11: Delay of AC1 packets transmitted by the tagged vehicle for various scenarios of

([ds, do], [λ0, λ1]).
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Scenario 3:  time Dependent (Simulation)
Scenario 2:  time Dependent (Simulation)
Scenario 1: time Dependent (Simulation)
Time Dependent (Analytical)
Steady State (Analytical)

Figure 12: Collision probability for various scenarios.

vehicle from 5 pkt/s in scenario 2 to 10 pkt/s in scenario 3. Since the growth of transmission

attempt of each vehicle inevitably increase the packet collision probability in network, both

packet delay and packet delivery ratio of the tagged vehicle are degraded. As seen from

Figure 10-14, both steady state model and pointwise stationary model cannot capture the

transient behavior of the network. Instead, the fluid flow model can provide fairly accurate

instantaneous results, all of which match well with the discrete event simulation results.

Finally, we compare the accuracy of steady state (SS) model, pointwise stationary (PS)

model and fluid flow (FF) model by using the results obtained from nonstationary simulation

as the benchmark. As listed in Table 8, the maximum deviation of all three models is cal-

culated by using Maximum Deviation = Max( |Simulation value−SS/PS/FF Model value|
Simulation value

× 100%).

Here, the value denotes the time-dependent result of the plots obtained by the correspond-

ing technique. In the experiment, the network becomes more and more nonstationary from

scenario 1 to 3 due to imbalanced vehicle density and high traffic load. Since the accuracy of

SS model and PSA model depends greatly on the rate of time-varying changes, their maxi-

mum deviation of time dependent result can be as high as 49.24% and 156.39% respectively

in scenario 3. Instead, the fluid flow model performs much better and remains the error of

nonstationary response less than 5%.
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(b) Scenario 2
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Figure 13: Delivery ratio of AC0 packets transmitted by the tagged vehicle for various

scenarios of ([ds, do], [λ0, λ1]).
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Figure 14: Delivery ratio of AC1 packets transmitted by the tagged vehicle for various

scenarios of ([ds, do], [λ0, λ1]).
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Table 5: Accuracy Comparison of Various Modeling Techniques

Scenario Performance Traffic Max. Deviation Max. Deviation Max. Deviation

No. Metric Class (Sim vs. SS) (Sim vs. PS) (Sim vs. FF)

1 Delay AC0 2.91% 1.92% 1.82%

1 Delay AC1 4.82% 3.02 % 1.83 %

1 PDR AC0 5.3% 1.89 % 1.72 %

1 PDR AC1 5.78 % 2.5 % 1.73 %

2 Delay AC0 89.66% 11.3% 1.82%

2 Delay AC1 117.67% 17.35% 2.11%

2 PDR AC0 25.55% 7.41% 2.55%

2 PDR AC1 25.73% 12.07% 2.56%

3 Delay AC0 83.71 % 11.48 % 1.82 %

3 Delay AC1 112.35 % 18.98 % 2.13 %

3 PDR AC0 29.38 % 9.04 % 2.54 %

3 PDR AC1 29.78 % 12.61 % 2.58 %
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3.7 COMPUTATION SCALABILITY

We first analyze the computation complexity of our fluid flow model according to the

algorithm in Section 3.4. Initially, the first and second moments of packet service time are

calculated based on the network hearing topology, as given by step 1 to 3. This computa-

tion process is time efficient and can be done off-time, thus this process is not counted in

the following on-line computation complexity analysis. From step 4 to 7, various network

performance are estimated by integrating a set of differential equations with a specific net-

work hearing topology at each time interval ∆t. The exact number of arithmetic operations

required for solving the differential equations over one step time is hard to determine [143].

However, an upper bound on the computation time complexity can be obtained. Let T refer

to the desired simulation time interval, then T/∆t represents the total number of steps. Let

K represent the average time to execute one arithmetic operation on a CPU. Following [143],

C(n, p, α) denotes the upper bound on the number of arithmetic operations required for each

step time, so that n differential equations can be solved by pth order explicit Runge-Kutta

algorithm with maximum error e−α. Hence, an upper bound of the model computation time

turns out to be K ·(T/∆t) ·C(n, p, α). According to the expression of C(n, p, α) in [143] with

the predefined value of p and α, C increases linearly with n. As a result, only considering the

increase of n in K · (T/∆t) · C(n, p, α), the computational time complexity of our model is

upper bounded by O(n). For an M -node vehicular network with AC0 and AC1 traffic loads,

the number of differential equations n equals to the number of traffic flows 2M . Therefore,

the computation time complexity of our fluid flow modeling algorithm is upper bounded by

O(M).

Then, we compare the computation time of the vehicular network fluid flow model with

the nonstationary simulation on a sequence of sample networks. In the experiments, all

vehicles broadcast both Poison traffic of AC0 as well as CBR traffic of AC1 with the rate of

5 pkt/s and 20 pkt/s, respectively. Vehicles’ movement follows the freeway mobility model

[142]. In Table 6, we list the computation time of the average number of packets at each

vehicle in the sample networks over 100 seconds by both fluid flow model and simulation.

All the computations are executed on a PC with Intel i5-450M 2.4GHz processor and 4GB
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memory. The off-line computation time for the first and second moments of IEEE 802.11p

packet service time is not counted in the reported time. To study the time varying behavior

of the network via simulation, we perform the nonstationary simulation to average over

an ensemble of statistically identical results generated by distinct independent runs with

different random number seeds [17] [18]. Here, we execute 5000 independent runs in OPNET

to observe the ensemble averaged system behavior versus time. As seen from the table, the

computation time of nonstationary simulation rises up dramatically with the network size.

For the fluid flow model results, we curve fit the computation time data versus network

size M ranging from 3 to 200 and obtain the growth rate as Θ(0.562M − 0.769), which is

compliant with the expected upper bound discussed above.

In addition, the accuracy of fluid flow model is examined with the increase of network size

by comparing with the results obtained from nonstationary simulation as the benchmark.

The model accuracy is calculated by averaging time dependent deviation of the results be-

tween modelling and simulation. In the experiment, since the change of networking hearing

topology triggers the variation of packet service time, the increase of network size inevitably

raises up the frequency of such a variation and leads to higher level nonsationarity in the net-

work. Table 6 shows that the fluid flow model can always provide fairly accurate performance

evaluation with tolerable deviation from simulation results.

Table 6: Computation Time and Accuracy Comparison

# of # of Diff. Simulation Fluid Flow Model

Nodes Equations (sec) Model (sec) Accuracy

3 6 129.32 1.98 0.34%

5 10 284.97 2.16 0.84%

7 14 381.32 2.96 1.21%

9 18 593.94 4.01 1.53%

20 40 3095.28 8.95 1.97%

50 100 79682.41 26.73 2.83%
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3.8 EVALUATION OF NONSTATIONARITY IN VEHICULAR

NETWORKS

To evaluate the dynamics of the nonstationary queuing system in each vehicle, we can

take advantage of our performance model to estimate the transient period, which is the

time interval when system going from one stationary state to another. Hence, the transient

period provides a measure of how much time does the system need to reach steady-state

equilibrium after a perturbation. Several methods have been suggested for approximating

the length of the transient period of a queuing system with an infinite buffer space. As a

noteworthy work, Odoni and Roth [144] developed a closed-form approximate expression for

the transient period θ that fits well with empirical results for extensive queuing systems

θ ≈ 5.3 (C2
a + C2

s )
2.8µ

(
1−√ρ

)2 (3.24)

where the transient period θ is approximated by the time it takes for the system to stay within

a 0.5% of the steady-state results. By using this formula, we compute the transient period

of the transmission queue at each vehicle in a contention-based 802.11p vehicular network,

as shown in Figure 15. We observe that the increase of packet arrival rate and the number

of vehicles in the same carrier sensing (CS) range lead to the growth of transient period,

since both of these two effects intensify the contention of channel access and deteriorate the

packet service rate of each vehicle. Also, Figure 15 shows that the transient period of AC1

routine traffic is much longer than the one AC0 emergency traffic needs to reach the steady

state. The reason is that AC1 routine traffic is offered at a high rate but served with low

priority so that both its low service rate µ and its high utilization ρ make its transient period

θ considerable, according to Equation (3.24). When the transient period is in the unit of one

second or even more, the high-speed vehicle could move in/out of the carrier sensing range

of the tagged vehicle during the transient period. As a result, the unsettled queue could be

perturbed all the time by the dynamic hearing topology and remain nonstationary. Such a

phenomenon can be observed in Figure 10-14, where the AC1 routine traffic shows longer

transient period than AC0 emergency traffic once the hearing topology is updated.
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Figure 15: Estimation of initial transient period at various scenarios of [λ0, λ1].

Furthermore, we study the nonstationarity of network performance impacted by the

vehicle velocity as well as vehicle density at two opposite directions. It is intuitive to imagine

that the transient/nonstationary effects on the tagged vehicle mainly comes from the high-

speed movement of the vehicles in the opposite direction, since their relative speed with the

tagged vehicle is much higher than the one with the vehicles in the same direction as the

tagged one. In the experiments, we first set the homogeneous vehicle density with very low

value (i.e. [0.01, 0.01] vehicles/meter) for both directions and the network performance is

shown to be quite stationary, as shown by the bottom two curves in Figure 16. However, when

the vehicle density becomes imbalanced, the percentage of transient period grows up, which

indicates that the network performance becomes nonstationary. Meanwhile, the frequency

of this variation depends on vehicle’s speed, which we evaluate from 10 to 35 meters/second

for all vehicles. In addition, we observe that the percentage of transient period of AC1

traffic is always higher than the one of AC0 traffic for all the scenarios due to AC1’s high

traffic load and low-priority service. For the imbalanced vehicle density with high-speed

mobility, one would expect that transient period could dominate the network behavior in

vehicular networks. For example, in the scenario of [0.1, 0.01] vehicles/meter, the percentage

of transient period of AC1 routine traffic can rise up to 75% when the movement velocity
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reach 35 meter/sec, as shown by the top curve in Figure 16.
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Figure 16: Percentage of transient period vs. vehicle velocity at various scenarios of [ds, do].

3.9 SUMMARY

In this chapter, we propose a fluid flow based performance model to study the time

varying behavior of vehicular networks by using numerical method based queuing analysis.

Numerical results, illustrating the application of our model, show that it can provide rea-

sonably accurate performance results efficiently. We believe that the proposed performance

modeling framework is a valuable tool to explore design alternatives of vehicular network-

s, and to get a quick estimate on the performance variation in response to some dynamic

changes of network conditions.
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4.0 TIME DEPENDENT PERFORMANCE ANALYSIS OF MULTIHOP

WIRELESS NETWORKS

In multihop wireless network research, while experimentations have taken off during

the last years, we are still relying on simulations for examining the performance of various

protocols on large scale networks. Nevertheless, many of the existing simulation tools are

known to be lacking scalability. Another weakness of most simulation studies of multihop

wireless networks is that steady state analysis is used even though transient or nonstationary

periods will occur often and likely dominant the network behavior.

In this chapter, we propose a time varying performance model for multihop wireless net-

works. We model the offered traffic at each node as a Poisson, CBR or general process to

represent different types of traffic (e.g. data or video traffic). Our proposed performance

model is a hybrid of time varying connectivity matrix and nonstationary network queues.

