486,943 research outputs found

    Self-Aware resource management in embedded systems

    Get PDF
    Resource management for modern embedded systems is challenging in the presence of dynamic workloads, limited energy and power budgets, and application and user requirements. These diverse and dynamic requirements often result in conflicting objectives that need to be handled by intelligent and self-aware resource management. State-of-the-art resource management approaches leverage offline and online machine learning techniques for handling such complexity. However, these approaches focus on fixed objectives, limiting their adaptability to dynamically evolving requirements at run-time. In this dissertation, we first propose resource management approaches with fixed objectives for handling concurrent dynamic workload scenarios, mixed-sensitivity workloads, and user requirements and battery constraints. Then, we propose comprehensive self-aware resource management for handling multiple dynamic objectives at run-time. The proposed resource management approaches in this dissertation use machine learning techniques for offline modeling and online controlling. In each resource management approach, we consider a dynamic set of requirements that had not been considered in the state-of-the-art approaches and improve the selfawareness of resource management by learning applications characteristics, users’ habits, and battery patterns. We characterize the applications by offline data collection for handling the conflicting requirements of multiple concurrent applications. Further, we consider user’s activities and battery patterns for user and battery-aware resource management. Finally, we propose a comprehensive resource management approach which considers dynamic variation in embedded systems and formulate a goal for resource management based on that. The approaches presented in this dissertation focus on dynamic variation in the embedded systems and responding to the variation efficiently. The approaches consider minimizing energy consumption, satisfying performance requirements of the applications, respecting power constraints, satisfying user requirements, and maximizing battery cycle life. Each resource management approach is evaluated and compared against the relevant state-of-the-art resource management frameworks

    A Model-based Repository of Security and Dependability Patterns for Trusted RCES

    Get PDF
    International audienceThe requirement for higher Security and Dependability (S&D) of systems is continuously increasing, even in domains traditionally not deeply involved in such issues. Nowadays, many practitioners express their worries about current S&D software engineering practices. New recommendations should be considered to ground this discipline on two pillars: solid theory and proven principles. We took the second pillar towards software engineering for embedded system applications, focusing on the problem of integrating S&D by design to foster reuse. Model driven approaches combined with patterns can be extremely helpful to deal with these strong requirements. In this work, we present a framework for trusted Resource Constrained Embedded Systems (RCES) development by design, by defining both a model to represent S&D pattern language and an architecture for development tools. The implementation of a repository of S&D patterns and their complementary property models is discussed in detail

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2

    Classification and analysis of predictable memory patterns

    Get PDF
    The verification complexity of real-time requirements in embedded systems grows exponentially with the number of applications, as resource sharing prevents independent verification using simulation-based approaches. Formal verification is a promising alternative, although its applicability is limited to systems with predictable hardware and software. SDRAM memories are common examples of essential hardware components with unpredictable timing behavior, typically preventing use of formal approaches. A predictable SDRAM controller has been proposed that provides guarantees on bandwidth and latency by dynamically scheduling memory patterns, which are statically computed sequences of SDRAM commands. However, the proposed patterns become increasingly inefficient as memories become faster, making them unsuitable for DDR3 SDRAM. This paper extends the memory pattern concept in two ways. Firstly, we introduce a burst count parameter that enables patterns to have multiple SDRAM bursts per bank, which is required for DDR3 memories to be used efficiently. Secondly, we present a classification of memory pattern sets into four categories based on the combination of patterns that cause worst-case bandwidth and latency to be provided. Bounds on bandwidth and latency are derived that apply to all pattern types and burst counts, as opposed to the single case covered by earlier work. Experimental results show that these extensions are required to support the most efficient pattern sets for many use-cases. We also demonstrate that the burst count parameter increases efficiency in presence of large requests and enables a wider range of real-time requirements to be satisfied

