
UNIVERSITY OF GENOA

Machine Learning in

Resource-constrained Devices:

Algorithms, Strategies, and Applications

by

Edoardo Ragusa

A thesis submitted in partial fulfillment for the degree of

Doctor of Philosophy in Science and Technology for Electronic and

Telecommunication Engineering,

Curriculum: Electromagnetism, Electronics, Telecomunications

in the

Faculty of Engineering

Department of naval, electric, electronic and telecommunications engineering

Tutors: Prof. Paolo Gastaldo, Rodolfo Zunino

Coordinator of PhD Course: Prof. Mario Marchese

February 2019

http://www.unige.it
mailto:edoardo.ragusa@edu.unige.it
http://www.ingegneria.unige.it
http://www.unige.it


Declaration of Authorship

I, Edoardo Ragusa, declare that this thesis titled, ‘Machine Learning in Resource-

constrained Devices: Algorithms, Strategies, and Applications’ and the work presented

in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i



‘With four parameters I can fit an elephant, and with five I can make him wiggle his

trunk.”

John Von Neumann



UNIVERSITY OF GENOA

Abstract

Faculty of Engineering

Department of naval, electric, electronic and telecommunications engineering

Doctor of Philosophy in Science and Technology for Electronic and Telecommunication

Engineering,

Curriculum: Electromagnetism, Electronics, Telecomunications

by Edoardo Ragusa

The ever-increasing growth of technologies is changing people’s everyday life. As a major

consequence: 1) the amount of available data is growing and 2) several applications

rely on battery supplied devices that are required to process data in real time. In this

scenario the need for ad-hoc strategies for the development of low-power and low-latency

intelligent systems capable of learning inductive rules from data using a modest amount

of computational resources is becoming vital. At the same time, one needs to develop

specific methodologies to manage complex patterns such as text and images.

This Thesis presents different approaches and techniques for the development of fast

learning models explicitly designed to be hosted on embedded systems. The proposed

methods proved able to achieve state-of-the-art performances in term of the trade-off

between generalization capabilities and area requirements when implemented in low-cost

digital devices. In addition, advanced strategies for efficient sentiment analysis in text

and images are proposed.
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Chapter 1

Introduction

Machine Learning [4] is a fascinating interdisciplinary field where statistics, geometry,

algebra and probability theory merge together. The purpose of Machine Learning tech-

niques is to infer properties on unseen data given a previous learning or training stage,

during which the relationship f between the data and the properties to be inferred is

derived. In other words, machine learning supports systems that can abstract knowledge

from data rather than simply memorize a set of rules for labeling them.

The word learning stands for an algorithmic procedure by which, from a finite num-

ber of examples, the inductive rule f is obtained. The selection of the most profitable

training approach is influenced by multiple factors, including but not limited to, feature

extraction process, convergence speed, convexity, computational cost and memory re-

quirements. A learning algorithm defines the quality of rule f in term of generalization

ability but also in term of the computational cost of the eventual predictor. The latter

aspect depends on the structure of the hypothesis space and by the compression ability

of the training procedure.

Nowadays the development of pervasive electronics enforces the requirement of proce-

dures that are capable of balance computational cost of the training phase, with ef-

ficiency of the eventual predictor. In this scenario, it is necessary to recalibrate the

learning phase to minimize the number of computations required. In some cases, the

changes start from the hypothesis space that characterizes the eventual predictor. In

these scenarios, the hypothesis spaces are subject to constraints with the goal of pro-

moting the digital implementations of the classifier. In the following, these hypothesis

spaces are called hardware-friendly. Unfortunately, there is a sort of trade-off between

training cost and efficiency of the predictor.

1
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Learning models based on randomness and deep learning approaches represent the two

extreme cases. In fact, the random based ones discard some portions of the training

phase in favour of a lower number of computations without losing generalization capa-

bilities of the models. As a major result, the learning procedure can be performed with

a modest number of floating point operations, but the eventual predictors suffer from

relatively low accuracy and modest performance in term of compactness respect to fully

trained ones.

On the other hand, deep learning techniques have obtained astonishing results compared

to traditional machine learning models in many applications, mostly thanks to the ability

of automatically extracting complex features sets from the data. This abstraction ability

comes at expense of an increased computational effort that makes the deployment of deep

architectures an important research topic.

This Thesis assesses the problem of learning in resources constrained scenario from two

points of view. Firstly, the focus is put on single hidden layer feed forward neural net-

works (SLFNs) trained using random based approaches. In this phase, the goal is the

development of machine learning methods based on hardware friendly hypothesis spaces

that require a light learning phase. This research line is concluded by the proposal of

architectures for the digital deployment of predictors in low-end digital devices. Sec-

ondly, the problem of complex feature extraction is explored, providing insight about

possible strategies that can fasten training approaches exploiting domain knowledge and

transfer learning. In particular, tasks related to sentiment analysis in text and images

are addressed.

The Thesis is organized as follows: Chap. 2 discusses fast learning based on single hidden

layer hypothesis space; Chap. 3 refers to the results achieved extending a subset of the

approaches presented in Chap. 2 to the case of tensor input domains. Chapter 4 describes

the ad-hoc digital architectures designed for the deployment of eventual predictor trained

following procedures described in Chap. 2. Part of the discussed techniques are tailored

to the task of subjectivity detection in text in Chap. 5. Finally, a study about the

impact in term of computational efficiency and accuracy of deep learning architectures

for the task of image polarity detection is proposed in Chap. 6.

1.1 Contribution

The contributions of this Thesis can be summarized in the following points: contributions

regarding random basis networks (Chapters 2, 3, 4), and application to information
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retrieval and sentiment analysis (Chapter 5, 6). The contribution of the first part can

be summarized in three main points:

• An analysis about the role of randomization in the training process of a learn-

ing machine, and about the affinities between two well-known schemes, namely,

Extreme Learning Machines (ELMs) and the learning framework using similar-

ity functions is provided [5–7]. These paradigms share a common approach to

inductive learning, which combines an explicit remapping of data with a linear

separator; however, they seem to exploit different strategies in the design of the

mapping layer. The research shows that, in fact, the theory of learning with sim-

ilarity functions can stimulate a novel interpretation of the ELM paradigm, thus

leading to a common framework. New insights into the ELM model are obtained,

and the ELM strategy for the setup of the neurons’ parameters can be significantly

improved. Experimental results confirm that the novel methods outperform con-

ventional approaches, especially in the trade-off between classification accuracy

and machine complexity (i.e., the dimensionality of the remapped space).

• Machine learning algorithms are typically designed to deal with data represented

as vectors. Several major applications, however, involve multi-way data. In those

cases, tensors endow a more consistent way to capture multi-modal relations. This

Thesis presents a tensor-oriented machine learning framework, and shows that the

theory of learning with similarity functions provides an effective paradigm to sup-

port this framework [8]. The performance of the tensor-based framework is evalu-

ated on a set of complex, real-world, pattern-recognition problems. Experimental

results confirm the effectiveness of the framework, which compares favorably with

state of the art machine learning methodologies that can accept tensors as inputs.

Indeed, a formal analysis proves that the framework is more efficient than state

of the art methodologies also in terms of computational cost. The Thesis thus

provides two main outcomes: (1) a theoretical framework that enables the use

of tensor-oriented similarity notions and (2) an efficient notion of similarity that

leads to computationally efficient predictors.

• The availability of compact digital circuitry for the support of neural networks is a

key requirement for resource constrained embedded systems. This Thesis tackles

the implementation of single hidden-layer feed-forward neural networks, based on

hard-limit activation functions, on reconfigurable devices [9, 10]. The resulting

design strategies rely on a novel learning procedure that inherits the approach dis-

cussed in Chapter 2. Experimental tests confirm that the design approach leads

to efficient digital implementations of the predictor on low-performance devices
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that performs favorably in term of area occupation respect to state-of-the-art ap-

proaches.

The second part (Chapter 5 and 6) provides three main results:

• Subjectivity detection is a task of natural language processing that aims to remove

‘factual’ or ‘neutral’ content, i.e., objective text that does not contain any opin-

ion. Such a pre-processing step is crucial to increase the accuracy of sentiment

analysis systems, as these are usually optimized for the binary classification task

of distinguishing between positive and negative content. This Thesis extends the

ELM paradigm to a novel framework that exploits the features of both Bayesian

networks and fuzzy recurrent neural networks to perform subjectivity detection

[11]. In particular, Bayesian networks are used to build a network of connec-

tions among the hidden neurons of the conventional ELM configuration in order

to capture dependencies in high-dimensional data. Next, a fuzzy recurrent neural

network inherits the overall structure generated by the Bayesian networks to model

temporal features in the predictor. A formal analysis proves that the framework

is more efficient than state-of-the-art in terms of computational cost. Finally, ex-

perimental results confirmed the ability of the proposed framework to deal with

standard subjectivity detection problems.

• The availability of an effective embedding for textual information is a primal chal-

lenge in commonsense reasoning, because it is at the basis of the whole processing

flow and it strongly influences the quality of the entire analysis. In this Thesis, a

recently introduced technique for finding cognitively meaningful paths is applied

to AffactiveSpace, a multidimensional space of commonsense knowledge primarily

used for sentiment analysis. The proposed protocol provides engineers and data

scientists with a qualitative measure of concepts distributions in a graphical for-

mat that enables the analysis of embedding properties and thus it is useful to

evaluate and optimize the embedding space itself. Experimental section involved

the characterization of AffectiveSpace proving that the proposed approach can be

effectively used to describe embeddings; further it is shown how data displacement

in this specific embedding is coherent with the hourglass model of emotions.

• Deep convolutional neural networks (CNNs) provide an effective tool to extract

complex information from images. In the area of image polarity detection, CNNs

are utilized in combination with transfer learning techniques. Thus, polarity pre-

dictors in general exploit a pre-trained CNN as feature extractor that in turn feeds

a classification unit. While the latter unit is trained from scratch, the pre-trained

CNN is subject to fine tuning. Such generic framework is at the base of almost



Chapter 1. Introduction 5

all the state-of-the-art models for polarity detection on images. The convolutional

neural network employed as feature extractor strongly affects the performance of

the model. The Thesis analyzes the state-of-the-art about image polarity detec-

tion and enlighten that a fair comparison between different models is difficult due

to the diverse architecture proposed in different works. The performances of these

architectures are then compared by defining an experimental protocol that allows

a fair comparison between existing convolutional neural networks. The perfor-

mances are evaluated both in terms of generalization abilities and in terms of

computational complexity. The latter attribute becomes critical when considering

that polarity predictors -in the era of social network and custom profiles- might

need to be updated within a short time interval (i.e., hours or even minutes) us-

ing limited amount of computational resources. As a major consequence, such

predictors should properly address the trade-off between classification accuracy

and computational load. In this regard, the Thesis provides practical hints on

advantages and disadvantages of the examined architectures.



Chapter 2

Fast Learning Approaches

The availability of a large quantity of data creates new opportunities and new challenges

in the area of statistical learning [12–14]. Such availability boosted many strategic do-

mains such as business intelligence [15], Internet of Things (IoT) [16], Natural Language

Processing (NLP) [11, 17], and social media monitoring [18]. Indeed, both academia and

industry have been investing resources and money in the development of new method-

ologies that can cope with the problem of extracting information from available sources,

both from a theoretical point of view [12, 14] and from an implementation point of view

[19, 20].

As an example, deep learning architectures [14] have proved able of achieving outstanding

results in term of generalization ability. On the other hand, these architectures involve

a few major issues: 1) the implementation of both learning phase and inference phases

[21] require high performance hardware; 2) the training process is extremely sensitive to

parameterization; finally, 3) to train a deep network a big dataset should be available.

Computational aspects, though, affect also standard machine learning approaches, which

in general may deal with medium-size training set (i.e., thousands of samples). This is-

sue becomes prominent when the training procedure should run on resource-constrained

device, e.g., electronic embedded systems. Under this scenario, one often needs to rely

on a paradigm that can address the ever-present trade-off between predictor complexity

and generalization ability. Toward that end, paradigms combining single-hidden-layer

feedforward networks (SLFNs) and random basis functions achieved significant results,

because 1) they require modest computational resources [9], 2) the convex nature of

the optimization problem simplifies the implementation phase [13], and 3) the limited

amount of free parameters involved allow one to train these models also when small

datasets are available. Random Radial Basis Functions [22], Random Vector Functional-

Link (RVFL) [23], Extreme Learning Machines (ELMs) [24, 25], and Weighted Sum of

6
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Random Kitchen Sinks [26] represent very interesting instances of such approach. These

models all share the common idea of initializing the hidden layer by using randomiza-

tion to support a fixed transformation of input data. As a result, the learning process

should only adjust a linear separator in the upper layer (i.e., in the remapped space).

Remarkably, this simplification does not affect the universal approximation abilities of

the resulting machines [13]. Between these paradigms, ELM is the one that presents

the most solid theoretical background and most of the literature refers to random based

neural network as ELM. For these reasons, in the following, we will refer to random

based models as ELM or random basis model interchangeably.

This chapter aims to open new vistas on the above learning approaches, by proving that

there exists a parallelism between random basis functions and similarity functions [27].

In this regard, the first contribution provided by the present work is a novel analysis

of the ELM hypothesis space that takes advantage of the convergences between ELM

and the theory of learning with similarity functions (SIM). Accordingly, this research

shows that the standard ELM model implements a sort of speculative policy in data

mapping. In practice, each hidden neuron remaps an input datum irrespectively of the

others; more importantly, the basis function acts as similarity function that remaps in-

put data according to a random similarity notion with respect to a random reference

point (landmark). As a major consequence, while the mapping layer does not require

any parameter-fitting, several neurons might cover irrelevant portions of the data space

or be badly parameterized, thus compromising efficiency at capturing the structure of

the problem at hand. This is even more important when considering that the compu-

tational complexities of both training and run-time operations depend on the size of

the mapping layer. Therefore, this research demonstrates that in principle the ELM

framework provides a broader hypothesis space with respect to the standard theory of

similarity functions. However, this comes at the expense of a small deterioration of the

learning bounds.

The second contribution provided by the present chapter is a set of novel training strate-

gies for the ELM model. The eventual goal is to overcome the limitations brought about

by the standard speculative policy that drives the setup of the mapping layer. The pro-

posed training strategies still rely on random landmarks; conversely, the configuration

parameter of the activation/similarity function are set based on selection procedures that

mitigate the presence of pathological configurations. Indeed, such task is accomplished

by avoiding standard, computationally demanding strategies such as back propagation

or model selection.

This research actually shows that the theory of learning with similarity functions may

inspire heuristics, yet valuable approaches for selecting the most promising value for the
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shape parameters of activation functions.

The chapter is structured as follows: in the first two sections, the selected paradigms

are presented. Details about the affinities between ELM and SIM paradigms are deeply

investigated in section 2.3. Following, in section 2.4, the geometrical consistence between

the selected activation function and hidden parameter sampling is discussed. Finally,

section 2.5 summarize the algorithms derived from the proposed analysis and presents

the experimental results that empirically validates their effectiveness.

2.1 Random Feed Forward Neural Networks

Feed forward neural networks [28] represent one of the most widely used learning paradigms

thanks to the excellent trade-off between computational load and the generalization ca-

pabilities of the eventual predictor. Given an input datum x ∈ RD, the general structure

of a SLFN is:

f(x) =

N∑
i=1

βjhj(x,ωj , σj) (2.1)

where N is the number of hidden neurons, hj is a nonlinear activation function, ωj are

the hidden parameters, σj is the shape parameter of the j-th neuron and β is the set of

output weights.

Given a set of labeled data T = {(xi, yi), i = 1, ..., Z,xi ∈ RD, yi ∈ [−1; 1]}, training of

such models consists in tuning the network’s parameters to minimize a loss function L:

min
β,σ,Ω

L(T , f(β,Ω,σ)) (2.2)

In practice, training consists in the solution of an optimization problem that, based on

the specific loss function L and the predictor f , can present different levels of complexity.

Since its proposal in 1986, back propagation algorithm (BP) [29] is at the base of the

most effective and used procedures for the training of neural networks. This optimization

technique is based on an iterative update of the models parameters {β,σ,Ω} in the

opposite direction with respect to the gradient of the loss function. This optimization

technique ensures globally optimal solution only when both L and f are convex respect

to the tuned parameters. Despite its effectiveness, application of BP in SLFN training

suffers from slow convergence and local minimum problems because f is not convex

by construction. The literature provides plenty of approaches that alleviate this issue
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[30, 31] but in general sets of hyper-parameters are introduced making the tuning process

challenging. Furthermore, the requirements imposed by the gradient calculation limit

the allowed activation functions h to the differentiable ones.

A widespread strategy to tackle the aforementioned problems is based on the so-called

random models [22–24, 26] . The common idea behind all these paradigms consists in

performing a random nonlinear transformation of the input data. This is achieved by

setting the parameters Ω and σ randomly. This design choice affects dramatically the

computational load of the training phase because f becomes convex with respect to the

training parameters. As a consequence, the optimization problem turn into to the setup

of a linear separator β in the new space. Given that f is convex, if the loss function is

also convex, the optimization problem admits a globally optimal solution. Between the

convex loss functions means square error (MSE) is the most used in literature:

min
β
{‖y −Hβ‖2} (2.3)

where H denote a Z ×N matrix, with hij = hj(xi,ωj , σj);

The success of MSE is strictly related to the fact that, the resulting optimization prob-

lem, not only becomes convex, but it also admits a closed form solution:

β = H−1y (2.4)

Interestingly, universal approximation capability [32] is maintained and the set of ad-

missible activation functions h is extended to a broader set with respect to the ones

allowed from BP [13]. Numerical stability issue and overfitting affect the solution of

this learning problem. Fortunately, the theory derived in [33] proves that regularization

techniques can further improve the approach generalization performance, at the same

time, numerical stability issue can be limited by smoothing the solution. As a result, it

is convenient to replace cost function (2.3) with:

min
β
{‖y −Hβ‖2 + λ‖β‖2} (2.5)

where λ is the regularization parameter that controls the ratio between data fitting and

the smoothness of the solution. This regularized version (RMSE) of the loss function

still admits an analytical closed form solution. When Z ≤ N , one has:

β = HT (λI +HHT )−1y (2.6)
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conversely, when Z > N one has:

β = (λI +HTH)−1HTy (2.7)

It is important to stress the fact that, despite the closed form solution shown in equations

(2.4) and (2.5), the efficient computation of the solution does not involve the explicit

matrix inversion, but relies on algorithms for the solution of linear equation systems that

are computationally more efficient [34]. Interestingly, the regularized mean square error

is not the only convex loss function available to tune the linear separator; in [35] the

authors compared different loss functions in term of generalization ability of the eventual

predictor and the results proved that RMSE could not be the best choice in some cases.

Despite this last observation, RMSE boasts a solid and well-structured literature with

optimized solvers that enables efficient implementation in resource constrained scenario.

For this reason, in the following, RMSE loss function is considered.

Finally, to complete the discussion about ELM the complete training procedure is pre-

sented in Algorithm 1. Notably, the training procedure can be summarized in a few

lines of code.

Algorithm 1 The learning scheme based on random hidden layer

Input

• a labeled training set T = {(x, y)i; i = 1, ..., Z}

• a set of activation functions h

• number of neurons N

0. Initialize
extract the random set {ωi, σi}, i = 1, ..., N
1. Mapping
remap all the patterns x ∈ T by using the following mapping function

φ(x) = {h1(x,ω1, σ1), ..., hN (x,ωN , σN )}

2. Learning
train a linear predictor in the space φ : X → RN

2.2 Theory of Learning with Similarity Functions

The theory of learning with similarity function presented in [27] consists of a theoretical

framework that extends the mathematical paradigm of Kernel learning [36]. This general
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theory sets the sufficient conditions for a similarity function to allow one to “learn well”,

without requiring the function of being semi-definite positive or even symmetric.

The following pair of definitions summarizes the crucial elements of the theoretical frame-

work; the first one addresses the notion of pairwise similarity function, K, while the

second introduces the most basic, yet intuitive notion of good similarity function.

Definition 1. [27] A similarity function over X is any pairwise function K : X × X →
[−1, 1]. K is defined as a symmetric similarity function if ∀x,x′ ∈ X ,K(x,x′) =

K(x′,x).

Definition 2. [27] K is a strongly (ε, γ)-good similarity function for a learning problem

P if at least a (1− ε) probability mass of examples x satisfy:

Ex′∼ P [K(x,x′)|y(x) = y(x′)] ≥ Ex′∼ P [K(x,x′)|y(x) 6= y(x′)] + γ (2.8)

The definition of (ε, γ)-good similarity function imposes a set of stringent assumptions

that are not applicable to the real word scenario if K is fixed a-priori.

An (ε, γ)-good similarity function satisfies less stringent constraints (again inherited from

[27]):

Definition 3. [27] A similarity function, K, is an (ε, γ)-good similarity function for a

learning problem P if there exists a bounded weighting function ω over X (ω(x′) ∈ [0, 1]))

for all x′ ∈ X such that at least a (1− ε) probability mass of examples x satisfy:

Ex′∼ P [ω(x′)K(x,x′)|y(x) = y(x′)] ≥ Ex′∼ P [ω(x′)K(x,x′)|y(x) 6= y(x′)] + γ (2.9)

The above definition uses a weighting function, ω, to balance the relative significance

of each sample, x′. When considering the eventual learning algorithm, the definition

requires that a bounded weighting function, ω, exists, although this does not imply

that such a function is known a-priori. In other terms, any similarity expression is, in

principle, a (ε, γ)-good similarity function, and one needs a suitable criterion to find the

weighting function ω that minimizes ε and maximizes γ.

In practice, one should replace the expectation with an average over a set of landmarks,

i.e., the examples x′. As a result, the weighting function ω will satisfy Definition 3 in

correspondence of the landmarks at-hand. The outcome of this observation is that the

notion of good similarity function allows one to setup a learning scheme based on a

hypothesis space. To this purpose, one needs
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Algorithm 2 The learning scheme that exploits the theory of learning with (ε, γ)-good
similarity functions

Input

• a labeled training set T = {(x, y)i; i = 1, ..., Z}

• a similarity function K

• number of landmarks L

0. Initialize
extract L random samples L = {ln;n = 1, .., L} from T

1. Mapping
remap all the patterns x ∈ T by using the following mapping function

φ(x) = { 1√
L
K(x, l1), ...,

1√
L
K(x, lL)}

2. Learning
train a linear predictor in the space φ : X → RL

• L landmarks, i.e., a subset of the original dataset which is randomly drawn from

the domain distribution p(X ) that characterizes P . Both labeled and unlabeled

patterns provide an admissible source of landmarks.

• A similarity function K.

To build the hypothesis space, the domain space X is first remapped into a new space

RL. Accordingly, for every pattern, x, one computes the similarities, K, between x and

each landmark. In the second step, a linear predictor is trained in the new space, RL.

The eventual hypothesis space can be formalized as

f(x) =

L∑
j=1

ωjK(x, lj) (2.10)

where the weights, ωj , are computed by adjusting a linear predictor. Algorithm 2 outlines

the associate learning procedure.

Algorithm 2 relies on the similarity function K to remap the original space into a new

space where data are separated by a (possibly large) margin with error, ε. Then, the task

of tuning the weighting function, ω, is assigned to the linear predictor. The learning

abilities of this procedure have been formally analyzed in [27]: if one set L = 16 ·
ln(4/ε∗)/γ2, then with probability at least (1− ε∗/2) there exists a low-error (≤ ε+ ε∗),

large-margin (≥ γ/2) separator in the feature space.



Chapter 2. Fast Learning 13

2.3 Convergence between Learning with Similarity Func-

tions and Extreme Learning Machine

Several convergences exist between the predictors derived by the paradigms introduced

in sections 2.1 and 2.2 and their learning procedures [6, 9, 37]. In fact, both approaches

presented in algorithms 1 and 2 relies on a two step procedure: firstly, data are projected

in a remapped space with explicit dimension, L for SIM paradigm and N for ELM. The

second step of the procedure instead involves the tuning of a linear separator in the

remapped space.

In principle, all the differences consist of the different remapping strategies employed,

however, a careful analysis unveils that many common points exist. Understanding these

similarities can stimulate new ideas and developments in the field, for these reasons,

in the following, ELM hypothesis space will be reinterpreted in view of learning with

similarity function. It is important to note that the proposed interpretation is not the

only admissible one, but offers a different point of view on the learning abilities of the

model with respect to previous works [33, 38, 39].

In general, such convergences become evident when the ELM model utilizes activation

functions that can be reinterpreted as similarity functions [37]. Thus, let φ(x, rj , χj)

be parametric activation/similarity function that remaps x into R by using a landmark

rj ∈ RD as a reference point; χj is the configuration parameter for φ. As a result, the

hypothesis space (2.1) and the hypothesis space (2.10) may represent two instances of

the following general hypothesis space:

f(x) =

N∑
j=1

βjφ(x, rj , χj) (2.11)

From the viewpoint of learning with similarity functions (2.10), the vectors rj in equation

(2.10) embeds data belonging to the (unknown) distribution P . Besides, χ1 = χ2 =

... = χN , as the hypothesis space (2.10) does not admit multiple configurations for the

similarity function. In the case of the ELM hypothesis space (2.1), conversely, both the

landmarks rj and the parameters χj are selected randomly. Therefore, the vectors rj

can embed any datum belonging to RD and the similarity function adopts a different

parameterization for each landmark.

One of the contribution of this Chapter is to show, formally, that the connection between

the two paradigms is tight. The novel insights on the hypothesis space can be stimulated

when considering the parallelism between such hypothesis space and the hypothesis

space (2.1). In the following, subsections 2.3.1 and 2.3.2, respectively, will show that -in
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principle- the ELM model can inherit the learning bounds of the hypothesis space (2.1)

even if 1) χ1 6= χ2 6= ... 6= χN , and 2) rj ∈ RD.

2.3.1 Shape Parameter of the Activation Function

The hypothesis space set by the theory of learning with similarity functions in principle

does not admit a configuration parameter for the similarity function at-hand. Hence, in

the case of a similarity function belonging to a parametric family, one should implicitly

set χ1 = χ2 = ... = χN = χ, where χ is a predetermined value. On the other hand, the

ELM model randomly sets each χj . Theorem 2.1 indeed proves that the ELM mapping

layer can support a low error ε large margin γ linear separator:

Theorem 2.1. Consider a set of N landmarks {r1, r2, ..., rN} randomly drawn from T
and the remapped space ρ(x) = {φ(x, r1, χ1), φ(x, r2, χ2), ..., φ(x, rN , χN )}. Let φ̃ be

φ̃(x, r) =
1

L
(δ(r, r1)φ(x, r1, χ1) + δ(r, r2)φ(x, r2, χ2) + ...

+ δ(r, rN )φ(x, rN , χN )) (2.12)

where δ(r, rj) is the Kronecker delta. If φ̃ is an (ε, γ)-good similarity function for a

generic sample of size N of the learning problem P then with probability 1 − ε the

mapping ρ : X → RN with N = (8 · log(1/δ))/γ2 has the property that the induced

distribution ρ(P ) in RN has a separator of error at most ε+ δ at margin γ/2.

Proof. Following proof of Theorem 3 [27], ψ̃ : X → RN defined as ψ̃(x) = ρ̃(x)√
N

ρ̃(x) = {φ̃(x, r1, χ1), φ̃(x, r2, χ2), ..., φ̃(x, rN , χN )} with probability 1 − δ, the induced

distribution ψ̃(P ) ∈ RN would have a separator of error at most ε + δ and margin

at least γ/2. Let β̃ be the vector corresponding to such separator, and convert it into

β̂ ∈ RN×N by replacing each coordinate β̃i with the N values ( 1
N β̃i,

1
N β̃i, ...,

1
N β̃i). Given

that ‖β̂‖ = ‖β̃‖ then the margin in the space RN×N is γ/2. By construction ρ(x) = ρ̃(x),

then the same linear separator holds for the learning problem P .

Theorem 2.1 assumes -without any loss in generality- r ∈ T . Sec. 2.3.2 will show that

when sampling r in RD one actually needs to suitably increase the number of landmarks

N .

Interestingly, this theorem shows that the ELM model also can exploit the notion of

“good” similarity function. In the hypothesis space (2.10), the assumption is that such
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similarity function is “good” all over the input domain. On the other hand, the ELM

model exploits a similarity function that becomes “good” by adapting its configuration

to the landmark at-hand.

Finally, it is worth noting that the ELM model can also adopt mapping layers where

Φ1 6= Φ2 6= .... 6= ΦN , i.e., where each neuron exploits a specific activation/similarity

function. Theorem 2.1 actually can be easily extended to this configuration.

2.3.2 Landmarks Sampling

The theory of learning with similarity functions assumes that landmarks rj should lie

inside the input domain X ⊆ RD. Accordingly, one needs N = (8 · log(1/δ))/γ2 land-

marks to obtain a low-error (≤ ε+ ε∗) large-margin (≥ γ/2) separator in the remapped

space.

The ELM strategy, conversely, extends the admissible domain for the landmarks to RD.

Formally, the probability of getting a landmark belonging to X by randomly sampling

RD can be modelled as a Bernoulli distribution:

Pr∈X = P (r ∈ X |r ∈ RD) ≤ 1 (2.13)

This in turn means that given N̂ random patterns, the probability of having at least N

admissible landmarks in the sense of the theory of similarity functions can be expressed

as the cumulative of a binomial distribution:

F (N, N̂, Pr∈X ) =

N∑
i=0

(
N

i

)
(Pr∈X )i(1− Pr∈X )N̂−i (2.14)

then, with probability ζ = 1− F (N, N̂, α) at least N samples belong to X .

In practice, this means that by applying the ELM strategy one needs at least N̂ >

N landmarks to obtain a low-error (≤ ε + ε∗) large-margin (≥ γ/2) separator in the

remapped space. Obviously, the exact value of N̂ is unknown as, in general, Pr∈X

is unknown. It is important to note that this is a worst case analysis, because the

assumption here is that patterns that do not belong to input domain X are not involved

at all in the learning phase.
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2.3.3 Comparison Summary

Subsections 2.3.1 and 2.3.2 state that the two learning paradigms not only share some

similarities in the shape of the eventual predictors, but importantly can be reinterpreted

under a unique theoretical framework with some important differences in the rationale

behind the models.

The ELM model extends the sampling domain of acceptable landmarks from T to X
to bypass any constraint on the size, N , of the mapping layer. This policy may prove

especially useful in the presence of limited datasets, i.e., when T might not properly cover

the (unknown) distribution P that characterize the learning problem at-hand without

incur in overfitting. Conversely, the availability of large datasets possibly undermines

the benefits of such a speculative strategy.

The choice of allowing multiple configurations of the similarity notion can in principle

limit the computational complexity of the training process. When using a parameterized

similarity function, model selection is the only effective method to find a suitable setting

of the hyper-parameter among a variety of candidates. This clearly would bring about

a computational overhead. The ELM policy in practice bypasses this issue by using

randomization in the setup of hyper-parameters.

In summary, the speculative approach adopted by the ELM model in the setup of {rj , χj}
aims at balancing sample coverage and computational efficiency. On the other hand,

Section 2.4 shows that random settings can lead to unsuitable configurations. One faces

the risk of collecting a large number of ineffective mapping units, that is, pairs {rj , χj}
that do not support a proper remapping of data according to the embedded similarity

notion.