Network connectivity is captured using stochastic modeling of adjacency matrix by con-

sidering node mobility. Nonstationary network queues are modeled using fluid flow based

differential equations to approximate the time varying behavior. The notations adopted in

this chapter are summarized as follows:

The outline of this chapter is as follows. Section 4.1 presents our modeling approach for

time varying network topology. Section 4.2 provides the details of the node queueing model

with nonstationary condition. These two components are combined together in Section 4.3

to model the multihop wireless networks. Section 4.4 codifies our performance modeling

procedure into an executable and efficient algorithm. In Section 4.5, we validate our hybrid

model by discrete event simulation with a series of numerical results. Section 4.6 studies

the computational time complexity of our proposed modeling technique and gives numerical

results illustrating the advantages of our method in comparison to simulation. Section 4.7
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Table 7: Notation list

Notation Definition

aij Link connectivity between node i and j

Ci Transmission link capacity of node i(bit/sec)

D(s,d) End-to-end delay of traffic flow from source s to destination d (sec)

ETEavg average end-to-end delay in network (sec)

Gj
i Link utilization of class j traffic at node i

Gavg Average link utilization in network

P (s,d) Set of all nodes on the path of stream (s, d) except destination node d

f jin_i Node i’s incoming traffic flows of class j (pkt/s)

f jout_i Node i’s outgoing traffic flows of class j (pkt/s)

Li Length of packet transmitted by node i

M Number of nodes in a multihop wireless network

N Number of input traffic flows into a queuing system

rjik routing indicator at node i routed to node k for class j traffic

R Transmission range of a node (meter)

S Number of traffic classes in a queuing system

T Network throughput (bit/sec)

Q Survival function of number of packets in a queuing system

Wi Queueing delay at node i (sec)

W (s,d) Overall queueing delay along the path from source s to destination d (sec)

xji Number of class j packets in node i

λji Arrival rate of class j traffic into node i (pkt/s)

µi Packet service rate of node i (pkt/sec)

γji Class j traffic generated by node i (pkt/s)

ε Link propagation delay (sec)

δi Forwarding delay at node i (sec)
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illustrates the capability of our model to capture the network transient behavior due to node

mobility and traffic load. Our summary in the future work are given in Section 4.8.

4.1 MODELING NETWORK CONNECTIVITY

The network topology in multihop wireless networks can change dynamically depending

on the link connectivity between each node pair. When nodes in the network are allowed

to move arbitrarily, it will lead to frequent changes in the topology of the queuing network

model. In this section, we introduce the network topology modeling by using a time varying

adjacency matrix.

Consider a multihop wireless network consisting of M nodes, the network topology in

terms of connectivity at any point in time t is modeled by an M × M adjacency matrix

denoted as A(t).

A(t) =



a11(t) a12(t) . . . a1M(t)

a21(t) a22(t) . . . a2M(t)
... ... ...

aM1(t) aM2(t) . . . aMM(t)


(4.1)

where,

aij(t) =

 1, if node i and j are directly connected at time t (i 6= j)

0, otherwise

With the assumption that all radios have a perfect coverage on a two-dimensional space,

the problem of link connectivity is simplified by judging whether the distance dij between

node i and node j is within the circular coverage range R (i.e., if dij ≤ R at time t, aij(t) = 1;

otherwise aij = 0). Moreover, it is widely understood that the actual radio link connectivity

may differ from this simple model. Even though two nodes are in the radio range of each

other, they cannot always hear each other without any data loss, and the bit error rate is

typically a function of the signal to noise plus interference ratio. In order to represent real
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link quality as well as connectivity, we let aij(t) be a real number between 0 and 1 (i.e.,

aij(t) ∈ (0, 1] if link from node i to j exists, otherwise aij(t) = 0).

To model node mobility, the dynamic network topology can be reflected in the adjacency

matrix by changing the value of aij(t) with time. The topology change is based on a series

of events, such as, links being broken and removed from the topology as two nodes move

away from each other, or links being added to the topology when two nodes come into

radio range. Information about the node movement and connectivity can be determined

from experimentally gathered trace data, a discrete event simulation of a mobility model

(e.g., random waypoint [64]) or stochastic/probabilistic models of mobility effects on link

connectivity [70]. In the trace based approach, the data is mined for the link connectivity

information versus time. In the simulation approach, a mobility model is used to create the

network topology dynamics. Specifically, given a geographic space, a set of configured nodes

and the propagation environment, every node pair is checked for the possible connectivity

change based on their current speeds and directions. Note, that changes in speed, direction

and power level are also considered events. The event times are placed in chronological order

and as time evolves the pair-wise connectivity calculation is repeated for every event time and

the matrix is changed accordingly. In this way, the adjacency matrix can reflect the topology

change dynamically. A computationally simpler approach is to model mobility by directly

manipulating the elements of the adjacency matrix according to a planned experiment (as

illustrated in Figure 22-26) or a stochastic/probabilistic model (as shown in Figure 30-35).

Note that, a probabilistic model (e.g., two-state MMPP [70]) can be developed either from

the mobility model assumptions and analysis [64] or from fitting a statistical model to data

gathered from a test bed or simulation.

4.2 NODE QUEUING MODEL

In multihop wireless networks, the traffic in the network is normally divided into a number

of classes and the control actions (i.e. routing and flow control) are based on the class type.

Hence, we now extend the single class fluid flow model in Equation (3.9)-(3.11) to model the
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time varying behavior of the queue with multi-class input traffic at each network node. As

illustrated in Figure 17, a single queue has S classes of input traffic flows with the arrival

rate of λ1(t), λ2(t), . . . , λS(t), respectively.

(2)
inf Cμ

1λ

( )N
inf

(1)
outf

(2)
outf

( )N
outf

( )
1

N l
l

x x
=

= ∑

2λ

λS

Figure 17: Queuing model with S classes of traffic.

The aggregated traffic can be considered as one arrival process λ(t) = ∑S
l=1 λ

l(t). Let xl(t)

represent the ensemble average number of class l packets in the system at time t, the total

average number in the system is defined as x(t) = ∑S
l=1 x

l(t). Then, the fluid flow model for

the overall traffic is:

ẋ(t) = −µG(x(t)) + λ(t) (4.2)

We note that the flow conservation principle also applies to each traffic class. Therefore, a

state model can be developed for each class with the average link utilization function of class

l traffic G(xl(t), x(t)), which is a function of the total average number in the system x and

the average number of class l packets in the system xl.

ẋl(t) = −µGl(xl(t), x(t)) + λl(t) ∀l = 1, 2, . . . , S (4.3)

Thus, the multi-class queueing system can be described by a set of S coupled differential

equations, each representing the traffic behavior of its own class. We have seen that the

average server utilization of the fluid flow model depends on stochastic modeling assumptions

of the queue under study. Therefore, various queue types with different traffic arrival process

will lead to separate fluid models.
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4.2.1 Modeling the Queue with Poisson Traffic

Now we consider a multihop wireless network consisting of nodes with deterministic

service time and Poisson traffic load [127]. Hence, each node is modeled as an M/D/1

queue. From queueing theory, the average packet number in the system at steady state is

given by x(t) = ρ + ρ2/(2(1− ρ)), where ρ = G(x(t)) = λ(t)/µ. We match the steady-state

equilibrium point of the fluid flow model with the M/D/1 model to obtain the utilization

function G(x(t)). Under steady state conditions (i.e. ẋ(t) = 0), the state model turns out

to be:

ẋ(t) = −µ(x(t) + 1−
√
x(t)2 + 1) + λ(t) (4.4)

For the queue with S classes of traffic, xl(t), and λl(t) represents the ensemble average

number of packets and the arrival rate of class l traffic, while x = ∑S
l=1 xi and λ = ∑S

l=1 λi

denote the total ensemble average number of packets and the mean aggregate arrival rate

into the system. Since the flow conservation principle still applies to each traffic class, a fluid

flow model can also be developed for each class with G(xl(t), x(t)) as the average utilization

function of class l traffic in the multiclass queue.

ẋl(t) = −µGl(xl(t), x(t)) + λl(t) ∀l = 1, 2, . . . , S (4.5)

Note that at steady state, the average number of total packets in theM/D/1 queuing system

is

x(t) = λ

µ
+ λ2

2µ2(1− λ
µ
)

(4.6)

From multiclass queuing theory [49], we can write the steady-state average number of packets

of class l traffic xl(t) as

xl(t) = λl(2µ− λ)
2µ(µ− λ) (4.7)

Following the approach of steady state equilibrium matching with ẋ(t) = 0 and ẋl(t) = 0, we

get λ(t) = µ(x(t)+1−
√
x2 + 1) and λl(t) = µGl(xl(t), x(t)) from (4.4) and (4.5), respectively.
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Solving these two equations along with (4.13), we obtain the utilization function for class l

traffic Gl(xl(t), x(t)) as:

Gl(xl(t), x(t)) =
2xl(t)(

√
x2(t) + 1− x(t))√

x2(t) + 1− (x(t)− 1)
(4.8)

Substituting (4.14) back into (4.5), we get:

ẋl(t) = −µ[
2xl(t)(

√
x2(t) + 1− x(t))√

x2(t) + 1− (x(t)− 1)
] + λl(t)

∀l = 1, 2, . . . , S (4.9)

As a result, a node can be represented by a set of S nonlinear equations of the form of

Equation (4.15) describing the queue length dynamics of each class separately. The multiclass

fluid flow model developed here represents the dynamics of a single node with Poisson input

traffic. Next we develop the time varying queuing model by considering CBR traffic load.

4.2.2 Modeling the Queue with CBR Traffic

Generally, CBR traffic is tailored for on-demand or real time networking services, where

the end systems require predictable response time and continuously available bandwidth

during the life-time of the connection. For CBR traffic, both the packet size of CBR traf-

fic and the packet inter-arrival time are constant. Real-time CBR traffic usually has the

deterministically-bounded delay requirement for one-hop packet service time, and thus the

one-hop packet transmission (service) time is assumed to be deterministic here. In multihop

wireless networks, one-hop deterministic packet transmission (service) times can be achieved

by contention-free transmission with the technique of distributed scheduling [145] or service

differentiation [146]. Deterministic packet transmission (service) times could also approxi-

mately occur in contention-based transmission networks which are sparse or lightly loaded.

For example, energy conserving techniques in WSNs put most of the nodes in sleep modes so

that the network becomes sparse. Moreover, each sensor node only has light traffic to trans-

mit in order to save energy. In multihop wireless networks, it is possible that CBR traffic

offered on the source node might not be exactly CBR after being forwarded to the following
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nodes, since wireless network could induce distortion on CBR traffic including delay jitter

and packet loss, which are considered in Section 4.2.2.2 and Section 4.1, respectively. A

detailed justification of CBR traffic is provided in [128]. In the following, we focus on mod-

eling a queue with CBR traffic streams and consider two cases: (1) where all CBR streams

have the same data rate and (2) when a group of heterogeneous Quasi-CBR (QCBR) traffic

streams with different data rates and delay jitters are multiplexed. The two cases are studied

in turn below.