    Cross-platform verification framework for embedded systems

    Get PDF
    Many innovations in the automotive sector involve complex electronics and embedded software systems. Testing techniques are one of the key methodologies for detecting faults in such embedded systems.In this paper, a novel cross-platform verification framework including automated test-case generation by model checking is introduced. Comparing the execution behavior of a program instance running on a certain platform to the execution behavior of the same program running on a different platform we denote cross-platform verification. The framework supports various types of coverage criteria. It turned out that end-to-end testing is of high importance due to defects occurring on the actual target platform for the first time.Additionally, formal verification can be applied for checking requirements resulting from the specification using the same model generation mechanism that is used for test data generation. Due to a novel self-assessment mechanism, the confidence into the formal models is increased significantly.We provide a case study for the Motorola embedded controller HCS12 that is heavily used by the automotive industry. We perform structural tests on industrial code patterns using a wide-spread industrial compiler. Using our technique, we found two severe compiler defects that have been corrected in subsequent releases

    Design Patterns of Timed Automotive Systems

    Get PDF
    The functional complexity of hardware and software systems is growing exponentially. This demands an integration of system validation in the design phase to guarantee that a concrete implementation conforms to the modeled requirements. System validation process involves use of advanced systematic techniques and tools. In this report we present design patterns of timed automotive systems and a method for validating the real-time behavioral patterns of control intensive applications. The real-time behavioral patterns of embedded controllers are modeled using Statechart diagrams of Unified Modeling Language. Concrete implementation of the Statechart diagrams consists of active objects in Java programming language with synchronous communication. In the implementation using specified timed annotations, we validate the real-time constraints to be satisfied by embedded controllers. We shall illustrate the validation process with an example of a gear controller used in automobiles, and furthermore, provide an algorithmic solution

    Machine Learning in Resource-constrained Devices: Algorithms, Strategies, and Applications

    Get PDF
    The ever-increasing growth of technologies is changing people's everyday life. As a major consequence: 1) the amount of available data is growing and 2) several applications rely on battery supplied devices that are required to process data in real time. In this scenario the need for ad-hoc strategies for the development of low-power and low-latency intelligent systems capable of learning inductive rules from data using a modest mount of computational resources is becoming vital. At the same time, one needs to develop specic methodologies to manage complex patterns such as text and images. This Thesis presents different approaches and techniques for the development of fast learning models explicitly designed to be hosted on embedded systems. The proposed methods proved able to achieve state-of-the-art performances in term of the trade-off between generalization capabilities and area requirements when implemented in low-cost digital devices. In addition, advanced strategies for ecient sentiment analysis in text and images are proposed

    WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASA Multi-Core

    Get PDF
    To meet performance requirements as well as constraints on cost and power consumption, future embedded systems will be designed with multi-core processors. However, the question of timing analysability is raised with these architectures. In the MERASA project, a WCET-aware multi-core processor has been designed with the appropriate system software. They both guarantee that the WCET of tasks running on different cores can be safely analyzed since their possible interactions can be bounded. Nevertheless, computing the WCET of a parallel application is still not straightforward and a high-level preliminary analysis of the communication and synchronization patterns must be performed. In this paper, we report on our experience in evaluating the WCET of a parallel 3D multigrid solver code and we propose lines for further research on this topic

    A Framework to Specify System Requirements using Natural interpretation of UML/MARTE diagrams

    Get PDF
    International audienceThe ever-increasing design complexity of embedded systems is constantly pressing the demand for more abstract design levels and possible methods for automatic verification and synthesis. Transforming a text-based user requirements document into semantically sound models is always difficult and error-prone as mostly these requirements are vague and improperly documented. This paper presents a framework to specify textual requirements graphically in standard modeling formalisms like uml and marte in the form of temporal and logical patterns. The underlying formal semantics of these graphical models allow to eliminate ambiguity in specifications and automatic design verification at different abstraction levels using these patterns. The semantics of these operators/patterns are presented formally as state automatons and a comparison is made to the existing ccsl relational operators. To reap the benefits of mde, a software plugin TemLoPAC is presented as part of the framework to transform the graphical patterns into ccsl and Verilog-based observers
    • 

    corecore