2.4 Geometrical Analysis

Computational complexity of SLFN is directly related to the number of neurons N . In

fact, N affects both the training time and computational cost of the predictor. Random

based procedures clearly privilege a fast training stage at the expense of a lower accu-

racy of the eventual predictor, when N is fixed. Computationally demanding pruning

or selection strategies [40–43] for the setup of the hidden layer are the only available

option when the goal is a better trade-off between the number of neurons and general-

ization capabilities of predictors derived by random based models. On the other hand,

a careful management of the sampling strategy can largely improve the performance of

the predictor with a modest number of neurons, because it can help in avoiding patho-

logical configurations. As an example, neurons that provide always the same output
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Table 2.1: Commonly used activation functions

Activation Function φ(I)

Triangular Basis Function (TBF)


1 I = 0

−I 0 < I < 1

0 I ≤ 1

Radial Basis Function (RBF) = e−I
2

MultiQuadric (MQ) =
√
I2

Inverse MultiQuadric (IMQ) = 1√
1+I2

Sigmoid (SGM) = 1
1+e−I

Threshold (THR)

{
1 I > 0

−1 I ≤ 0

independently by the input are useless. In the following two subsections, a series of

considerations about the role played by the hidden layer parameters is presented for

different activation functions. Firstly, the role played by different parameters in com-

mon activation functions is discussed in subsection 2.4.1. Secondly the peculiarities of

threshold function are targeted in subsection 2.4.2.

2.4.1 Generic Activation Function

Let g be a bounded, monotonically decreasing transfer function; then, one has:

φ(x, r, χ) = g(I(M(x, r), χ)) (2.15)

Equation (2.15) shows that the activation/similarity function applies the transfer func-

tion, g, on an input I(M(x, r), χ). In this notation, M denotes the metric that process

the datum x and the landmark r, while the complete input I derives by the action of

the shape parameter χ on the metric. Table 2.1 provides some examples of activation

functions that indeed satisfy the ELM universal-approximation capability theorems [13].

All the functions presented in table 2.1 can be converted in monotonically decresasing

function with a sign inversion where needed.

The following property points out a basic attribute of the class of monotonic similarity

functions (2.15):

Property 1. The relative placement in the similarity domain of any two samples x1,x2

with respect to r is independent of χ and g.
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This means that, given a landmark r and a pair of samples {x1,x2} such thatM(x1, r) <

M(x2, r), the following property holds for any positive value of χ :

g(I(M(x1, r), χ)) ≥ g(I(M(x2, r), χ)).

To understand the consequences of Property 1, let ν−C be the distance M between r and

the closest sample of class ‘-1’, and ν−O be the distance M between and the outermost

sample of class ‘-1’. Likewise, let ν+C and ν+O be the corresponding quantities for class

‘+1’. Then, a prerequisite to avoid class overlapping in the similarity domain is

ν−C < ν−O < ν+C < ν+O (2.16)

or, equivalently,

ν+C < ν+O < ν−C < ν−O (2.17)

In practice, the prerequisite for obtaining the configuration of fully separated classes in

the similarity domain is to use a landmark, r, that satisfies the above conditions. In

fact, g and χ cannot affect the relative order of the samples in the similarity domain.

A second attribute of the class of similarity functions (2.15) is formalized by the following

proposition

Property 2. The similarity between any sample x and r is a function of both f and χ.

Let TBF be the activation/similarity function adopted with I(M(x, r), χ) = χ‖x−r‖2.
The Euclidean distance assesses the dissimilarity between an input sample, x, and the

reference sample (i.e., the landmark) r. The specific shape of the transfer function,

TBF, converts dissimilarities into similarities. Thus, when x = r, one has maximum

similarity. Conversely, when x 6= r, the degree of similarity may not decrease linearly

as the Euclidean distance increases.

Figure 2.1 illustrates the remapping action performed by this function on a simple case

study. Figure 2.1(a) shows the samples lying on a two-dimensional space, where classes

are represented by triangular patterns (‘-1’) and square patterns (‘+1’). The diamond

symbol marks the position of the landmark, r. Figure 2.1(b) presents the remapping

action performed by TBF, which ascribes null similarity to any sample that lies at a

distance greater than 1/χ from the landmark. The figure also marks the four basic

quantities defined above, that is, ν+C , ν
+
O , ν

−
C and ν−O .

The figure presents the most profitable configuration: the landmark has been selected so

that an appreciable margin separates the Z+ samples of class ‘+1’ from the Z− samples

of class ‘-1’. Moreover, the transfer function g preserves (or even emphasizes) such
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(a)

(b) (c)

Figure 2.1: An example of data remapping with TBF: (a) original input space; (b)
data remapping with a suitable value of r; (c) data remapping with an inappropriate

value of r.

margin. This in turn means that such configuration would lead to a strongly (0, γ)-good

similarity function.

Figure 2.1(c) illustrates a counterexample. If χ takes on a value such that 1/χ < ν+O , a

portion of the samples of class ‘+1’ becomes indistinguishable - in the similarity domain

- from the samples of class ‘-1’. This situation may occur even in the presence of a wide

margin between the two classes with respect to r. The worst case occurs when one sets

1/χ < ν+C : all samples become identical after remapping, since the similarity between r

and any sample always nullifies.
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The above discussion applies in general to any activation function described by equation

(2.15). The pair {g, χ} sets a specific similarity based on the mapping M(x, r) whose

behavior and properties stem from the combined contributions of two main factors:

• First, thanks to the monotonic nature of g (as per (2.15)) and the radial mapping,

the ordering is not altered by the specific similarity notion. In terms of the (ε, γ)

formalism, the landmark r establishes the level of overlap between the two classes

and therefore sets the smallest attainable value of ε.

• Secondly, the specific resulting similarity metric defined by {g, χ} determines the

gap between a sample and its neighbors

2.4.2 Threshold Function and Scalar Product

Between the existing activation function, the threshold is probably the most convenient

if one targets a digital implementation. On the other hand, this function cannot be

selected when the training process involves the use of the BP algorithm because it is

non differentiable. Many approximated approaches have been proposed in the literature

[44, 45] but these approximations induce performance’s deterioration. Interestingly,

Huang et al. [46] proved that the ELM theory also holds for hard-limiter activation

functions extending as a consequence, universal approximation capabilities to directly

trained threshold networks.

In general, the threshold function can be considered as a degenerate case of the sigmoid

function where the slope of the non saturating portion is infinite. In this section details

about the scalar product geometrical distribution and its interaction with sigmoid func-

tion are analyzed. As a major result, it is shown that sigmoid based networks contain a

considerable percentage of neurons that acts as threshold unit.

The scalar product activation can be conveniently rewritten as:

I(M(x, r), χ) = xtr + χ = xtr + ltr = ‖r‖(xtr̂ + ltr̂) = ‖r‖(xtr̂ − r) (2.18)

where r̂ is a unit vector and r ∈ R is the projection of a generic point l onto r. As a

result, I(M(x, r), χ) can be reinterpreted as I(x, r, r). If x ∈ [0, 1]D, without any loss

of generality, the scalar projection of x on ω̂ lies in an interval that depends on the

dimensionality D of the input space; i.e., xtr̂ ∈ [−
√
D,
√
D].

According to equation (2.18), in a sigmoid function, SGM(I) ∈ [0, 1], the high-gradient

portion of the curve approximately lies in the range
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[
r − 5

‖r‖
, r +

5

‖r‖

]
(2.19)

Since it would not be convenient to center the sigmoid out of this interval, one eventually

sets, r ∈ [−
√
D,
√
D].

Equation (2.19) proves that ‖r‖, plays a role in shaping SGM(I). To evaluate the effect

of ‖r‖, let ε be the ratio between the non-saturating portion of the sigmoid function

(2.19) and the interval in which the projected patterns lie (i.e., 2
√
D)

ε ≤ 10

2
√
D‖r‖

=
5√
D‖r‖

(2.20)

The upper bound (2.20) to ε holds as the quantity (2.19) may partially lie outside the

range [−
√
D,+

√
D] (e.g., when r = ±

√
D). Obviously, ε = 0 means that the sigmoid

function degenerates into a hard-limiter function (i.e., ‖r‖ → ∞).

In the ELM model, r is usually drawn from a uniform distribution; i.e., P (rd) =

U(−1, 1). By suitably extending the Central Limit Theorem [47], one can approximate

the distribution of ‖r‖ as a normal distribution in the range [0,
√
D] whose expectation

is µ‖r‖ =
√
V ar(rd)

√
D = 0.57

√
D. The expression (2.20) shows that in the basic

ELM training protocol 50% of the hidden activation functions have ε ≤ 0.3 as long as

D > 30. When D = 100 one has ε < 0.09. As a result, an ELM with sigmoid functions

always embeds a subset of neurons that actually involve threshold mechanisms, even if

‖r‖ ∈ [0,
√
D]. The incidence of the latter neurons increases as the dimensionality D of

the input space grows. So one might set up an ELM that only includes hard-limiter func-

tions, with the purpose of obtaining a predictor explicitly designed for digital low cost

implementations. Such a strategy might bring about a reduced generalization ability, as

compared with a configuration that relies on sigmoid functions. The above discussion

suggests that this gap may not be substantial.

Finally, it is important to note the different role played by the parameter r in the thresh-

old and sigmoid. Consider the example shown in figure 2.2(a) where the action performed

by a single remapping unit of the form g(r̂ ·x+r) is shown. In the example, the samples

lie on a two-dimensional space, where classes are represented by diamond patterns (‘-1’)

and cross patterns (‘+1’). The space is divided in two parts by a hyper-plane identified

by the couple {r̂, r} that perfectly separates the two classes. Figure 2.2(b) represent the

same example but with a different value for the bias r for the hyper-plane; in this case all

the samples would lie on the same side of the linear separator. Figure 2.2(c) and 2.2(d)

refer, respectively, to the remapping action performed by the hyper-plane presented in

figures 2.2(a) and 2.2(b). In both the figures on the y-axes the remapping obtained
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(a) (b)

(c) (d)

Figure 2.2: An example of data in 2D input space: (a) linear separator with error
ε = 0; (b) same linear separator but different bias r; (c) activation obtained by using
linear separator (a) and sign activation (orange line) or rescaled sigmoid (blue line) (d)

same format of figure (c) but linear separator of figure (b)

by the sigmoid function (orange line) and the sign function (blue line) are presented.

The remapped data are linearly separable with error 0 for both the non linearities in

figure 2.2(c). Instead, in figure 2.2(d), the remapped space obtained using the SGM

function maintains the linear separability property with null error, while the projection

obtained using threshold function are non-separable due to the configuration of the bias

r in the hyper-plane of figure 2.2(b).

This simple example enlightened the different implication of the parameter r with differ-

ent non linearities and stress the fact that a random selection of this parameter can easily

lead to useless remapping unit (i.e. neurons) also when the parameter r̂ are optimal.

2.5 Proposed Algorithms for Efficient Mapping

As a major outcome, this chapter provides a set of algorithms for an efficient setup of

the hidden layer parameters. All the proposed solutions share the common goal of yield

to predictors that can efficiently balance the trade-off between computational cost of

the eventual predictor and generalization ability without a significant increment of the

training phase’ cost. To achieve this, the proposed strategies addressed this problem by
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working on the parameter χ; this avoids any re-computation of the vector operations

relative to M(r,x).

2.5.1 Resampling Shape Factor Algorithm

Section 2.4 clearly depicted the different role played by {r, χ} when combined with

different kind of non linearities. In particular, subsection 2.4.1 exacerbate the concept

that the selection of a non-consistent parameter χ could lead to pathological situation.

As an example, a mapping unit that collapses all the patterns x ∈ X in one single point

p ∈ R is not useful in terms of learning. The ultimate goal of the mapping layer is to

project the input samples in a new space in which positive and negative patterns are

separable. In a simple one-dimensional mapping space, if µ+ denotes the barycenter of

the positive patterns on R, and µ− denotes the corresponding barycenter of the negative

patterns, the following condition should hold:

µ
(j)
+ 6= µ

(j)
− , j = 1, ..., N (2.21)

where N is the number of mapping units (i.e., the number of landmarks in the mapping

layer). Ideally, the best mapping unit clearly guarantees a large margin between µ+ and

µ− with a small intra-class variance.

In general, by randomly selecting the values to be assigned to χj one might end up

into flawed configurations, irrespective of the specific choice of the similarity/activation

function. In the ELM model, this ultimately means that a subset of neurons may be

almost useless in terms of learning. Thus one may not be able to address effectively

the trade-off between generalization performance and the computational complexity of

the eventual predictor, which becomes critical when targeting the implementation of the

classification system on electronic devices.

It is convenient to compare the conventional (blind) strategy applied by ELM for the

setup of χ with a strategy that ensures a compliance with constraint (2.21). The goal

of such a novel strategy is to check the configuration of parameters, χ, that is assigned

to a mapping unit j; a configuration is considered flawed when:

|µ(j)+ − µ
(j)
− | < τ (2.22)

where τ is a threshold value setting the tolerance admitted in constraint violation. The

algorithm only validates the setting of χj , since both the activation/similarity function,

φ, and the landmark rj assigned to the j-th unit do not vary.
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Algorithm 3 outlines the associate procedure, which actually rewrite Step 0 (Initialize) in

Algorithm 1. The updated Initialize step receives a labeled training set T = {(x, y)i; i =

1, .., Z}, an activation/similarity function φ, an admissible range of values for χ, and a

target value, N , for the dimensionality of the mapping layer.

For each mapping unit, the algorithm first generates the corresponding landmark by

using the conventional ELM strategy. Then, the routine for setting χj proceeds in two

steps: 1) a random value is drawn within the input range, and 2) the value is validated.

The routine stops when the step 2) completes successfully. Eventually, the Algorithm

yields the values of the free parameter, χj , for each j-th mapping unit (neuron). Different

criteria may apply to assess the effectiveness of a mapping unit at separating positive

samples from negative ones. Deadlock are avoided simply dividing by two the value of

the threshold τ each time that a configuration is rejected.

In Algorithm 3, the two sets X+ and X− are eventually characterized by the average

values, but other quantities such as median or p-order percentile can also be used. Fur-

thermore, the algorithm does not consider the interaction between different remapping

units and does not consider the inter and intra class variance. The logic behind these

choices is to introduce a negligible overload in the computational cost of the training

phase. It still appears less efficient than the original ELM procedure in terms of compu-

tational complexity, since the number of attempts required to find a valid setting, χ, for

each mapping unit is not predictable. On the other hand, the strategy in Algorithm 3

can offer significant advantages in terms of trade-off between generalization performance

and size of the mapping layer.

2.5.1.1 Experimental Results

The experimental section aims at evaluating the ability of Algorithm 3 to improve the

overall performance of the ELM model in terms of classification accuracy. That is, the

goal is to verify that by applying Algorithm 3 one can attain a mapping layer that better

supports the search for a consistent (ε,γ)-good similarity function. To the purpose of

robustly assessing such aspect, five different benchmarks [48], previously introduced in

related literature, have been involved in the experimental evaluation: Ionosphere, Glass

Identification, Statlog Landsat Satellite, Covertype and CodRNA. Each experimental

session has been designed to provide a fair comparison between the generalization per-

formances of two ELM models: the one that applies the conventional strategy in the

setup of free parameters and the one that exploits Algorithm 3. Therefore, in each

experiment, instead of employing standard model selection techniques [12], the two im-

plementations of ELM have been compared by defining a common configuration for
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Algorithm 3 Enhanced training strategy using random search

Input

• a labeled training set T = {(x, y)i; i = 1, ..., Z}

• number of neurons N

• range of admissible values for χ : [χinf , χsup]

• threshold value τ

0. Initialize
a. generate the set of random landmarks rj , j = 1..., N

for j = 1 to N do
for d = 1 to D do
rj,d = rand(−1; 1)

end for
end for

b. for each neuron, set χj by applying the following routine:
X+ = {}, X− = {}
ok = 0

while ok == 0 do
χj = rand(χinf , χsup)
for i = 1 to Z do
ai = φ(xi, rj , χj)
if yi == 1 then
ai → X+

else
ai → X−

end if
end for
µ+ = mean(X+)
µ− = mean(X−)
if |µ+ − µ−| ≥ τ then
ok = 1

else
τ = τ/2

end if
end while

1. Mapping
remap all the patterns x ∈ T by using the following mapping function

ψ(x) = {φ(x, r1, χ1), ..., φ(x, rN , χN )}

2. Learning
train a linear predictor in the space ψ : X → RN
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both the range of admissible λs (i.e., the regularization parameter), and the dimension-

ality, N , of the remapped space (i.e., the number of landmarks/neurons). The con-

figurations are: λ = {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104, 105, 106},
N = {50, 100, 200, 500, 1000}. All the simulation in the present chapter were performed

using Matlab software.

Ionosphere dataset The Ionosphere dataset includes a total of 351 patterns, which

lie in a 34-dimensional space; the original dataset is quite unbalanced, as one of the

two classes only provided 126 patterns out of 351. In the present experimental design,

both the training set and the test set included 50 patterns per class; all the 34 features

are renormalized in the interval [−1, 1]. Three different activation/similarity functions

have been involved in the session: sigmoid, RBF, and multiquadric functions. Thus, the

free parameters are the bias, the spread factor, and the spread factor, respectively. The

enhanced ELM implementation exploited Algorithm 3 with threshold τ = 0.5. Hence,

a mapping unit is considered effective only when the gap between the barycenter µ+ of

the remapped positive samples and the barycenter µ− of the remapped negative samples

is larger than 0.5; it is worth to note that the remapped patterns lie in a space with

range [−1, 1].

Figure 2.3 provides the outcomes of the three experiments. Figure 2.3(a) refers to the

experiment in which the mapping units implement the sigmoid function; the x axis gives

the number of neurons, N , while the y axis gives the classification error (expressed as

percentage over the size of the test set). The graph compares the performance of the

standard ELM (asterisk as marker) with the performance of the enhanced ELM (circle

as marker). For each N , the performance of a predictor is assessed by the configuration

(i.e., λ) that leads to the best average classification error on the test set; the average value

is computed over 50 runs, i.e., 50 different randomizations of the mapping layer. The

graph also provides the confidence interval±σ. The same format applies to Figure 2.3(b),

which refers to the experiment in which the mapping units implement the RBF, and to

Figure 2.3(c), which refers to the experiment in which the mapping units implement the

multiquadric function.

Overall, the graphs show that the enhanced ELM can, in most cases, improve over

standard ELM in terms of classification performance. Indeed, the improvement varies

as a function of the activation/similarity function and of the number of neurons. In this

regard, Table 2.2 reports -for each activation/similarity function- the best predictor,

i.e., the predictor that scored the lowest classification error. Thus, each row indicates

the predictor setting (standard/enhanced), the classification error, and the number of

neurons. In addition, the last row of the table reports on the performance scored by
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(a)

(b)

(c)

Figure 2.3: Results of the experiments involving the Ionosphere dataset: a) sigmoid;
b) RBF; c) multiquadric
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Table 2.2: Comparison between ELM and SVM for the Ionosphere dataset.

Function Best predictor Classification Error Configuration

Sigmoid Enhanced ELM 9.1 N = 1000

RBF Enhanche ELM 8.6 N = 50

Multiquadratic Enhanche ELM 5.2 N = 200

SVM 7.0 (C,σ) = (10−1,1)

a Support Vector Machine (SVM) [12] on the same problem. The results refer to an

implementation based on the RBF kernel: the table gives the classification error attained

after model selection [49, 50] along with the corresponding selected configuration (C, σ).

Glass dataset The Glass Identification dataset includes 214 samples that lie in a

9-dimensional space. The benchmark involves a multi-class problem, as six different

classes are represented in the dataset; the experiments presented here, though, only

address a binary classification problem, namely, class 1 versus class 2. In the proposed

experimental design, both the training set and the test set include 30 patterns per class

randomly extracted from the original dataset. All the 9 features were renormalized

in the interval [−1, 1]. As above, three different activation/similarity functions have

been involved in the session: sigmoid function, RBF, and multiquadric function. The

enhanced ELM implementation exploited Algorithm 3 with threshold τ = 0.5.

Figure 2.4 provides the outcomes of the three experiments. The format adopted for

the graphs replicates the one used in Figure 2.3. Overall, the graphs show that -with

this dataset- the enhanced ELM improved over standard ELM only in a few cases.

Nonetheless, it is interesting to note that -when adopting the sigmoid function- the

standard ELM scored its best performance with 1000 neurons (classification error of

16.7%). The corresponding predictor based on Algorithm 3 was indeed able to score the

same classification error by using 100 neurons.

Table 2.3 provides the comparison between the predictors based on ELM and the predic-

tor based on SVM. In practice, the enhanced ELM based on sigmoid function achieved

the same performance of SVM (classification error of 16.7%), while the enhanced ELM

based on multiquadric function scored a classification error quite close to that reference.

Landsat dataset The Landsat satellite dataset provides a training set including 4435

samples and a test set including 2000 samples; data are drawn from a 36-dimensional

space. The original benchmark involves a multi-class problem, but the present experi-

ments only address a binary classification problem: class 4 versus class 7. In the proposed
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(a)

(b)

(c)

Figure 2.4: Results of the experiments involving the Glass dataset: a) sigmoid; b)
RBF; c) multiquadric
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Table 2.3: Comparison between ELM and SVM for the Glass dataset.

Function Best predictor Classification Error Configuration

Sigmoid Enhanced ELM 9.1 N = 1000

RBF Enhanche ELM 8.6 N = 50

Multiquadratic Enhanche ELM 5.2 N = 200

SVM 7.0 (C,σ) = (10−1,1)

Table 2.4: Comparison between ELM and SVM for the Landsat dataset.

Function Best predictor Classification Error Configuration

Sigmoid Enhanced ELM 11.2 N = 500

RBF Enhanced ELM 13.5 N = 500

Multiquadratic Enhanced ELM 12.0 N = 500

SVM 10.3 (C,σ) = (10−2,1)

experimental design, the training set includes 300 patterns per class randomly extracted

from the original training database; the test set includes 150 patterns per class randomly

extracted from the original test database. All the 36 features have been renormalized in

the interval [−1, 1].

As above, three different activation/similarity functions have been involved in the ses-

sion: sigmoid function, RBF, and multiquadric function. The enhanced ELM implemen-

tation exploited Algorithm 3 with threshold τ = 0.5. Figure 2.5 provides the outcomes

of the three experiments. The format adopted for the graphs replicates the one used

in Figure 2.3. The graphs reveal that in most cases the enhanced ELM improved over

standard ELM. Indeed, the gap between standard ELM and enhanced ELM is significant

in particular with the RBF and the multiquadric function.

Table 2.4 provides the comparison between the predictors based on ELM and the pre-

dictor based on SVM. In this case, the enhanced ELM did not achieve the classification

error scored by SVM. Nonetheless, the gap between the best result attained by the

enhanced ELM (11.2%) and the classification error attained by SVM (10.3%) is not

large.

Covertype dataset The Covertype dataset provides a training set including 59,535

samples and a test set including 271,617 samples, drawn from an 8-dimensional space. In

the proposed experiment, both the training set and the test set included 5000 patterns

per class; all the 8 features were indeed renormalized in the interval [−1; 1]. As above,
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(a)

(b)

(c)

Figure 2.5: Results of the experiments involving the Landsat dataset: a) sigmoid; b)
RBF; c) multiquadric
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(b)

(c)

Figure 2.6: Results of the experiments involving the CovType dataset: a) sigmoid;
b) RBF; c) multiquadric

three different activation/similarity functions have been involved in the session: sigmoid

function, RBF, multiquadric function. The enhanced ELM implementation exploited

Algorithm 3 with threshold τ = 0.5. Figure 2.6 provides the outcomes of the three ex-

periments. The format adopted for the graphs replicates the one used in Figure 2.3. The

graphs reveal that the enhanced ELM improved significantly over standard ELM only

with the RBF as activation/similarity function. On the other hand, the improvement is

small when adopting the sigmoid function.
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Table 2.5: Comparison between ELM and SVM for the Covertype dataset.

Function Best predictor Classification Error Configuration

Sigmoid Enhanced ELM 19.7 N = 1000

RBF Enhanche ELM 20.4 N = 1000

Multiquadratic Enhanche ELM 20.3 N = 1000

SVM 16.8 (C,σ) = (101,0.1)

Table 2.5 provides the comparison between the predictors based on ELM and the predic-

tor based on SVM. In this case, the performance achieved by SVM (classification error

of 16.8%) is definitely better than the best performance scored by ELM.

CodRNA dataset The Cod-RNA dataset provides a training set including 59,535

samples and a test set including 271,617 samples, drawn from an 8-dimensional space.

In the proposed experiment, both the training set and the test set included 5000 pat-

terns per class; all the 8 features were indeed renormalized in the interval [−1; 1]. As

above, three different activation/similarity functions have been involved in the session:

sigmoid function, RBF, and multiquadric function. The enhanced ELM implementation

exploited Algorithm 3 with threshold τ = 0.5. Figure 2.7 provides the outcomes of the

three experiments. The format adopted for the graphs replicates the one used in Fig-

ure 2.3. Again, the graphs show that the enhanced ELM improved over standard ELM

in particular when using the RBF as activation/similarity function.

Table 2.6 provides the comparison between the predictors based on ELM and the pre-

dictor based on SVM. Numerical results reveal that the predictors based on enhanced

ELM always improved over SVM. Such outcome indeed confirms that enhanced ELM

may attain very interesting performance.

2.5.1.2 Concluding Remarks

Empirical evidence supported the proposed solution, which in general allows one to

obtain a more effective predictor with respect to the conventional approaches to ELM

training with a minimum increment of the training phase’s cost. Actually, it is worth

to note that in some cases enhanced ELM showed able to reach the performances of a

powerful classification system such as SVM.
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Figure 2.7: Results of the experiments involving the CodRna dataset: a) sigmoid; b)
RBF; c) multiquadric
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Table 2.6: Comparison between ELM and SVM for the Cod-rna dataset.

Function Best predictor Classification Error Configuration

Sigmoid Enhanced ELM 3.4 N = 500

RBF Enhanche ELM 3.3 N = 1000

Multiquadratic Enhanche ELM 3.3 N = 1000

SVM 3.7 (C,σ) = (1,1)

2.5.2 Threshold Parameter Algorithm

A learning procedure for an ELM based on hard-limiter functions starts by setting

randomly the pairs {r̂, r}, as per equation (2.18). However, the peculiarities of the

specific activation function allow some improvements considering the outcome of analysis

proposed in subsection 2.4.2.

The scalar value, r, in eq. (2.4.2) sets the hard-limiter threshold. Projecting any input

pattern, x ∈ X , onto r̂ according to 2.4.2 relates x to r, i.e., to the corresponding

landmark position, l as per (2.18). This approach spans a pair of subsets in the input

space, according to the associate projections of each pattern with respect to r. The two

subsets can be formalized as

Ωun = {(x, y)i|xtr̂ < r},Ωon = {(x, y)i|xtr̂ ≥ r} (2.23)

In practice, eq. (2.23) shows that data are projected in two sets (Ωun,Ωon). The

most profitable, yet unlikely, situation occurs when a subset only includes the patterns

belonging to one class (e.g., y = −1), whereas the other only covers the samples belonging

to the other class (e.g., y = +1). In fact, an unsuitable choice of r̂ can make this goal

unfeasible, independently of the value taken on by r: this is usually the case when r̂ is set

randomly. However, given r̂, one can set the value of r so as to attain the best feasible

partitioning. This is the rationale behind the training procedure that is introduced in

this section to generate the pairs {r̂, r}n with a minimum computational overload.

First, the positions r̂ are set at random. Secondly, for each neuron, a pool of C candidate

values for r are drawn at random. Finally, the eventual value of rn is picked out according

to some optimality criterion. Given the threshold function binary nature the maximum

entropy gain [51] has been selected as optimality criterion, because the maximum entropy

gain coincides with best classes separation. Accordingly, the entropy, H(Ω), of a set Ω

stems from the proportion between the patterns of either classes. Algorithm 4 outlines
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the complete algorithm, which yields the pairs {r̂, r}n to be used in the learning problem

(2.11).

Since the optimality criterion is applied to a pre-selected pool of candidate values for

rn, the algorithm is not expected to find the best value for the threshold, given r̂n.

However, by tuning C one can balance the computational cost of the algorithm and

the generalization performance of the network. As in the case of the random search,

the algorithm avoids the re-computation of the scalar products that characterize the

activation function, limiting in this way the overload in the training phase.

Algorithm 4 Enhanced mapping strategy for threshold activation functions using max-
imum entropy gain

Input

• a labeled training set T = {(x, y)i; i = 1, ..., Z}

• number of neurons N

• number of candidate C

0. Initialize
a. generate the set of random landmarks rj , j = 1..., N
b. for each neuron, set rj by applying the following routine:

• generate a set of candidate values ∆ = {rc, c = 1, ..., C} with rc =
unifrnd(−

√
D,
√
D)

• build the subset Ωu(rc),Ωo(rc) for each rc ∈ ∆

• set rc∗ = argminc{H(Ωu(rc)) +H(Ωo(rc))}

1. Mapping
remap all the patterns x ∈ T by using the following mapping function

ψ(x) = {φ(x, r1, r1∗), ..., φ(x, rN , rN∗)}

2. Learning
train a linear predictor in the space ψ : X → RN

2.5.2.1 Experimental Results

The experimental tests address the ability of the learning procedure (Algorithm 4) at

balancing accuracy and the size of the hidden layer. The generalization performance of

the learning procedure has been assessed by comparing the performance of three ma-

chines: a standard ELM based on the sigmoid function (ES), a standard ELM based on

the hard-limiter function (E-L), and a hardware-friendly ELM based on the hard-limiter
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function (HE). The first two predictors were actually trained by using the conventional

learning procedures associated to the ELM model (as per Sec. 2.1). The latter predictor,

conversely, exploited a training process supported by the algorithm 4.

This session involved 15 datasets from the UCI repository [48]: Breast Cancer Wis-

consin (Original, Diagnostic, and Prognostic), Blood Transfusion, Connectionist Bench,

Default of Credit Card Clients, Detect Malicious Executable, Ionosphere, LSVT voice

rehabilitation, MAGIC gamma telescope, Ozone level detection, Pima Indians Diabetes,

Planning relax, QSAR biodegradation, and Statlog Australian credit approval. Differ-

ently from the previous experiments, only originally bi-class datasets were involved in

the experimental campaign. All the data were normalized in the range [0, 1]. In each

experiment, the predictors were compared by adopting three configurations for the num-

ber of neurons: N = {25, 100, 500}. Model selection involved the following range for

the regularization parameter: λ ∈ {2i, i = −10,−9, . . . , 10}. In the training of HE the

number of candidates for l was set to C = 3. Each experiment involved five runs, i.e.,

five random training/test pairs; 70% of patterns included in the dataset were used as

a training set and the remaining patterns made the test set. The accuracy of each run

was assessed by averaging over 40 extractions of the random parameters.