4.2.2.1 Case I: Identical Sources Following [49], we model a N ∗ D/D/1 queuing

system with the FCFS discipline. There are N input streams with the same packet size as

well as the same arrival period D, which is measured in the unit of service period (i.e. D time

slots). The first arrival of each flow is randomly phased and assumed to be independently and

uniformly distributed over the first arrival period interval [0, D]. Since the server operates

deterministically with the service rate of one packet per slot, the server utilization equals to

ρ = N/D, under the constraint of ρ < 1 for stability. Let L denote the number of packets

present in the system and Q(r) = Pr{L > r} is the survival function of the number of

packets in the system. Then, let A(t − s, t) be the number of arrivals in a time interval

(t − s, t) within the period D (i.e. s ≤ [D], the integer part of D). As noted in [49], the

survival function can be written as:

Q(r) =
[D]∑
s=1

ps(r)π0(r, s) (4.10)

where ps(r) = Pr{A(t − s, t) = r + s} and π0(r, s) = Pr{system empty at t − s | r +

s arrivals in (t − s, t)}. Noting that the binomial distribution provides the probability of

the number of arrivals during the time interval s. Then, the survival function Q(r) [49] can

be written as:

Q(r) =
N−r∑
s=1

[(
S

r + s

)(
s

D

)r+s (
1− s

D

)N−r−s
(
D −N + r

D − s

) ]
for 0 ≤ r < N (4.11)
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where the first three terms in the sum represent the number of arrivals and the last term

represents the probability that the system is initially empty given r+s arrivals. The total av-

erage number in the system x can be found using the survival function Q(r), x = ∑N−1
r=0 Q(r)

[147]. Therefore, for the N ∗D/D/1 queue, x is given by:

x =
N−1∑
r=0

N−r∑
s=1

[(
N

r + s

)(
s

D

)r+s (
1− s

D

)N−r−s
(
D −N + r

D − s

) ]
for 0 ≤ r < N (4.12)

The above formula can be used to numerically determine x for a given N ∗D/D/1 queuing

system (i.e. the values of N and D are known). Here, we assume that a N ∗D/D/1 queue

has a varying number of input CBR streams N , but the CBR traffic period D is unique for all

streams. Since the server utilization equals to ρ = N/D, the data set (ρ, x) can be obtained

from (4.12) by varying the number of input streams N . Then, we apply a polynomial curve

fitting approach using the data set (ρ, x) to find the utilization function ρ = G(x). The

resulting G(x) is in the form of a polynomial (i.e., G(x) = axn + bxn−1 + ... + k) and can

be substituted back into the general fluid flow model (4.2). To determine the utilization

function of class l at a queue, we follow the approach of steady state equilibrium matching

with ẋ(t) = 0 and ẋl(t) = 0. Then, substituting them in Equation (4.2) and (4.3) respectively,

results in

λ(t) = µG(x(t)) (4.13)

λl(t) = µGl(xl(t), x(t)) (4.14)

By combining the above two equations, we obtain the utilization function of class l traffic as

Gl(xl(t), x(t)) = λl(t)
λ(t) G(x(t)) (4.15)

According to Little’s theorem, the average packet sojourn time in the queuing system W

is equal to the steady-state number of packets x divided by the average arrival rate λ, i.e.,

W = x/λ. Because little’s theorem also holds for the multi-class FIFO queue [49], it results

in W l = xl/λl, where W l is the average sojourn time of class l packets. Since all packets are
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served based on the FCFS discipline (i.e. W = W l), we have λl/λ = xl/x. Following the

same approach of steady state equilibrium matching, we can write

λl(t)
λ(t) = xl(t)

x(t) (4.16)

After substituting Equation (4.16) in (4.15), Gl(xl(t), x(t)) can be finally determined as

Gl(xl(t), x(t)) = xl(t)
x(t) G(x(t))

= xl(t)
x(t)

[
axn(t) + bxn−1(t) + ...+ k

]
∀l = 1, 2, . . . , S (4.17)

The resulting Gl(xl(t), x(t)) can be substituted into (4.3) to provide the multi-class traffic

fluid flow model. Notice that S represents the number of traffic classes in the queue in

Equation (4.3) and (4.20), while N in Equation (4.11) and (4.12) denotes the number of

input traffic streams into the queue. Since multiple input streams could be considered as a

single class of traffic and buffered in the same subqueue, we have N ≥ S.

4.2.2.2 Case II: Non-identical Sources Consider the case where a group of hetero-

geneous Quasi-CBR (QCBR) traffic streams with different data rates and delay jitters are

multiplexed on a transmission link under the condition that the total bit rate is less than

the transmission capacity to ensure stability. In our study, each QCBR stream is expected

to be transmitted at the requested constant bit rate, but delay jitter between successive

arrival packets may occur due to either PHY layer propagation error or MAC layer collision

in wireless networks. The packet size remains fixed, but the packet service time could also

be quasi-deterministic with some jitter. We denote this type of queue as Quasi−N ∗D/D/1

queue. The exact formula for the queue length distribution in this type of queue cannot be

obtained. Here, we propose a simple but effective approach based on our analysis in case I.

Specifically, the utilization function of the queue is bounded by assuming “homogeneous traf-

fic”. Suppose there are N input streams and the average packet inter-arrival time of stream

i is denoted as Di for i = 1, 2, . . . , N . Here, the packet inter-arrival time is measured in the

unit of service period. For a lower bound, all the input traffic streams are assumed to be
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fixed with the period of Dmax = max{Di}, and for an upper bound, the traffic period equals

to Dmin = min{Di}. In addition, we use the average traffic period of all traffic streams with

Davg = 1
N

∑N
i=1 Di to approximate the utilization function. Hence, we apply Dmax, Dmin

and Davg into N ∗D/D/1 steady-state formular (4.12) to obtain the data pair (ρ, x) in the

cases of “lower and upper bounds” as well as “average approximation”, and then determine

the utilization function G(x(t)) for each case by curve fitting. After that, one can find the

utilization function for each traffic class using (4.20) and then substitute it back into the

fluid flow model (3.11).

4.2.2.3 Approximating the Queue with a Large Number of Input CBR Streams

Since the implementation of Equation (4.11) requires O(N2) CPU operations to calculate

Q(r), a large number of input CBR traffic streams N results in considerable computation to

calculate the average number of packets x using x = ∑N−1
r=0 Q(r). Hence, an approximation

is desired to reduce the computation complexity when the transmission link carries a large

number of CBR streams.

In case I, when the traffic load in queuing system has ρ = N/D < 0.9, an arrival

process of N ∗D/D/1 consisting of a superposition of a large number of periodic processes

tends to a Poisson arrival process, thus the M/D/1 approximation works reasonable well for

engineering purpose [49]. Then, the utilization function G(x(t)) of N ∗D/D/1 in this case

can be obtained by referring to M/D/1 case in [115] (i.e., G(x(t)) = x(t) + 1−
√
x(t)2 + 1).

In the heavy server utilization regime for 0.9 ≤ ρ < 1, the Poisson arrival approximation

does not hold any more [49]. Hence, we derive an approximation of the utilization function

in Appendix . The approximation accuracy of Equation (.7) is evaluated in Figure 18 by

comparing the simulation results of a single queue as well as the exact results generated

by Equation (4.12) in the different cases of period D. As shown in the figure, by solving

Equation (.7), we can efficiently calculate x as a function of ρ with accuracy. After that, we

apply polynomial curve fitting to obtain the utilization function Gl(xl(t), x(t)) in the form

of Equation (4.20).

For case II with a large number of input traffic streams (∑iNi � 1), we assume “ho-

mogeneous traffic” with the lower and the upper bound of traffic period Dmax and Dmin as
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Figure 18: Comparison of the approximation by (.7) with the simulation results as well as

the exact analytical results by (4.12) during heavy load regime 0.9 ≤ ρ < 1.

well as the average traffic period Davg, according to Section 4.2.2.2. Depending on the server

utilization ρ, we then apply the M/D/1 or Equation (.7) approximation to efficiently com-

pute the data pair (x, ρ) for the upper and lower bounds. Finally, the bounding utilization

functions can be obtained in the same way as case I.

4.2.3 Modeling the Queue with General Arrival and General Service Processes

We now model a queuing system with general arrival and service processes, i.e. G/G/1

queue. Such a model is quite general without considering the details of packet arrival and

service processes (e.g. network protocol, wireless link characteristics and packet size distri-

bution), as long as the first and second moments of both processes at each node are known.

A well-known approximation to the expected number in the G/G/1 queuing system was

developed by Kramer and Lagbenbach-Belz [133].

x ≈ ρ+ ρ2 · (c2
a + c2

s) · g(c2
a, c

2
s, ρ)

2(1− ρ) (4.18)
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where

g(c2
a, c

2
s, ρ) =


e
− 2(1−ρ)(1−c2

a)
3ρ(c2

a+c2
s) c2

a ≤ 1

e
− (1−ρ)(c2

a−1)
c2
a+4c2

s c2
a ≥ 1

(4.19)

where c2
a and c2

s represent the squared coefficient of variation of the arrival and service

process, respectively, and ρ = λ/µ is the server utilization. Since it is difficult to analytically

invert the KLB equation (4.18)-(4.19) to get a closed form utilization function ρ = G(x), we

numerically determine x for a given parameter set (i.e., c2
a, c2

s, ρ). Then, we apply a curve

fitting approach using the (ρ, x) data from the KLB equation to find the utilization function

G(x(t)) in the form of a polynomial (i.e. G(x(t)) = axn + bxn−1 + ...+ k).

For a multi-class queuing system, we determine the utilization function of class l at a

queue by the approach of steady state equilibrium matching with ẋ(t) = 0 and ẋl(t) = 0.

Then, substituting them in Equation (4.2) and Equation (4.3) respectively, results in λ(t) =

µG(x(t)) and λl(t) = µGl(xl(t), x(t)). By combining these two equations, we obtain the

utilization function of class l traffic as Gl(xl(t), x(t)) = λl(t)
λ(t) G(x(t)). Following the same

derivation discussed in Section 4.2.2.1, we can write λl(t)/λ(t) = xl(t)/x(t). Therefore,

Gl(xl(t), x(t)) can be determined as

Gl(xl(t), x(t)) = xl(t)
x(t) G(x(t)) ∀l = 1, 2, . . . , S (4.20)

The resulting Gl(xl(t), x(t)) can be substituted into (4.3) to construct the multi-class traffic

fluid flow model.

4.3 MODELING DYNAMIC BEHAVIOR OF MULTIHOP WIRELESS

NETWORKS

4.3.1 Fluid Flow Model for multihop Wireless Networks

Consider a network consisting ofM nodes, an arbitrary node i is shown in Figure 19. The

data rates of the total incoming traffic flows and outgoing traffic flows at an arbitrary node

i are denoted by fin_i and fout_i, respectively. The incoming traffic flows include the traffic
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Figure 19: An arbitrary node i queuing model.

generated by node i as well as the forwarded traffic flows from different neighboring nodes.

At each node, the packets are grouped intoM−1 classes according to their final destinations.

We name the traffic destined for node j as class j traffic. Let xji denote the average number

of packets in the queuing system at node i destined for node j (class j) and the total number

of packets in node i is xi = ∑M
j=1
j 6=i

xji . We denote the packet length as Li and the transmission

capacity of node i as Ci, then the service rate of node i is represented by µi = Ci/Li. When

considering the network as a whole, we must modify (3.11) to clearly identify the source

node i and the destination node j for each variable xji (t), as well as to model the traffic

being routed through intermediate nodes when a direct link is not accessible. We use aij(t)

to determine node connectivity, as described in Section 4.1. In order to model network

routing, we define the routing variable rjik(t) as a zero/one indicator variable determined by

the routing algorithm, with rjik(t) = 1 if class j traffic at node i is routed to node k at time

t and rjik(t) = 0 otherwise.

As we can see from Figure 19, the outgoing traffic rate f jout_i at node i and destined

for node j is composed of traffic flow to the next-hop node k, where k = 1, 2, ...,M and

k 6= i. The traffic flow f jout_i out of node i depends upon the existence of a direct link aik(t)

between node i and the next-hop node k as well as the routing variables rjik(t) for class j

traffic. Hence, one must modify the flow out term of (3.11) to incorporate aik(t) and rjik(t),
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resulting in

f jout_i(t) = µiG
j
i (x

j
i (t), xi(t))

M∑
k=1
k 6=i

aik(t)rjik(t) (4.21)

The incoming traffic rate f jin_i at node i destined for node j consists of traffic generated

at node i with rate γji (t) as well as forwarded traffic flow from the neighboring node l, where

l = 1, 2, ...,M and l 6= i, j, as shown in Figure 19. By considering link connectivity as well

as routing, we then have

f jin_i(t) = γji (t) +
M∑
l=1
l 6=i,j

(
µlG

j
l (x

j
l (t), xl(t))ali(t)r

j
li(t)

)
(4.22)

To interconnect queues, the literature [148] indicates that the output from a queuing

system with deterministic service time should be treated as a delayed input to the next stage.

This idea is applicable to our model, where the input to the next stage is a superposition

of the delayed input streams from the nearby nodes plus any external arriving traffic. We

illustrate the concept by considering a simplified two-stage tandem queuing model as in

Figure 20(a)-(b). Let xi(t), λi(t) and Gi(t) be the average number of packets, the total

arrival rate and the utilization function of node i at time t, respectively. Then, λ1(t) = γ1(t)

is the arrival rate to the first queue, and µG1(t) is the departure rate from the first queue. The

departure rate then becomes the input to the second queue after a deterministic forwarding

delay δ1 in the first queue, that is λ2(t) = µG1(t − δ1) + γ2(t). We can then write a set of

fluid flow equations at node 1 and node 2 for Figure 20 as:

ẋ1(t) = −µG1(t) + γ1(t) (4.23)

ẋ2(t) = −µG2(t) + γ2(t) + µG1(t− δ1) (4.24)

To interconnect the G/G/1 queuing model of each node, we make use of the approxima-

tion approach proposed by Whitt in [149]. The arrival and departure processes are deter-

mined based on three basic network operations: decomposition (splitting), flow through a

queue (serving), and superposition (merging), as seen in Figure 21. For the splitting network

operation, consider a departure stream with the mean rate d and the squared coefficient of
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Figure 20: A two-node deterministic service system with its equivalent model.

variation c2
d is split into N streams, with each selected independently according to probabili-

ties pi (i.e. d = ∑N
i=1 di and pi = di/d, where i = 1, 2, · · · , N). Then the ith stream obtained

from the splitting has the squared coefficient of variation c2
a_i given by

c2
a_i = pic

2
d + 1− pi (4.25)

The squared coefficient of variation of an inter-departure c2
d for a single server node is ap-

proximated by

c2
d = ρ2c2

s + (1− ρ2)c2
a (4.26)

For the merging of N input streams and self-generated stream (i.e. λ = ∑N
i=1 di + γi), we

can obtain the coefficient of variation of an inter-arrival time c2
a by

c2
a = 1

λ

(
N∑
i=1

dic
2
d_i + γic

2
γ_i

)
(4.27)

(a) splitting (b) serving (c) merging

Figure 21: Basic network operations
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According to [149], for a FIFO G/G/1 queuing system holding N streams, the mean service

rate and the squared coefficient variation of service time are

µ =
N∑
i=1

(
λi
λ
µi

)
(4.28)

c2
s =

N∑
l=1

(
λi
λ
c2
s_i

)
(4.29)

Now, having the first and second moments of both arrival and service processes, we are able

to determine the utilization function G(.) according to Equation (4.18)-(4.20).

The general model of an M node network is obtained by combining the fluid-flow model

with connectivity, routing and the delayed output model for each traffic class at a node.

Specifically,

ẋji (t) = −µiGj
i (x

j
i (t), xi(t))

M∑
k=1
k 6=i

aik(t)rjik(t) + γji (t)

+
M∑
l=1
l 6=i,j

(
µlG

j
l (x

j
l (t− δl), xl(t− δl))ali(t)r

j
li(t)

)

∀i, j = 1, 2, . . . ,M (4.30)

In (4.30), the first term to the right of the equal sign represents the flow of class j traffic out

of node i, the second term denotes the type j traffic entering the network at node i, and the

last term characterizes the flow of class j traffic being routed into node i from other nodes.

For a queue with the Poisson input traffic and the deterministic service rate (i.e. M/D/1

queue), the service utilization function G(·) can be written by Equation (4.14). Thus, the

network based fluid flow model is

ẋji (t) = −µi
2xji (t)(

√
x2
i (t) + 1− xi(t))√

x2
i (t) + 1− (xi(t)− 1)

M∑
k=1
k 6=l

aik(t)rjik(t) + γji (t)

+
M∑
l=1
l 6=i,j

(
µl

2xjl (t− δl)(
√
x2
l (t− δl) + 1− xl(t− δl))√

x2
l (t− δl) + 1− (xl(t− δl)− 1)

(ali(t)rjli(t))
)

∀i, j = 1, 2, . . . ,M (4.31)

79



Also, the utilization function of a queue with CBR traffic and deterministic service rate

(i.e. D/D/1 queue) can be written in the form of polynomial expression given in Equation

(4.20). Therefore, the fluid flow model for the network with CBR traffic is

ẋji (t) = −µi
xji (t)
xi(t)

[
axni (t) + bxn−1

i (t) + ...+ k
]
×

M∑
k=1
k 6=i

aik(t)rjik(t) + γji (t)

+
M∑
l=1
l 6=i,j

(
µl
xjl (t− δl)
xl(t− δl)

×
[
axnl (t− δl) + bxn−1

l (t− δl) + ...+ k
]
ali(t)rjli(t)

)

∀i, j = 1, 2, . . . ,M (4.32)

Given a routing algorithm, connectivity model and traffic information, this model can be

solved numerically using any standard numerical integration technique.

4.3.2 Additional Performance Metrics

The fluid flow modeling approach can be used to determine a variety of performance

metrics. First of all, we discuss the estimation of the end-to-end delay. Typically, a packet

is forwarded from the source via a path which may include several intermediate nodes until

it reaches the destination. As a result, the end-to-end delay is the sum of delays experienced

at each node along the way. The packet delay at a node consists of the queuing delay,

the transmission delay and the propagation time over a link. Usually, the queuing and

transmission delays are considered as the main factors. From Little’s theorem, the average

number in the system is equivalent to the product of the average arrival rate and the average

sojourn time in the system, which includes the queuing an transmission delay. If x denotes

the average number of packets in the system, λ the average arrival rate and W the average

sojourn time, then x = λW . With the assumption of a constant mean arrival rate over a

small step, the change in the average sojourn time can be related to the rate of change in the

average number of packets in the system Ẇ = ẋ/λ. Now consider a path for stream (s, d)

from source node s to destination node d selected by routing algorithm. We define P (s,d) as

the set of all nodes on this path except destination node d. Let Wi denote the average node
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delay at node i on this path, and W (s,d) represents the end-to-end delay of path P (s,d). The

rate of change of this path delay is obtained by

Ẇ (s,d)(t) =
∑

i∈P (s,d)

Ẇi =
∑

i∈P (s,d)

ẋi(t)
λi(t)

(4.33)

where λi(t) is the total arrival rate into node i at time t,( i.e. λi(t) = ∑M
d=1
d 6=i

fdin_i(t), with

fdin_i(t) determined by (4.22)). We denote ε as the link propagation delay, which is assumed

to be fixed and equal for each hop on the path. According to the definition of set P (s,d), the

number of hops along the path of traffic stream (s, d) is equal to the cardinality (size) of the

set, i.e. |P (s,d)|. Hence, after adding the link propagation delays to Equation (4.33), we can

finally write the end-to-end delay of path P (s,d) at time t as

D(s,d)(t) =
∫
Ẇ (s,d)(t)dt+ |P (s,d)|ε (4.34)

In addition, the fluid flow model can also estimate the following global performance

metrics. The average number of packets per node at time t is obtained by dividing the total

number of packets in all nodes at time t by the total number of nodes M in network, i.e.

xavg(t) = 1
M

M∑
i=1

xi(t) = 1
M

M∑
i=1

M∑
j=1
j 6=i

xji (t) (4.35)

The average end-to-end delay per traffic flow in network can also be determined. Let υ

be the total number of traffic streams (s, d) in network. Thus, the average end-to-end delay

in network at time t is given by

ETEavg(t) = 1
υ

M∑
s=1

M∑
d=1
d6=s

D(s,d)(t) (4.36)

Similarly, we can obtain the average utilization per link in network at time t as

Gavg(t) = 1
M

M∑
i=1

Gi(t) = 1
M

M∑
i=1

M∑
j=1
j 6=i

Gj
i (t) (4.37)

Also, one can determine the instantaneous network throughput in bit per second (bps)

as

T (t) =
M∑
d=1

M∑
i=1
i 6=d

(
µiLiG

d
i (xdi (t), xi(t))aid(t)rdid(t)

)
(4.38)
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where Li is node i’s the packet length and µiLi represents the service rate in the unit of bps.

The network throughput is measured by the traffic received by all the destination nodes (i.e.

d = 1, 2, . . . ,M), and the traffic received by destination node d is calculated by summing up

the traffic successfully sent from all its neighboring nodes (i.e. i = 1, 2, . . . ,M , and i 6= d).

To estimate the energy consumption of a MANET node, we first construct the energy

model of data packet communications. Here, we do not consider the energy consumption of

baseline idle state or route discovery/maintenance. In addition, the energy cost of discarding

packet is ignored, since non-destination nodes generally employ energy-conserving strategy

based on the presence of uninteresting data on the media. In [150], experimental results

confirm the accuracy of the linear energy model for IEEE 802.11 RTS/CTS point-to-point

communication, which consists of fixed costs associated with channel acquisition and an

incremental cost proportional to the size of data packet:

ETX = bsend−rts + brecv−cts +msend × size+ bsend + brecv−ack (4.39)

ERX = brecv−rts + bsend−cts +mrecv × size+ brecv + bsend−ack (4.40)

In practice, the RTS packet may be retransmitted due to packet collision with probability p,

and thus bsend−rts should be multiplied by 1/(1−p) to account for retransmission. Following

the similar approach in [151] [152], the power consumption for data packet communications

at node i is finally given by

Ei(t) = ETX
M∑

j=1,j 6=i
f jout_i(t) + ERX

 M∑
j=1,j 6=i

f jfwd_i(t) + f ides_i(t)
 (4.41)

where f jout_i(t) and f jfwd_i(t) are denoted by the first and last terms in the general fluid flow

model (4.30). f ides_i(t) is the traffic received by node i as the final destination. This portion

of traffic is not routed into the transmission queue of node i and thus not considered in the

fluid flow model. Instead, f ides_i(t) can be calculated by summing up the traffic sent from

all its neighboring nodes and destined for node i (e.g. f ides_i(t) =
M∑

l=1,l 6=i
µlG

i
l(·)ali(t)rili(t)).
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4.4 PERFORMANCE MODELING ALGORITHM

We summarize the hybrid model numerical solution procedure with the following algo-

rithm to estimate the time dependent performance metrics over the desired time interval

[t0, tf ].

1. Configure network parameters including the link capacity C (bps), the packet length L

(bit), the link service rate µ packets per second (i.e. µ = C/L), the offered traffic rate γ

(pkt/s) and arrival period D in the unit of service period (i.e. D = µ/γ).

2. Compute the data pair (ρ, x) off-line. For the Poisson input traffic, apply Equation (4.10).

For the CBR input traffic, use Equation (4.12) if the number of input traffic streams N is

small (e.g. N <= 30). Otherwise, approximate the data pair (ρ, x) as discussed in Section

4.2.2.3.

3. Find the utilization functions off-line. For the Poisson input traffic, apply Equation (4.14).

For the CBR input traffic, curve fit the data pair (ρ, x) to obtain the polynomial in the

form of Equation (4.20).

4. Set the current time t = t0 as well as a time step ∆t and initialize xji (t) = xji (t0), which

is node i’s occupancy by the packets destined for node j.

5. At time t, determine the traffic routes rjik(t) according to the routing protocol and the

adjacency matrix A(t). Also, update the offered traffic γji (t) at each node, if necessary.