Table 2.7 summarizes the results of the first session of experiments, in which the learning

problem involved the conventional l2 regularization term (2.5). The first column marks

the dataset. The second column gives the dimensionality, D, and the size of the dataset,

respectively. The third column gives the average classification error on the test set (as

percentage expressed in the range [0, 1]) achieved by E-S, for N = 25. The fourth and

fifth columns give, respectively, the gain/loss in the classification error achieved by E-

L and HE with respect to E-S. Thus, a negative quantity indicates that the predictor

reduced the classification error with respect to ES. The same format has been applied

to present the performance obtained with N = 100 and N = 500, respectively.

Numerical results clearly lead to three important outcomes. First, given a dataset,

the gap between the proposed HE and ES is often smaller than the corresponding gap

between E-L and E-S. Thus, HE outperforms E-L almost always. Second, the gap

between HE and E-S most of the times is inferior to 4%. This in turn means that

algorithm 4 is able to balance accuracy and size of the hidden layer. Third, such trend

still holds when N = 25, i.e., when one wants to deploy a predictor that can fit low-

resources devices.

The second experimental session aimed at assessing the effectiveness of the learning

procedure supporting HE in limiting the occurrence of unfruitful neuron configurations.

This is a major issue when targeting a proper balance between generalization perfor-

mance and number of neurons. To complete such analysis, the cost function based on l1
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Table 2.7: Generalization performance with l2 regularization term

Dataset D / Size N = 25 N = 100 N = 500

E-S E-L HE E-S E-L HE E-S E-L HE

BCW O 10 / 699 0.05 0.01 0.00 0.05 0.01 0.00 0.05 0.01 0.00
BWC D 32 / 569 0.02 0.05 0.01 0.01 0.02 0.00 0.01 0.01 0.00
BWC P 34 / 198 0.26 0.12 0.08 0.23 0.09 0.06 0.23 0.08 0.04
Blood 5 / 748 0.30 0.10 0.04 0.30 0.06 0.02 0.30 0.04 0.03
Conn. B. 60 / 208 0.25 0.05 0.02 0.18 0.04 0.01 0.15 0.01 0.00
Def. CC 24 / 30000 0.23 0.13 0.03 0.21 0.07 0.00 0.20 0.03 -0.01
Mal. Ex. 513 / 373 0.04 0.01 -0.02 0.02 0.00 0.00 0.02 0.00 0.00
Iono 34 / 351 0.14 0.02 0.02 0.11 -0.03 -0.03 0.09 -0.03 -0.03
LSVT 309 / 126 0.25 0.05 0.01 0.21 0.05 0.01 0.15 0.04 0.01
MAGIC 11 / 19020 0.17 0.07 0.04 0.15 0.06 0.02 0.13 0.03 0.00
Ozone 73 / 2536 0.22 0.05 0.03 0.18 0.05 0.04 0.16 0.04 0.02
Pima 8 / 768 0.13 0.06 0.02 0.13 0.03 0.01 0.13 0.02 0.00
Pl. Rel. 13 / 128 0.27 0.05 0.07 0.28 0.03 0.04 0.29 0.02 0.04
QSAR 41 / 1055 0.18 0.12 0.03 0.15 0.06 0.01 0.15 0.03 0.00
StatLog 14 / 690 0.15 0.06 0.02 0.13 0.01 0.00 0.13 0.00 0.00

regularization was employed:

min
β
{‖y −Hβ‖2 + λ‖β‖} (2.24)

Actually, such learning procedure is expected to yield sparser solution by pruning useless

neurons, i.e., neurons characterized by an unfruitful configuration of the parameters

{r̂, r}n. Hence, given N , it may reveal the percentage of neurons that plays an active

role in the prediction, which correspond to the neurons that survived pruning.

Table 2.8 summarizes the results of this second session of experiments, which involved

the same 15 datasets utilized in the first experimental session and adopted the same

experimental setup. The first column gives the name of the dataset. The second, third,

fourth, and fifth columns refer to the predictors with N = 25. The second column gives

the average classification error on the test set (as percentage expressed in the range

[0, 1]) achieved by E-S with the l1 regularization term. The third column gives the gap

in terms of classification error between E-S and HE; HE was also trained by exploiting

l1 regularization in the cost function. The classification error scored by E-S provides

the reference; thus, negative quantities indicate that HE improved over E-S. The fourth

column gives, as a percentage over N , the amount of neurons that survived pruning in

E-S. The fifth column gives the analogous quantity for HE. The same format is used

to present the performance obtained with N = 100. The table does not provide any

comparison with E-L since Table 2.7 already proved that such predictor is less effective
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Table 2.8: Generalization performance and sparsity

Dataset N = 25 N = 100

E-S HE % Active
E-S

% Active
HE

E-S E-H % Active
E-S

% Active
HE

BCW O 0.05 0.00 72.6% 81.9% 0.05 0.00 39.3% 52.7%
BWC D 0.02 0.01 82.2% 88.9% 0.01 0.01 53.8% 73.0%
BWC P 0.26 0.08 75.0% 73.0% 0.23 0.06 30.4% 40.0%
Blood 0.31 0.03 26.0% 61.5% 0.31 0.02 8.3% 33.2%
Conn. B. 0.25 0.01 75.8% 74.0% 0.19 0.02 52.4% 53.1%
Def. CC 0.23 0.03 87.6% 84.6% 0.21 -0.01 57.6% 73.0%
Mal. Ex. 0.05 -0.03 82.2% 87.9% 0.02 0.00 56.7% 64.9%
Iono 0.14 0.02 81.4% 78.5% 0.11 -0.03 50.2% 50.0%
LSVT 0.25 0.02 69.8% 68.5% 0.21 0.02 34.5% 32.0%
MAGIC 0.18 0.03 79.4% 89.4% 0.16 0.01 44.8% 79.5%
Ozone 0.22 0.03 73.7% 69.8% 0.18 0.04 44.8% 39.9%
Pima 0.13 0.02 52.2% 72.4% 0.13 0.00 23.9% 45.1%
Pl. Rel. 0.28 0.04 48.0% 49.2% 0.29 -0.01 17.6% 19.9%
QSAR 0.18 0.03 81.6% 80.7% 0.15 0.01 56.6% 61.0%
StatLog 0.15 0.02 87.5% 86.8% 0.13 0.00 58.9% 65.4%

than the proposed HE. Indeed, Table 2.8 does not include the configuration N = 500,

as the amount of useless neurons comprehensibly grows asymptotically as N grows.

Numerical results show that -in terms of classification error- the gap between E-S and

HE keeps small also when l1 regularization is involved. Indeed, it is worth to note

that the generalization performance of E-S did not change significantly with respect to

the experiments involving the conventional l2 regularization term (as per Table 2.7).

Moreover, Table 2.8 proves that -given a dataset- the amount of pruned neurons was

often larger in E-S than in HE. In a few cases, the gap was actually substantial. This

in turn means that E-S and HE in general included a different amount of neurons with

unfruitful configurations. Nonetheless, the rate of useless neurons was usually smaller

in HE then in E-S. As a major result, this experimental session confirmed that HE

can effectively balance generalization performance and size of the hidden layer. Such

ability allows HE to make the most of a coarse activation function such as the hard-limit

function.

2.5.3 Strong Similarity Function Heuristic Algorithm

Up to now, the proposed Algorithms 3, 4 targeted an hypothesis space where a different

parameter χ (r in the scalar product’s specific case) characterizes each neuron/remap-

ping unit, coherently with ELM paradigm. This configuration is the most profitable

one in term of computational cost, fixing N a priori, because the definition of a unique

parameter requires a model selection step. On the other hand, subsection 2.3.1 showed
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that the selection of a unique hyper-parameter can be advantageous in the case in which

a good mapping can be defined all over the input domain.

With this goal, the definition of strongly (ε, γ)-good similarity function can be a good

starting point. In fact, it can support a straightforward learning algorithm [27]. First,

one draws a sufficiently large set of landmarks, L(+), from samples belonging to class

‘+1’, and a corresponding (sufficiently large) set, L(−), of landmarks for class ‘-1’. An

unseen input sample, then, can be ascribed to either category according to the following

rule: the predicted class is ‘+1’ if the test sample is, on average, closer to the elements

of L(+) than to the elements of L(−), and vice versa.

Given a strongly (ε, γ)-good similarity function, it can be proved [27] that the above

algorithm produces a predictor having bound (ε+ δ) on the classification error. Here, δ

is a function of both γ and the number of landmarks, L:

δ = 2 · e−
Lγ2

16 (2.25)

The assumptions imposed by the definition of strong similarity function are clearly too

stringent to fit with real world problems. However, it can set the basis to drive an

efficient model selection process, under the assumption that a sufficiently large dataset

is available.

The proposed algorithm provides an effective heuristic to set the quantity χ = χ1 =

χ2 = ... = χL in (2.11). As per equation (2.25), given a set of landmarks one aims to

choose the value of χ yielding the largest γ; here, ε depends on the specific selection of

the landmarks. Thus, given a training set T and the eventual set of landmarks, one can

proceed as follows:

1. compute the average similarity between the samples of class ‘+1’ and all the land-

marks;

2. compute the average similarity between the samples of class ‘-1’ and all the land-

marks;

3. estimate γ by assessing the gap between the two quantities computed above.

By repeating such procedure for a set of candidate values of the hyper-parameter, one

identifies the setting that gives the largest (estimated) value of γ. Remarkably, this

procedure relies on large datasets to provide a statistically consistent estimate of γ.

Algorithm 5 outlines the overall algorithm, which can support any policy of landmarks

selection (i.e., rj ∈ T or rj ∈ X ). Actually, the underlined hypothesis is that the
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Algorithm 5 Fast model selection algorithm that exploits the definition of (ε, γ) strong
similarity function

Input

• a labeled training set T + = {(x, y)i; i = 1, ..., Z+} T − = {(x, y)i; i = 1, ..., Z−}

• number of neurons N

• a set of candidate values {χj , j = 1, ..., J}

• a similarity function φ

0. Initialize
generate the set of random landmarks rj , j = 1, ..., N

1. Similarities barycenters

for j = 1 to J do
average similarity between T + and L

S+
j = 1

Z+

∑
i

∑
n φ(xi, rn, χj),x ∈ T +, r ∈ L

average similarity between T − and L

S−j = 1
Z−
∑

i

∑
n φ(xi, rn, χj),x ∈ T −, r ∈ L

end for

2. Margin
estimate γ for each χ
γ̂j = |S+

j − S
−
j |, j = 1, ..., J

3. Selection
j∗ = maxj γ̂j
remap all the patterns x ∈ T by using the following mapping function

ψ(x) = {φ(x, r1, χj∗), ..., φ(x, rN , χj∗)}

2. Learning
train a linear predictor in the space ψ : X → RN

heuristic performs better as long as the similarity function is as strong as possible (as

per definition Definition 2.[27]). This assumption cannot hold in general; nonetheless,

the proposed algorithm is expected to yield outcomes that are reasonably close to that

obtained with a standard model selection.

The proposed heuristic strategy, involves only one complete training iteration. Thus, its

computational cost combines OTR and the computational cost of Algorithm 5, which

only depends on the assessment of the terms S+ and S−. Formally the overall compu-

tational cost of the heuristic procedure (HR) can be expressed as:
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OHR
∼= αZ2 ·N + βN3 + J · Z ·N (2.26)

Under the reasonable assumption Z >> N , OMS scales actually as J ·Z2. In case of the

proposed heuristic, though, the term J is a multiplier for a linear function of the term Z.

This in turn means that if Z big enough the overload imposed by the proposed algorithm

becomes negligible with respect to OTR, i.e., with respect to the computational cost of

a standard training in ELM.

2.5.3.1 Experimental Results

The experimental session aimed at comparing the performance of the two available

options for the setup of the mapping layer in the hypothesis space (2.11), namely, the

speculative approach applied by basic ELM, and the selection of a single similarity

notion supported by the novel algorithm. The assessment assumed a critical scenario

characterized by limited computational resources; thus, one would have to limit the

size of the mapping layer. Six benchmarks characterized by the presence of consistent

quantity of data were used: Checkerboard [52], USPS [53], Forest Cover Type [54], SUSY

[55], HIGGS [56] and Intrusion Detection [57]. The selected benchmarks were chosen

from a different set with respect to the ones considered in the previous experiment

campaigns. In this case, in accordance with the assumptions introduced above, the

experimental campaign involved medium-big size dataset.

For each benchmark, four alternative configurations of the remapping layer were com-

pared:

1. landmarks randomly drawn from RD and random hyper-parameters (standard

ELM).

2. landmarks randomly drawn from RD and one hyper-parameter.

3. landmarks randomly drawn from T and random hyper-parameters.

4. landmarks randomly drawn from T and one hyper-parameter.

The configurations 3 and 4 basically modify the configurations 1 and 2, respectively, by

changing the sampling domain to draw landmarks. In the case of configuration 2 and

4, two alternative methods were tested to set up the hyper-parameter: model-selection

via cross-validation, and the proposed heuristic. As a result, the experimental session

allowed to compare the outcomes of the heuristic with those of a standard (computa-

tionally demanding) approach to the hyper-parameter setting problem.
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An RBF similarity function was adopted in all tests, and the linear separators in the

remapped space were trained by solving the minimization problem (2.5). The allowed

settings for the RBF functions were χ = {10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104},
whereas the regularization parameter varied in the set: λ = {10−6, 10−5, 10−4, 10−3, 10−2,

10−1, 1, 101, 102, 103, 104, 105, 106}.

Checkerboard Dataset The Checkerboard dataset [52] is a synthetic, bi-class bench-

mark commonly used in large-scale learning problems. Samples lie in a 2-dimensional

space. The first experiment involved a balanced training set with 200,000 patterns and a

(balanced) test set with 20,000 patterns. The predictors were designed to include 2,000

neurons in the mapping layer; i.e., input data were remapped by using 2,000 landmarks

(1% of the training set). The graph in Figure 2.8(a) reports on the results of this ex-

periment: the y-axis gives the average classification error on the test set, expressed in

the range [0,1] as the percentage of the overall test set; the average value is computed

over 5 runs, i.e., 5 different randomizations of the mapping layer. On the x-axis, bars

are grouped according to the source of landmarks: tag LI refers to predictors based on

landmarks randomly drawn from the input domain RD; tag LT refers to predictors based

on landmarks randomly drawn from the training set, T . In each group, predictor 1 used

random hyper-parameters; predictor 2 used a single hyper-parameter set according to

the proposed heuristic; predictor 3 used a single hyper-parameter set by exploiting con-

ventional cross-validation. The latter predictor completed the cross-validation process

by using the training set and a balanced validation set including 20,000 patterns. Fig-

ure 2.8(a) provided some interesting outcomes. In each group, predictors 2 and 3 scored

the same classification error. In turn, the proposed heuristic always competed with the

conventional cross-validation. Moreover, in both groups LI and LT, the predictors based

on the proposed heuristic improved over the classifiers using random hyper-parameter

settings. Finally, the sampling domain of landmarks did not affect the performances

of the predictors significantly. A second experiment involved a balanced training set

with 20,000 patterns and a balanced test set holding 20,000 patterns. The predictors

were again designed to include 2,000 neurons in the mapping layer; i.e., input data were

remapped by using 2,000 landmarks (10% of the training set in this case). The graph in

Figure 2.8(b) reports on the results of this experiment and follows the same conventions

used in Figure 2.8(a). In Predictor 3, the cross-validation process used the training set

and a balanced validation set including 20,000 patterns. Overall, this test confirmed the

outcomes of the first one. Table 2.9 summarizes the results of the two experiments and

gives the average classification errors (CEs) scored by each predictor, paired with the

standard deviation between brackets. In addition, the Table provides, for predictors 2
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Figure 2.8: Experimental session: Checkerboard dataset; (a) first experiment; (b)
second experiment.

and 3, the values of χ selected for the proposed heuristic and the cross-validation proce-

dure, respectively. For completeness, the bottom row of Table 2.9 gives the results scored

by a standard ELM using the conventional sigmoid as the activation function. Empirical

evidence confirmed that the predictors based on a single hyper-parameter according to

the proposed heuristic outperformed the other options. It is worth noting that the gap

between predictor 1 and predictors 2 and 3 is significantly bigger than one standard de-

viation. It is also worth noting that both the heuristic and the cross-validation method

always converged to the same value (χ = 0.1), independently of the experiment and of

the sampling domain of landmarks.

Forest Cover Type Dataset The Forest Cover Type (CovType) dataset [54] holds

patterns that describe the forest cover type described by cartographic variables. Samples

lie in a 54-dimensional space. The dataset involves a multi-class problem, and this test

addressed the bi-class problem “class 2 versus other classes”. The first experiment

involved a balanced training set with 250,000 patterns and a balanced test set with

20,000 patterns. The predictors were designed to include 2,500 neurons in the mapping
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layer; i.e., input data were remapped by using 2,500 landmarks (1% of the training set).

The graph in Figure 2.9(a) shows the results of this experiment by using the same format

of Figure 2.8. Predictor 3 completed the cross-validation process by using the training

set and a balanced validation set including 20,000 patterns.

Figure 2.9(a) again confirms that the proposed heuristic compared with the standard

cross-validation. In addition, in both group LI and group LT the predictors supported

by the proposed heuristic (predictor 2) improved over the classifiers using random hyper-

parameters. In particular, predictor 2 obtained the best performance when exploiting

landmarks drawn from the training set. Figure 2.9(b) reports on the result of the

second experiment. In this case, a balanced training set with 25,000 patterns and a

balanced test set with 20,000 patterns were involved. Predictors were designed to include

2,500 neurons in the mapping layer; i.e., input data were remapped by using 2,500

landmarks (10% of the training set). Predictor 3 completed the cross-validation process

by using the training set and a balanced validation set including 20,000 patterns. This

experiment validated the outcomes of experiment 1. Table 2.10 reviews the results

of the two experiments. The predictor LT-2 (landmarks drawn from the training set,

single hyper-parameter set according to the proposed heuristic) scored the best overall

performance in both experiment 1 and experiment 2. Evidence witnessed a significant

gap in performance as compared with predictor LT-1, predictor LI-1, and standard ELM

with sigmoid activation function. Again, the gap between predictor 1 and predictors 2

and 3 is significantly bigger than a standard deviation. The proposed heuristic always

agreed with full cross-validation on the values of χ. The predictors using landmarks

from the input space (LI) converged to χ = 10, while the predictors using landmarks

from the training set (LT) converged to χ = 1.

USPS Dataset The USPS dataset [53] is a popular benchmark that collects pattern

obtained from the scanning of handwritten digits from envelopes by the U.S. Postal

Service. The original size of the images is 16×16 pixels. This session inherited the setup

Table 2.9: Experimental session: Checkerboard dataset

Predictor Experiment 1 Experiment 2

CE χ CE χ

#1 0.025 (0.002) - 0.024 (0.002) -
LI #2 0.003 (0.000) 1 · 10−1 0.005 (0.000) 1 · 10−1

#3 0.003 (0.000) 1 · 10−1 0.005 (0.000) 1 · 10−1

#1 0.023 (0.001) - 0.021 (0.003) -
LT #2 0.003 (0.000) 1 · 10−1 0.005 (0.000) 1 · 10−1

#3 0.003 (0.000) 1 · 10−1 0.005 (0.000) 1 · 10−1

ELM sigmoid 0.118 - 0.121 -
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Figure 2.9: Experimental session: CovType dataset; (a) first experiment; (b) second
experiment

proposed in [52], which focused on the problem ‘0’ versus ‘1’. To enlarge the original

dataset, the images were first rescaled from 16 × 16 pixels to 26 × 26 pixels. Then,

new patterns were generated by translating the original images in all directions, shifting

ranged from two pixels to five pixels. Eventually, samples lay in a 676-dimensional

space. The first experiment involved a balanced training set with 200,000 patterns and

a balanced test set with 20,000 patterns. The predictors were designed to include 2,000

neurons in the mapping layer; i.e., input data were remapped by using 2,000 landmarks

Table 2.10: Experimental session: CovType dataset

Predictor Experiment 1 Experiment 2

CE χ CE χ

#1 0.212 (0.003) - 0.218 (0.003) -
LI #2 0.202 (0.003) 1 · 101 0.207 (0.002) 1 · 101

#3 0.202 (0.003) 1 · 101 0.207 (0.002) 1 · 101

#1 0.199 (0.003) - 0.208 (0.003) -
LT #2 0.147 (0.002) 1 0.166 (0.001) 1

#3 0.147 (0.002) 1 0.166 (0.001) 1

ELM sigmoid 0.167 - 0.183 -
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(1% of the training set). The graph in Figure 2.10(a) presents the results in the same

format of Figure 2.8. Predictor 3 completed the cross-validation process by using the

training set and a balanced validation set holding 20,000 patterns. Figure 2.10(a) points

out that the predictors based on landmarks drawn from the input space (LI) and those

using landmarks from the training set (LT) performed differently. Again, the predictors

supported by the proposed heuristic compared with the predictors supported by cross-

validation. In the case of group LI, the best performance was scored by predictor 1,

i.e., a basic ELM. Conversely, in group LT, predictor 2 (single hyper-parameter) slightly

outperformed predictor 1 (random hyper-parameters). A similar trend characterized the

second experiment. Here, a balanced training set with 20,000 patterns and a balanced

test set with 20,000 patterns were involved. The predictors were designed to include

2,000 neurons in the mapping layer; i.e., input data were remapped by using 2,000

landmarks (10% of the training set in this case). The bar graph in Figure 2.10(b)

reports on the results of this experiment. Predictor 3 completed the cross-validation

process by using the training set and a balanced validation set including 20,000 patterns.

Table 2.11 reviews the results of the two experiments. An interesting outcome is that

predictor LT-2 (landmarks drawn from the training set, single hyper-parameter set by

the proposed heuristic) scored the best overall performance in both experiments with a

gap that is again bigger than a standard deviation. In addition, the proposed heuristic

always identified the same value of that was prompted by full cross-validation. However,

the predictors using landmarks drawn from the input space (LI) converged to χ = 100,

whereas the predictors using landmarks from the training set (LT) were set by using χ

= 10.

A non-marginal outcome of this experimental section regards the fact that both heuristic

and model selection approaches perform poorly when the landmarks are set randomly.

A possible explanation of this result is given by the fact that the probability of find a

landmark belonging to the input domain eq. (2.13) is small. This in turns means that

the training set is more concentrated in some part of the space. Both approaches 2 and

3 searches for a solution that is good in general, with poor results. Instead approach 1,

randomly setting different notions of similarity for different portions of the space, even

with some unfruitful configurations, find a set of effective combinations that enable a

correct classification of the patterns.

SUSY Dataset The SUSY dataset [55] was set up to assess machine-learning ap-

proaches on problems that search for exotic particles in high-energy physics [58]. It in-

volves a bi-class problem: processes where new supersymmetric particles are produced,

versus a background process yielding the same detectable particles but fewer invisible

particles and distinct kinematic features. Samples lie in an 18-dimensional space. The
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Figure 2.10: Experimental session: USPS dataset; (a) first experiment; (b) second
experiment

first experiment involved a balanced training set with 300,000 patterns and a balanced

test set with 20,000 patterns. The predictors were designed to include 3,000 neurons

in the mapping layer; i.e., input data were remapped by using 3,000 landmarks (1% of

the training set). The graph in Figure 2.11(a) gives the experimental results obtained.

Predictor 3 completed the cross-validation process by using the training set and a bal-

anced validation set including 20,000 patterns. Figure 2.11(a) shows that all predictors

achieved the same performance. The same trend was found in the second experiment,

Table 2.11: Experimental session: usps dataset

Predictor Experiment 1 Experiment 2

CE χ CE χ
#1 0.009 (0.000) - 0.009 (0.000) -

LI #2 0.023 (0.001) 1 · 102 0.078 (0.002) 1 · 102

#3 0.023 (0.001) 1 · 102 0.063 (0.001) 1 · 101

#1 0.009 (0.001) - 0.008 (0.001) -
LT #2 0.007 (0.000) 1 · 101 0.007 (0.000) 1 · 101

#3 0.007 (0.000) 1 · 101 0.007 (0.000) 1 · 101

ELM sigmoid 0.009 - 0.009 -
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Figure 2.11: Experimental session: SUSY dataset; (a) first experiment; (b) second
experiment.

where a balanced training set with 30,000 patterns and a balanced test set with 20,000

patterns were involved. The predictors were designed to include 3,000 neurons in the

mapping layer; i.e., input data were remapped by using 3,000 landmarks (10% of the

training set). Figure 2.11(b) reports on the result of the second experiment; Predictor

3 completed the cross-validation process by using the training set and a balanced val-

idation set including 20,000 patterns. Table 2.12 summarizes empirical evidence that

all the predictors scored the same classification error. Moreover, both the heuristic and

the cross-validation always agreed on the same value (χ= 10), independently of the

experiment and of the sampling domain of landmarks.

HIGGS Dataset The HIGGS dataset [56], just like the SUSY dataset, is used to

evaluate the performance of machine-learning approaches in high-energy physics [58]. It

involves a bi-class problem: processes where new theoretical Higgs bosons are produced

versus a background process featuring the same decay products but distinct kinematic

features. Samples lie in a 28-dimensional space. The first experiment again involved a

balanced training set with 300,000 patterns and a balanced test set with 20,000 patterns.
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The predictors were designed to include 3,000 neurons in the mapping layer; i.e., input

data were remapped by using 3,000 landmarks (1% of the training set). The graph in

Figure 2.12(a) presents the results by using the same format of Figure 2.8. Predictor 3

completed the cross-validation process by using the training set and a balanced validation

set including 20,000 patterns. Figure 2.12(a) confirmed that, for this dataset too, the

proposed heuristic compared with the basic cross-validation. In both group LI and

group LT the predictors based on the proposed heuristic (predictor 2) improved over the

classifiers using random hyper-parameters. Similar results were achieved in the second

experiment, involving a balanced training set holding 30,000 patterns and a balanced

test set with 20,000 patterns. The predictors included 3,000 neurons in the mapping

layer; i.e., input data were remapped by using 3,000 landmarks (10% of the training set).

Figure 2.12(b) reports on the result of this second experiment; Predictor 3 completed the

cross-validation process by using the training set and a balanced validation set including

20,000 patterns. Table 2.13 reviews the results of both experiments, and confirms that

predictor 2 always outperformed predictor 1 and independently of the sampling strategy

of landmarks. A remarkable outcome was that the best overall performance was always

attained by predictor LI-2, i.e., the classifier based on landmarks drawn from the input

space. The Table also shows that both the heuristic and the cross-validation always

converged to the same setting of the hyper-parameter, χ = 10, independently of the

experiment and of the sampling strategy of landmarks.

Table 2.12: Experimental session: SUSY dataset

Predictor Experiment 1 Experiment 2

CE χ CE χ

#1 0.205 (0.002) - 0.210 (0.004) -
LI #2 0.203 (0.002) 1 · 101 0.209 (0.005) 1 · 101

#3 0.203 (0.002) 1 · 101 0.209 (0.005) 1 · 101

#1 0.207 (0.003) - 0.212 (0.004) -
LT #2 0.203 (0.003) 1 · 101 0.209 (0.005) 1 · 101

#3 0.203 (0.003) 1 · 101 0.209 (0.005) 1 · 101

ELM sigmoid 0.201 - 0.213 -

Table 2.13: Experimental session: HIGGS dataset

Predictor Experiment 1 Experiment 2

CE χ CE χ

#1 0.340 (0.002) - 0.348 (0.002) -
LI #2 0.313 (0.001) 1 · 101 0.333 (0.002) 1 · 101

#3 0.313 (0.001) 1 · 101 0.333 (0.002) 1 · 101

#1 0.348 (0.002) - 0.358 (0.001) -
LT #2 0.325 (0.002) 1 · 101 0.349 (0.001) 1 · 101

#3 0.325 (0.002) 1 · 101 0.349 (0.002) 1 · 101

ELM sigmoid 0.351 - 0.364 -
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Figure 2.12: Experimental session: HIGGS dataset; (a) first experiment; (b) second
experiment

Intrusion Detection The intrusion detection dataset introduced in [57] consists of a

collection of 5 days of a network traffic where seven common type of attack are performed;

each day a different set of attacks is performed. In the experimental section the traffic

generated on Wednesday is analyzed, because it presents the biggest number of attacks;

The problem is approached as a binary classification, where the target is the distinction

between “benign” and “attacks”. Following feature extraction process described by

authors of the original paper [57] a total of 691416 patterns with 80 dimension each

have been extracted.

The first experiment again involved a balanced training set with 200,000 patterns and

a balanced test set with 20,000 patterns. The predictors were designed to include 3,000

neurons in the mapping layer; i.e., input data were remapped by using 3,000 landmarks

(1% of the training set). The graph in Figure 2.13(a) presents the results by using the

same format of Figure 2.8. Predictor 3 completed the cross-validation process by using

the training set and a balanced validation set including 20,000 patterns.

Figure 2.13(a) confirmed the effectiveness of the proposed heuristic compared with the
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basic cross-validation. In group LI the predictors based on the proposed heuristic (pre-

dictor 2) improved over the classifiers using random hyper-parameters, while the best

score is achieved by classifier 1 with landmark sampled from the training set.

Similar results were achieved in the second experiment, involving a balanced training

set holding 20,000 patterns and a balanced test set with 20,000 patterns. The predictors

included 3,000 neurons in the mapping layer; i.e., input data were remapped by using

3,000 landmarks (10% of the training set). Figure 2.13(b) reports on the result of

this second experiment; Predictor 3 completed the cross-validation process by using the

training set and a balanced validation set including 20,000 patterns. Table 2.14 reviews

the results of both experiments, and confirms that predictor of group LT outperform

the ones of group LI, independently by hyper parameter selection. The Table also shows

that both the heuristic and the cross-validation always converged to the same setting of

the hyper-parameter, χ = 10, for group LI and χ = 1 for group LT.

2.5.3.2 Concluding Remarks

In general, experimental results proved that the proposed approach to the setup of

the mapping layer could attain satisfactory outcomes when dealing with medium-large

datasets. The assessment focused on a challenging scenario, in which limited computa-

tional resources are available. Accordingly, the experiments compared predictors that

should satisfy a tight constraint in the size of the mapping layer. Overall, the predictors

based on the proposed heuristic always proved able to improve over the standard ELM

model. In fact, the SUSY dataset provided the only case in which the improvement was

not substantial. Conversely, the Intrusion dataset provided the only case in which the

adoption of a single notion of similarity did not lead to the best predictor.

Thus, the proposed reinterpretation of the standard ELM model can lead to paradigm

that better balances generalization ability and size of the mapping layer. Such aspect is

indeed crucial when dealing with large datasets, as the latter parameter has an impact

Table 2.14: Experimental session: Intrusion detection dataset

Predictor Experiment 1 Experiment 2

CE χ CE χ

#1 0.028 (0.000) - 0.029 (0.000) -
LI #2 0.026 (0.000) 1 · 101 0.026 (0.000) 1 · 101

#3 0.026 (0.000) 1 · 101 0.026 (0.000) 1 · 101

#1 0.011 (0.001) - 0.012 (0.001) -
LT #2 0.021 (0.002) 1 0.023 (0.000) 1

#3 0.021 (0.002) 1 0.023 (0.000) 1

ELM sigmoid 0.059 - 0.062 -
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Figure 2.13: Experimental session: Intrusion dataset; (a) first experiment; (b) second
experiment

on the computational resources eventually involved both in the training phase and in

the implementation of the predictor.