6. Numerically solve the fluid flow network model in the form of differential equations (4.30)

and get the new xji (t+ ∆t) at the end of the time interval [t, t+ ∆t], which then becomes

the initial condition for the next time interval [t+ ∆t, t+ 2∆t].

7. Estimate the end-to-end delay D(s,d)(t+ ∆t) by summing up the link propagation delays

ε with the node queuing delays W (s,d)(t + ∆t) along the path P (s,d), given by (4.33) and

(4.34). Here, W (s,d)(t + ∆t) is obtained by numerically solving the differential equations

over the time interval [t, t+ ∆t], which is the initial condition for [t+ ∆t, t+ 2∆t].

8. Evaluate the global performance metrics including xavg(t+∆t), ETEavg(t+∆t), Gavg(t+

∆t) and Tavg(t+ ∆t), according to (4.35)-(4.38).

9. Increment time t = t+ ∆t. If t < tf , go back to step 5; else stop.

Any standard numerical integration method can be used to solve differential equations
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such as (4.30), (4.31) and (4.32). However, the Runge-Kutta algorithm is one of the widely

used methods and the results in the next section show that outcomes using the fourth or the

fifth order are reasonably accurate for the cases considered.

4.5 MODEL VALIDATION BY DISCRETE EVENT SIMULATION

In this section, our model is validated by comparing with an equivalent discrete event

simulation model built in OPNET [11]. In the OPNET simulation model, each queue of the

node is configured as a FIFO queue with infinite size buffer and each traffic class is buffered

at the corresponding subqueue. The discrete event simulation results are the ensemble

average of 5000 replications with 98% confidence intervals using the nonstationary simulation

methodology discussed in [18].

A simple simulation scenario of three nodes with pre-determined connectivity change

between nodes as illustrated in Figure 22(a)-(f), is studied here. This topology is used to

evaluate the accuracy of our proposed model. In this setup, when the direct link is no longer

available, traffic must be rerouted through relay nodes and uses some available portion of

the shared link capacity. We set the link capacity for all nodes Ci = 104 bps with the packet

length 1/µ = 1250 bytes, so that the average service rate is normalized to one packet per

second. The propagation delay of each link is assumed to be 0.1 microseconds. In addition,

we use minimum hop proactive routing to find one single path for each traffic flow in both

the fluid flow model and the discrete event simulation. The three node network of Figure 22

has the corresponding queuing model as shown in Figure 23.

We first study the network with Poisson traffic load on each node. The traffic arrival

rates are configured to be γ2
1 = 0.16, γ3

1 = 0.2, γ1
2 = 0.16, γ3

2 = 0.2, γ1
3 = 0.16, γ2

3 = 0.2 packets

per second. Figure 24 shows the effect of the topology changes on the average number of

packets and the end-to-end delay for the traffic at node 1 destined for node 2, as computed

via our hybrid model and the nonstationary simulation. For the time interval t < 100 sec,

the network is fully connected. All nodes go through an initial transient period and then
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Figure 22: Three node network connectivity scenario.

  

Note that the flow out of node i to node k of a particular traffic 
class j  will depend upon the existence of a direct link between i 
and k and the routing variables for traffic class j. Hence one must 
modify the flow out  term in (9) to incorporate  aik(t) and  rik

j(t). 
Specifically the flow out of node i of class j traffic to node k is 
given by 

( ))()(
)(1

)(

1

trta
tx

txC

knodetoinodeofoutflowtrafficjclass

j
ikikM

il
l

l
i

j
i

i





















∑+
=

≠
=

µ
 

The flow of class j traffic into the node i queue will consist of 
traffic generated at node i with rate γi

j(t) and the flow of class j 
traffic to node i from other network nodes.  Specifically, the flow 
of class j traffic into node i from node l is given by. 
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 The resulting ad-hoc network fluid-flow model is determined by 
summing the flow in and out over all possible nodes and is given 
by  
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In (10) the first term to the right of the equal sign represents the 
flow out of  node i of traffic class j, the second term represents the 
type j traffic generated at node i , and the last term denotes the 
flow of type j traffic into node i from other network  nodes.  Note 
the two rightmost terms in (10) represent the total class j traffic 
flow into the queue at node i, namely λi

j(t). From (10), one can see 
that a node i is represented by a set of M-1 differential equations 
and the network as a whole by M x M-1 equations. Numerical 
solution of the model follows a hybrid approach, where the node 
mobility and adjacency matrix are determined via discrete event 
simulation  and the fluid flow model is solved via numerical 
integration as discussed above for the PSFFA approach.    

3. NUMERICAL RESULTS 
Here we present preliminary numerical results illustrating the 
application of the model presented in Section 2.  For the sake of 
simplicity we model a three node network as shown in Figure 3. 
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Figure 3. Three node ad-hoc network queueing model 

 

For the network shown in Figure 3, the fluid flow model of (10) 
results in six differential equations.  In the following, we first 
report baseline results where node movement occurs in a pre-
determined fashion. Then we examine the results when the link 
utilization is increased, the node mobility is increased, and the 
load is changing. In our numerical results we assume C1 = C2 = C3 
= 20, and µ = 0.05, which corresponds to a normalized server 
capacity of one packet per second. For all numerical solutions to 
the differential equations, the fifth order Runge-Kutta routine 
provided in MATLAB was utilized. In the numerical solution 
various values for the time step ∆t (e.g., ∆t = 1, ∆t = 0.1, etc.) 
over which each integration is conducted were tried, until 
decreasing the time step resulted in no change in the numerical 
values.  

The topologies illustrated in Figure 4 model a set of the 
connectivity changes between the three nodes in terms of time that 
corresponds to a set of node movements.  
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Figure 4. A mobility and connectivity scenario  

 

The topologies of Figure 4 (a-f)  determine the  adjacency matrix 
values at the corresponding time points. Given a mobility scenario 
such as above, one can calculate the routing variables rik

j(t) using a 
specific routing algorithm. For example, here we use minimum 
hop routing.  We assume that rerouting of traffic after a topology 
change (link addition or deletion) occurs instantly, which is a best 
case scenario. Figure 5 shows the queueing behavior for the two 
traffic classes at each of the three nodes when the load  is γ1

2(t) = 
0.18, γ1

3(t) = 0.22, γ2
1(t) = 0.18, γ2

3(t) = 0.22, γ3
1(t) = 0.18, and 

γ3
2(t) = 0.22.  From Figure 5, one can see the effect of the 

topology changes on the mean number of packets of each traffic 
class at each node. For time t < 100, all three nodes have gone 
through an initial transient and reached steady state. At  time  t = 
100,   the link between 1 and 3 breaks and the traffic over it is 
rerouted through node 2 causing a large transient spike in the 

Figure 23: Three node network queuing model.
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reach the steady state. For time 100 ≤ t < 200 sec, the link between node 1 and 3 breaks,

so that the traffic between 1 and 3 has to be re-routed through the relay node 2. But the

packets x2
1 buffered in source node 1 are not affected. Then, the broken link 1-3 is restored

during the time interval 200 ≤ t < 300 sec, and all nodes return to steady state. During

the time interval 300 ≤ t < 400 sec, the link between node 2 and 3 breaks, leading to the

traffic from node 2 and 3 re-routed through node 1. Thereby, more packets x2
1 are buffered

in node 1. Due to higher server utilization, the queueing delay in node 1 increases and

the corresponding end-to-end delay D1−2 from node 1 destined for node 2 increases as well.

Starting from time t = 500, the link between node 1 and 2 is broken and the traffic in x2
1 has

to go through the relay node 3 to reach the destination. Thus, D1−2 experiences the delay

of two hops including the propagation delay of link 1-3 and 3-2 as well as the queuing delay

at node 1 and 3. The behavior of other nodes and traffic streams are similar and not shown

here for the purpose of brevity.
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Figure 24: Dynamic behavior of the traffic destined for node 2 at node 1 buffer.

We then consider the network with CBR traffic and fouce on case I denoted by N∗D/D/1

queue. The rate of externally arrival traffic stream of each node is set to be the same, e.g.

γ2
1 = γ3

1 = γ1
2 = γ3

2 = γ1
3 = γ2

3 = 0.2 packets per second but are not synchronized (i.e.,

the first packet arrival time of each stream is a uniformly distributed random variable over

[0, 5] second). According to Section 4.2.2.1 case I, we first compute the data pair (x, ρ) from
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(4.12). After curve fitting the data pair (ρ, x), the server utilization function is determined

as G(x) = 0.0832x3−0.4353x2 +1.0843x, which is then used in (4.32) to model the network.

It is worthy to note that there exists a trade-off between the order of fitting accuracy and the

fluid-flow model solving time. For utilization function, higher order polynomial can better

fit the data set but make the fluid flow model more complex to solve. Hence, we gradually

increase the polynomial fitting order until the averaged fitting error is within 10−5 of the

data set. As we can see from Figure 25, the results show similar behavior in the sense that

when direct link between two nodes is not available, traffic needs to be rerouted through

relay nodes causing the large increase in the number of packets and queueing delay at those

node buffers during such time interval until the broken link is restored.

Finally, for case II referred to as ∑m
i=1 NiDi/D/1, the rates of externally arrival traffic

streams are set as: γ2
1 = 0.16, γ3

1 = 0.17, γ1
2 = 0.18, γ3

2 = 0.2, γ1
3 = 0.22, γ2

3 = 0.21 packets

per second. Following the “homogeneous traffic” approach described in Section 4.2.2.2 case

II, we have Dmax = max{Di} = 1/0.22 ≈ 4.545s, Dmin = min{Di} = 1/0.16 = 6.25s and

Davg = avg{Di} = (1/0.16+1/0.17+1/0.18+1/0.2+1/0.22+1/0.21)/6 ≈ 5.333s for “lower

and upper bounds” as well as “average period approximation”, respectively. After curve

fitting the data pair (ρ, x), we obtain the utilization function for each case as Glower(x) =

0.0889x3 − 0.4496x2 + 1.0706x, Gupper(x) = 0.0755x3 − 0.4227x2 + 1.0894x and Gavg(x) =

0.0849x3 − 0.4395x2 + 1.0801x. Then we apply the utilization functions into (4.32) to form

the hybrid models of the network. Figure 26 shows the average number of packets and the

end-to-end delay of the traffic at node 2 destined for node 3 due to topology change. In

Figure 26, we notice that when the direct link breaks, a wider gap occurs between upper

and lower bounds. The reason is that traffic rerouting increases the server utilization of the

relay nodes, and then the gap between bounds is enlarged at high utilization. The growth of

utilization also leads to the increase of the relative precision of the confidence interval. We

also observe that the Davg approximation is quite accurate in this case.

As an example of using the general G/G/1 fluid flow model (4.30), we consider phase type

distribution as an example to model more general packet arrival and service processes. In

wireless networks, the coefficient variation of packet transmission time can be less than one,

since the length of packet payload is exponentially distributed but the length of packet head-
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Figure 25: Average number of packets x2
1 and end-to-end delay of D1−2 in the case of N ∗

D/D/1 queue.
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Figure 26: Average number of packets x3
2 and end-to-end delay of D2−3 in the case of∑m

i=1 NiDi/D/1 queue.
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er, inter-frame space and ACK are all generally fixed. In this case, the packet service time

can be approximated by Erlangian distributions (a simple version of PH-type distribution),

where the squared coefficient of variation is 1/k (i.e. c2
s = 1/k). The packet interarrival time

is also assumed to follow Erlangian distribution (i.e. c2
a = 1/k). By assuming k = 2 in this

numerical example, we can determine the first and second moments of both arrival and ser-

vice processes from Eq.(4.25) to Eq.(4.29). Then, the data pair (ρ, x) obtained from G/G/1

formula (4.18)-(4.19) is used to fit the polynomial utilization function G(x) (4.20). With the

resulting G(x) = −0.0002x6 + 0.0029x5−0.0263x4 + 0.1445x3−0.4708 +x20.8857x+ 0.0062,

we can construct the fluid flow model (4.30) and then evaluate the instantaneous power

consumption of node 1 and 3 as an example, according to Eq.(4.41). In this experiment, the

packet collision probability p is assumed to be 0.01 for all links, and the parameters used in

our energy model (4.39)-(4.40) are assigned with the values from Lucent IEEE 802.11 Wave-

LAN card measurement in [150]. This energy model is then build into both simulation and

analytical model for numerical experiments. As seen from Fig.27, the power consumption is

inevitably increased at relay node due to traffic forwarding.
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Figure 27: The power consumption of node 1 and node 3.