2.5.4 Comparative Analysis

As said in the introduction, the proposed algorithms (3, 4, 5) shares some common

points. In fact, all these algorithms involve a supervised selection strategy to the setup

of the hidden parameter χ. This strategy has been selected because it does not require

to recompute the metric M(x, r) that involves computationally demanding vector to

vector operations (see eq. (2.15)). On the other hand, each of those approaches presents

some peculiarities that makes it more suitable for an application scenario respect to

another.

Algorithm 4 has been designed to handle the peculiarities of the threshold function.

This activation function in fact admits only two values and for this reason, it is more

prone to pathological configurations respect to standard analogical activations such as

SGM or RBF. At the same time, it leads to extremely efficient digital implementations.
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For this reason, even if, in principle, it is possible to apply algorithms 3 and 5 for free

parameterss selection, they result less effective, given the binary nature of the mapping.

As a consequence, a specific selection criterion has been proposed.

Algorithms 3, 5 refer to the same merit function. However, few major differences char-

acterize the proposed methodologies. Algorithm 5 targets the selection of a single value

of the shape parameter for all the mapping units. This value is selected among a pool

of candidate. Instead, Algorithm 3 limits its action to the reject of pathological config-

urations. This difference underlines different hypothesis: in case of algorithm 2.18, the

assumption is that exists a simple similarity notion φ that is good all over the input

domain, while in the case of algorithm 3 the requirement is that exists a set of functions

that are good for some portions of the input domain. A second major difference between

the two proposed approaches is that the computational load of procedure 5 is fixed a

priori, while algorithm 3 applies a random selection criterion that involves an unknown

number of steps for the selection of the random parameter of each neuron. Finally,

Algorithm 5 requires a relatively big dataset to estimate the consistency of strong sim-

ilarity function hypothesis, while, in principle, algorithm 3 does not set explicitly any

constraint to the size of the training set.

The literature indeed provides several works that dealt with the construction of the

mapping layer in ELM. In general, the goal is to define a strategy that can balance

generalization ability and number of neurons in the eventual predictor. In [40, 41] the

optimization problem has been slightly modified to the purpose of favoring sparse solu-

tion, thus removing ineffective neurons. In [41] the authors exploited a l1 regularization

term to remove ineffective neurons; then, the selected neurons were involved in the train-

ing of a standard ELM. Optimally pruned ELM [40] relies on a combination of multiple

sparse regressions and leave-one-out mechanism to prune the less informative neurons.

In both the papers the pruning process is computationally demanding and adds a few

hyper-parameters to the optimization problem.

Biologically-inspired optimization has indeed stimulated various works: self-adaptive

evolutionary ELM [42], dolphin swarm ELM [59], genetic ensemble of ELM [60], particle

swarm optimization based ELM [43] and Artificial Immune System based ELM [61].

All these approaches share the common idea of exploiting strategies derived from the

observation of natural phenomena to enhance the performance of the machines in term

of generalization ability. In general, such models are computationally demanding. In

fact, most of the them involve non-convex optimization problems.

In [62, 63] the target was the implementation of the predictor on resource-constrained

device. In practice, only these two works are comparable in term of additive computa-

tional cost respect to the ones introduced in this Thesis. Hence, the underlying mapping
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strategy was designed to fulfill specific constraints on the admissible activation function,

making these works less general than the proposed one.



Chapter 3

Tensor Learning

Tensors provide a more convenient way to describe multi-way data and to suitably

capture their multi-linear structure. This basic aspect becomes relevant when dealing

with machine learning (ML): multi-spectral images [17], computer vision [38], author-

ship identification [64] and multi-sensory arrays [65, 66] provide relevant examples of

domains in which ML-based predictors are required to deal with multi-way data. Ac-

cordingly, one needs specific learning methods that can explicitly exploit the multi-mode

relations that connect the various data associated with one pattern. These specialized

methods [67–70] can outperform conventional approaches, which remap multi-way data

into a classical vector representation for the subsequent application of ML models. In

this regard, the crucial point is that the geometrical information inherently embedded

in the tensor structure can be exploited to boost the learning process, i.e., to improve

convergence speed. Conversely, traditional models based on vector space -which actually

ensures universal approximation capabilities- face the risk of not capturing such geomet-

rical information. As a major consequence, the convergence speed can be substantially

different.

This chapter addresses the use of the similarity function framework and shows that

this theory [27] can stimulate a novel design strategy, based on algorithm 2, which

may represent an alternative to standard kernel-based methods or SLFN. The same

two main reasons of chapter 2 justify the focus on tensor-similarity-based models: first,

these frameworks usually better succeed in balancing the generalization performance and

the computational complexity of the trained predictors. This is a crucial aspect when

implementing the classifiers on embedded systems. Secondly, similarity-based models

provide a viable option for avoiding the computationally-intensive learning procedures

that affect iterative training.

56
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The literature provides several tensor-oriented ML frameworks, which might be catego-

rized into two groups.

“Projections learning” approaches focus on multilinear projections, to remap tensor

data down to a lower-dimensional space. The underlying goal is to find a projection

schema that can capture the (unknown) structure of the problem at-hand, so that one

may eventually apply ML methods to learn a decision function in the lower-dimensional

space. Those methods mostly address the problem of finding the projection that satisfies

an optimality criterion [71–73], with the partial exception of [74], which relies on higher-

order random projections.

Conversely, “function learning” frameworks aim to learn a decision function that is

designed to accept tensors as inputs. The related training algorithms often involve an

iterative process [75–78] to solve convex optimization problems; training stops when

some pre-set condition is fulfilled. Otherwise, training procedures rely on standard

convex optimization; this case includes support higher-order tensor machines (SHTMs)

[79, 80] and the kernel-based framework proposed by Signoretto et al. [81], based on a

tensor-oriented kernel.

To achieve this goal, the present thesis introduces a similarity function that can suitably

process multi-way data; thus, it computes the similarity between a given sample and

a given landmark that lie in a tensor space. The function embeds a similarity notion

that involves a three-step processing. First, multi-linear singular value decomposition

(MLSVD) [82] is used to represent the landmark tensor as a set of orthonormal bases

with their associate eigenvalues. Then the sample tensor is projected according to the

landmark bases, to emphasize the intrinsic structural differences between the sample

and the landmark. Finally, similarity is assessed by a metric function, which processes

the eigenvalues of both the landmark and the (projected) sample.

The design of a suitable similarity function that can process patterns represented as

tensors is the major challenge in tensor oriented approaches [80]. Present work char-

acterizes both the geometrical and the cognitive properties of the proposed similarity

notion, which indeed inherently embeds noise filtering capabilities. Such attribute makes

the similarity function particularly suitable for applications that may suffer from noisy

acquisition processes. Besides, this work shows that the availability of such similarity

function leads to a tensor-oriented ML framework that features the following advantages:

• a training algorithm that does not require iterative processes, unlike most of the

state-of-the-art function learning frameworks.

• a prediction function that -in terms of computational cost- bests the prediction

function supported by a state-of-the-art kernel-based framework for tensorial data



Chapter 3. Tensor Data 58

[81]; such aspect becomes relevant when considering that a major goal of the

thesis consist in the implementations of machine learning algorithms on resource-

constrained devices [9].

• a predictor that compares positively with state-of-the-art tensor-oriented ML frame-

works in terms of classification accuracy.

The chapter is structured as follows: Section 3.1 briefly recalls the basics about tensors;

following Sections 3.2 and 3.3 respectively presents the proposed notion of similarity

and the complete framework base on theory of learning with similarity functions. The

comparison with state-of-the-art is presented in section 3.4. Finally, section 3.5 depict

the outcomes of the experimental campaign.

3.1 Basic Operations

This section briefly review the necessary background for the comprehension of the pro-

posed work.

Tensors represents an extension of vectors and matrices that can store information more

conveniently. Formally, a tensor can be formalized as a multi-way array of numbers. In

the following, T ∈ RI1×I2×...×IR will refer to a real-valued tensor of order R. Accordingly,

a vector is a tensor of order 1 and a matrix can be regarded as tensors of 2.

3.1.1 Tensor Unfolding

Unfolding is the process of reordering the elements of a tensor T ∈ RI1×I2×....×IR into

a matrix T ∈ RP×Q, where P ×Q = I1 × I2 × ...× IR . The notation T (r) will denote

the mode-r unfolding of T . Accordingly, T (r) ∈ RIr×I1I2Ir−1Ir+1...IR and the reordering

process follows the scheme exemplified in Fig. 3.1. In the example, a third-order tensor

T is unfolded in the matrices T (1), T (2), and T (3). The mode-1 unfolding T (1) is

obtained by first partitioning the original tensor according to the slices T (i1, :, :). Then,

the eventual matrix is created by placing side by side the slices in the original order.

Likewise, T (2) and T (3) are obtained by partitioning the original tensor according to

the slices T (:, i2, :) and T (:, :, i3), respectively. Such scheme can be easily extended to

a generic tensor of order R.

Finally, Q = T ×rB will denote the mode-r product of T and B ∈ RJr×Ir ; this product

yields a tensor Q ∈ RI1×I2×Ir−1×Jr×Ir+1×IR , whose entries can be expressed as
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Figure 3.1: Unfolding of a third-order tensor.

qi1...ir−1jrir+1...iR =

Ir∑
ir=1

ti1...ir−1irir+1...iRbjrir (3.1)

As a consequence, Q = T ×r B can also be rewritten as Q(r) = BT (r).

3.1.2 Multi-Linear Singular Value Decomposition

MLSVD is a multi-linear generalization of the well-known singular value decomposition

(SVD), supported by the model originally introduced in the Tucker decomposition [82,

83].

MLSVD represents a tensor T as a multi-linear transformation of a core tensor, T̄ ∈
RI1×I2×...×IR , by means of the matrices T r = [t

(r)
1 t

(r)
2 ...t

(r)
Ir

] ∈ RIr×Ir(r = 1, ..., R); here,

the column vectors t
(r)
Ir

define an orthonormal basis in RIr . As a result,

T = T̄ ×1 T 1 ×2 T 2...×R TR (3.2)

Each orthonormal basis, T r, can be obtained by applying conventional SVD to T (r).

Hence, one has

T (r) = U rΣrV
t
r (3.3)

with T r = U r. Indeed, the core tensor T̄ can be computed as follows:
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T̄ = T ×1 T
t
1 ×2 T

t
2...×R T tR (3.4)

where T̄ is an all-orthogonal and ordered tensor [82]. “All-orthogonal” means that all

the rows of any mode-n unfolding of T̄ , T̄ (r), are mutually orthogonal. “Ordered”

means that the following condition holds for such rows:

‖T̄ (r)(1, :)‖ ≤ ‖T̄ (r)(2, :)‖ ≤ ... ≤ ‖T̄ (r)(Ir, :)‖ (3.5)

It is worth noting that the Frobenius norm ‖T̄ (r)(ir, :)‖ corresponds to the ir-th r-mode

eigenvalue of T , i.e., the ir-th eigenvalue of T (r) [82]. Thus,

(σir)
T
(r) = Σr(ir, ir) = ‖T̄ (r)(ir, :)‖ (3.6)

In addition, the columns of T r are the r-mode eigenvectors of T . Furthermore, it holds:

‖T (r)‖2 = ‖T̄ (r)‖2 =

Ir∑
i

(
(σir)

T
(r)

)2
(3.7)

3.1.3 Multi-Linear Extremal Energy

The concept of extremal energy plays a crucial role in SVD-based signal separation

algorithms.

Definition 4. [34](Extremal directions of oriented energy): Let A be a m×r matrix with

SVD A = UΣV t where Σ = diag{σi}. Then each direction of extremal oriented energy

is generated by a left singular vector ui with extremal energy equal to the corresponding

singular value σ2i .

Definition 4 states that all the energy contained in a matrix can be described by means

of the pairs (eigenvector, eigenvalues). In practice, the extremal directions of oriented

energy express the hidden geometrical properties of the matrix. These properties indeed

lead to the principle of optimal reconstruction in the minimal square error sense [34].

The following definition paves the way to the extension of the concept of extremal

directions of oriented energy to the multivariate case.

Definition 5. [82](n-mode oriented energy): the n-mode oriented energy of an Rth-order

tensor T in the direction of a unit-norm vector x, denoted by OEr(x,T ), is the oriented

energy of the set of r-mode vectors, i.e.,
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OEr(x,T )
.
= ‖xtT (r)‖2 (3.8)

Definition 5 actually allows one to reinterpret Equation (3.7) according to the following

property:

Property 3. [82](oriented energy). The directions of extremal r-mode oriented energy

correspond to the r-mode singular vectors, with extremal energy value equal to the

corresponding squared r-mode singular value.

Thus,

‖T (r)‖2 = ‖T̄ (r)‖2 =

Ir∑
i

(
(σir)

T
(r)

)2
=

Ir∑
i

OEr(U (r)(ir, :),T ) (3.9)

As a result, let T̂ be a tensor obtained by removing from T the components of the r-

mode vectors in the direction of an r-mode singular vector U (r)(Ir, :) (i.e., the singular

vector that corresponds to the smallest r-mode singular value). One has that

‖T − T̂ ‖2 = (σ
(r)
Ir

)2 = OEr(U (r)(Ir, :),T ) (3.10)

In general, T̂ is not the best approximation in a square error sense. However, this ap-

proximation involves an error that is known a-priori, i.e., ((σIr)
T
(r))

2. Equation (3.10)

proves that the MLSVD actually provides a detailed geometrical description of the en-

ergy distribution over the r-mode vector space. In practice, for each mode, the associate

matrix defines the orthogonal directions in which the energy is more propagated.

3.2 Tensor Input Similarity Function

As shown in the previous chapter, the geometrical properties of the input space play a

crucial role in the development of effective remapping layers. In general, the curse of

dimensionality problem becomes more prominent when multi-linear input domains are

considered and an extensive sampling of the input space becomes almost impossible.

The aim of the following section is the development of a metric that can efficiently

extract local information of the data manifold from available patterns exploiting all the

geometrical information embedded in the interactions between different modes.
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3.2.1 Extremal Energy Based Similarity Notion

The definition of a notion of similarity between a generic multi-way pattern and a multi-

way landmark is the first step in designing the tensor-based similarity function. For

the sake of clarity, to exemplify the rationale behind the proposed similarity notion and

without loss of generality, let a landmark, L, be a tensor of order 2: L ∈ RI1×I2 . As per

equation (3.2), L can be represented as:

L = L̄×1 L1 ×2 L2 (3.11)

The properties of the SVD also allow to rewrite L as

L =

p∑
i=1

Σ(i, i) · ui ⊗ vi =

p∑
i=1

σLi L̂i (3.12)

where p is the rank of L, the eigenvalues σi are ordered in decreasing level of magnitude,

and the matrices L̂i define an orthonormal basis in RI1×I2 for L. In general, a matrix

is univocally identified by the combination of eigenvalues σi and the corresponding or-

thonormal basis. Moreover, the matrices L̂i identify the most informative basis for the

original matrix in a square-error sense. As a result, the following provides an optimal

approximation of L (in a square-error sense).

L̂ =

q∑
i=1

σLi L̂i, with q < p, (3.13)

Conventional approaches to the assessment of the similarity between a generic pattern

X ∈ RI1×I2 and a landmark, L, usually rely on some metrics that compares the eigenval-

ues and the orthonormal basis of X , {σXi , X̂i}, with the eigenvalues and the orthonormal

basis of L, {σLi , L̂i}. These approaches would require the computation of two SVDs;

instead, the similarity notion that is proposed in this thesis exploits the basis of L as

a reference, thus projecting the pattern X on the most informative set of basis for the

landmark. Accordingly, similarity is assessed by comparing the eigenvalues σLi of L with

the pseudo-eigenvalues of X . The latter quantities can be formalized as the coefficients

σ̃Xi that support the following reconstruction of X :

X =

p∑
i=1

σ̃Xi L̂i, (3.14)
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Extending this approach to tensors of any order is feasible, under the hypothesis that

the landmark L ∈ RI1×I2×...×IR has a core tensor L̄ with non-null elements only for

i1 = i2 = ...Ir. In general, though, this condition does not hold. Then, one can

represent L either by relying on (3.2), or as

L =

I1∑
i1=1

I2∑
i2=1

...

IR∑
iR=1

L̄(i1, i2, ..., iR) · l(1)i1 ⊗ l
(2)
i2
⊗ ...⊗ l(IR)iR

=

I∑
i=1

σLi L̂i with I = I1I2...IR. (3.15)

In eq. (3.15), l
(r)
ir

represents the ir-th column vector of the orthonormal basis Lr;

the resulting tensors L̂i define a basis in RI1×I2×...×IR . Equation (3.15) shows that to

project a generic pattern X ∈ RI1×I2×...×IR onto the bases of L one needs to align the

corresponding bases {Xr; r = 1, ..., R} with the bases {Lr; r = 1, ..., R}. According,

let X̃ be a pseudo-core tensor obtained by the multilinear transformation of X by the

orthonormal bases Lr, i.e., the bases that characterizes L:

X̃ = X ×1 L
t
1 ×2 L

t
2...×R LtR (3.16)

X̃ is a pseudo-core tensor since it cannot be considered the core tensor of X in a rigorous

sense. According to equation (3.4), the core tensor X̄ is obtained from the associate

orthonormal basis, Xr:

X̄ = X ×1X
t
1 ×2X

t
2...×RXt

R (3.17)

Anyway, X̃ can be very useful if one addresses the goal of assessing the similarity between

L and X . In this regard, it is convenient to rewrite (3.16) as

X̃ = X ×1 L
t
1 ×2 L

t
2...×R LtR = X̄ ×1X1 ×2X2...×RXR ×1 L

t
1 ×2 L

t
2

...×R LtR = X̄ ×1 L
t
1X1 ×2 L

t
2X2...×R LtRXR (3.18)

Equation (3.18) formalizes the relationship between X̃ and X . It is interesting to un-

derstand the role played by the terms {LtrXr}. One recalls that both Lr and Xr
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define orthonormal bases; the corresponding basis vectors l
(r)
ir

and x
(r)
ir

are indeed the

eigenvectors that characterize the corresponding subspaces. As a result

LtrXr =


|l1||x1|cos(θ11) . . . |l1||xIr |cos(θ1Ir)

...
. . .

...

|lIr ||x1|cos(θIr1) . . . |lIr ||xIr |cos(θIrIr)

 (3.19)

where θij is the angle between the basis vector li and the basis vector xj . The subscript n

has been omitted in the single matrix elements for the sake of conciseness and readability.

Equation (3.19) can be further revised by taking into account that -by definition- |l(r)ir | =
1 and |x(r)

ir
| = 1. Therefore, one can conclude that the following equation holds for the

mode-n unfolding of X̃ , X̃ (r):

X̃ (r) = LtrXrX̄ (r) =


cos(θ11) . . . cos(θ1Ir)

...
. . .

...

cos(θIr1) . . . cos(θIrIr)

 · X̄ (r) (3.20)

The above equation clarifies that the discrepancies between X̃ and the “actual” core

tensor X̄ stem from the divergences between the bases Lr and Xr. In particular, one

has that

LtrXr =


cos(θ11) . . . cos(θ1Ir)

...
. . .

...

cos(θIr1) . . . cos(θIrIr)

 = I (3.21)

only if the eigenvectors li and xi are parallel for any i = 1, .., Ir and if li is orthogonal to

xj for any couple (i, j). It is worth noting that X̃ encompasses the information provided

by the n-mode eigenvalues of X (as per (3.7)). As a consequence, one expects that X̃
combines this information with the relative alignment of the eigenvectors of L and X .

This is an important issue because eigenvalues and eigenvectors may reveal details on

geometric patterns in tensors [84]. In the following, this aspect is analyzed by providing

some practical examples that help to further clarify the characteristics of the proposed

similarity notion. In terms of energy realignment the pseudo core tensor X̃ has a simple

and clear explanation. It provides all the energy contribution of the tensor X along the

extremal energy directions of L.
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3.2.2 Toy Examples

In principle, the pseudo-core tensor of X , X̃ , cannot be expected to inherit the properties

that characterize an actual core tensor. Thus, X̃ usually is not an all-orthogonal, ordered

tensor, nor can the Frobenius norm ‖X̃ (r)(ir, :)‖ be interpreted as a proper eigenvalue.

The expression (3.20), however, suggests that the quantities ‖X̃ (r)(ir, :)‖, (ir = 1, .., Ir)

convey useful information on the similarity between L and X along the n-th mode. A

practical example may prove useful.

First, let L and X be gray scale images, i.e., tensors of order 2 (L,X ∈ RI1×I2). Then,

one has

L = L̄×1 L1 ×2 L2, (3.22)

X = X̄ ×1X1 ×2X2, (3.23)

The images in Fig. 3.2(a) and 3.2(b) were used as the landmark, L, and the datum, X ,

respectively. In fact, the second tensor (image) was obtained by flipping vertically and

rotating the first one. These operations did not affect the eigenvalues of the matrix L.

Figures 3.2(c) and 3.2(d) show two different reconstructions of X . Figure 3.2(c) was

obtained as

X ′ = X̄ ×1 L1 ×2 L2, (3.24)

The reconstruction X ′ exploits the original bases provided by L (i.e., the eigenvectors of

L); the eigenvalues obviously stem from X̄ . Figure 3.2 (d), instead, gives the eventual

reconstruction of X obtained as

X ′′ = X̃ ×1 L1 ×2 L2, (3.25)

The reconstruction X ′′ still exploits the bases provided by L, but the eigenvalues stem

from X̃ (in fact, they are “pseudo-eigenvalues”). Figures 3.2(c) shows that X ′ ≡ L. The

reconstruction X ′ matches L since the landmark and the datum only differ in rotation.

Therefore, L and X share the same eigenvalues (L̄ and L̃ , respectively), although they

do not share the same bases. Conversely, the reconstruction X ′′ matches X (as per

Fig. 3.2 (d)). This, in turn, means that L̄ and X̃ do not convey the same information;

i.e., they may reveal the dissimilarity between L and X .
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(a) (b)

(c) (d)

(e)

Figure 3.2: Assessment of the degree of similarity between a landmark and a pattern
according to the proposed notion of similarity, first example: (a) landmark L; (b)
pattern X ; (c) X ′; (d) X ′′; (e) a plot that shows the ten largest eigenvalues of X̃ (1)

(black bars), X̄ (1) (white bars), and L̄(1) (gray bars).
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Figure 3.2(e) allows for further understanding of the role played by X̃ in the represen-

tation formalized in (3.22). The reconstructions X̃ ′ and X̃ ′′ correspond to two different

implementations of eq. (3.22), which differ in the settings of coefficients σ̃Xi .

In X ′, one uses the values ‖X̄ (1)(i, :)‖; instead, in X ′′, the coefficients are given by

‖X̃ (1)(i, :)‖. In the graph in Fig. 3.2(e), the x axis gives the index i, with i = 1, .., 10,

whereas black, white, and gray bars gives the values ‖X̃ (1)(i, :)‖, ‖X̄ (1)(i, :)‖ and ‖L̄(1)(i, :

)‖ respectively. The values ‖L̄(1)(i, :)‖ and ‖X̄ (1)(i, :)‖ correspond to the 10 largest eigen-

values of L̄(1) and X̄ (1), respectively. As expected, those values are ordered in decreasing

order and are pairwise identical. On the other hand, the components ‖X̃ (1)(i, :)‖ can

be regarded as some “special” eigenvalues that provide information about the process

of reconstructing X by using the set of basis Lr; in fact, the ten components are not

strictly ordered from the largest to the smallest. A pairwise comparison between the

values ‖X̄ (1)(i, :)‖ and ‖X̃ (1)(i, :)‖ confirms that the relative weights assumed by the

corresponding ten components differ. This explains the differences between X ′′ and X ′.

Figure 3.3 presents the results of a similar experiment. In this case, L (Fig. 3.3(a)) and

X (Fig. 3.3(b)) are two completely dissimilar images. Fig. 3.3(c) and 3.3(d) show the

two different reconstruction of X : X ′ and X ′′, respectively. X ′ reveals that L and X do

not share the eigenvalues (as expected); as a result, the reconstruction somewhat mixes

the landmark with the datum. On the other hand, by definition the reconstruction

X ′′ matches X , since a realignment of the basis has been involved. Thus, yet again,

it is confirmed that X̄ and X̃ convey different conclusions about the degree of similar-

ity between L and X . In this regard, Figure 3.3(e) compares the values ‖L̂(1)(i, :)‖,
‖X̄ (1)(i, :)‖, ‖X̃ (1)(i, :)‖ by using the same format of Fig. 3.2(e).

3.2.3 Proposed Similarity Function

Once that eigenvalues and pseudo eigenvalues of the couple X ,L are computed, a pair

of vectors collects the associate n-mode eigenvalues in ΣL
(r) = {σir(r); ir = 1, ..., Ir} and

ΣX
(r) = {σ̃ir(r); ir = 1, ..., Ir}. The resulting eigenvalues feed the metric procedure that

works out the actual result. The goal of the proposed similarity notion is the measure of

the extremal energy magnitude along the most informative directions for the landmark.

With this rationale, it is sufficient a comparison between the eigenvalues and the pseudo-

eigenvalues

K(X ,L) =
2

1 + δ
− 1 (3.26)

where
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(a) (b)

(c) (d)

(e)

Figure 3.3: Assessment of the degree of similarity between a landmark and a pattern
according to the proposed notion of similarity, second example: (a) landmark L; (b)
pattern X ; (c); X ′ (d) X ′′ (e) a plot that shows the ten largest eigenvalues of X̃ (1)

(black bars), X̄ (1) (white bars), and L̄(1) (gray bars).
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δ =

√√√√√ R∑
n=1

Ir−ζ(r)∑
ir=1

(σir(r) − σ̃ir(r))2

σir(r) · σ̃ir(r)
(3.27)

The above metric compares the pairs (σir(r), σ̃ir(r)), which stem from aligned basis consti-

tuted by the extremal energy directions and thus can characterize the degree of similarity

between L and X . The normalization term plays a crucial role in equation (3.27), as the

eigenvalues in general can span a wide range of values. Thus, without a normalization

term, one would face the risk of assessing δ by using only the 2 or 3 largest eigenvalues

for each mode.

Remarkably, the proposed similarity function involves only one hyper-parameter per

mode, i.e., the pruning parameter ζ(r). It is worth noting that the parameters {ζ(r);n =

1, .., N} support a dimensionality reduction process that applies to the MLSVD-based

characterizations of the pattern and the landmark. Such approach differs from the

one implemented by standard dimensionality reduction process such as Latent Semantic

Analysis (LSA) [85], which addresses vector spaces. In that case, SVD is used to capture

the global characteristics of the whole training set. Conversely, the proposed similarity

notion exploits MLSVD to obtain a suitable representation of the pattern itself (in a

tensor space). This in turn means that one can better capture the specific properties

of the single pattern. On the other hand, the risk of facing over fitting is higher. The

pruning parameters are indeed designed to inhibit such problem.

Even if not strictly consistent from a mathematical point of view, it exists an interest-

ing link between the reformulation of scalar product presented in section 2.18 and the

proposed metric for tensor data. In fact, the re-interpreted scalar product of equation

(2.18) shows that two patterns are compared on the basis of their projections on a refer-

ence set of directions r̂. The proposed metric, in the same way, compares the quantity

of information propagated in a set of directions for each mode; in this case the set of

basis is selected as the most informative ones for the reference point, the landmark, in

order to maximize the quantity of information propagated. Finally, as the result of the

fact that multi-modal projection result is not a scalar as in the case of eq. (2.18) but

a core tensor, the information is compared based on the magnitude of information for

each mode.

3.3 Proposed Algorithm for Tensor Inputs

The non-symmetric tensor-based similarity function K(X ,L) presented in section 3.2

evaluates the degree of similarity between a pattern, X , and a landmark, L, by actually
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processing X̃ and L̄. By definition, any mode-n unfolding of L̄ encloses the n-mode

eigenvalues of L(3.6); at the same time, Sec. 3.2 proved that it is convenient to interpret

the Frobenius norm ‖X̃ (r)(ir, :)‖ as an ir-th r-mode eigenvalue. As a result, the two

sets of eigenvalues provide the inputs for a specific measure of similarity between X and

L. In this thesis the specific measure is the one introduced in equation (3.27). As a

result, merging these two steps it is possible to define a notion K(X ,L) : RI1×I2×...×IR×
RI1×I2×...×IR → [−1; 1]. The complete procedure is summarized in Algorithm 6.

The Algorithm 6 outlines the computation of K(X ,L). After working out L̄ and X̃ as

per steps 0 and 1, step 2 collects the associate r-mode eigenvalues in ΣL
(r) = {σir(r); ir =

1, ..., Ir} and ΣX
(r) = {σ̃ir(r); ir = 1, ..., Ir}. A pruning procedure at step 3 discards the

least ζ(r) informative eigenvalues. To ensure flexibility, an adaptive set size, ζ(r), should

be set for each mode, r. In step 4, the resulting eigenvalues feed the metric procedure

that works out the actual result. The goal of the proposed similarity notion is the

measure of the extremal energy magnitude along the directions of the landmark. Whit

this rationale, it is sufficient a comparison between the eigenvalues and the pseudo-

eigenvalues.

In the end, the proposed metric can be integrate in Algorithm 2 extending the paradigm

based on similarity functions to data in tensor format providing a straightforward pro-

cedure for the training of predictors in tensor input domain.

3.3.1 Computational Cost

The above framework exhibits a common schema with the kernel-based framework for

tensorial data introduced in [81]. The latter approach virtually extends any kernel

machine to a tensor-based kernel machine. This goal is achieved by designing a suitable

kernel that can exploit the algebraic structure of tensors. The decision function can then

be learned by solving a single convex optimization problem. The proposed framework,

in fact, exploits similarity functions to replace kernels, and the decision function can be

learned by solving a single RLS problem.

A comparison of the relative computational complexities reveals the basic difference

between the two approaches. In [81], the kernel function ϕ(X ,L) that processes two

generic tensors X ,L is formulated as

ϕ(X ,L) =

R∏
n=1

ϕ(r)(X ,L) (3.28)

where
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Algorithm 6 Computation of the tensor-based similarity function

Input

• a multiway pattern X ∈ RI1×I2×...×IR

• a multiway landmark L ∈ RI1×I2×...×IR

• pruning parameters ζ(r)(r = 1, ..., R)

0. Initialize

decompose L to obtain

• a core tensor L̄

• the orthonormal bases Lr(r = 1, ..., R)

1. Psudo-tensor

compute the pseudo-tensor of X

X̃ = X ×1 L
t
1 ×2 L

t
2...×R LtR

2. Eigenvalues

1. extract the n-mode eigenvalues from L̄(r = 1, ..., R)

ΣL
(r) = {σir(r); ir = 1, ..., Ir}, where σir(r) = ‖L̄(r)(ir, :)‖

2. extract the n-mode eigenvalues from X̃ (r = 1, ..., R)

ΣX(r) = {σ̃ir(r); ir = 1, ..., Ir}, where σ̃ir(r) = ‖X̃(r)(ir, :)‖

3. Pruning

for each mode, drop the last ζ(r) eigenvalues (with ζ(r) < Ir)

ΣL
(r) = {σir(r); ir = 1, ..., Ir − ζ(r)}, ΣX

(r) = {σir(r); ir = 1, ..., Ir − ζ(r)}

4. Similarity

compute the similarity

K(X ,L) = 2
1+δ − 1

where

δ =

√∑R
r=1

∑Ir−ζ(r)
ir=1

(σir(r)−σ̃ir(r))2
σir(r)·σ̃ir(r)
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ϕ(r)(X ,L) = exp
(
− 1

σ2
(Ir − trace(ZtZ))

)
, (3.29)

Z = (V̂
X
(r))

t(V̂
L
(r)), (3.30)

In the expression (3.30), V̂
X
(r) is the matrix computed by applying SVD to X (r) as

per equation (3.3), and is obtained by picking the first r columns of V̂
X
(r) , with

r = rank(X (r)). A similar procedure applies to V̂
L
(r). Thus the computation of ϕ(X ,L)

requires a set of 2R SVD’s (as both X and L are processed). Then, two matrix prod-

ucts for each ϕ(X ,L) must be performed. Therefore, the cost OKF associated to the

computation of ϕ(X ,L) is

OKF
∼= 2 ·R ·OSV D + 2 ·R ·OMP (3.31)

For the training of the overall kernel machine, one uses ϕ(•, •) to compute the symmetric

kernel matrix. Thus the computational cost OTGK associated to the kernel building can

be estimated as

OTGK
∼= Z ·R ·OSV D +R · Z2 ·OMP (3.32)

The implementation of the kernel-based decision function requires a set of Z inner prod-

ucts ϕ(•, •) , involving the test pattern versus all training patterns. On one hand, the

MLSVD result of each training pattern is computed offline and is stored in memory;

however, the MLSVD of the test pattern has to be worked out online. Thus, the com-

putational cost OTTK associated to such step is:

OTTK
∼= R ·OSV D + 2 ·R · Z ·OMP (3.33)

In the proposed framework, the computational complexity associated to the similarity

function K(X ,L) can be estimated easily (as per Algorithm 6). One first needs a set

of R SVD procedures to complete Step 0. Then, R matrix products are required to

compute X̃ (Step 1). The computations involved by subsequent steps are negligible in

terms of computational complexity as compared with Step 0 and Step 1. The overall

cost, OSF , associated with the computation of K(X ,L) is:

OSF
∼= R ·OSV D +R ·OMP (3.34)
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One might argue that associating a uniform cost, OSV D, to any SVD is incorrect, since

each unfolding of L has its own size, which in turn affects the subsequent SVD. The

same consideration applies to OMP . This issue, however, only gets relevant when one

wants to formalize the relationship between OSF and (I1, I2, .., Ir).

To address the training of eventual predictor (2.11), one applies K(X ,L) to complete

the mapping of the input patterns in the remapped space RN . Thus, as per Step 1 of

Algorithm 2, one completes a set of N MLSVDs (one for each landmark). Then, the Z

input patterns are finally remapped. In summary the cost of the prediction training is:

OTGS
∼= N ·R ·OSV D +N · Z ·R ·OMP (3.35)

This means that OTGS = OTGK when, in Algorithm 2, one sets all training patterns as

landmarks (i.e., N = Z).

After training is completed, the implementation of the decision function (2.11) only

requires the availability of the landmark bases Lr, which are stored in memory. This is

a major difference with respect to the decision function proposed in [75]. Thus, when a

test pattern is classified, the computational cost associated to the mapping stage is

OTTS
∼= N ·R ·OMP . (3.36)

Clearly, OTTS can prove significantly lower than OTTK , which is made heavier by the

need of computing the MLSVD of the test pattern [34]. This aspect becomes crucial

when targeting the implementation of the predictor on a digital architecture, since the

SVD can prove quite demanding in terms of computational complexity.

3.4 Comparison with Existing Literature

The proposed framework exhibits distinctive features as compared with existing ap-

proaches to tensor-based learning. First, the framework differs from conventional ap-

proaches that complete learning by an iterative process [75–78]. In general, these ap-

proaches solve a convex optimization problem at each step; hence, the learning processes

are characterized by a huge computational cost. Nonetheless, one should deal with the

setup of free parameters related to the convergence criterion.

SHTM [79] reformulates the iterative approach implemented by Supervised Tensor Learn-

ing (STL) [76] to the purpose of obtaining a framework that inherits the linear C-SVM
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format [79]; as a result, the eventual learning process involves a single, standard convex

optimization problem. The SHTM framework exploits CANDECOMP/PARAFAC (CP)

[86] decomposition to suitably implement the inner product between tensors, which are

replaced by their rank-one decomposition. Thus, a comparison between SHTM and the

proposed framework reveals two basic differences: first, SHTM uses tensor decompo-

sition specifically to address the inner product computation in a SVM-based learning

scheme; secondly, SHTM yields a predictor that requires a (computationally demand-

ing) decomposition also for classifying a test pattern at run time. Tensor decomposition

also plays a role in projection learning methods [71, 72, 74], which aim at learning bases

that can suitably capture manifolds in a training set. Most of such approaches convey a

minimization problem over the entire training set. The proposed framework, instead, by

applying MLSVD in conjunction with landmarks attains two goals: the manifold propri-

eties of the training corpus are characterized, and the peculiar properties of each pattern

are preserved. Algorithm 6 tackles the risk of overfitting by a pruning mechanism on

the eigenvectors (as per Step 3).

Convolutional neural networks (CNNs) [87] are indeed designed to deal with n-th or-

der tensors by exploiting convolutional operations. The main advantage of CNNs with

respect to shallow architectures is the hierarchical organization of the information sup-

ported by the multi-layer outline. This feature proves very effective in domains where

patterns embeds structured information, e.g., image processing and video processing. On

the other hand, CNNs are computationally demanding and requires very large datasets

for the training phase. Thus, shallow architectures represent the only viable option when

one targets implementations on resource-constrained devices.

3.5 Experimental Results

The experimental verification of the proposed paradigm aimed at evaluating the accu-

racy of the tensor-based learning scheme derived from the theory of similarity function.

The overall framework was tested on seven classification problems involving multiway

data. The first problem used a synthetic dataset that had already been used in [81]

for estimating the performance of the tensor kernel (3.28). The other six problems ad-

dressed real-world domains, namely, ETH-80 [88], Yale Faces [89], Flower [90], KTH [91],

Cambridge Hand Gesture [92], and Gas Sensors [93]. The proposed datasets covered a

wide range of applications. As a major result of the datasets diversity the compari-

son between the proposed approach and state-of-the-art methodologies became robust

against the peculiarities of the single applications.
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The experiments were all designed to assess the generalization performance of the pro-

posed tensor-based classifier. At the same time, the tests supported comparisons with

three alternative solutions: SHTM [79]; a Support Vector Machine (SVM) that pro-

cessed multiway data by relying on the tensor kernel (3.28); a standard SVM that first

remapped multiway data into vector representations and then adopted the conventional

RBF kernel. The first two solutions refer to state-of-the-art approaches that address

tensor-based learning by involving a single, standard convex optimization problem. The

latter solution allows one to understand the performance of a conventional approach to

the problem.

In each experiment, the proposed framework, SHTM, the tensor-based SVM, and the

basic SVM were compared by defining a common set up for the range of admissible

values of:

• λ, i.e., the regularization parameter (C = 1/λ for SVM’s);

• σ, i.e., the hyper-parameter of both the standard RBF kernel and the tensor kernel

(3.28).

• R, i.e., the rank parameter of SHTM.

The following settings were adopted:

• λ ∈ {1 · 10−6, 1 · 10−5, 1 · 10−4, 1 · 10−3, 1 · 10−2, 1 · 10−1, 1, 1 · 101, 1 · 102, 1 · 103, 1 ·
104, 1 · 105, 1 · 106}

• σ ∈ {1 · 10−6, 1 · 10−5, 1 · 10−4, 1 · 10−3, 1 · 10−2, 1 · 10−1, 1, 1 · 101, 1 · 102, 1 · 103, 1 ·
104, 1 · 105, 1 · 106},

• R ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

Conventional model-selection procedures always drove the run-time settings of {λ, σ}
(or {λ,R}) for evaluating generalization performance on unseen test data. In the case

of the proposed framework, model selection also supported the setting of the pruning

parameters, ζ(r), used in Algorithm 6; in addition, all the patterns included in the

training set served as landmarks (i.e., L = Z).

The following sections present the results of the experimental sessions, and address the

performance of the four different solutions on each dataset.

All the simulation were performed using Matlab software.
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Synthetic Dataset: Classification of Sparsity Patterns

The first domain addressed the classification of third-order tensors characterized by

two different types of sparsity patterns. This synthetic dataset was used in [81] for

demonstrating the generalization performance of a SVM adopting the tensor kernel

(3.28).

The patterns were generated as follows. Let ej ∈ RI denote the j-th canonical basis

vector with eij = 1 if i = j and eij = 0 otherwise. In addition, let Dj ∈ RI×I×I be the

rank-1 tensor defined as: Dj = ej⊗ej⊗ej . Then, the m-th pattern, Xm, was computed

as

Xm =

amD1 + bmD2 + cmD3 + Gm, if ym = 1.

amD4 + bmD5 + cmD6 + Gm, if ym = −1.
(3.37)

In equation (3.37), am, bm and cm were i.i.d. from a zero-mean Gaussian distribution

with variance 1− β2; Gm was a noise tensor, whose entries were i.i.d. from a zero-mean

Gaussian distribution with variance β2.

The experimental dataset was generated by adopting I = 3 and β2 = 0.05. Each

experiment conveyed a binary classification problem with a balanced training set and a

balanced test set. The size of the training set took on the values {10, 20, 50, 100, 200};
the test set always included 100 samples. For each size of the training set, ten different

runs were completed, requiring ten different pairs of training/test sets.

Table 3.1 gives the experimental outcomes obtained: rows relate to the size of the train-

ing set; columns refer to the four classifiers. The performance was assessed by averaging

the classification error (expressed in the range [0, 1]) over the ten runs; the associate

standard deviation is given in brackets. Empirical results point out that the proposed

framework outperformed both SHTM and the standard SVM. The SVM based on the

tensor kernel only outperformed the proposed framework when very limited training sets

were involved.

Table 3.1: Synthetic Dataset: Results of the Experimental Session: the four algo-
rithms are compared in term of average accuracy (%) paired with standard deviation

Size Proposed Framework SHTM Multiway SVM Standard SVM

10 0.005 (0.009) 0.3275 (0.087) 0.000 (0.002) 0.172 (0.085)
20 0.003 (0.004) 0.3285 (0.058) 0.000 (0.002) 0.081 (0.056)
50 0.000 (0.001) 0.3185 (0.057) 0.000 (0.002) 0.023 (0.019)
100 0.000 (0.000) 0.3595 (0.067) 0.000 (0.000) 0.012 (0.010)
200 0.000 (0.000) 0.3605 (0.063) 0.000 (0.000) 0.006 (0.007)
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ETH-80

The ETH-80 database [88] contains images of objects grouped into 8 categories (apples,

pears, tomatoes, cars, cups, cows, horses, dogs). Each category covers 10 objects that

span large in-class variations, while still clearly belonging to the category. Each object is

represented by 41-color images, which correspond to as many viewpoints equally spaced

over the upper viewing hemisphere. All images are sized 128× 128 pixels. Accordingly,

each of them is represented as a third-order tensor R128×128×3.

The session was designed to evaluate the performance on the several pairwise binary

problems that stem from this dataset. Each experiment targeted the classification prob-

lem “category A” versus “category B”, hence a total of 28 tests were completed to cover

all combinations.

In each experiment, six objects were randomly drawn and included in the training set

(three for each category), thus the training set held 6× 41 = 246 patterns. The test set

included one randomly extracted object per class, for a total of 2×41 = 82 test patterns.

The training set and the test set never shared any pattern. Ten runs per experiment

were completed, requiring ten different pairs of training/test sets.

Figure 3.4 shows the results of the overall set of experiments. In the graph, the x

axis marks each binary classification problem, whereas the y axis gives the average

classification error over the ten runs (expressed in the range [0, 1]). For the sake of clarity,

the graph plots -for each single experiment- two quantities: the classification error scored

by the proposed framework (black thick line) and the best classification error achieved

among the three remaining frameworks (dashed gray line). The graph points out that the

proposed approach was never outperformed by state-of-the-art approaches. In several

cases, the classification error scored by the proposed approach was significantly smaller.

To amplify on that, Table 3.2 provides a detailed analysis of these results, aimed at

assessing the statistical significance of the results from each experiment. In a given test,

predictor A was considered “better than” predictor B only if

µ̄A + σ̄A/
√

10 < µ̄B − σ̄B/
√

10 (3.38)

where µ̄ and σ̄ are the sample mean and the sample standard deviation, respectively,

worked out on the ten classification errors. The expression (3.38) takes into account the

standard error in the computation of the average classification error (i.e., the sample

mean). The columns of Table 3.2 give the following quantities:
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Figure 3.4: ETH-80 dataset: results of the 28 experiments on binary classification.
The graph compares, for each experiment, the proposed framework with the best solu-

tion achieved among state-of-the-art frameworks.

• νB: the number of experiments in which the proposed framework proved to be the

best predictor, as per (3.38);

• νBNE : the number of experiments in which the proposed framework still scored

the lowest classification error, but equation (3.38) did not hold;

• νBH : the number of experiments in which the proposed framework proved better

than SHTM, as per (3.38);

• νBT : the number of experiments in which the proposed framework proved better

than tensor kernel SVM, as per (3.38);

• νBS : the number of experiments in which the proposed framework proved better

than standard SVM, as per (3.38);

• µG: the average improvement in classification error attained by the proposed

framework. This quantity was computed by considering only the νB experiments

in which the method proved to be the best predictor. The gain always referred to

the second-best comparison.

The table also provides -in brackets- the same quantities expressed as percentage over

the total number of experiment. The results confirm the effectiveness of kernel-based

learning with similarity functions, which in almost half of the experiments scored as the

best overall predictor; the average gain in classification error was 0.05.
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Yale Faces

The Yale Face Database [89] contains 165 grayscale images of 15 individuals. There

are 11 images per subject, one per different facial expression or configuration. All

images have size 243×320 pixels; the present experimental session, tough, exploited the

processed data set already used in [94]. Accordingly, each image was represented as a

second-order tensor R64×64.

The experimental session addressed the binary classification problems “subject A” ver-

sus “subject B” (105 experiments in total). In each experiment, the training set was

generated by randomly drawing 9 images per class; the test set included the remaining

2 images per class. The training set and the test set never shared any pattern. A total

of ten different runs per experiment were completed, hence ten different training/test

pairs of sets were generated. Figure 3.5 gives the results of the overall set of experiments

and uses the same the format as per Fig. 3.4. The x axis marks single experiments; the

y axis gives the classification error on the test sets. The plot shows that the proposed

approach was never outperformed by state-of-the-art approaches. Indeed, Table 3.3 pro-

vides further details on the experimental outcomes by using the same descriptors as per

Table 3.2. The proposed framework often scored the lowest classification error; nonethe-

less, frequently the second-best predictor was very close to such performance (as per

BNE). This result may indicate that the Yale Faces Database does not provide a very

challenging problem in general.

Flower

The flower database [90] gathers images for 17 different categories of flowers; 80 color

images per category are provided. The images were characterized by changes in scale,

pose and light variations; in addition, a single class may include images with a single

flower in the foreground, as well as images with groups of flowers of the same class. In

the experimental session, the database was pruned by only keeping those images having

one flower in the foreground. As a result, 5 categories had to be removed from the

Table 3.2: ETH-80 Dataset: Analysis of the Results of the Experimental Session

νB νBNE νBH νBT νBS µG

12(42.8%) 16(57.1%) 16(57.1%) 17(60.7%) 15(53.5%) 0.05

Table 3.3: Yale Faces Dataset: Analysis of the Results of the Experimental Session

νB νBNE νBH νBT νBS µG

15(14.3%) 81(77.1%) 22(20.9%) 105(100%) 25(23.8%) 0.06
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Figure 3.5: Yale Faces dataset: results of the 105 experiments on binary classifica-
tion. The graph compares, for each experiment, the proposed framework with the best

solution achieved among state-of-the-art frameworks.

database, since the number of acceptable pictures was too small. All the pictures were

resized to obtain a unique format (150×150 pixels). Thus each pattern was represented

as a third-order tensor R150×150×3.

The experimental session evaluated the performances on the binary classification prob-

lems “category A” versus “category B” (66 experiments in total). In each test, the

training set was generated by randomly drawing 20 patterns per class; the test set in-

cluded 10 random patterns. The training set and the test set never shared any pattern.

A total of ten different runs per experiment were completed, hence ten different train-

ing/test pairs of sets were generated.

Figure 3.6 gives the results of the overall set of experiments with the same format used

in Fig. 3.4. The graph points out that the proposed framework often compared favorably

with state-of-the-art frameworks. Table 3.4 provides a deeper statistical analysis of the

experimental outcomes with the usual descriptors. The table confirms the effectiveness

of proposed framework, which scored as the best overall predictor in more than half of

the experiments. In addition, the average gain classification error was 0.06.

Table 3.4: Flower Dataset: Analysis of the Results of the Experimental Session

νB νBNE νBH νBT νBS µG

36(55.4%) 22(33.8%) 47(72.3%) 58(89.2%) 46(70.8%) 0.06
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Figure 3.6: Flower dataset: results of the 66 experiments on binary classification. The
graph compares, for each experiment, the proposed framework with the best solution

achieved among state-of-the-art frameworks.

KTH

The KTH database [91] includes six types of human actions { walking, jogging, running,

boxing, hand waving and hand clapping} performed by 25 subjects. Four different

scenarios were involved: outdoor, outdoor with scale variation, outdoor with different

clothes, indoor. All sequences were taken over homogeneous backgrounds with a static

camera (frame rate: 25fps). In the original database, the frame size was 160×120 pixels;

the length of the videos varied. In the present experiment, the videos were all resized

to 30 × 30 pixels. Accordingly, each pattern was represented as a third-order tensor

R30×30×I , with I varying according to each video.

The experimental session evaluated the performance of the proposed framework on the

binary classification problems “action A” versus “action B” (15 experiments in total).

In each experiment, the training set was generated by randomly drawing 30 patterns

per class; the test set included 10 random patterns per class. The training set and the

test set never shared any pattern. I was always set according to the shortest sequence

included in the experiment (training and test); all the sequences originally including

a number of frames greater than I were edited by removing all frames after the I-th

one. Ten different runs per experiment were completed; hence, ten different pairs of

training/test sets were generated.
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Figure 3.7: KTH dataset: results of the 15 experiments on binary classification. The
graph compares, for each experiment, the proposed framework with the best solution

achieved among state-of-the-art frameworks.

Table 3.5: KTH Dataset: Analysis of the Results of the Experimental Session

νB νBNE νBH νBT νBS µG

7(46.7%) 7(46.7%) 14(93.3%) 7(46.7%) 15(100%) 0.04

Figure 3.7 gives the results for the overall set of experiments with the same format used

in Fig. 3.4. The graph confirms the reliability of the proposed framework. Table 3.5 gives

further statistical parameters, and points out that the proposed framework scored the

lowest classification error in 14 experiments out of 15 (best predictor in 7 experiments

out of 15 if one only considers B); the average improvement in classification error was

0.04. Table 3.5 indeed shows that only the tensor-based SVM did proved better than

the proposed approach in a few tests. Conversely, both SHTM and the basic SVM never

attained the performances scored by the proposed approach.

Cambridge Hand Gesture

The Cambridge Hand Gesture database [92] includes 900 image sequences that stemmed

from 9 gesture classes. The 9 gestures were defined by 3 primitive hand shapes and 3

primitive motions. Each class contained 100 image sequences, which had been recorded

by involving 2 different subjects, 10 arbitrary motions and 5 different illuminations.

Each sequence was recorded in front of a fixed camera having roughly isolated gestures

in space and time. In the present experiment, images were all resized to the uniform
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Table 3.6: Hand Gesture Dataset: Analysis of the Results of the Experimental Session

νB νBNE νBH νBT νBS µG

3(8.3%) 15(41.7%) 35(97.2%) 3(8.3%) 34(94.4%) 0.04

format 40×40 pixels. As a result, each image sequence was represented as a third-order

tensor R40×40×I . Actually, I varied for each sequence.

The session followed the approach commonly applied in the literature for this dataset,

and evaluated the performance of the proposed framework on the binary classification

problems “gesture A” versus “gesture B” (36 experiments in total). For each experiment,

a training set was generated by including all the image sequences captured with the plain

illumination setting (20 patterns per class). The corresponding test set included all the

image sequences captured with the remaining illuminations (80 patterns per class). In

each experiment, I was set according to the shortest sequence included in the dataset

(training and test). As a result, all the sequences originally including a number of images

greater than I were subsampled.

Figure 3.8 gives the results of the overall set of experiments and uses the same the format

as per Fig. 3.4. The x axis marks single experiments; the y axis gives the classification

error on the test sets. The results show that, in this case, the proposed framework gained

the role of best predictor only in few experiments. Table 3.6 provides further insights on

the experimental outcomes. In the present setup, however, the standard error associated

to the classification error was null, since experiments did not involve multiple runs. The

quantity B just counted the experiments in which the proposed framework scored the

lowest classification error; the quantity BNE counted the cases in which the proposed

framework proved to the best predictor as well as another predictor (featuring the same

classification error). The table proves that, again, only the tensor-based SVM was able

to compete with the proposed framework.

Gas Sensors

The Gas Sensors database [93] includes 13,910 measurements from 16 chemical sensors

exposed to 6 gases at different concentration levels. The single measurement provided

the response of the sensors when exposed to a given gas at a given concentration; 8

features per sensor were used. The measurements were gathered during 36 months. In

the present experimental session, the data stemming from a single measurement were

organized as a second-order tensor R16×8 (i.e., the 16 sensors with the corresponding

8 features). Experiments addressed the binary classification problem “gas A” versus

“gas B” (16 experiments in total). Thus, concentration levels were not involved in the
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Figure 3.8: Hand Gesture dataset: results of the 36 experiments on binary classifica-
tion. The graph compares, for each experiment, the proposed framework with the best

solution achieved among state-of-the-art frameworks.

Table 3.7: Gas Sensor Dataset: Analysis of the Results of the Experimental Session

νB νBNE νBH νBT νBS µG

0(0.0%) 4(26.7%) 7(46.7%) 0(0.0%) 2(13.3%) 0.0

experiment. The balanced training set always included 25 samples per class; the test

set included 100 samples per class. Ten runs were performed; in each run, the training

set and the test set were generated by randomly sampling the available dataset. The

training set and the test set never shared any pattern.

Figure 3.9 gives the results of the overall set of experiments and uses the same the

format as per Fig. 3.4. The x axis marks single experiments; the y axis gives the classifi-

cation error on the test sets. The results show that, in general, the proposed framework

achieved the performance scored by the best solution among the three competitors. In

fact, only in a few cases one of the competitors was able to slightly outperform the

proposed framework. Table 3.7 gives further statistical parameters, and confirms that

the proposed framework never proved to be the best overall predictor with a statistical

significance.
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Figure 3.9: Gas Sensor dataset: results of the 16 experiments on binary classifica-
tion. The graph compares, for each experiment, the proposed framework with the best

solution achieved among state-of-the-art frameworks.

3.5.1 Concluding Remarks

This research investigated how the theory of learning with similarity functions can sup-

port the development of an efficient framework that deals with multiway data inherently.

The design of an original, effective notion of similarity between tensors indeed represents

the core feature of the proposed research.

The notion of similarity is built on the decomposition of a tensor into two components:

the core tensor and the corresponding orthonormal basis. The degree of similarity be-

tween a pattern and a landmark is then assessed by taking into due account the alignment

between the respective basis. This, in turn, means that similarity is not just estimated

by conventionally comparing the standard n-mode eigenvalues of the two tensors; this

procedure in fact can only provide partial information on the degree of resemblance

between the tensors. Nonetheless, it is worth to note that the proposed framework can

utilize MLSVD to characterize the intrinsic structural properties of each single landmark;

as a major result, one can more reliably capture the underlying domain distribution.

Experimental results confirm the effectiveness of the proposed framework, which com-

pared favorably with both a basic SVM and two state-of-the-art frameworks that can

inherently process tensors: SHTM and the tensor-based SVM classifier model presented

in [81]. Only the latter predictor proved able to compete with the proposed framework
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in terms of classification performances. However, the proposed framework can be more

effective in terms of computational costs.



Chapter 4

Hardware Implementation

A considerable amount of applications relies on embedded systems that are expected

to yield online predictions [41, 95–100]; i.e., the prediction function should process in

real-time each new sample that feeds the system. In this regard, resource-constrained,

low-power embedded systems provide a challenging scenario for the deployment of such

predictors. Single layer feed forward neural networks such as the models introduced in

Chapters 2 and 3 represent an effective option when targeting implementations on low-

cost devices, because, in general, they achieve a satisfactory trade-off between prediction

accuracy and computational complexity. The prediction function eventually consists in

a weighted sum of nonlinear activation functions, where the number of terms equals the

number of neurons.

Actually, deep learning paradigms may offer improved performance in terms of prediction

accuracy; on the other hand, the hardware implementation of the corresponding decision

function still does not fit resource-limited devices [44, 101, 102].

As introduced in Chapter 2, from a hardware perspective, the most interesting configura-

tion for SLFNs is possibly the one that exploits only hard-limiter (threshold) activation

functions in the hidden layer. This setup sharply reduces the overall circuit complex-

ity in the predictor digital implementation. Nonetheless, one should face two crucial

drawbacks. First, the (offline) learning phase cannot be supported by conventional al-

gorithms, as the hard-limit function is non-differentiable [103]. Second, the threshold

activation function in general affects the generalization ability of the eventual SLFN,

which might require a large number of neurons to achieve a satisfactory accuracy.

As pointed out in subsection 2.5.2 the theoretical framework of Extreme Learning Ma-

chines [6, 32] with a suitable management of the sampling procedure offer a viable

solution to these problems. The resulting learning procedure achieved two goals. First,

87
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to provide a suitable tool to train a SLFN based on hard-limiter activation function.

Second, to provide a training algorithm that can effectively balance generalization per-

formance and the number of neurons in the hidden layer. Actually, the latter aspect

represents a major achievement when targeting resource-constrained devices.

This chapter exploits the outcomes of the research presented in subsection 2.5.2 to focus

on the design of the digital architecture that can efficiently support the implementa-

tion of the trained SLFN. The emphasis is on low-cost, low-performance devices such

as CPLDs and low-end FPGAs. Accordingly, the present work analyzes two different

design strategies that can fit such scenario. The first strategy primarily addresses an

efficient utilization of the hardware resources, for this reason, all the design choices aim

to minimize the allocation of resources. The second strategy, conversely, reduces the

latency through the parallelization of the most time consuming part in the neural net-

work, i.e. the computation of the scalar product x · r̂ in equation (2.18). As a result,

both strategies implement design criteria that remove the need of any multiplier in the

eventual architecture.

In principle, when the hidden layer is not subject to any selection or pruning criteria,

all the ROM memories employed to store random parameters {r, χ} can be replaced

by pseudo random number generators (PRNG). This design choice dramatically reduces

the requirements of area for the deployment of the eventual predictors. Unfortunately,

almost all the state of the art strategies suitable to improve the trade-off between com-

putational complexity and generalization performances summarized in subsection 2.5.4

are discarded by the constraints imposed by the use of PRNG. However, it is possi-

ble to adapt the architecture to handle a subset of selection strategies with a minimal

computational overload.

The proposed research differs in the goals from the work described in [62, 63, 99], where

VLSI implementation was the main target, and [100], where the overall architecture

was designed for online training. Patil et al. [62] indeed relied on a tristate activation

function and a pruning procedure to reduce the circuit complexity of the eventual ELM

predictor. However, the overall model targeted analog implementations. Binary weights

have been also applied to convolutional neural networks to limit computational complex-

ity [44]; the resulting networks, though, bring about approximations that are unsuitable

for SLFNs, as the latter ones involve a small number of parameters.

Recently, different authors addressed the problem of an efficient storing of the random

hidden layer weights. Taking advantage of the hidden layer weights’s random nature,

both [62, 104] proposed a rotation scheme that enables the storage of a small number of

hidden parameters. These approaches differ from the proposed one because they target a



Chapter 4. Hardware Implementation 89

mixed analogical-digital design and the advantages of these methods become less evident

in a fully digital implementation, that is the target of this thesis.

4.1 Digital Implementation

This chapter targets the design of a modular digital architecture that can conveniently

implement the decision function (2.11) for the specific case of neurons’ activation (2.18):

f(x) =

N∑
i

βn · sign(xtr̂n − rn) =

N∑
i

βn · sign(In) (4.1)

As a major consequence of targeting resource-constrained devices, such as CPLDs and

low-end FPGA, the overall design strategy requires one to tackle a few implementation

issues to the purpose of achieving a proper balance between accuracy, resource allocation

and computational complexity. In the following, it is assumed that both the i-th feature

xi and the n-th weight βn are represented as a B-bit fixed point, 2’s complement number.

The first critical issue in (4.1) concerns the computation of the input I to the activation

function:

I(x, r̂n, rn) = ‖rn‖(xtr̂n − rn) (4.2)

A remarkable properties of combining I with threshold units is that the quantity ‖r‖ that

characterizes eq. (2.18) does not affect the sign of the activation I reducing automatically

the number of computations. Operation (4.2) involves D multiplications and D sums;

moreover, it should be repeated N times (one for each neuron). Actually, tough, one

can avoid multiplications by imposing the following constraint on the random weights

r̂d,n:

r̂d,n = sign(r1)2
−dr2e = s · 2−k (4.3)

where r1 ∈ {−1, 1} and r2 ∈ N+ are random quantities. It worth to note that this

constraint does not violate any of the constraints in ELM theories [33]. As a result,

the computation of the single term xd · r̂dn can be completed with a shift operation

(xd >> kdn), which should be followed by a sign conversion when sdn < 0 (i.e., r̂dn < 0).

In principle, to apply sign conversion to the shifted term one needs a bitwise not operator

followed by a sum with a constant term, whose value is ‘1 Least Significant Bit’ (LSB).
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However, when implementing (4.1) one knows in advance how many weights rdn are

negative. In this regard, let W be the number of negative rdn. Then -when computing

xr̂n- the single W terms ‘1 LSB’ can be replaced by a single cumulative term ζ. As a

result, one has

xtr̂n − rn =
∑
d

x̄d − rn + ζn (4.4)

where

x̄d

xd >> kdn, if sdn = 1

NOT(xd >> kdn), if sdn = −1

Such approach eventually simplifies the design of the corresponding digital device.

The second critical issue in general concerns the computation of φ(I). Again, this op-

eration must be completed N times (one for each neuron). A standard choice for the

activation function φ is the sigmoid. In literature, the hardware implementation of such

function is achieved either by exploiting piecewise linear approximations or by relying

on lookup tables [105]. The former solution is usually preferred, as lookup tables require

large memories. Piecewise linear approximation, though, always involves a multipli-

cation and a sum. Instead, threshold activation function in a digital implementation

consists in the fetch of the most significant bit.