Next we consider a five node network with the random waypoint mobility (RWM) mod-

el. The stochastic properties of the RWM model were studied in [70]. It was observed that

the link connectivity of two nodes is shown to be a memoryless stochastic process that can

be modeled as a two-state Markov process with up-down (connected-disconnected) transi-
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tion. The Markov process based link connectivity model can be used to greatly reduce the

computation load in comparison of a detailed node mobility simulation. In this experimen-

t, the up and down durations of each link are exponentially distributed with the mean of

Tup = 50s, Tdown = 10s, respectively. The link capacity and the packet length remain the

same as the ones in the three node scenario. The external arrival rates of QCBR traffic

are: γ3
1 = 0.24, γ5

1 = 0.16, γ5
2 = 0.18, γ5

3 = 0.22, γ5
4 = 0.24 packet per second. We conduct

the experiment for a total duration of 6000s, and show the time varying link connectivity

during the time interval [2100, 2200]s in Figure 28. In the following discussion, we focus on

the traffic buffered at node 1 and destined for node 5 (i.e. x5
1). The routes of this traffic are

marked by dotted lines in Figure 28.
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Figure 28: Typical RWM model connectivity scenario for five node network.

To obtain the results from fluid flow model, we calculate the utilization function of lower

and upper bounds by assuming “homogeneous traffic”. Due to delay jitter, the average period

of each QCBR stream is slightly deviated from the requested one. For the lower bound, all

sources are assumed to have homogeneous traffic with the period of Dmax = max{Di} =

1/0.162 ≈ 6.173s, while for the upper bound, the homogeneous traffic period becomesDmin =

min{Di} = 1/0.243 ≈ 4.115s. The average traffic period is given by Davg = avg{Di} =

(1/0.243 + 1/0.162 + 1/0.184 + 1/0.221 + 1/0.242)/5 ≈ 4.88s. The utilization function for
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each case is obtained as Glower(x) = 0.0884x3 − 0.4485x2 + 1.0712x, Gupper(x) = 0.0747x3 −

0.4175x2 +1.0971x and Gavg(x) = 0.0757x3−0.4261x2 +1.0842x, which is then used in (4.32)

to form the fluid flow model of the network. In addition, we plot the results obtained from

the Pointwise Stationary Approximation (PSA) [114] modeling approach which approximates

the nonstationary queuing system by using steady-state formula at each time point. Figure

29 shows the results for x5
1 and D1−5 when it is affected by the topology changes. Initially,

every packet goes through the direct link. Then, during the time interval 2124 ≤ t < 2136s,

link 4-5 breaks and the traffic x5
4 needs to go through node 1 to reach the destination. Hence,

a large transient increase of x5
1 occurs at node 1 due to traffic rerouting. This event also

results in the increase of D1−5, because of the higher utilization of node 1. After that, link

4-5 is recovered and the traffic x5
4 reroutes back to the direct link. Starting from t = 2161s,

link 1-5 breaks and the routing protocol redirects the traffic x5
1 to node 3, until this direct

link restored at t = 2185s. Notice that, at t = 2177s, link 3-5 is disconnected, which

causes the traffic x5
1 to take one more hop from node 3 to node 2 and a further increase

in D1−5. At t = 2185s, link 1-5 is restored and the traffic x5
1 is rerouted to the direct link

resulting in a decrease of D1−5. As seen in the figure, PSA method cannot capture the

transient/nonstationary behavior of the network. Instead, our proposed fluid flow model

can provide fairly accurate instantaneous results or tight bounds, all which match well with

the discrete event simulation results in Figures 25-29.

4.6 COMPUTATION SCALABILITY

According to the analysis in Section 3.7, the computation time complexity of fluid flow

model for multihop wireless networks is upper bounded by the number of differential equa-

tions n (i.e. O(n)). For anM node network, the number of differential equations n equals to

M(M−1). Therefore, the computation time complexity of our fluid flow modeling algorithm

is upper bounded by O(M2 −M). To further evaluate the computation complexity of our

fluid flow model and compare it with the nonstationary simulation, we conducted numerical
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Figure 29: Average number of packets x5
1 and end-to-end delay of D1−5.

experiments on a series of sample networks. In the experiments, each node generates traffic

to all the other nodes (i.e. full mesh of traffic demands). All links switch between on/off ran-

domly following the two-state Markov process. Table 8 shows the computation time of the

average number of packets at each node in the sample networks with Poisson and CBR traffic

loads over the time [0, 600] sec by both the fluid flow model and simulation. All the compu-

tations run on a PC with Intel i5-450M 2.4GHz processor and 4GB memory. The reported

computation time by hybrid model excludes the short time spent during the off-line stage (i.e.

setting up network parameters and then calculating data pair (ρ, x) and utilization function

Gi(·)). For the purpose of fair comparison, the simulation launch latency is not included

in the computation time results. In addition, the minimum hop routes are pre-determined

based on the network connectivity and stored in the routing table of each node, so the route

discovery time of both approaches does not count in the table. In all sample networks, we set

the average packet arrival rate at all nodes as 0.02 pkt/s for both Poisson and CBR traffic

loads, and the service rate is assigned to be 1 pkt/s. For the network with CBR traffic,

the utilization function is obtained as 0.0023x5 − 0.0329x4 + 0.1898x3 − 0.5756x2 + 1.025x.

Following the nonstationary simulation procedure, we execute 5000 independent runs and

collect the ensemble average number of packets at each node in OPNET. All the results from

hybrid model are within 98% confidence interval of the simulation results. As seen from the

92



table, the simulation time seems to grow dramatically, which is generally a complex function

of the number of nodes, traffic load, topology change, accuracy desired, etc. For the hybrid

model implemented in MATLAB, we use the quadratic polynomial to fit the computation

time data versus node number M ranging from 3 to 200 and obtain the growth rate as

Θ(0.42M2 − 6.1M + 8.3) in the case of Poisson traffic and Θ(0.91M2 − 8.2M + 16.7) in the

case of CBR traffic, which are both within our expected upper bound above. It is worthy to

note that the differential-equation system based fluid flow model is solvable despite of its size

(i.e. number of differential equations), as long as such a differential-equation system satisfies

the condition of Picard-Lindelöf theorem to guarantee the existence and uniqueness of the

solutions [140]. Moreover, we evaluate the accuracy of fluid flow model for multihop wireless

networks by following the same approach in Section 3.7. As shown in Table 8, our proposed

fluid flow model can offer reasonably accurate results with significant improvements in the

computation time compared to standard simulation tools.

Table 8: Computation Time and Accuracy Comparison

# of # of diff. Simulation (sec) Fluid flow model (sec) Model accuracy (%)

nodes equations Poisson CBR Poisson CBR Poisson CBR

3 6 140.26 138.19 2.15 2.23 0.32 0.46

5 20 697.27 683.52 2.65 4.29 0.85 0.92

7 42 3418.65 3421.59 4.72 10.01 1.26 1.38

9 72 16761.26 17025.38 8.44 20.73 1.54 1.73

11 110 82178.61 81092.42 14.95 37.93 1.82 1.91

13 156 401246.82 392626.74 25.14 64.44 1.98 2.02
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4.7 NETWORK PERFORMANCE ANALYSIS VIA HYBRID MODEL

4.7.1 Node Mobility and Traffic Load Impact

We first consider the impact of nodes mobility on the performance of multihop wireless

networks by using the random waypoint mobility (RWM) model for node movement. The

stochastic properties of this mobility model were studied in [70], and it was observed that the

RWM model can be characterized by the link connectivity as a function of time regardless

of the detailed movement pattern. Actually, the connectivity of two nodes is shown to be

a memoryless stochastic process that can be modeled as a two-state Markov process with

up-down (connected-disconnected) transition, and both link-on and link-off durations follow

an exponential distribution. The Markov process based link connectivity model can be used

to greatly reduce the computation load in comparison of a detailed node mobility simulation.

A five-node network with Poisson traffic was set up with mean link on lifetime Ton = 50

sec and mean link off lifetime Toff = 20 sec. All links are assumed to have the same

Ton and Toff . In the experiments, the network parameters are the same as in the three

node network case. The mean rate (pkt/s) of the Poisson traffic generated by each node

is γ3
1 = 0.22, γ5

1 = 0.28, γ5
2 = 0.12, γ5

3 = 0.21, γ5
4 = 0.16. We illustrate the typical dynamic

network performance by plotting the traffic destined for node 5 at node 1, as seen in Figure

30. We show four snapshots of the network topology at different times in Figure 30(a)

and mark all the routes of class 5 (destined for node 5) traffic from node 1 by dot lines in

the topologies. Then, we associate the performance results with each topology by aligning

them at the same time instant in Figure 30(b)(c). The results conform with the facts that

when the direct link breaks as topologies (i) and (iv) of Figure 30(a), the traffic has to

go through multiple hops to the destination resulting in longer end-to-end delay, while the

average number of packets at the source node remains the same as when the direct link exists.

Once destination node 5 is isolated from the network as in topology (iii), the instantaneous

end-to-end delay D1−5 becomes infinitely large, and the packets have to be queued up in the

buffer of source node 1. When node 1 helps forward packets of other nodes to destination

node 5 at topology (ii), more packets in the buffer cause longer queueing delay in node 1.
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(a) Sample topologies
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Figure 30: Dynamic behavior of the traffic destined for node 5 at node 1 buffer with node

mobility model Ton = 50s, Toff = 20s.
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Next we increased the average link off lifetime Toff = 40s and decreased the link on

lifetime Ton = 30s for each pair of nodes to observe a higher level of nonstationarity, since

each node will have less overall connectivity and is more likely to redirect traffic. All the

other network parameters remain the same as before. Typical results are given in Figure 31,

for traffic at node 1 destined for node 5. When the effect of long average link off lifetime

starts to set in, it becomes more difficult for each node to find any intermediate node to relay

the traffic. When the source node cannot find any alternative path to reroute the traffic,

the instantaneous end-to-end delay becomes infinitely large and appears to be disconnected,

and meanwhile the packets are accumulated linearly.
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Figure 31: Dynamic behavior of the traffic destined for node 5 at node 1 buffer with node

mobility model Ton = 30s, Toff = 40s.

The concept of two-state Markov model can represent various mobility scenarios by using

different combinations of Ton and Toff . For example, the random waypoint mobility of the
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wireless nodes with a smaller radio range can be implicitly represented by relatively larger

Toff . Alternately, in a random waypoint group mobility, if two nodes are from the same

group, the average Ton of the link between these two nodes should be longer, since they tend

to be moving with a comparable speed in a similar direction.

We then set up a 30-node network with full mesh contention-free CBR traffic, and and

focus on two local performance metrics (i.e. x30
1 , and D1−30) plus four global or network-

averaged metrics (i.e. xavg, Gavg, ETEavg, and T ), as we derived in Section 4.3.1 and

4.3.2. Here, we configure the network parameters as follows: the fixed packet size 1/µ of

1250 bytes, the link capacity C of 104 bps, the forwarding delay δ of 1 second, the link

propagation delay ε of 0.01 seconds and single-path minimum hop routing. The full mesh

offered traffic at source node has the same requested data rate, but there exist slight delay

jitter and possible packet loss in the forwarding traffic flows. We denote γ as the averaged

arrival rate of all traffic flows (i.e. γ = 1/Davg). To obtain the utilization function in this 30

node network, we compute the average queue length x in an efficient way by adopting the

approximation for large number of input streams, as discussed in Section 4.2.2.3. When the

server utilization ρ stays in the light or moderate regime, and the utilization function is given

by G(x) = x+ 1−
√
x2 + 1 based on a M/D/1 approximation. When the link utilization ρ

reaches 0.9 or above at certain node due to traffic forwarding, the utilization function will

change to the polynomial G(x), which is determined by using the curve fitting to Equation

(.7). In addition, we use the two-state Markov model of RWM with the average link up

lifetime Tup and the average link down lifetime Tdown to represent the network mobility.

We first study the effect of traffic load on network performance. The growth of offered

traffic load at a node inevitably results in an increase of packets in its buffer due to the limited

link transmission capacity and a corresponding increase in the delay. In Figure 32(a), x30
1 for

the scenarios of (Tup, Tdown, γ, aij) = (50s, 20s, 0.015 pkt/s, {0, 1}) and (50s, 20s, 0.02 pkt/s,

{0, 1}) is shown. Similar behavior is shown in Figure 32(b) for D1−30, which is determined

by the queuing delays of all the nodes along the path. From the perspective of the whole

network, link utilization, average number of packets at a node and the end-to-end delay all

increase with the load of full-mesh traffic, as seen in Figure 32(c)-(e). Figure 32(f) plots

the instantaneous network throughput, which fluctuates around the constant network load
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due to node mobility and traffic rerouting. For the full-mesh traffic, the averaged network

load L can be calculated by L = M(M − 1) × 1/µ × γ. Since the average link utilization

is always operated in the moderate regime (i.e. ρ < 0.9 in Figure 32(c)), the steady-state

(time-average) network throughput is shown to be roughly equal to the network load for

both cases.

Next, we investigate the impact of node mobility on network performance. Here, we

change the mobility model (Tup, Tdown) from (50s, 20s) to (35s, 35s) to represent different

cases of network connectivity and keep the offered traffic as 20 × 10−3 pkt/s. Comparing

(50s, 20s, 0.02 pkt/s, {0, 1}) with (35s, 35s, 0.02 pkt/s, {0, 1}) in Figure 32(a)-(b), we

observe that shorter link uptime with longer link downtime for each link results in higher

levels of nonstationarity, since nodes will get less overall connectivity time and be more likely

to redirect the traffic to others. Moreover, the smaller ratio between link up and down time

in the case of (Tup, Tdown) = (35s, 35s) brings longer routes with more forwarding traffic

at each node and greater end-to-end delay than the case of (50s, 20s). Figure 32(c) shows

that the average link utilization of (35s, 35s, 0.02 pkt/s, {0, 1}) is much higher. Due to

limited link capacity, the number of packets accumulated in the buffer of each node rises up

in Figure 32(d). Meanwhile, the average end-to-end delay per traffic stream climbs up in

Figure 32(e) due to large queuing delay and long routes. All these phenomena demonstrate

the occurrence of network congestion in the scenario of (35s, 35s, 0.02 pkt/s, {0, 1}). As a

result, Figure 32(f) illustrates that network throughput mainly lies below the offered load.

Finally, we consider a more realistic link quality and incorporate it into our fluid flow

based model. Actual radio communication is not always symmetric and may exhibit diverse

link quality in terms of error rate. Hence, the adjacency matrix is not necessary a binary

matrix, and the connectivity aij can be any real number between 0 and 1 to indicate the

effect of link errors. Here, we assume that the link connectivity aij(t) is assigned with a

random number between 0.9 and 1, if the distance between two nodes dij(t) is within the

radio range R (i.e. aij(t) ∈ [0.9 1] if dij(t) ≤ R, otherwise aij(t) = 0). Due to node mobility,

the connectivity aij(t) is updated for all links at each time instant. By comparing scenario

(35s, 35s, 0.02 pkt/s, {0, 1}) and (35s, 35s, 0.02 pkt/s, {0, [0.9 1]}) in Figure 32(a) and (d),

we can see that after the link-level error is incorporated into the model, a portion of packets
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cannot be successfully delivered to the next hop and the packet service rate is reduced.

Hence, more packets have to be buffered in the transmitting node in Figure 32(d). Also, the

increased queuing delay at each node prolongs the end-to-end delay of the traffic in Figure

32(e). Due to the link-level error, Figure 32(c) shows that the average utilization per link in

the scenario (35s, 35s, 0.02 pkt/s, {0, [0.9 1]}) is higher than the one in the scenario (35s,

35s, 0.02 pkt/s, {0, 1}). Since the network becomes more congested, network throughout in

scenario (35s, 35s, 0.02 pkt/s, {0, [0.9 1]}) is further degraded in Figure 32(f).

4.7.2 Comparison with Steady State Performance Modeling Technique

To further illustrate the exclusive capability of capturing time varying behavior of mul-

tihop wireless networks by fluid flow model, we setup a 30-node network with full mesh

traffic and numerically compare the results from pointwise stationary model, given in Figure

33. The network configuration is as follows: the exponentially distributed packet size with

the mean 1/µ of 1250 bytes, the link capacity C of 104 bps, the forwarding delay δ of 0.1

second, the link propagation delay ε of 0.1 microseconds and minimum hop routing. The

link connectivity aij(t) is assigned a random number between 0.95 and 1 if this link exists,

otherwise aij(t) is 0. We use the random waypoint mobility (RWM) model to represent node

mobility.

In Figure 33(a)-(b), we change the mobility model (Tup, Tdown) from (50s, 5s) to (50s,

20s) to represent different cases of network connectivity and keep the averaged rate of offered

traffic γji as 0.0125 pkt/s. The number of packets at node 3’s buffer and destined for node

30, i.e. x30
3 , is selected as an example of performance metric in this study. We observe

that shorter link up lifetime with longer link down lifetime for each pair of nodes results in

higher level of nonstationarity, since nodes will get less overall connectivity time and be more

likely to redirect the traffic to others. The idea of pointwise stationary model is to sample

the time varying network conditions and apply them into steady-state queuing formula to

approximate the nonstationary system performance. Although this model offers an easy

technique to calculate quantities of interest, it is actually in error for instantaneous values

and return even poor results for highly-dynamic network, as seen in Figure 33(b). Then, we
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remain the node mobility pattern and increase the full-mesh traffic load at each link in Figure

33(c). The growth of offered traffic load at a node inevitably results in packet accumulation

in its buffer due to limited link capacity in such a less-connected network. However, since

pointwise stationary model calculates the steady state results independently at each time

instant, it does not consider the dependencies of buffer occupancy between adjacent time

instants and thus cannot capture such a continuous-time queuing behavior. Instead, fluid

flow model constructs continuous-time differential equations by following flow conservation

principle. Hence, it can successfully demonstrate such a phenomena of network congestion.

4.7.3 Discussion on Steady State and Time Varying Behavior

It is increasingly noted that multihop wireless networks must not only perform well in

steady state, but must also have acceptable performance under transient or nonstationary

conditions. Here we study the network performance from both steady state and time vary-

ing perspectives. The nonstationarity of the network comes from topology change modeled

by a two-state Markov process, where the average link durations Tup and Tdown are being

manipulated. The jitteriness of this two-state Markov process is defined as 1
Tup+Tdown

, which

represents the average times of going through this two-state cycle per unit time. In the

numerical experiment, we fix the traffic load at 0.02 pkt/s and decrease Tup and Tup propor-

tionally from (100s, 40s) to (25s, 10s) and then (5s, 2s), so that the corresponding jitteriness

of the mobility model is increased accordingly. As a result, Figure 34 shows that both per-

formance metrics (i.e. x30
1 and D1−30) have more frequent variations and the nonstationary

period approaches to dominate the network behavior. Note that the steady state network

behavior is the same in all three cases as shown in Figure 35, even though the time varying

behavior is quite different.

On the one hand, to study the steady state behavior, the network performance is mea-

sured over a fixed time period, and then averaged over that period. On the other hand,

the time varying behavior describes the network performance at specific time instants, so

that the network behavior can be shown as a function of time. To quantify the dynamic of

network performance, we define instantaneous variation (IV ) as the difference of a certain
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performance metric (P ) between two samples separated by a small time interval [ti, ti+1]

with length δ (i.e. IV (ti) = P (ti) − P (ti+1), where ti+1 − ti = δ). The choice of δ depends

on the change rate of network performance. According to [18], an order of magnitude bound

on the change rate of any network performance metric can be determined by considering the

event rate for the whole network under simplifying assumptions. If all of the time varying

events taking place in the network are assumed to have exponentially distributed inter-event

times with average rate ri, then the overall average system event rate is r = ∑
i ri, and no

performance metric can change more rapidly than r on the average. In our experiment, the

nonstationarity of the network comes from topology change, and the link connectivity is

modeled as a two-state Markov process with the average transition rates 1/Tup and 1/Tdown.

Thus, by setting the sample interval δ < 1
1/Tup+1/Tdown

, we will not miss any significant tran-

sient behavior within the interval. In Figure 35, both the time average and instantaneous

variation values of different node mobility cases are shown. In the bar charts, the value of

instantaneous variation is actually the average of the instantaneous variation between two

successive samples over 600 seconds, and the sample interval δ is set to be 1 second. The

time average value is obtained by simply averaging all samples over 600 seconds. The sam-

ple values of the mobility cases (100s, 40s), (25s, 10s), and (5s, 2s) come from the results in

Figure 35. As illustrated from the bar charts, since the ratio between Tup and Tdown) stays

unchanged at various mobility cases, the total link up or down duration over a long time

remains the same among cases on average. Thus, the time average values of x30
1 and D1−30

are shown to be similar. However, the instantaneous variation of x30
1 and D1−30 grows with

the decrease of Tup and Tdown). The reason is that the increase of jitteriness in node mobility

model raises the possibility of link transition between up and down during the time interval

δ, which inevitably leads to the variation of network behavior.

The results from Figure 30-35 confirm that our hybrid model is able to promptly respond

to ongoing nonstationary condition of multihop wireless networks and allow us to analyze

their time varying behavior, which is generally an important QoS consideration in assessment

of network performance.
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4.8 SUMMARY

In this chapter, we propose a performance modeling technique to study the time varying

behavior of multihop wireless networks with CBR traffic, using numerical method based

queueing analysis. Network queues are modeled using fluid flow based differential equations

and solved using numerical integration routines, while topology change is integrated into the

model using a time varying adjacency matrix determined from either trace data, a mobility

model based simulation, or a deterministic/stochastic model. Numerical results for sample

networks using the proposed model were given in comparison with results from discrete event

simulations showing the accuracy and the tremendous computational advantage of the fluid

flow based approach. Furthermore, we applied this hybrid model to examine the effects of

node mobility and traffic load dynamics on the performance of a moderate size network.
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Figure 32: Various network performance measures impacted by traffic load, node mobility

and link quality (i.e. (Tup, Tdown, γ, aij)).
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Figure 33: The dynamic behavior of x30
3 at various node mobility patterns and traffic loads.
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Figure 34: The time varying behavior of x30
1 and D1−30 in various mobility cases.
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Figure 35: The time average and the instantaneous variation of x30
1 and D1−30 in various

mobility cases.
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5.0 CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

Wireless networks are playing an important role in our society that rapidly evolves toward

a pervasive computing age. There has been a great amount of research and development on

wireless network communication and protocol issues. While there has been massive efforts

on developing simulation models to estimate wireless network performance, most existing

simulation approaches are known to be lacking fidelity and scalability. The performance

of wireless networks is normally studied via simulation over a fixed time horizon using a

steady-state type of statistical analysis procedure. However, due to dynamic nature of net-

work topology, such an approach may be inappropriate in many cases as the network may

spend most of the time in a transient or nonstationary state. Simulation studies of time

varying behavior for such networks are possible, though computationally intensive. Specifi-

cally, one must perform a simulation study following the nonstationary simulation approach

with the essence of ensemble average instead of time average. The basic approach is to ob-

serve the system behavior versus time over an ensemble of statistically identical but distinct

independent runs. The quantities of interest (e.g. mean queue length at every node) are

averaged across the ensemble of runs at a particular time instant and confidence intervals

are calculated then from the ensemble. Many such points are obtained at different time

instants and the system behavior is determined as a function of time. The main difficulty

in conducting nonstationary simulation is the large number of runs (typically thousands)

that must be generated conducted in order to get a representative ensemble from which a

statistically accurate portrayal of the system behavior can be determined. Hence, significant

amount of CPU time is required for even small sized networks and this approach is quite
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difficult to scale.