Moreover, a SLFN based on the hard-limiter activation function is characterized by a

further advantage. The term βn · φ(I) in (4.1) can be computed without relying on a

multiplier, since φ(I) only sets the sign of βn.

The architecture supporting the digital implementation of the trained SLFN can be

organized according to three main modules:

• The first module, Input, stores the components (features) of the pattern x to be

classified.

• The second module, Neuron, computes -for the n-th neuron- the quantity an =

sign(xtr̂n − rn).

• The third module, Output, supports the output layer and incrementally finalizes

the computation of (4.1). It activates as soon as Neuron provides an for the n-th

neuron.
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Figure 4.1: Architecture for the digital implementation of the predictor: sequential
approach architecture;

The architecture should indeed include a finite-state machine ruling the whole control

process and storage resources to host the following quantities generated by the learning

procedure: {{(s, k)d; d = 1, .., D}n, ζn, ln, βn;n = 1, .., N}.

Such overall organization can result in two different implementation approaches. The

first approach relies on a Neuron module that sequentially processes the features xd, as

in [9]. In the second, alternative approach, the Neuron module processes in parallel all

the D components of the input x.

4.1.1 Serial Neuron Implementation

The architecture implementing the sequential approach is outlined in Fig. 4.1. The

internal design of the three main modules is organized as follows:

Input : a memory that hosts the D feature values. The module supports a serial input

and provides as output a single feature xd per read-cycle.

Neuron : this module computes the quantity an step-by-step. First, when a feature xd

feeds the module, a shift operation works out the term xd >> kdn, as per (4.3); the shift

circuit is fed by a memory that stores the integers kdn. Second, the corresponding sign

bit sdn drives a multiplexer, which selects the output of the bitwise not operator only

when s = −1, i.e., when xd ·r̂dn involves a sign conversion. The final add-and-accumulate

block is entitled to carry out incrementally the computation of the completed term (4.4).

This goal is obtained by initializing the accumulator to the value (ζn − rn) before the
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Figure 4.2: Example of processing flow for the proposed sequential architecture;

processing of x1 starts; a memory supports such procedure. The module provides as

output the signal that marks the sign bit in the accumulator, i.e., an.

Output : this module is designed to obtain the prediction y(x) step-by-step. As an ∈
{−1, 1}, the quantities an · βn are computed by exploiting a sign unit, which supports

the conversion of βn, if needed. The weights βn are stored in the corresponding memory.

An add-and-accumulate block supports the incremental computation of y. The module

gives as output the signal that corresponds to the sign bit in the accumulator, i.e., the

prediction.

Figure 4.2 shows an example of the processing flow for D = 3 and N = 4 (i.e., four

neurons in the hidden layer). The scheme outlines the functional activity of the following

single-cycle processes:

• Idn: input cycle. The Input module provides as output the d-th feature; the storage

units provide to the datapath the parameterization set by r̂dn .

• Nn(d): processing cycle of the Neuron module. The module instances the n-th

neuron and processes the d-th feature, thus computing xd · r̂dn.

• On: processing cycle of the Output module. The module processes an, thus com-

puting an · βn.

In the proposed example, features x1, x2, and x3 are stored in the memory hosted by the

Input module at the rising edge of clock cycles 2, 3, and 4, respectively. Accordingly, I11

can be completed within clock cycle 2 and the Neuron module can start the incremental

computation of a1 at clock cycle 3 (N1(1)). At the rising edge of clock cycle 6 the

accumulator hosted by the Input model stores a1, as N1(D) has been completed. Thus,

within clock cycle 6 the Output module computes a1 ·β1(O1). Eventually, ON is executed

at clock cycle 15 and the eventual prediction y is available in the accumulator hosted by
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Figure 4.3: Architecture for the digital implementation of the predictor: parallel
approach architecture;

the Output module at clock cycle 16. Overall, this approach ensures a prediction results

in (D ·N + 3) clock cycles, starting from the fetch of the first feature.

4.1.2 Parallel Neuron Implementation

Figure 4.3 outlines the architecture that exploits the fully parallel Neuron module.

The internal design of the main modules changes as follows:

1. Input : the module still contains a memory with serial input that hosts D features.

However, it now provides as output all the D features in parallel per read-cycle.

2. Neuron : this module computes the quantity an in a single clock-cycle. Accord-

ingly, the features xd are processed in parallel by D instances of the block ‘shift-not

multiplexer’ already described above. An adder with D + 1 inputs finalizes the

computation of an; the additional input refers to the quantity (ζn−rn). A flip-flop

(FF) is set to store the signal that marks the sign bit in an.

3. Output : this module is still designed to obtain the prediction y(x) step-by-step.

Such design supports a fully pipelined processing, as showed in Fig. 4.4, which -as above-

refers to an example of the processing flow for D = 3 and N = 4. The pipeline operation

involves the following three single-cycle processes:
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Figure 4.4: Example of processing flow for the proposed parallel architecture;

• In: input cycle. The Input module provides as output the D features in par-

allel; the storage units provide to the datapath the parameterizations set by

{r̂n1, ..., r̂nD}.

• Nn: processing cycle of the Neuron module. The module instances the n-th neuron,

thus computing an.

• On: processing cycle of the Output module. The module processes an, thus com-

puting an · βn.

In this case, the processing can start only when the D-th feature has been stored in

the memory hosted by the Input module. Accordingly, in the proposed example the

processing flow is triggered by the availability of x3 at the input port (rising edge of

clock cycle 2). At the rising edge of clock cycle 4 the Neuron module stores a1 in the

corresponding FF; indeed, aN is ready after (N−1) clock cycles. The eventual prediction

y is available in the accumulator hosted by the Output module at clock cycle 8. Overall,

this approach ensures a prediction results in (N+3) clock cycles, starting from the fetch

of xD.

4.1.3 Comparing the Two Designs: Area Utilization vs Latency

The two different approaches to the design of the trained predictor can be compared

according to the following attributes:

• area utilization: this parameter actually mostly depends on the design of the

Neuron module. In the fully pipelined approach (Fig. 4.3), the dimensionality D

of the input space has a direct impact on the resources occupied by the instance
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of the n-th neuron. The corresponding hardware implementation should support

parallel processing of the D features; in addition, the Adder block should process

D + 1 inputs. Conversely, in the sequential approach of Fig. 4.1 the resource

utilization of the Neuron module is not affected by D. Clearly, also the number

of bits B plays a role in determining the area covered by the Neuron module. In

fact, B is expected to have more impact in the sequential design. Nonetheless,

D, B and the number of neurons N influence -in both the approaches- the size

of the memories included in the architecture. In this regard, one should consider

that the size of memory hosted in the Input module grows as D ×B; besides, the

memories entitled to store parameters s and k both grow as D ×N .

• latency: to the purpose of assessing this parameter, let Ts and Tp, respectively, be

the clock periods of the hardware implementations resulting from the sequential

architecture (Fig. 4.1) and the fully pipelined architecture (Fig. 4.3). As a result,

the latency associated to the prediction when adopting the first approach is (D ·
N + 3) · Ts, while the pipelined approach yields a prediction in (N + 3) · Tp. This

in turn means that -given N - one would need Ts ' Tp/D to obtain a predictor

based on the sequential architecture that has the same latency of a predictor based

on the fully pipelined architecture. On the other hand, one should consider that

in the sequential approach the processing can start when the feature x1 has been

stored. In the fully pipelined approach, in contrast, processing can start only when

the last feature, xD, has been stored. Such aspect might become relevant when

D >> N .

Overall, the sequential approach best fits scenarios in which effective area utilization has

the priority over latency. Thus, such approach is expected to be effective when one wants

to maximize the quantity D ×N , given N . Conversely, the fully pipelined approach is

expected to support implementations that suitably balance D ×N and latency.

4.2 Pseudo-random Number Generator Based Architec-

ture

Storing of the hidden neurons parameters is one of the main factors of area consumption

when SLFNNs’ deployment is considered. In principle, it is necessary to store D+1 real

numbers for each neuron.

As a major consequence of constraint (4.3), the hidden parameters r̂dn are described

by the couples {k, s}dn (eq. 4.3) where s is a bit and the value k is an integer number

that should be always smaller than B i.e. the maximum number of shift operation in a
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register of size B. In practice, each couple {k, s} needs only 1 + log2(B) bits. However,

the size of these two memories grows as N ×D and it rapidly becomes one of the main

sources of area consumption.

Interestingly, the only requirements about the pairs {k, s} is that they are randomly

generated; therefore, it is possible to generate these numbers using a pseudo random

number generator (PRNG) that, given a fixed initial condition, produces always the

same chaotic sequence of numbers. In this way, the requirement of storing N × D

parameters becomes the requirement of implementing an efficient sequence generator of

N ×D values.

Linear feedback shift register (LFSR) [106] is a simple and compact realization of such

models. Given a shift register of size m and a xor based feedback function that receives

in input few bits of the register, it is possible to obtain a sequence of non-repeating

numbers with period 2m − 1. For each size m, standard tables [107] provide the bit

index that should be used in the xor feedback function.

In general, the entire set {K, s, r} can be set randomly; however, this chapter refers to

the training algorithm proposed in subsection 2.5.2 because it provides a better trade-off

between generalization performances and hidden layer size. For this reason, parameter r

is subject to a selection criteria and need to be stored in a ROM memory; the extension

to the general case is straightforward.

Two design constraints drive the size m of the shift register: 1) m should be big enough

to guarantee that, at each clock cycle, enough bits are provided to represent the hidden

parameters ; 2) m should be such that, the period of the random sequence is greater

than N ×D, i.e. the amount of hidden parameters.

According to the selected architecture the ratio between the constraints changes. In

serial neurons approach (Fig. 4.1) size of the random generator is subject to the following

constraints: at each clock cycle a couple {k, s} should be generated then m ≥ 1+log2(B)

bit are necessary, at the same time m should be such that 2m − 1 ≥ N × D to avoid

identical configurations. The fully pipelined approach (Fig. 4.3), instead, requires D

couples {k, s} at each clock cycle, then the first condition becomes m ≥ D+D∗ log2(B),

while the constraint about sequence period becomes less stringent 2m − 1 ≥ N . Should

be noted that the size of the register is, in both the cases, negligible respect to the

number of elements that should be stored; in fact, the first constraints correspond to

the output of the ROM in a single clock cycle, while the second one is satisfied by an

exponential function of m.

In principle, the use of LFSR to replace ROM memories prevent the use of pruning or

selection techniques because the random sequence cannot be controlled. On the other
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hand, shrinking techniques are particularly useful in cases where it is necessary to avoid

large dimensions of the hidden layer size.

Fortunately, given a register state, the LFSR produces always the same sequence of

numbers. In other words, the seed of LFSR corresponds to its output. This character-

istic enables the use of a strategy for serial architecture (Fig. 4.1) where only the first

pair {s1d, k1d} is stored, while the other parameters can be generated using the LFSR.

Considering serial architectures the overload is negligible in term of area consumption;

in fact, for each neuron it is possible to store only the starting point of the PRNG, i.e.

{s1d, k1d}, reducing the number of parameters to be stored from N ×D to N . Unfortu-

nately, the same reasoning does not hold for the fully pipelined case where the starting

point of each sequence would correspond to the sequence itself because each neuron

needs to be computed in a single clock cycle.

4.3 Experimental Validation

The experimental section provides a detailed comparison about the implementation of

the proposed models into low cost devices such as CPLD and low end FPGAs. The

experimental tests are divided into three main parts. In the first one, tests regarding

the implementation of serial architecture are provided, with particular attention on the

link with other state-of-the-art proposal. Following a detailed comparison between the

architecture proposed in subections 4.1.1 and 4.1.2 is presented. Finally, the results ob-

tained replacing traditional ROM memories with pseudo random generator are depicted

in section 4.2.

4.3.1 Serial Architecture Deployment

The architecture given in Fig. 4.1 was tested on two low-resources devices, namely,

Altera CPLD 5M1270Z, and Altera CPLD 5M2210Z1. The two platforms differ in the

number of available macrocells: 5M2210Z almost offers a double number of macrocells

as compared with 5M1270Z. Analysis and synthesis of the proposed architectures were

accomplished using Quartus Prime software.

The first test aimed at evaluating the ability of the proposed architecture to fit such

CPLDs. In practice, the area occupancy of the architecture is determined by D (input

dimensionality) and N (size of the hidden layer), as they set the capacity of the involved

memories. Thus, Fig. 4.5 gives D on the x axis; the y axis provides given D the size

N that would correspond to the full area occupancy on the device when deploying the
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Figure 4.5: Configurations that would correspond to full area occupancy when de-
ploying a predictor based on the proposed architecture.

predictor. In this figure the black-filled bars refer to the 5M2210Z, while the gray-filled

bars refer to the 5M1270Z. All the implementations adopted a 12 bit fixed-point repre-

sentation. In terms of power consumption, such implementations needed, respectively,

about 75 mW on the CPLD 5M2210Z and about 48 mW on the CPLD 5M1270Z (with

a 33MHz clock frequency in both cases). These outcomes confirm that low-resources

devices can support predictors trained on low-dimensionality problems. Indeed, one can

exploit FPGAs when targeting problems characterized by medium or large dimension-

ality.

The second test aimed at providing a direct comparison with the state-of-the-art design

for the digital implementation of ELM classifiers [41]. In [41], the predictor employed

a standard ELM based on sigmoid function; training was supported by a customized

procedure that enabled pruning mechanisms. The corresponding digital implementa-

tion stemmed from a design strategy that combined parallel and pipelined processing,

ensuring a prediction results in D ×N clock cycles.

To provide a fair comparison, the test involved the implementations discussed in [41],

which were deployed on CPLD 5M1270Z. The predictor implementations covered three

benchmarks, which in turn spanned as many settings of D. For each benchmark, two

predictors were deployed, which differed in the setup of N : one predictor stemmed from

a conventional training strategy, while the other one used the training strategy with a

pruning mechanism, thus shrinking the size of the hidden layer.

Table 4.1 reports on the outcomes of this test, and compares, given D and N , the

area utilizations required by the proposed HE and the architecture presented in [41],

respectively. The second and the third columns of the table refer to the predictors

trained on Breast Cancer Wisconsin (D = 9). The fourth and the fifth columns refers

1https://www.altera.com/products/cpld/max-series/max-v/overview.html
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Table 4.1: Area Occupancy - CPLD 5M1270Z

D 9 34 81

N 4 10 22 80 18 70

HE 17% 22% 50% > 100% 73% > 100%
[41] 40% 40% 86% > 100% 95% > 100%

to the predictors trained on Ionosphere (D = 34). The last two columns refer to the

predictors trained on MNIST (D = 81). The reported occupancy actually gives the area

covered without the Input module (as per Fig. 4.1), as the original classifier designed in

[41] did not include such module and adopted serialization to fetch input patterns.

Numerical outcomes confirm the reliability of the proposed digital design. The HE

predictor always occupied less area than the corresponding predictor based on the ar-

chitecture designed in [41]. In a few cases, though, both the architecture deployed an

implementation that did not fit the area provided by the CPLD. In this regard, it is

interesting to note that HE would reach full area occupancy with N = 55 when D = 34,

and with N = 25 when D = 81.

4.3.2 Serial/Parallel Implementations Comparison

The architecture shown in Fig. 4.1 and Fig. 4.3 were tested on two low-resources devices,

namely, the Altera CPLD 5M2210Z and the Altera FPGA EP4CGX15BF14A72, which

does not embed multipliers. The low end FPGA was selected with the aim of relaxing

the constraint about limited resources. The tests aimed at evaluating the ability of

the proposed architectures to fit low-resources devices, when the constraint about area

consumption are relaxed with respect to the previous experimental setup (subsec. 4.3.1).

Figure 4.6 presents the outcomes of the tests based on the CPLD. Figure 4.6(a) refers

to the hardware implementation of the sequential approach (Fig. 4.1). The figure gives

N on the x axis, while the y axis marks the dimensionality of the input space, D,

that would correspond to the full area occupancy on the device when deploying the

predictor. The test involved four different configurations of N = {25, 50, 75, 100}. The

figure indeed plots the outcomes obtained with three different settings for the number of

bits B: the black markers refer to the tests based on B = 8; the light gray markers refer

to the tests based on B = 10, the dark gray markers refer to the tests based on B = 12.

All the implementations required about 130mW in terms of power consumption, with

clock frequency set to 55MHz. The tests showed that the sequential approach was

able to support a predictor designed to deal with a 90-dimensional problem, under

the configuration {N = 25, B = 8}. In fact, D reduces to 60 when one needs a 12-bit

representation of data to save accuracy. Indeed, it is worth to note that a 25- dimensional
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Table 4.2: Implementation on CPLD: D25/DN as a function on N

sequential fully pipelined

N B=8 B=12 B=8 B=12

50 1.55 1.50 1.31 1.22
75 2.11 2.00 1.52 1.46
100 2.73 2.64 1.80 1.69

problem could be managed under the configuration {N = 100, B = 12}. This is a

remarkable result for an implementation on a low-end, low-cost device such as the CPLD

5M2210Z. Figure 4.6(b) refers to the hardware implementation of the fully pipelined

approach (Fig. 4.3); the plot adopts the same format of Fig. 4.6(a). As expected given

N the fully pipelined approach imposes stricter constraint on D with respect to the

sequential approach. Nonetheless, the figure shows that one would be able to implement

a predictor designed to deal with a 37-dimensional problem under the configuration

{N = 25, B = 8}; indeed, a 20-dimensional problem could still be managed under the

configuration {N = 100, B = 8}. Moreover, the fully pipelined approach proved able to

achieve interesting performance in terms of latency, as the clock frequency was set to

35MHz in all the implementations. This in turn means that Ts = Tp/1.5, independently

of D, while one would need Ts = Tp/D to obtain an implementation of the sequential

approach that can compete with the corresponding implementation of the fully pipelined

approach. Obviously, one should also take into account the trade-off between latency

and power consumption, which in the fully pipelined approach is affected by D. In the

tested implementations, power consumption ranged from a minimum of 150mW (with

D = 13) to a maximum of 250mW (with D = 38).

Overall, it is interesting to assess how the quantity D×N changed as N grew, for both

the approaches. To this purpose, let DN denote the value took by D when the number

of neurons in the predictor was set to N . Accordingly, Table 4.2 provides the value of

the quantity D25/DN for N = {50, 75, 100}. The table is organized as follows: the first

columns gives N ; the second and the third column refer to the sequential approach and

provide the value of D25/DN under the configuration B = 8 and B = 12, respectively;

the same format is used the fourth and fifth column, which refer to the fully pipelined

approach. Numerical results show that in the fully pipelined approach D dropped slower

than in the sequential approach, as N grew. Thus, while the sequential approach -given

N - can maximize the quantity D ×N , the fully pipelined approach scales better as N

grows.

Figure 4.7 presents the outcomes of the tests based on the FPGA. As above, Fig. 4.7(a)

refers to the hardware implementation of the sequential approach, while Fig. 4.7(b) refers

to the hardware implementation of the fully pipelined approach. Both the plots adopt the
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(a)

(b)

Figure 4.6: Tests on CPLD: configurations that would correspond to full area oc-
cupancy when deploying the predictor: (a) sequential approach; (b) fullpipelined ap-

proach.

same format of Fig. 4.6(a). Clearly, implementations on FPGA allow both approaches

to support predictors that can deal with D > 100; for example, Fig. 4.7(a) shows that by

adopting the sequential approach one could tackle 500-dimensional problems. Actually,

it is interesting to compare the implementations on FPGA with the implementations

on CPLD in terms of power consumption and latency. The predictors supported by the

sequential approach recorded a power consumption of about 130mW on the FPGA; thus,

this parameter did not change with respect to CPLD implementations. Nonetheless, the

clock frequency on FPGA raised up to 75Mhz. Implementations based on the fully

pipelined approach required a power consumption of 120mW on the FPGA, with the
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(a)

(b)

Figure 4.7: Tests on FPGA: configurations that would correspond to full area oc-
cupancy when deploying the predictor: (a) sequential approach; (b) fullpipelined ap-

proach.

clock frequency set to 50Mhz. Thus, FPGA implementations confirmed that Ts '
Tp/1.5.

As above, Table 4.3 provides the value of the quantity D25/DN for N = {50, 75, 100} in

the case of the FPGA implementations. This table adopts the same format of Table 4.2.

Numerical outcomes confirmed that also on FPGAs the fully pipelined approach scales

better as N grows.

2Altera FPGAs https://www.altera.com/products/general/fpga.html
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Table 4.3: Implementation on FPGA: D25/DN as a function on N

sequential fully pipelined

N B=8 B=12 B=8 B=12

50 1.49 1.48 1.20 1.18
75 2.01 1.96 1.39 1.31
100 2.58 2.45 1.56 1.45

4.3.3 ROM/PRNG Implementations Comparison

The purpose of this experimental campaign is the quantification of the gain introduced by

the use of PRNG to replace ROM memories, as per section 4.2. The architectures shown

in Fig. 4.3 and 4.1 were tested on two low-resources devices, namely, the Altera CPLD

5M2210Z and the Altera FPGA EP4CGX15BF14A7 which does not embed multipliers,

using the same setup of section 4.3.2. The tests aimed at evaluating the ability of the

proposed architectures to fit low-resources devices.

Figure 4.8 presents the outcomes of the tests based on the CPLD. Figure 4.8(a) refers

to the hardware implementation of the sequential approach. The figure gives N on the

x-axis, while the y-axis marks the dimensionality of the input space, D, that would

correspond to the full area occupancy on the device when deploying the predictor. The

test involved four different configurations of N : {25, 50, 75, 100}. The figure indeed

plots the outcomes obtained with two different settings for the number of bits B: the

black lines refer to the tests based on B = 8; the light grey lines refer to the tests based

on B = 12. Circle markers refer to standard ROM implementation, while diamonds

stand for PRNG. The clock frequency was 20MHz for all the implementations. The

tests showed that configurations based on PRNG outperform always the ones based on

standard memory. Furthermore, with the growth of N , the gap increase substantially.

Interestingly, configuration based on 8 bit arithmetics can support the implementation

of a network with N = 100, D = 165.

Figure 4.8(b) refers to the hardware implementation of the fully pipelined approach; the

plot adopts the same format of Fig. 4.8(a). As expected -given N - the fully pipelined

approach imposes stricter constraints on D with respect to the sequential approach.

As in the previous case, PRNG based solutions, always outperform the corresponding

counterparts in term of area occupancy. This advantage becomes particularly evident

when N = 100, in fact, for ROM based solution D = 21 is the limit, while PRNG can

manage classifiers with D up to 38.

Figure 4.9 inherit the format from figure 4.8. The result refers to the implementation of

the architectures on FPGA where the clock frequency was 50MHz and the setting for D

is {100; 500; 1000}. Outcomes confirm the trend shown in the previous simulations. The
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(a)

(b)

Figure 4.8: Tests on CPLD: configurations that would correspond to full area occu-
pancy when deploying the predictor with standard rom memories (diamond markers)

or PRNG (circle markers): (a) sequential approach; (b) fullpipelined approach.

most important observation is that implementation with PRNG allows configuration

that can be adopted for almost any application; in fact, a predictor based on the serial

neuron implementation with a size of the hidden layer N = 1000 can handle input

data with dimensions bigger than 1200. Instead with fully pipelined architecture input

dimensionality D is limited to 200, but the latency becomes ' 200 times smaller.

4.4 Concluding Remarks

This chapter presented digital architectures designed to implement random basis neural

networks based classifier on low-cost devices. The research focused on implementations

that adopt the hard-limiter activation as activation function. This configuration can

take advantage of two attributes: 1) it can lead to hardware-friendly design, and 2)
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Figure 4.9: Tests on FPGA: configurations that would correspond to full area occu-
pancy when deploying the predictor with standard rom memories (diamond markers)

or PRNG (circle markers): (a) sequential approach; (b) full-pipelined approach.

the literature provides learning schemes that can suitably balance generalization per-

formance and size of the hidden layer. The latter attribute is noteworthy in that the

amount of neurons plays a role in determining the resource utilization of the eventual

predictor. Furthermore, random networks peculiarities have been exploited to reduce

memory requirements. The two architectures outlined in the chapter address the trade-

off between area utilization and latency from different perspectives. The approach that

relies on a sequential computation of the neuron activations gives priority to area occu-

pancy. As a major result, the resources utilized by the Neuron module does not depend

on D. Conversely, the approach that relies on a fully parallel computation of the neuron

activation gives priority to latency. In this configuration, the area covered by a single

instance of the Neuron module grows as D grows. Experimental verifications proved

that the proposed design strategy supports the realization of embedded classifiers both

in low-end FPGA devices and low-cost devices such as CPLDs, achieving a considerable

gain with respect to the previous state-of-the-artp approaches.



Chapter 5

Application: Sentiment Analysis

in Text

Sentiment analysis or Opinion Mining is one of the suitcase problems [108] in artificial

intelligence research. It can be defined as a particular application of Data Mining which

aims to aggregate and extract emotions and feelings from different types of documents.

In general, it focuses on the investigation of text, images, audio and video. It is mostly

based on inference techniques which allow the aggregation of conceptual and affective

information. The potential applications for this branch of Data Mining are countless

and span interdisciplinary areas such as stock market prediction, political forecasting,

social network analysis, social stream mining and human-robot interaction.

The distillation of knowledge from such a big amount of unstructured information is an

extremely difficult task, as the contents of today’s Web are perfectly suitable for human

consumption, but remain hardly accessible to machines.

Sentiment analysis in text is a research problem that requires tackling many natural

language processing (NLP) sub-tasks, including aspect extraction [109], named entity

recognition [110], concept extraction [111], sarcasm detection [112], data fusion [113]

and subjectivity detection.

Actually, deep neural networks made available a powerful tool to automate the process

of feature extraction, which may prove challenging when dealing with complex sources

of information such as images, videos or text. Such aspect becomes relevant when

considering that sentiment analysis can be accomplished only by understanding the

interaction between different components of a pattern. Deep learning based approaches

are furtherer justified by the fact that Web 2.0 is characterized by a continuous flow

of information, produced by users all over the world, enabling the use of unsupervised

106
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techniques specifically designed for feature extraction. These streams of data are in

many cases corrupted by noisy or forged information [114]. Furthermore, even when

data are not forged may contain subjective information that does not provide informative

contents. Filtering out this type of contents is one of the major challenges in sentiment

analysis and takes the name of subjectivity detection.

Proper modeling of these phenomena using relatively simple models, as the ones intro-

duced in the previous chapters, is challenging. On the other hand, standard solutions

for subjectivity detection and sentiment analysis are computationally demanding during

training and inference phases.

Given the aforementioned premises, this chapter presents a discussion about the devel-

opment of algorithms with a low computational impact. In particular, it is divided into

two main parts as follows:

• The first section focuses on a framework for subjectivity detection on text data

based on the integration of ELM, Bayesian network, deep convolutional neural net-

works and recurrent neural networks. Each one of these blocks models explicitly a

part of the complex mechanism that constitute subjectivity detection. As a con-

sequence, the proposed method is more efficient in the training phase with respect

to a completely deep learning based approaches. As a result, the proposed method

proved appealing in presence of limited amount of training data or computational

resources.

• The second part of the chapter (Sec. 5.2) focuses on the problem of developing

effective text embedding. In principle, the availability of an effective embedding

for textual information simplifies the entire inference problem, enabling the use of

simpler models. In this thesis an investigation technique based on the combination

of a new inspection algorithm for data manifold and cognitive descriptors is pre-

sented. This methodology provides engineers and data scientists with a qualitative

measure of concepts distributions in a graphical format that enables a fast analysis

of embedding properties. This sort of information is vital to evaluate and improve

available affective computing resources.

5.1 Subjectivity Detection

Subjectivity detection is a process that aims at removing ‘factual’ or ‘neutral’ sentences,

which lack sentiments, from text corpora. Such step is crucial for many sentiment-

analysis technologies, which are not designed to classify ‘neutral’ contents. Based on
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the field of application, the sentence model has to be very sensitive as users have dif-

ferent levels of expertise on the topic of discussion and may be from diverse economic

and educational backgrounds, as well as being often separated by large geographical

distances.

5.1.1 Related Works

Subjectivity detection in product reviews targets the psychology of an investor by break-

ing down factual information, which may imply positive or negative sentiment that is

otherwise undetected by coarse grained methods that only focus on detecting explicit

sentiments [115].

Another application regards monitoring response of people to different crisis situations.

This is done by processing micro-blogs such as Twitter and Facebook. Here, some of

the main challenges are the use of abbreviations and hashtags. Tweets may also possess

dual meanings due to the potential contexts of discussion. For example in [116], the

authors show that in political tweets the word ‘grun’ - ‘green’ is used for the political

party ‘Die Grunen’ - ‘The Greens’, but it is also used in reference to the color green.

In [117], the authors show that subjective sentences in online forums can be identified

by ‘Dialog Acts’ such as ‘Question’, ‘Repeated Question’, ‘Clarification’ etc. They also

show that subjective sentences are longer than objective sentences and often contain

inappropriate content such as abusive language.

Traditional sentence models extract significant n-gram features and classify them using

Näıve Bayes model. For example, cloud-computing’ is a bi-gram of two words frequently

used together. Since, the number of such features is exponential, convolutional neural

networks are being used to automatically learn them from large datasets. In [118] authors

proposed the use of deep convolutional neural networks (CNNs) to extract subjectiv-

ity features in Spanish/English and the features from different languages are combined

using multiple kernel learning. However, for short tweets it is difficult to compute the

parameters. Further, it is often difficult to annotate long sentences by humans. For ex-

ample, consider the sentence “Those digging graves for others, get engraved themselves’,

he [Abdullah] said while citing the example of Afghanistan.” Here, there is clearly an

objective frame for the writer and a direct subjective frame for Abdullah with the text

anchor “said”. However, it is ambiguous whether the texts anchor “citing” is objective

or subjective in nature [119].
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Lastly, it is possible to forecast the subjectivity in tweets using a temporal model. For

example, during elections, the support for a candidate will, diffuse through a social

network from nearby tweets [120].

5.1.1.1 Proposed Approach

To tackle the problem of obtain classifier with a better trade of between training time

and computational cost of the inference phase, a new version of ELM called Bayesian

networks extreme learning machine (BNELM) is proposed; this model is utilized to learn

non-linear relationship between the hidden layer neurons. The proposed model augment

the conventional SBELM by exploiting Bayesian networks (BN), which employ heuristics

to determine the prior parameters of weights in the output layer [121, 122].

In practice, the resulting Bayesian Network ELM allows one to replace Laplace approx-

imation that characterizes Bayesian theory based models with a heuristic process. The

rationale behind such solution is twofold. First, Laplace approximation of SBELM is

often difficult to compute, as the gradient may not exist on several noisy datasets. Sec-

ond, by removing Laplace approximation one discards the corresponding non-convex

optimization problem; Bayesian networks address the heuristic process by sampling a

Markov chain of samples that presents better converge capabilities to the global maxi-

mum, resulting in a higher accuracy of the predictor.

The trained BNELMs are efficient compared to traditional ELMs, as they are able to

prune redundant hidden neurons by learning a prior for weights. Moreover, BNELM

training is more stable than the one of sparse Bayesian ELM (SBELM) because it does

not need to compute the Hessian matrix of second-order derivatives that often does not

exist for noisy datasets. BNELM avoid these problems by employing heuristic MCMC

sampling with Gaussian Bayesian network fitness function to determine the weights

between hidden neurons.

In principle, ELM is not designed to couple with datasets such as a sequence of sentences.

Hence, a recurrent layer of hidden neurons is introduced to model temporal features in

long sentences. Lastly, recurrent neurons can become unstable on noisy datasets hence

a fuzzy classifier is used to stabilize the model and predict the output labels.

The proposed framework for subjectivity detection eventually relies on the suitable in-

tegration of CNN and BNELM. Each single element has a specific role in the process of

classification. First, CNN are entitled to learn significant features from the training set.

Then, the BNELM model receives as input such features. The recurrent layer supports

BNELM in embedding the temporal dynamics. Indeed, as these kinds of layer are often
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unstable, the BNELM employs a layer of fuzzy recurrent neurons to the specific purpose

of achieving stability.

The experimental session has been designed both to verify the effectiveness of BNELM

in capturing dependencies in high-dimensional data and to assess the ability of the whole

framework to address learning problems characterized by a limited amount of training

samples. Hence, first the Multimodal Opinion Utterances Dataset (MPQA) Gold corpus

of 504 sentences manually annotated for subjectivity in Spanish is considered [123, 124].

Next, in order to evaluate the method on a multi-class problem, the Multimodal Opinion

Utterances Dataset (MOUD) [125] is considered. The classification accuracy obtained

using the proposed BNELM was shown to outperform the baseline consistently on both

real datasets.

5.1.2 Preliminaries

This section briefly reviews the necessary concepts to the comprehension of the proposed

work.

5.1.2.1 Bayesian Networks

A Bayesian network (BN) is a graphical model that represents a joint multivariate

probability distribution for a set of random variables [4]. It is a directed acyclic graph

that has a structure s with N nodes and a set of parameters θ, which represent the

strengths of connections by conditional probabilities. Given a set of Z samples X =

{xi;x ∈ RD; i = 1, .., Z}, the BN decomposes the likelihood of node expressions into

a product of conditional probabilities by assuming the independence of non-descendant

nodes, given their parents.

p(x|s,θ) =
∏N

i=1
p(xi|ai, θi,ai), (5.1)

where p(xi|ai, θi,ai) denotes the conditional probability of node expression xi given its

parent node expressions ai, and θi,ai denotes the maximum likelihood (ML) estimate of

the conditional probabilities. Fig. 5.1 (a) illustrates the Bayesian network for a multivari-

ate system with five nodes. Each node is a variable in the state-space of the system that

can be observed or measured. The connections represent causal dependencies within a

single time instance. The observed state of variable i is denoted as xi and the regulation

or conditional probability of variable i given variable j is p(xi|xj).

A practical example of a Bayesian network representing inter-dependencies between the

words of the sentence can be useful. Consider the sentence: “The escalation must end
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p(x2|x1)

p(x2|x3)

p(x3|x1)

p(x4|x3)

p(x5|x4)

p(x5|x2)

p(x4|x2)

x1

x2 x3

x4 x5
The escalation

must

any

time

end

soon

(a) (b)

Figure 5.1: (a) Illustrates a Bayesian network for a multivariate system with five
nodes. Each node is a variable in the state-space of the system that can be observed
or measured. The connections represent causal dependencies within a single time in-
stant. (b) Illustrates an example of a Bayesian network representing inter-dependencies

between the words of the sentence ‘The escalation must end any time soon’

any time soon”; the relative BN is illustrated in Fig. 5.1 (b). Once, the structure of the

Bayesian network is determine heuristically using the training data, then the context

that is the parents for each word can be established. For example, the context of the

word ‘soon’ is ‘must’ and ‘end’. Hence, the hypothesis here is that structurally related

words, among all the words within the sentence, provide the best contextual information

for polarity detection.

The optimal structure s∗ is obtained by maximizing the posterior probability of s given

the data X. From Bayes theorem, the optimal structure s∗ is given by

s∗ = arg max
s
p(s|X) = arg max

s
p(s) · p(X|s), (5.2)

where p(s) is the probability of the network structure and p(X|s) is the likelihood of

the expression data given the network structure.

Given the set of conditional distributions with parameters θ = {θi,ai}Di=1, the likelihood

of the data is given by

p(X|s) =

∫
p(X|s,θ) · p(θ|s)dθ, (5.3)

To find the likelihood in (5.3), and to obtain the optimal structure as in (5.2), a standard

approach consists in the use of Laplace approximation of integrals [4]. Gaussian BN

assumes that the nodes are multivariate Gaussian. The parameters θi,ai are then defined

by the mean µ and the covariance matrix Σ of size D ×D. The joint probability of the

network can be the product of a set of conditional probability distributions is then given
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by:

p(xi|ai, θi,ai) = N

(
µi +

∑
j∈ai

(xj − µj)β,Σ
′
i

)
, (5.4)

where Σ
′
i = Σi − Σi,aiΣ

−1
ai ΣT

i,ai
and β denotes the regression coefficient matrix, Σ

′
i is

the conditional variance of xi given its parent set ai, Σi,ai is the covariance between

observations of xi and the variables in ai, and Σai is the covariance matrix of ai.

5.1.2.2 Markov Chain Monte Carlo

Find the optimal structure, of a BN network is a non-convex optimization problem.

Markov chain Monte Carlo (MCMC) is an optimization technique that can be employed

to tackle this problem. The Metropolis-Hastings method of MCMC in particular, which

associates an acceptance mechanism with newly drawn sample structures. The accep-

tance of a new structure snew is given by the following equation:

min

{
1,
p(snew)

p(s)
· p(s

new|X)

p(s|X)
· p(s

new|s)
p(s|snew)

}
(5.5)

where the Metropolis-Hastings acceptance ratio:

α =
p(snew|X)

p(s|X)
· p(s

new|s)
p(s|snew)

. (5.6)

when adding an edge and the prior ratio is inverted when deleting an edge.

Sampling new structures with the use of the above-listed procedure generates a Markov

chain, which converges in distribution to the approximate posterior distribution. Taking

the average over sampled structures after a burn-in period, it is possible to compute the

integral over parameters in (5.3). In practice, a new network structure is proposed by

applying one of the elementary operations such as deleting, reversing, or adding an edge,

and then discarding structures that violate the acyclic condition. The first and second

term of the acceptance ratio, the ratio of likelihoods, is computed using (5.4). The third

term, is obtained by

p(snew|s)
p(s|snew)

=
Nnew
n

Nn
(5.7)

where Nn denotes the size of the neighborhood obtained by elementary operations on

structure s as well as counting the valid structures.
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5.1.2.3 Sparse Bayesian ELM

Bayesian Extreme Learning Machine (BELM) is based on the use of Bayesian linear

regression to optimize the weights of the output layer. The Bayes law states that the

posterior distribution of model parameters is proportional to the product of the prior

distribution and the likelihood:

p(β|D) ∝ p(β)· (D|β) (5.8)

Next, the output distribution of the model ynew for new input xnew is given by the

integral of the posterior distribution of the parameters β. Therefore, the predictive

distribution for a new input is given by:

p(ynew|xnew, D) =

∫
p(ynew|xnew,β) · p(β|D)dβ (5.9)

where the data is assumed Gaussian, and the maximum likelihood estimate of the weights

maximizes the posterior probability.

The core of sparse Bayesian extreme learning machine resides in the application of an

ARD prior to the linear weight, formally

p(β|α) = N (β,α) (5.10)

The procedure of training consists in learning the parameters α maximizing:

p(y|α,H) =

∫
p(y|β,H) · p(β|α)dβ. (5.11)

The integral (5.11) is intractable. However, one can address (5.11) by exploiting Laplace

approximation, which involves a quadratic Taylor expansion of the log form of posterior

probability. This in turn requires the computation of the Hessian matrix, which brings

about second-order derivatives. The presence of noise in the dataset can indeed heavily

affect this approximation.

Finally, the predictive distribution is obtained by

p(ynew|xnew, β̂) =
1

1 + e−hnewβ̂
(5.12)

where β̂ is the Laplace’s mean and hnew correspond to the activation of the ELM

random layer with input xnew.
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5.1.3 BNELM for Subjectivity Detection

In this section, the novel Bayesian Network Extreme Learning Machine is introduced,

which extends the potentialities of ELM to model sequence of sentences as dataset by

exploiting the features of BNs and fuzzy recurrent NNs. In the proposed model, BNs

provides an effective tool to build a network of connections among the hidden neurons of

the conventional ELM configuration. Such step relies on unsupervised learning, as labels

are not involved in the process. A fuzzy recurrent NN inherits the overall structure

generated by the BNs to the purpose of supporting a predictor that can model also

temporal features.

5.1.3.1 Bayesian Network Extreme Learning Machines

The proposed BNELM augments the standard structure of a recurrent NN to the purpose

of generating a predictor that can take advantage of two main features. First, the weight

matrix of connections between input nodes and hidden neurons can be learned by fully

exploiting the abilities of ELMs and BNs. Second, temporal features can be suitably

modeled.

In a standard recurrent NNs, the output y(t) at time step t is calculated using the

following equation:

y(t) = f(WR · y(t− 1) +W · x(t)) (5.13)

where WR is the interconnection matrix among hidden neurons, W is the weight matrix

of connections between hidden neurons and the input nodes, and f is a non-linear

activation function. In BNELM, matrix W is learned by using the ELM’s hidden neurons

outputs h to train a Bayesian network.

Hence, the number of nodes N of the Bayesian network is equal to the number of hidden

neurons. The computation of the connection matrix is achieved simply by finding the

optimal structure s∗ of dimension N×N defined in (5.2); accordingly, the hidden neurons

outputs of the ELM become the inputs for a Gaussian Bayesian networks. Eventually,

the learned structure s∗ replaces the W in the recurrent layer. Algorithm 7 illustrates

the complete training procedure for W with Gaussian BN fitness function and MCMC

simulation.

The new structure for the recurrent layer becomes:

y(t) = f(WR · y(t− 1) + s∗ · h(t)) (5.14)



Chapter 5. Application: Sentiment Analysis in Text 115

Back propagation through time is utilized to learn WR. As recurrent neurons can prove

unstable on noisy datasets, a fuzzy classifier is actually exploited in this work to stabilize

the model. Therefore, y(t) eventually becomes y(t) by introducing fuzzy membership

functions.

The BNELM model has two main advantages with respect to SBELM. First, training

a SBELM involves the computation of second-order derivatives. The performance of

this procedure is highly sensible to noisy datasets. In BNELM training, this problem

is overcoming by employing heuristic MCMC. Second, SBELM involves non-convex op-

timization problem; BNs, though, address the heuristic process by sampling a Markov

chain of samples that theoretically always converge to the global maximum at the equi-

librium, resulting in a higher accuracy of the predictor.

Moreover, one should consider that determining the number of optimal hidden neurons

is one of the biggest challenges in ELM. The MCMC algorithm will only consider edges

with frequency above a threshold in all samples when determining the optimal structure

s∗. Hence, neurons with no edges are removed from the structure. In this way, BN

is able to determine the optimal number of hidden neurons, thus pruning redundant

neurons.

Algorithm 7 Bayesian Network Extreme Learning Machine training

Input

• a labeled training set {(x,y)i;x ∈ RN ;y ∈ RP ; i = 1, .., Z};

• number of neurons N

• acceptance rate α

0. Initialize

Randomly initialize weights of the input hidden layer, with N nodes
Build a BN with N nodes, one for each hidden layer activation h
Initialize topology of s = s0

1. Iterative training

repeat
Generate snew by elementary operations
Find Nnew and Nold corresponding to snew and s
Find acceptance ratio α given by (5.6)
if α ≥ 1 then
s = snew

else
if rand[0, 1] ≥ α then
s = snew

end if
end if

until convergence
s∗ · h is used to train the final fuzzy recurrent classifier
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5.1.3.2 A Framework for Subjectivity Detection

The BNELM is a suitable tool to support the development of a framework for subjectivity

detection. Figure 5.2 schematizes the framework by proposing the whole flowchart.

The BNELM receives as input a vector x̃, which is the outcome of a pre-processing

step involving a deep CNN model. First, a sentence is transformed into word vector

representation X of dimensions L × d, where L is the maximum number of words in a

sentence, and d is the number of Google word vectors used. The transformed data then

feed the deep CNN model, which automatically perform dimensionality reduction. Deep

CNN are being used extensively to extract patterns automatically from large datasets

such as Twitter. Such a model looks for highly activated k-grams in a CNN as our

pattern set. For example, ‘cloud-computing’ is a bi-gram of two words ‘cloud’ and

‘computing’. Details of such an implementation can be found in [118]. However deep

models are extremely slow. Hence, here the activations at the penultimate layer of the

deep CNN is used as a new training data for a fast ELM model. The first CNN hidden

layer contains kernels of size k × d to learn k-gram patterns. There are several layers

of kernels and an output layer of nd sentiment labels namely ‘positive’, ‘negative’ and

‘neutral’. The features learned by deep CNN are expressed in penultimate layer and can

be used as input x̃ to the BNELM model.

The BNELM in practice is entitled to learn the context of n-grams elaborated by the

CNN. Since BNELM embeds a recurrent layer of hidden neurons, the framework is able

to model temporal features in long product reviews. In Figure 5.2, the fuzzy membership

function is designed to tackle a three-class problem. The complete training procedure is

proposed in algorithm 8.

A detailed description of the framework is proposed in Figure 5.3. Starting from the

bottom, the processing is organized as follows:

• The first two layers starting from the bottom of the image correspond to the

Bayesian network used in the pre-processing step.

• The most important n−gram features are extracted from sentences using deep

CNN. In the figure, CNN corresponds to the third layer. The bold lines identify

the size of the kernel window, which has been set to 4.

• The extracted features are then fed into the random layer of the BNELM; in this

figure, the links are represented with dashed lines. The output weights of the

random layer have been learned using a Bayesian network.
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Figure 5.2: Illustrates the flow chart for BNELM framework. First, a conventional
deep CNN process the sentences. The extracted features are fed into an ELM classifier,
where the output layer weights are determined heuristically using Bayesian Networks.
Features learned are further evolved by BNELM using a Fuzzy Recurrent neural net-
work. The output layer has three nodes for classifying positive, negative, or neutral

sentences.

• The ELM output is used to train a layer of recurrent neurons with feedback con-

nections, marked as “Inter-connected recurrent neurons” in the graph.

• The two fuzzy membership functions are used to facilitate stable convergence of

the model.

• The top layer represents the output layer of the network. It has three neurons;

one per class.

Algorithm 8 Subjectivity detection framework training

Input
A labeled training set {(x, y)i; i = 1, .., Z} where each x is a sentence of length L and
labels y ∈ {Pos,Neu,Neg}
0. Feature extraction

Transform each sentence in vector representation with word vector dimension d
Construct deep CNN with visible layer as a 2-d vector of L× d input features
Construct hidden layer with kernels of size k × d to learn k-gram patterns
Construct several hidden layers with kernels and output layer with nd neurons

1. ELM training

The features learned by deep CNN are expressed in penultimate layer and can be
used as input layer to BNELM model

5.1.3.3 Computational Complexity

The computational complexity of a single training epoch for the lth convolutional layer

of a CNN is given by O(nl−1.s
2
l .nl.m

2
l ), where nl−1 and nl are, respectively, the number

of input and output feature maps; sl = nl−1x × nl−1y and ml = nlx × nly are, respectively,
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Figure 5.3: Illustrates the state space of a BNELM for a subjective sentence in online
forums. Features are extracted from Spanish sentences using deep CNN. The bold lines
correspond to kernels. The extracted features are then used to train a Bayesian ELM,
where output layer weights are determined using Bayesian networks. The bold dashed
arcs correspond to causal edges predicted by a Bayesian network. The ELM output
is subsequently used to train a layer of recurrent neurons with feedback connections.
Lastly, the framework embeds a layer of fuzzy neurons with 2 membership functions in

order to achieve stable convergence of the model.

the dimensions of the input and output feature maps. This computational cost clearly

characterizes the computational complexity of the overall framework.

In contrast, the computational complexity of a layer of recurrent hidden neurons is much

lower being O(2 × N2), where N is the number of neurons and a single time delay is

considered. Similarly, the complexity of the neuro-fuzzy classifier with 2 membership

functions is also very small being O(
∑nl−1

i=1 2nl +
∑nl−1

i=1 2) [126].

In general, training a CNN as a classifier is indeed time consuming due to the huge

number of training iterations required. In the proposed method, however, the CNN is

utilized as a feature extractor; eventually, such features are feed into a low-dimensional

Bayesian ELM model. As a result, in this case, the CNN only involves a reduced number

of epochs; this in turn means a significant reduction of the computational cost.

Lastly, the present framework is designed to exploit a small number of features learned

by deep learning. Thus, the computational cost of the MCMC with BN fitness function
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also decreases. It is worth noting that model obtained after the training process is sparse;

this is a major difference with the model one would obtain by exploiting a standard ELM

model. As a consequence, the computational performance of the eventual predictor is

better.

5.1.4 Experiments and Results

There are two aims of the experiments: first, to evaluate the generalization performance

of the proposed BNELM, second, to provide a comparison between the proposed method

and two alternative models, that is, a classifier based on the standard regularized ELM

[127] and a classifier based on a sparse Bayesian ELM [128]. Three different bench-

marks have been used in the experimental evaluation: MPQA Gold corpus [123, 124],

Utterance-Level Multimodal Sentiment Analysis [129] and TASS 2015 Corpus. Both

datasets involve sentences expressed in Spanish. The rationale behind this setup is that

present research is geared towards assessing the proposed methods ability to deal with

non-English language documents, proving the ability of the model to tackle problems

with a limited source of labeled data. In all the experiments, standard model-selection

procedures support the setup of the regularization parameter λ (ELM). The following

settings have been used:

λ ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104, 105, 106}

The overall experimental setup involved the mixed use of the Perl programming language

and Python during preprocessing stage, while training and evaluation were developed

using together Matlab and Python softwares.

5.1.4.1 Preprocessing

A pre-processing stage has been applied to all the datasets involved in the experimental

session. The first step consisted of removing the top 50 stop words and punctuation

marks from the sentences 1. Next, a part of speech (POS) tagger was used to determine

the part-of-speech for each word in a sentence. Words may have different subjectivity

levels when used in different forms such as ‘noun’ or ‘verb’, hence POS tagging was

applied to all the Spanish training sentences.

After POS tagging, subjectivity clue words were identified. The subjectivity clues

dataset [130] contains a list of more than 8,000 clues identified both manually as well as

automatically, using both annotated, and un-annotated data. As this dataset includes

1http://www.ranks.nl/stopwords/
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only English words, the corresponding Spanish list was created using the Bing transla-

tor, API. For each clue word, the number of occurrences in the dataset was computed.

Eventually, the top 50 clue words with highest occurrences in the subjective sentences

were considered [2]. Each sentence was then transformed to a binary feature vector of

length 50, where the presence of a clue word is denoted as ‘1’ and an absence is denoted

as ‘0’.

The resulting binary matrix ‘clue words versus sentences’ has been processed as a time

series. Thus, the sentences have been used as input for a Gaussian Bayesian networks.

The maximum likelihood (ML) probabilities of each word, given up-to three parent words

and up-to two time points delay, was also computed. Such sub-structures are referred

to as network motifs. The top 20% of motifs with the highest ML were exploited to

select the pre-training sentences for a deep CNN, done by simply selecting the sentences

containing these motifs.

The deep CNN was employed to extract features in the form of 3-grams and 4-grams

in each language separately. It was configured as follows: three hidden layers with 100

neurons each, kernels of size 3, 4 and 5, respectively, and one logistic layer with 300

neurons. The output layer included two neurons for each class of sentiments. The 300

feature outputs of the deep CNN -from both languages- were used to train the BNELM

with an additional fuzzy recurrent layer of 10 hidden neurons and up to 2-time point

delays.

5.1.4.2 MPQA Gold Corpus

The MPQA Gold corpus is a collection of 504 sentences manually annotated for subjec-

tivity in Spanish. The annotation resulted in 273 subjective and 231 objective sentences

[131]; the corpus includes sentences of an uncertain nature that were assigned to a defi-

nite class after assessment by multiple annotators. MPQA Gold is a popular benchmark,

which can be used to evaluate the robustness of the proposed framework when a small

training set is involved. The sentences were eventually machine translated into English

to obtain the final dataset, which after pre-processing lay in a 20-dimensional space. A

5-fold cross validation has been used to estimate the accuracy of the trained classifier

when applied to new sentences, i.e., sentences not included in the training set. The per-

formance of the three predictors (BNELM, ELM, and SBELM) was assessed by using the

average value of the accuracy computed over 10 runs, i.e., 10 different randomizations

of the mapping layer.

Figures 5.4 and 5.5 provide the outcomes of the experiments. Figure 5.4 assesses the

performances of ELM, SBELM, and BNELM for four different sizes of the mapping layer:
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Figure 5.4: Accuracy of experiments involving mpqa gold corpus dataset; Average
accuracy of the three different classifiers;

L = {25; 50; 100; 600}, note that SBELM has not been tested for a random hidden layer

of 600 neurons, due to the expensive training phase. All the experiments were run using

a fixed value for the number of iterations, nItr, in the MCMC procedure. In figure 5.4,

the x axis gives L, while the y axis gives the classification accuracy (expressed as the

percentage over the size of the test set). The bar graph compares the performance of

the standard ELM (white bar) with the performance of the SBELM (grey bar) and the

performance of BNELM (black bar). On an overall basis, the graphs clearly show that

the BNELM can improve over standard ELM and SBELM in terms of classification

performance. Figure 5.5 analyses the performance of the BNELM for different values of

the parameter nItr. Here, the x axis gives number of iterations nItr, while the y axis

gives the classification accuracy. The experiments refer to a configuration with L = 50;

the number of iterations were allowed to take the following values: nItr = {25; 50; 100}.
The graph shows that the accuracy of the classifier reaches a maximum when the number

of iterations is 25. Nonetheless, it is interesting to note that a good accuracy can be

obtained with all the proposed values of nItr.

5.1.4.3 Multimodal Opinion Utterances Dataset

The dataset ‘Multimodal Opinion Utterances Dataset’ consists of 498 short video frag-

ments where a person utters one sentence. The items are manually tagged for sentiment

polarity, which can be positive, negative, or neutral. The videos are in MP4 format

with a resolution of 360 × 480 pixels; the duration of the clips is about 5 seconds on

average. About 80% of the clips involve female speakers. The transcripts of the videos

were used as a dataset. After pre-processing, the patterns lay in a 20-dimensional space.



Chapter 5. Application: Sentiment Analysis in Text 122

30 40 50 60 70 80 90 100
Iterations

0.71

0.72

0.73

0.74

0.75

A
cc

ur
ac

y

Figure 5.5: Accuracy of experiments involving mpqa gold corpus dataset; Average
accuracy of the gmm-ELM for different values of the parameters nItr;
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Figure 5.6: Accuracy of experiments involving Multimodal Opinion Utterances
Dataset; average accuracy of the three different classifiers;

Similar to the MPQA experiment, a 5-fold cross validation has been used to estimate the

performance of the trained classifier. Figures 5.6 and 5.7 provide the outcomes of the ex-

periments by adopting the format of Fig. 5.4 and Fig. 5.5, respectively. The experiments

showed in Fig. 5.6 involved the following settings: L = {25; 50; 100; 600}; nItr = 50.

The settings of the experiments showed in Fig. 5.7 are: L = 50; nItr = {25; 50; 100}.
In general, these results confirm the tendency identified with the MPQA gold corpus

dataset. This in turn proves that BNELM can indeed serve as an effective tool to deal

with sentiment analysis.
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Figure 5.7: Accuracy of experiments involving Multimodal Opinion Utterances
Dataset; Average accuracy of the gmm-ELM for different values of the parameters

nItr;

Table 5.1: Accuracy by different models for classifying sentences in a document as Pos-
itive(Subjective), Negative(Subjective), Neutral(Objective) or None in TASS dataset.

CNN [134] LYS [133] LIF [132] BNELM

TASS 2015 0.66 0.637 0.692 0.89

5.1.4.4 Sentiment Classification on the TASS 2015 Corpus

In order to evaluate the model on a noisy dataset, we consider the four class TASS

corpora of Spanish tweets [132]. Each tweet belongs to one of the four categories:

positive, neutral, negative, or without opinion. In this test, a training set of 7219 tweets

and the test set of 1000 tweets are used.

Table 5.1 shows accuracy by different models for classifying sentences in a document

as Positive (Subjective), Negative (Subjective), Neutral (mixed) or None in TASS test

dataset. A simple CNN model for sentences learns features of two or three words using

sliding window kernels. We also compare our approach with different models evaluated

at the TASS workshop (see the overview paper [132] for a detailed description of all

approaches).

In LYS [133], the authors used classical logistic regression with linguistic features. Their

approach was limited as they relied heavily on polarity lexicons that are not available in

Spanish, instead extreme learning machines is employed to automatically learn features

from both English and Spanish. Further, we use Bayesian heuristics to determine pa-

rameters for a large set of noisy tweets and hence are able to outperform the baselines

by over 15% in accuracy.
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5.1.5 Concluding Remarks

Subjectivity detection represents a challenging task for sentiment-analysis tools. This

research introduces a novel architecture for machine learning that is designed to effec-

tively support that task. The proposed BNELM augments the standard structure of a

recurrent NN to the purpose of generating a predictor that can take advantage of the

fruitful properties of ELM and Bayesian Networks.

The BNELM architecture has two main advantages with respect to SBELM. First,

training BNELM does not involve the computation of second-order derivatives. Second,

BNELM tackles the optimization problem by exploiting a heuristic procedure that relies

on MCMC. As a result, the optimization process tends to converge to the global maxi-

mum at the equilibrium, resulting in a higher accuracy of the predictor. Moreover, the

use of BNs inherently leads to a model that is able to determine the optimal number of

hidden neurons, thus pruning redundant neurons.

The eventual framework for subjectivity detection relies on the suitable integration of

CNNs and BNELM. First, CNN are entitled to learn significant features from the training

set. Then, such features feed the BNELM model. Experimental results confirmed the

effectiveness of the proposed method.

5.2 Graphical Exploration of Text Embedding for Senti-

ment Analysis

As introduced in previous section 5.1, the quality of the whole investigation process

relies on a suitable conversion of the textual information in a numerical format, generally

called embedding. The availability of effective embeddings capable of encode complex

interaction between words simplifies the inference problem enabling the use of simpler

learning paradigms. This aspect becomes crucial in the field of embedded systems where

memory constraints and computational power limits the use of complex models. For this

reason, the development of an embedding is a primal challenge in all the branches of text

mining [33, 135–138]. An embedding can be formalized as a transformation F : T → Rd

where d ∈ N+ and T is the set of admissible fragments of text.

It is possible to individuate two macro categories of embedding, namely general purpose

and task specific. The first group consists of remapping methodologies based on mere

statistical properties of the text; the second group instead contains the methodologies

suited to build a numerical spaces based on task specific constraints. Astonishing results

have been achieved using “general purpose embedding” combined with deep networks
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methodologies and standard approaches can be used to tailor this representations to

specific tasks using external resources [139–141]. Even if it is always possible to gen-

erate a task specific embedding from general purpose ones, it should be observed that

this operation is computationally and data demanding. For this reason, in most of

the real-world scenarios, the use of available resources is preferred [137, 142]. Different

available sentiment lexicons such as the multi-perspective question answering (MPQA)

corpus [143], NRC [144], and SenticNet [145] provides directly sentiment polarities of

words; even if focused, this scalar information is limited for the task of model the com-

plex interactions between terms and sentiments. Li et al. [146], recently, proposed a

technique for the development of a more refined sentiment lexicon based on the GloVe

embedding [142] evolved with the use of external resources. Another example of senti-

ment oriented embedding, can be found in [147] where the authors proposed the use of

the Harvard psychological dictionary and Loughran-McDonald financial sentiment dic-

tionary to build a sentiment space. Concept-based approaches have been proved to be

more effective than word based ones because sentiments are in most of the cases related

to the combination of many terms. AffectiveSpace [1] is a 100 dimensional embedding

of concepts, built respectively using the SVD and the random projections on the top of

AffectNet, a matrix of affective commonsense knowledge.

Measuring embedding quality is an ambiguous and task specific work that requires to

tackle various problems; understanding the topology and properties of data distributions

in these high dimensional spaces [148] is essential to obtain improvements in the field.

One of the most evident issue is related to visualization of high dimensional spaces [149],

typically addressed via dimensionality reduction techniques [150–154]. Another issue is

identifying a correct metric between concepts in the embedding space; standard method-

ologies consider Euclidean distance or normalized scalar product, usually paired with

clustering algorithms, to define a concept of similarity between data. Finally, consis-

tence of data disposition and psychological theories is almost an unexplored field, in

particular, no works are available about the consistency of remapped data distributions

and physiological models.

Recently, [155] proposed a novel algorithm, a regularized k-means (RKM) suited to find

so called, principals path in data space. The core idea is finding a discrete set of points

that describe the transition between two samples guided by the underlying distribution.

The ability of providing information about data morphologies in high dimensional spaces

is particularly appealing for the task of analyzing embedding quality because transitions

unveil details related not only to local data distribution, but embeds information about

the global displacement of the data.
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This section presents a new tool based on the combination of the RKM algorithm and a

set of descriptors inherited by psychology. This instrument enables a cognitive analysis

of concept displacement in the high dimensional spaces. A peculiar feature of this tool

is that it enables a qualitative study of data distribution morphology by means of man-

ifolds, using task specific descriptors that make possible a direct analysis from a human

user. A second outcome of the proposed work consist on a qualitative characterization

of AffectiveSpace where the user is provided with a series of cognitive descriptors about

the data distribution.

The main outcome of this work is the development of an analytic instrument for cog-

nitive reasoning in high dimensional spaces derived by concepts embedding. The pro-

posed method is then tested on AffectiveSpace, providing a graphical representation of

the distribution of concepts in this space; results of this analysis confirm qualitatively

the consistency of AffectiveSpace and Plutchik’s theories [156]. The hope is that the

proposed analytical tool will help engineers and data analysts in the development of em-

beddings that are increasingly able to encode all the characteristic related to Sentiments

in a numeric format, boosting the possibility of implement efficient classifiers in resource

constrained environments.

The rest of the work is organized as follows: the first subsection reviews the previous

works that constitute the basis of the presented method; the subsequent subsection in-

stead presents the details about the proposed framework. Subsections 5.2.3 and 5.2.4

present respectively the experimental campaign and the results. Finally, the last sub-

section briefly summarizes the conclusions.

5.2.1 Preliminaries

The concepts necessary to understand the rest of the work are presented. Firstly, the

selected psychological model is introduced, followed by a brief explanation of the math-

ematical model for the inspection of data manifolds in high dimensional spaces.