The goal of this work is to develop an integrative framework incorporating a set of queuing

and stochastic modeling technique to efficiently approximate the time varying performance

of wireless networks. Network queues are modeled using fluid flow based differential equa-

tions which are solved using numerical methods, while traffic load, dynamic topology and

network protocols are modeled using stochastic modeling techniques. Our performance mod-

eling technique provides an insight into the joint effect by traffic, topology and protocols in

wireless networks. Numerical and simulation experiments show that our fluid-flow based per-

formance model can provide reasonably accurate results much more computation-efficiently

than standard discrete event simulators.

In Chapter 3, we propose a fluid flow based performance model to evaluate the time vary-

ing behavior of single-hop vehicular networks. According to IEEE 802.11p standard designed

for vehicular networks, the RF transmitter embedded in each vehicle accesses the wireless

channel via contention based CSMA/CA mechanism and broadcasts the safety-related pack-

ets to all its sourounding vehicles. As a result, the packet service times at different vehicles in

the same carrier sensing range are strongly coupled. The bandwidth shared by each vehicle

is an order of magnitude less when 10 other vehicles are active than when only one single

vehicle is active. Due to high-speed mobility, vehicles might move into/out of the carrier

sensing range of other vehicles, so that the number of vehicles contending to access the chan-

nel varies over time. We first derive the packet service time distribution as a function of

network hearing topology. Then, the fluid flow model is constructed for vehicular networks

by considering the vehicle mobility and the resulting time varying packet service time and

its variance. The fluid flow based model is shown to be accurate and scalable according to

our numerical comparisons with simulation results. Moveover, we apply the proposed model

to evaluate the nonstationarity of vehicle networks performance impacted by traffic load,

vehicle velocity and vehicle density.

Following the same fluid flow modeling approach, we develop the time varying perfor-

mance model to approximate the dynamic behavior of multihop wireless networks in Chapter

4. In such a network, all nodes have to collaborate with one another to dynamically route

the traffic using wireless links. The traffic flow may go through multiple hops to reach des-
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tination, with each node acting as a router. Besides the nonstationary features inherent in

single-hop transmission discussed above, the routes in multihop wireless networks are prone

to failures due to node mobility. Since network nodes may move arbitrarily, the network

topology is expected to change frequently and unpredictably. Thus, one would expect that

transient/nonstationary conditions to occur often. We first derive the single-node fluid flow

model by deriving server utilization function for a variety of queueing systems. On the basis

of the single-node model, we then construct the fluid flow model for multihop wireless net-

works by considering the time varying network connectivity and traffic routing. Numerical

and simulation experiments show that the fluid flow model for multihop wireless networks is

a fairly-accurate and scalable tool to approximate the dynamic network behavior. Finally, an

illustrative example of our modeling technique application is given to show its capability of

capturing the time varying network performance as a function of traffic load, node mobility

and wireless link quality.

We believe that this performance modeling approach is a valuable tool for evaluating the

time-varying behavior of wireless networks in an efficient manner. With the computation

time saved by the fluid flow based modeling technique, it is a tremendous gain in flexibility

for modeling complex network protocols or wireless channel characteristics in a specific envi-

ronment, in order to add higher level of fidelity into the proposed model. Additionally, since

many network controls are designed and implemented on the basis of steady state perfor-

mance, they may not make optimum use of network resources under transient/nonstationary

period. Therefore, our proposed models can serve as the basis for the application of control

theory to develop dynamic network control algorithms.

5.2 FUTURE WORK

5.2.1 Model Extension

The fluid flow based performance model for wireless networks can be extended at different

layers including physical, MAC and network layer.
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To improve the fidelity of the model in the physical layer, it is possible to adjust the

connectivity elements in the adjacency matrix as a function of the received signal strength

(RSS) between two nodes using propagation channel models. Such a function can be deter-

mined by the modulation scheme used at the receiver side. The propagation channel models

could be constructed by considering the effect of exponential path loss, multipath fading and

shadowing. For a specific indoor/outdoor environment, we can determine all the possible

parameters of the channel models by using the site-survey measurement data on RSS. By

doing this, the connectivity between two nodes might be assigned by a decimal number and

then incorporated into our model.

Besides the contention-based MAC discussed in this work, wireless network could also

employ contention-free MAC, which can be described by the packet service time of our mod-

el. Since contention causes packet collisions in wireless network, a contention-free MAC can

improve the reliability of wireless delivery. Possible contention-free MAC includes CDMA,

TDMA, FDMA or other token based schemes, and they can be implemented in both cen-

tralized and distributed manners. For contention-free MAC, resource reservation delay has

to be taken into account to determine the packet service time in the fluid flow model.

For network layer, more detailed routing schemes can be embedded into our model. Mul-

tipath routing is a routing technique of using multiple alternative paths through a network,

which can yield a variety of benefits of fault tolerance and increased bandwidth. To model

multipath routing, it is straightforward to assign the routing parameter in the model with a

decimal number, which is calculated by the portion of traffic going through this path. More-

over, the practical routing algorithms, such as AODV and DSR, typically include the routing

discovery phase, which could significantly impact the performance of a highly-dynamic net-

work. In the fluid flow model, such a discovery phase can be modeled by adding a short

query packets delivery process at the beginning of network connectivity change each time.

5.2.2 Hybrid Packet/fluid Simulation

Packet-level simulation models the detailed behavior of every packet in the network,

and results in an accurate picture of overall network behavior. Alternatively, fluid-level
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simulation abstracts the aggregated packets as a flow in a way that smooths over unessential

details. Such a simulation approach only consider changes in rates of traffic flows, and allows

one to sketch the network behavior using less computational effort.

The future work is to combine the standard packet-level simulators with fluid flow based

performance modeling technique to leverage the strong points of both two methods. The

hybrid method uses packet-level simulation to provide the behavior every packet for which

more detail is required and fluid flow model to represent aggregations of flows for which less

detail is needed. By treating data traffic as a flow and solving a set of differential equations

to obtain statistical data, the fluid flow model can not only speed up simulation but also

capture the dynamic behavior of that traffic flow.

5.2.3 Dynamic Network Control

The modeling techniques proposed in this dissertation can be applied to a variety of

control mechanisms in wireless networks to better support a required quality of service in a

real-time manner.

A dynamic control of media access in vehicular networks can be possibly developed on

the basis of fluid flow model in Chapter 3. One weakness of media access control of vehicular

networks is that static parameters are always used even though transient periods occur often

in some scenarios. Due to high-speed mobility, transient periods might dominant the network

behavior. Hence, the static MAC may not make optimum use of network resources after the

network hearing topology is changed. Furthermore, numerical results confirm that as the

transmission queue becomes heavily loaded, the settling time is in the unit of seconds. During

such a time period, network hearing topology could update and the unsettled queue could

be perturbed all the time and remain nonstationary. Consequently, the dynamic control of

media access is underscored and settling time can provide some ideas as to how often dynamic

control strategies should be updated based on the assumption of quasi-static conditions. The

dynamic control of media access in vehicular networks include admission control, contention

window sizing, and etc.

Based on the model for multihop wireless networks in Chapter 4, a dynamic optimal
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control problem can be formulated to determine the minimum-delay route for the traffic flow

from source node to destination node. The traditional routing algorithms designed for static

networks ignore the transient behavior of the network. As a result, they may not obtain

the optimal path or even feasible path for a traffic flow due to frequent changes of network

connectivity. As we know, the queuing delay and the transmission delay of each node along

the path are considered as the main factor of the end-to-end delay in a network. In a sense,

the number of packets in the nodes along the path is a measure of the end-to-end delay. To

seek the optimal route lasting for a certain time interval, it is first assumed that the network

connectivity remains the same during such a period. Then, all the possible paths for traffic

flow can be decided from network connectivity prior by graph theoretic algorithms. Finally,

according to the time varying number of packets in each node obtained from the fluid flow

model proposed in Chapter 4, we can determine the optimal route of the traffic flow by

selecting the path with the minimum number of packets accumulated along.
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APPENDIX

APPROXIMATION FOR N ∗D/D/1 QUEUE IN THE HEAVY TRAFFIC

REGIME

According to the definition of survival function, the value of Q(r) is in the range of [0, 1],

and monotonically decreases with the increase of r. Let’s consider x = ∑N−1
r=0 Q(r) as the

summation of Q(r) over N steps. When N � 1, the step size dr = 1 could be considered as

infinitesimal compared with N , and the values of Q(r) at two adjacent steps becomes very

close. Then, the E[x] can be approximated as the integration of Q(r), that is:

x ∼=
∫ N−1

0
Q(r)dr (.1)

In the heavy traffic regime ρ → 1, we have the following result from [49], based on the

Brownian approximation.

Q(r) ≈ e
−2r
(
r
N

+ 1−ρ
ρ

)
(.2)

By substituting Equation (.2) into (.1), we have

x ∼=
∫ N−1

0
e
−2r
(
r
N

+ 1−ρ
ρ

)
dr

=
√

2πN
4 e

N(1−ρ)2

2ρ2

(
erf
((ρ− 1)

√
2N

2ρ

)
+ erf

((Nρ− 2ρ+N)√
2Nρ

))
(.3)

Since N � 1 and ρ → 1, the argument of the second erf term in Equation (.3) satisfies
(Nρ−2ρ+N)√

2Nρ � 1. According to the property of erf function, this term can be approximated

as 1. Hence, Equation (.3) becomes:

x ∼=
√

2πN
4 e

N(1−ρ)2

2ρ2

(
erf
((ρ− 1)

√
2N

2ρ

)
+ 1

)
(.4)
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Since ρ ≤ 1 and erfc(x) = erfc(−x) + 1, Equation (.4) can be rewritten as

x ∼=
√

2πN
4 e

N(1−ρ)2

2ρ2 erfc
((1− ρ)

√
2N

2ρ

)
(.5)

In [153], an elementary approximation is developed for ex2erfc(x), with a maximum relative

error less than 0.0033 for all x ≥ 0, that is

exp(x2)erfc(x) ≈ 1
Ax+

√
1 +Bx2

(.6)

where A = 377/324, and B = 314/847. Since the server utilization is defined as ρ = N/D,

we substitute N by ρD in (.5). By using the approximation (.6) in (.5), we obtain the

functional relationship between x and ρ for the queue with CBR traffic in the heavy server

utilization ρ = [0.9, 1) as

x ∼=
√

2πρD
2A(1−ρ)

√
2ρD

ρ
+ 2

√
4 + 2B(1−ρ)2D

ρ

(.7)
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