5.2.1.1 Hourglass Model

Among the available models suited for the description of sentiments, the so called Hour-

glass of Emotions [157] has been considered. It represents the core element of many

studies of sentic computing. It is founded on Plutchik’s studies on human emotions and

consists in a reorganization of sentiments around four independent dimensions whose

different levels of activation make up the total emotional state of the mind. The Hour-

glass of Emotions depicted in Figure 5.8, is based on the idea that different independent
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resources master the emotional state. Different conditions results from turning some

set of these resources on and turning another set of them off. In each of such config-

uration the behavior of the brain changes: the state of ‘anger’, for example, appears

to privilege a set of resources that support an immediate reaction to external stimulus

while also suppressing some other resources that usually make us act prudently. The

Hourglass shape derives by the fact that an emotion can be identified only if it is strong

enough, i.e., a person cannot feel a specific emotion like ‘fear’ or ‘amazement’ without

that emotion being reasonably strong. The model does not consist of a classification of

affective states in basic emotional categories, but models the affective state using four

concomitant but independent dimensions, characterized by six levels of activation, which

determine the intensity of the expressed/perceived emotion as a float ∈ [-1,+1]. The six

activation level for each of the affective dimensions provides a labelled set of 24 basic

emotions in a way that allows the model to specify the affective information associated

with text both in a dimensional and in a discrete form. The numerical representation

of concepts can be retrieved using [145].

5.2.1.2 Principal Path in Data Space by RKM

Regularized K-Means [155] (RKM) is an algorithm for the selection of smooth paths in

data space founded on the idea that, given a set of points and two reference points in

Figure 5.8: The hourglass of emotions [1]
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a vector space X ∈ Rd where d ∈ N+, it is possible to find a morphism between them

exploiting the information provided by the available data. This morphism is described

as a discrete path, composed of a set of prototypes selected based on the data manifolds.

Formally speaking, consider a set of points X = {xj ∈ Rd}, j = 1, ..., N and two points

w0 and wNc ∈ Rd. The path connecting the two points w0 and wNc+1 is described as

an ordered set W of Nc prototypes w ∈ Rd. The path is found by minimizing standard

K-means cost function with the addition of a regularization term that considers the

distance between ordered centroids. The cost function can be formalized as:

min
W

γ

2

N∑
i=1

Nc∑
j=1

‖xi −wj‖2δ(ui, j) +
λ

2

Nc∑
i=0

‖wi+1 −wi‖2 (5.15)

where ui is the datum cluster. The novel cost function is composed of two terms weighted

by the hyper-parameters γ and λ:

Ω(W ,u,X, γ, λ) = γΩX(W ,u,X) + λΩW (W ) (5.16)

The first term coincides with the standard K-means cost function while the second one

induces a path topology due the centroids ordering and controls the level of smoothness

of the path. Figure 5.9 provides a graphical example of the algorithm behavior in a

two dimensional space, for different values of the regularization hyper-parameters; in

the graph, data are represented as blue dots and centroids as crosses; blue line refers

to a configuration in which the first cost function term is prominent, the green to a

configuration where the second term of the cost function is preponderant, instead the

red refers to a configurations with a right trade-off between the two.

The minimum of the cost function is obtained through the use of an expectation maxi-

mization algorithm [158]. The procedure can be summarized as:

• E-step: consider iteration t of the optimization process and W t the set of pro-

totypes. Minimizing Ω(W ,u,X, γ, λ) respect to u is equivalent to minimize

ΩX(W ,u,X) that is the standard K-means cost function.

ui,t+1 ← arg min
j
‖xi −wj,t‖2 (5.17)

• M-step: based on the newly computed ut+1, minimization of Ω(W ,u,X, γ, λ) re-

spect to W is performed. An approximated closed form solution can be computed.

Details about it can be found in the original paper [155].
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Figure 5.9: Example of hyper parameters influence in the shape of the path where data
are represented as blue dots and centroids as crosses; blue line refers to a configuration
in which the first cost function (5.15) term is prominent, the green to a configuration
where the second term of the cost function is preponderant, instead the red refers to a

configurations with a right trade-off between the two.

This new cost function is coupled with the framework of Bayesian evidence maximization

for the selection of hyper-parameters. Interestingly, the choice of the regularization

parameter induced by the evidence framework has the further advantage of virtually

removing the other degree of freedom, namely the number of clusters, finding almost

the same manifold even varying the number of clusters, reducing that parameter to a

mere discretization coefficient of the path.

Algorithmically, RKM can be seen as a function of two extreme points w0 and wNc+1,

a set of points in the same space X and a discretization parameter Nc, with an output

consisting of an order set of point W :

W = RKM(w0,wNc+1,X, Nc); (5.18)

5.2.2 Proposed Methodology

This subsection aims at providing a tool to investigate the structure of high dimensional

spaces induced by embedding from a cognitive point of view. To achieve this goal, one

needs a methodology that 1) inspects the geometrical disposition of data (i.e., concepts)

in Rd, and 2) links this information to cognitive descriptors. Ideally, the tool should

provide this information in the most intuitive and effective way but, at the same time,

the information should be as concise as possible.

The design of this tool can be divided in two parts. First, subsection 5.2.2.1 explains how

the RKM algorithm can be used to inspect concepts distribution in a high dimensional
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space. Second, subsection 5.2.2.2 introduces the procedure that links the topology to

the psychological descriptors proposed in [1].

5.2.2.1 Space Exploration

The RKM algorithm provides a suitable tool to extract information about the topology

of concepts distribution in a high dimensional space. In this regard, let C be a set of N

concepts and let {x1, ..,xN} ∈ Rd their projections induced by embedding F . Besides,

let be lstart, lend ∈ C two generic concepts that will correspond to the two extremes of

the path under analysis. Accordingly, RKM can be exploited to identify the path that

connects lstart with lend in Rd. Thus, the algorithm output is the list of intermediate

concepts that characterize the transition induced by the data distribution.

For the sake of clarity, it is useful to consider again Figure 5.9. In this case, each point

corresponds to the 2D projection xi of a concept ci ∈ C; w0 and wNc+1 are respectively

the projections of lstart and lend. The path selected by the algorithm would represent the

most natural transformation between the two concepts; each of the prototypes identifies

an intermediate step of this transformation. It is worth noting that the prototypes

wj ∈ Rd placed by RKM are not, in general, coincident with known concepts in C. In

principle, however, each prototype represents the projection of an unknown concept.

Algorithm 9 formalizes the procedure adopted to move between the two spaces (textual

and numerical) connected by the embedding. Given an embedding F , the projections

of two concepts belonging to C are obtained: eventually, the two points became w0 and

wNc+1. The path between the two, provided by the distribution of the concepts in the

embedding space, is found using RKM algorithm. The set of Nc prototypes in Rd is

then provided as output; indeed, the generic prototype wj does not correspond to the

projection of a known concept xi. Thus, each single prototype is linked to a known

concept by using the closest concept xi in terms of Euclidean distance in the remapped

space; such metric is indeed coherent with the metric used by RKM algorithm.

Algorithm 9 can be applied to any embedding F . Besides, by defining multiple pairs

{lstart, lend} one can explore cogently the underlying space of concepts. In this work,

the landmarks are provided by the concepts corresponding to the activation of the 4

dimensions individuated by the hourglass model, i.e., the concepts that can be used to

obtain a discrete quantization of the space. This setup implies the reasonable assumption

that the 24 archetype concepts are included in the embedding under analysis.

The strategy adopted in this research is based on the independent analysis of the 4

principal dimensions. Indeed, the goal is to characterize the transitions between the
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adjacent activations of a given dimension. As an example, let Sensitivity the dimension

to be analyzed. Then, Algorithm 9 is run by using as pairs {lstart,lend}, respectively,

{‘rage’,‘anger’}, {‘anger’,‘annoyance’}, {‘annoyance’,‘apprehension’}, {‘apprehension’,

‘fear’}, and {‘fear’,‘terror’}. The rationale behind such strategy is that the four di-

mensions are expected to be independent from each other; then, in principle, when

moving along one of these dimensions the activations of the remaining three should not

vary. By linking the 5 paths that characterize a single dimension one gets the transition

from the concept that corresponds to the highest level of activation to the concept that

corresponds to the lowest activation level.

Overall, this strategy leads to 20 paths (5 paths for each dimension). As a result, one

explores the space moving through the manifolds of each dimension, using as references

points the concepts relative to the activations of the hourglass model. The eventual

outcome, actually, is not only the information about the morphism between two extremes

of a path. In addition, one also unveils a set of descriptors (i.e., concepts) for the

underlying data manifolds.

A perturbation scheme has been applied to obtain a more complete set of manifold’s

descriptors. Given a pair of concepts lstart,lend, Algorithm 9 has been applied Q times;

at each run, the set of concepts C was sub-sampled, obtaining a new set of subspaces

C̃i ⊂ C, with i = 1, .., Q. At the end of the procedure, thus, Q different paths describing

the transitions induced by different sub-sampling of the space were collected. On the

one hand, it is true that a similar mechanism could be implemented by using different

Algorithm 9 Mechanism of space exploration

Input

• Embedding F with domain C and relative projections X ∈ RN×d

• Pair of landmarks concepts lstart and lend ∈ cL

• Number of prototypes Nc

Output
List of concepts representing transitions cL
Procedure

w0 = F (lstart)
wNc+1 = F (lend)
path = RKM(w0, wNc+1, X)
for j ← 1 to length(path) do
L(j) = arg minx∈X ‖path(j)− x‖2
cL(j) = F (Lj)−1

end for

return cL
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initializations for the set of prototypes, as the minimum problem is not convex. However,

the sub-sampling procedure can induce more variance in the set of solutions.

5.2.2.2 Descriptors

The information extracted by “space exploration” phase consists of Q ordered set of

concepts for each one of the 20 selected transitions. Apparently, a straightforward solu-

tion for the visualization of the space could be plotting the list of concepts encountered

by the path. However, many concepts do not have a straightforward interpretation for a

human user and this represents an issue. As an example the concept ‘Tokyo’ is included

in many sentic-computing resources; in fact, without an appropriate contextualization,

it is almost impossible for a reader to provide a sentimental interpretation of it. Hence,

one should address the issue of providing a meaningful representation for the information

extracted by Algorithm 9. Two different approaches are proposed.

The first approach defines a-priori a group of eight tags that can be associated to a

concept; eventually, a procedure is entitled to link each concept with its tag. As the

tags stem from the hourglass model, the goal is to identify the most active components

of the emotional space. The second approach, conversely, associates to each concept 4

analogical values, one for each principal dimension of the hourglass model. Figure 5.10

schematizes the two approaches. The block diagram starts from a pair of known con-

cepts. First, the pair is substituted by Q list of concepts, each one composed on Nc

concepts (as per subsection 5.2.2.1). Then, according to the first approach, the lists are

processed by using a set of tags and finally, 8 scalar values describe the characteristics

of the manifold between the two extremes. According to the second approach, each

concept in the list is represented using a 4 dimensional representation and finally the

manifold is described by means of 4 histograms. Details about the two methodologies

are provided in the following.

Figure 5.10: Block diagram of processing flow
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Table 5.2: Hourglass model quantization

Name Positive tag Negative tag

Aptitude Admiration Disgust

Sensitivity Anger Fear

Attention Interest Surprise

Pleasantness Joy Sadness

Tag Descriptors

The first approach tries to model the mechanisms that human brains apply when they

perceive emotions: in principle, it is not possible to individuate a specific feeling if

it is not reasonably strong. The tag descriptor aims exactly at providing information

about the most active sentimental component. From a cognitive view point, one aims

to identify the prominent component of the feeling under observation.

Tags are built using the following procedure. Each dimension of the hourglass space is

quantized to two values: a positive value and a negative value. Each row of Table 5.2

gives the name of the dimension and the two corresponding tags. Accordingly, for

each concept, hourglass activation levels are retrieved; the dimension with the highest

absolute value is selected as a descriptor and the sign of the activation provides the

final tag. As an example, if a concept has “Aptitude” = 0.3, “Pleasantness” = -0.4,

“Attention” = 0.1 and “Sensitivity” = -0.7, the leading dimension is Sensitivity and the

selected tag is “Anger”.

For each concept in the transition between two fixed lstart and lend, a tag is retrieved,

providing a set of Q ordered list of descriptors; for the sake of conciseness, the procedure

discard the information related to the order, merge all the list in a single set composed

of Nc×Q tags and consider only the percentage of each tag; all the information related

to the order relies in the concepts at the extreme of the path:

Pertag =
#tag

Nc ×Q
(5.19)

where #tag is the number of times that a specific tag is counted.

The number of repetitions of each tag inside the list is strongly influenced by the total

percentage of concepts belonging to the tag cluster. For this reason, in addition to

the percentage a second format is presented. In this case, the prior probability of a

tag is considered: for the ith tag the prior probability ptag is inferred considering the

ratio between the number of concepts available with the ith tag and the total number
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Table 5.3: Output structure for tag descriptors

Admiration Disgust Anger Fear Interest Surprise Joy Sadness

PerAdm PerDis PerAng PerFear PerInt PerSurp PerJoy PerSadn

of concepts belonging to embedding domain. The prior probability is then applied to

renormalize the percentage calculated as per (5.20), with the purpose of weighting more

the comparison of less frequent tags and penalize the counter related to most probable

ones.

Norm Pertag =
α×#tag

Nc ×Q× ptag
(5.20)

where α is a normalization factor such that the sum of the percentage of all the tags

is 1. This operation is necessary because tag distribution is quite unbalanced in many

available resources; this unbalancing introduces a bias in the results that taint results’

interpretability.

The final outcome can be reshaped as a column vector with eight columns. Each row

represents a tag and tag relative to the same dimension are always adjacent. Table 5.3

contains an explicative example of the transposed version.

The final output consists of four matrices, obtained placing side by side columns relative

to subsequent pairs of landmarks. An example can be useful: consider dimension Sensi-

tivity ; the corresponding output matrix is obtained placing side by side columns relative

to: ‘rage’→ ‘anger’, ‘anger’ → ‘annoyance’, ‘annoyance’ → ‘apprehension’, ‘apprehen-

sion’ → ‘fear’, ‘fear’ → ‘terror’. This ordered set of columns provides the description of

the entire manifold, relative to a dimension of the hourglass model.

Distributions Descriptors

The second set of descriptors is composed of the hourglass representation of each concept.

This set is more complete of the simple tag and provides an analogical information about

the activation of all the components of the hourglass.

In practice, accordingly to Plutchik’s theory this four dimensional representation de-

scribes exhaustively the sentiment of a pattern. It is itself an embedding that contains

all the sentiment information. The main difference with respect to AffectiveSpace is

that AffectiveSpace models explicitly the interactions between different concepts, while

Hourglass representation targets only a correct modeling of the affective information of
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the single concept. For this reason, this set of descriptor can be useful to illustrate con-

sistently all the affective information embedded in a single point of the affective space

i.e. the concept.

Similarly to the case of tag descriptors, the procedure merges all the concepts related

to a single transition, obtaining Nc ×Q descriptors. Each of them is represented as a 4

dimensional vector with values between [−1; 1] based on the hourglass’ activations. For

each feature, the value distribution is computed using a histogram with 6 equally spaced

bins (i.e the number of quantization in the hourglass). In the end, for each transition

four columns are presented, one for each independent dimension.

As in the case of tag descriptors adjacent columns related to adjacent transitions are

placed side by side, providing a set of 4 matrices that describe the numeric distribution

of all the values in the manifold.

5.2.3 Experimental Setup

The experimental campain consists in the characterization of AffectiveSpace. This anal-

ysis serves not only as a benchmark for the proposed methodology but also to provide

a topological analysis of one of the most commonly used concepts embedding. The sub-

section first provide some details about the construction of this embedding, followed by

some implementation details about the cognitive analysis tool.

5.2.3.1 Space Characteristics

AffectiveSpace is a compressed version of AffectNet that is an affective commonsense

knowledge base developed upon the graph representation of the Open Mind corpus,

called ConceptNet [159], and WordNet-Affect [160], a linguistic resource for the lexical

representation of affect. It consists on a semantic network where multi-word expressions

of commonsense knowledge are nodes and the links between these are relations between

concepts (Figure 5.11). A matrix representation of AffectNet is achieved by dividing each

assertion into two parts: the first is the concept and the second is simply the assertion

with the first or the second concept left unspecified such as ‘is a kind of liquid’ or ‘a wheel

is part of’. Numerical values are obtained considering the reliability of the assertions;

practically, positive or negative numbers are associated to single assertions based on

the reliability, with a magnitude that grows logarithmically with the confidence score.

Finally, to visualize the concept-relation-concept structure of the graph in a matrix

format, the data are reshaped with every known concept of some statement being a row

and every known semantic feature (relationship + concept) being a column. Matrix
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representation involves a series of advantages including the possibility of performing

cumulative analogy, executed by first selecting a set of nearest neighbors (in terms of

similarity) of the input concept and then by projecting known properties of this set onto

unknown properties of the concept.

Even if powerful, the matrix representation of AffectNet consists in thousands of columns

involving a series of computational issues that limit its use on many practical applica-

tions. To address this problem, Cambria et al. proposed AffectiveSpace [1] that is an

embedding for concepts built by means of random projections on the matrix representa-

tion of AffectNet with the purpose of compressing the semantic features associated with

commonsense concepts and, hence, better performing analogical reasoning on these. It

consists of 100,000 concepts in a 100 dimensional space. This high dimensional space,

is at the core of the so called Sentic Computing Engine [161]. Even if practically used

in many application, little topological information about this model are available; fur-

thermore, all the description available are based only on the pair angle, module of each

concept.

Figure 5.11: Example of AffectNet structure for the concept cake [2].

Figure 5.12: Example of AffectNetMatrix structure [2].
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In order to characterized this space, a pair of issues should be addressed. As previously

said, it consists on 100,000 concepts in a 100 dimensional space; this configuration is

by construction sparse. To point out the issue involved by this configuration, consider

figure 5.13: this 2 dimensional example show a somehow pathological configuration; the

distribution of points is composed of two parts well separated and the limits of the path

are set as two points on the extreme sides of the distribution. Most of the prototypes

(red crosses) describing the path are outside from data distribution; this phenomenon

becomes prominent with the growth of the dimension’s number. Should be pointed out

that this is not a problem in principle, but it involves some deteriorations in the quality

of the solution obtained projecting prototypes on the closest concept.

5.2.3.2 SenticNet

The set of cognitive descriptors is obtained using SenticNet. This resource provides the

embedding of concepts in the hourglass’s four dimensional space. This resource has the

further advantage of containing exactly the same concepts that are mapped in Affec-

tiveSpace, removing the problem of possible mismatches between concepts associated to

the prototypes and descriptors available. In cases where the matching is non exact a

matching strategy should be developed.

In order to fully exploit this resource, an observation about tags distribution is necessary.

Table 5.4 brings the information about the distribution of tags in SenticNet. In the table

each raw correspond to a tag paired with the relative percentage respect to the total

number of concepts. Table 5.4 enlightens that the probability of different tags is far from

being uniform: tags Joy and Sadness correspond to almost 50% of the data, while tags

Admiration and Disgust sum up to around 2% of the total. This unbalanced structure

of tags distribution is a typical case where prior probability normalization is necessary.

Figure 5.13: Example of prototypes in empty regions of the data space
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Table 5.4: Percentage of tags for the whole dataset

Name Percentage

admiration 0.0155

disgust 0.0050

anger 0.1237

fear 0.0537

interest 0.1647

surprise 0.0787

joy 0.2893

sadness 0.2696

It is possible to argue that the hourglass representation and tags available in SenticNet

are built on top of AffectiveSpace polarizing the analysis, but some important obser-

vations should be done: first, numerical values are obtained using a normalized scalar

product similarity function, instead in this work results exploits Euclidean distance;

second this study analyses the space by means of manifolds, introducing a selection

mechanism of prototypes different from the ones used to build the projections in the

small dimensional space.

5.2.3.3 Experimental Configuration

The experimental characterization of AffectiveSpace is divided in three phases based on

the set of descriptors used. The first part is related to the description of the path using

tag descriptors; the second one is related to the projection of concepts in the hourglass

space and finally, the last analysis aims to dissolve doubts about polarization of the

results due to the projection of the embedding points in concepts.

This experimental design aims to:

• Empirically show the effectiveness of the proposed methodology in visualizing a

cognitive description of the space;

• Provide a detailed characterization of AffectiveSpace;

Setup of algorithm parameters are shared by all the different sections of the experimen-

tal campaign, in particular, the RKM algorithm has been set in linear configuration, the

selected regularization parameters have been obtained using Bayesian Evidence Maxi-

mization and the number of clusters is set to 15. The paths are obtained using as metric



Chapter 5. Application: Sentiment Analysis in Text 139

the Euclidean distance. In order to perturb the solutions and obtain meaningful infor-

mation about the manifold structure six sub-sampling of the space have been performed,

consisting in the selection of 50,000 concepts (half of the maximum number of concepts).

All the experiments were conducted using Matlab software.

5.2.4 Experimental Results

This subsection divides the results of the experimental campaign in three main parts as

introduced in the previous paragraph.

5.2.4.1 Tag Analysis

The first visualization proposed involves the descriptors introduced in subsection 5.2.2.2.

The space has been characterized by studying the four dimensions of the hourglass model

independently, as introduced in subsection 5.2.2.1. Figures 5.14, 5.15, 5.16, 5.17 stand

for the four different dimensions of the hourglass space. Each dimension is characterized

using the manifold that links the most significant concepts, i.e. the concepts correspond-

ing to the six activation levels (fig. 5.8). All the figures share the same configuration:

each figure contains two plots; plot (a) always refers to the case in which the absolute

percentage of each tag is considered, as per eq. (5.19), while plot (b) refers to the case

in which the percentage of tags is re-normalized respect to the prior probability of each

tag (eq. 5.19). All the plots share the same setting: in the x-axis, per each column, the

extreme of the morphism under analysis are shown, while the y-axis refers to the tag

descriptors, following the structure of table 5.3. To provide a more immediate visualiza-

tion, percentages of activation are associated with colors. Each cell is painted based on

its numerical value, red color means a value of 0% while yellow a value corresponding

to the maximum. Should be noted that the color scale is not fixed between different

dimension. This configuration has been selected for the sake of readability. In each plot,

the corresponding color bar is presented.

There are some evident outcomes: looking at non normalized graphs, one can easily

see that, non-surprisingly, Pleasantness tag are active in all the 4 transitions, i.e., a

considerable percentage of prototypes are associated with that tag. This is a direct

consequence of the fact that almost 50% of the concepts are labeled with these 2 values

(Joy, Sadness). In addition to these two main labels, a considerable percentage of data

are tagged as Anger. In all the cases, except for Attention, it is possible to see that

tags related to the dimensions under analysis are considerably active, and the activation

moves coherently with the path, from positive tag to the negative tag of the dimension
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Figure 5.14: Pleasantness visualization using tag descriptors.
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Figure 5.15: Aptitude visualization using tag descriptors.
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Figure 5.16: Attention visualization using tag descriptors.



Chapter 5. Application: Sentiment Analysis in Text 141

rage ->
 anger

anger ->
 annoyance

annoyance ->
 apprehension

apprehension ->
 fear

fear ->
 terro

r

admiration

disgust

anger

fear

interest

surprise

joy

sadness

Sensitivity

0.3516

0.6484

0.4444

0.5556

0.6696

0.2435

0.4231

0.4231

0.3361

0.395

0.2605

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.08696

0

0

0

0

0

0.1538

0

0

0

0

0

0

0

0.008403

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

rage ->
 anger

anger ->
 annoyance

annoyance ->
 apprehension

apprehension ->
 fear

fear ->
 terro

r

admiration

disgust

anger

fear

interest

surprise

joy

sadness

Sensitivity_normalized

0.5418

0.4582

0.6356

0.3644

0.6821

0.7369 0.6646

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.2041

0

0

0

0.1138

0

0

0.1163

0

0

0

0.1467

0

0

0.2455

0

0

0.002623

0.08728
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

Figure 5.17: Sensitivity visualization using tag descriptors.

under analysis. Moreover, the re-normalized graphs for transitions of Pleasantness,

Aptitude, Sensitivity dimensions show that the weighted distribution of tags involves

almost only the tags of the dimension under analysis, coherently with the psychological

model. Differently, in transitions related to Attention is involved a strong component of

anger even after the normalization process.

As a major outcome of the proposed analysis, even if the space is by construction polar-

ized respect to the Pleasantness dimension, when re-normalized percentage is considered,

one can see how the levels of activation of different concepts show consistency with the

cognitive nature of the space.

Finally, the results for each dimension are discussed separately. Pleasantness (Fig. 5.14)

is the dimension related to the most active tags. The path shown in the graph depicts

a clear transition coherent with the investigation direction; some noise appears in the

last step, i.e., Sadness to Grief, where 16% of the data are associated with Anger.

In any case, from a cognitive point of view, this “mixing” is reasonable. In Aptitude

dimension (Fig. 5.15) it is evident the noise introduced by the unbalanced nature of

the space, especially because Admiration and Disgust tags are associated to only 2%

of the concepts; re-normalization with respect to the prior probability unveils that the

list of concepts encountered during the transition is coherent with the nature of the

tag. Different is the outcome for Attention dimension (Fig. 5.16) where Interest tag is

coherent with the transition between the concepts but Surprise does not appear until

the last transition; even after re-normalization tag related to Joy, Sadness and Anger are

quite active. Finally, for Sensitivity dimension (Fig. 5.17) holds the same observation

done for Aptitude.



Chapter 5. Application: Sentiment Analysis in Text 142

5.2.4.2 Distributions Analysis

The second analysis proposed involves the descriptors introduced in subsection 5.2.2.2.

The outcomes of the analysis of each dimension are composed of four images, organized

in a unique figure. All the subplots share the same configuration. The x-axis represents

the transitions between concepts associated with the dimension under analysis, following

the same setup of the previous experimental campaign. The y-axis refers to the descrip-

tors 5.2.2.2, i.e. the activation levels of the corresponding dimension. Subplot (a) always

refers to the distribution of the values relative to dimension Aptitude, (b) Attention, (c)

Pleasantness and finally (d) Sensitivity. In practice, each column of the matrix is the

histogram of the distribution of activation levels. The bins of the histogram correspond

to the 6 activation levels individuated by Plutchik’s theories. Miming the configuration

of the previous set of images, color scale is not common to all the plots.

Ideally, if the dimensions would be independent, when studying the transition between

the archetypal concepts of one of them, all the histograms would not be affected by

such transition, excepted for the one of the dimensions under analysis. In other words,

3 sub-figures should show a constant line, while the one corresponding to the transition

under analysis should contain a straight line with angular coefficient equal to one.

Results are reported in figures 5.18, 5.19, 5.20, 5.21. The first and most important

observation is that, coherently with psychological theory, follow the transitions inside

a single dimension, provides changes in the distribution relative to almost only that

dimension. This empirically confirms the independent behavior of these four quantities.

It is important to point out that these transitions are dimension-wise because of the

paths choice, that should be orthogonal to other sets for the selection of the concepts.

Consistent changes in values distribution along the path can be found only in numerical

distributions related to same values, i.e., Aptitude/Aptitude, Attention/Attention Pleas-

antness/Pleasantness and Sensitivity/Sensitivity. For example in Figure 5.18, the only

dimension in which we can see a transition of the concept moving thought this direction

is Aptitude itself (Fig. 5.18(a)). In all the other cases, the other distributions remain

almost constant. Similar observations can be done for all the other dimensions. In all

the cases a considerable component of noise that does not compromise the qualitative

analysis is present.

5.2.4.3 Unique Tag

In principle, one could argue that the number of prototypes strongly affects the cognitive

description of the space because multiple prototypes can be assigned to the same real
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Figure 5.18: Aptitude visualization using distributions descriptors.
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Figure 5.19: Attention visualization using distributions descriptors.
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Figure 5.20: Pleasantness visualization using distributions descriptors.
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Figure 5.21: Sensitivity visualization using distributions descriptors.
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Figure 5.22: Pleasantness visualization using tag descriptors with not repeated con-
cepts.

concept. In fact, with high probability, many prototypes can be assigned to the same

concept when using projections of points in the numeric space to exact concepts, given

the sparse nature of the space. As a result, it is possible that a single concept in

an underpopulated area of the space, can be selected multiple times to represent the

prototypes, even if the distance between the true concept and the prototypes is big.

This phenomena can introduce a bias in the results. Consider the example depicted in

figure 5.13 for an intuitive explanation.

To study this issue, a set of simulations related to the tag descriptors is performed,

using the same setup of the first campaign. The only difference is that, in each path,

only unique concepts are chosen. To exemplify, consider the extreme case of a path

composed of 15 prototypes. Assume that, all the prototypes are projected on the same

concept, except for two cases. Following the proposed approach, 13/15 of the information

would be associated with a single concept. Instead, in this experimental section, the

contributions of the 3 concepts are considered equal. From a cognitive point of view is

evident that this approximation is too strong. On the other hand, this configuration

deletes possible polarization of the results.

The results are depicted in figures 5.23, 5.24, 5.22, 5.25 using the same configuration

presented in previous subsection 5.2.4.1. Looking at the outcome of this set of simula-

tions, fluctuations in the numerical values can be observed but the trends are consistent

with the ones shown before in the first part of the experimental campaign, empirically

proving that the number of clusters does not substantially changes the results.
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Figure 5.23: Aptitude visualization using tag descriptors with not repeated concepts.
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Figure 5.24: Attention visualization using tag descriptors with not repeated concepts.

rage ->
 anger

anger ->
 annoyance

annoyance ->
 apprehension

apprehension ->
 fear

fear ->
 terro

r

admiration

disgust

anger

fear

interest

surprise

joy

sadness

Sensitivity-norep

0.4242

0.5758

0.5814

0.4186

0.6429 0.3714

0.3429

0.2857

0.4318

0.2727

0.2727

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.1429

0

0

0

0.2143

0

0

0

0

0

0

0

0

0

0.02273

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) True

rage ->
 anger

anger ->
 annoyance

annoyance ->
 apprehension

apprehension ->
 fear

fear ->
 terro

r

admiration

disgust

anger

fear

interest

surprise

joy

sadness

Sensitivity-renorm-no-rep

0.6163

0.3837

0.7517 0.6007

0.3075

0.2874

0.6112

0.3614

0.5258

0

0

0

0

0

0

0

0

0

0

0

0

0.2483

0

0

0

0

0

0.09184

0

0

0

0

0

0.1014

0

0

0

0

0.00813

0.1047
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Re-normalized

Figure 5.25: Sensitivity visualization using tag descriptors with not repeated con-
cepts.
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5.2.5 Concluding Remarks

This research presents a methodology based on principal paths in data space and psycho-

logically motivated descriptors to characterize high dimensional spaces induced by em-

beddings for concepts. The work focused on the properties of AffectiveSpace, providing

the visualization of a set of cognitive descriptors that enlightened a series of congruences

between concepts distributions in that space and the hourglass of sentiment model.



Chapter 6

Application: Image polarity

detection

“A picture is worth a thousand words” is an English idiom that is becoming every

day more actual. Mainly thanks to social networks, images have become one of the

most important communication tools in the world. Every day users share millions of

images and videos; in most of the cases, these contents are expected to convey affective

information. As a result, in recent years applications of sentiment analysis started

covering multimedia resources [162–164] in addition to text-only resources [165–168].

Sentiment analysis is a branch of data mining which aims to aggregate emotions and

feelings from different types of documents. Image polarity detection indeed addresses a

specific task within this framework: to distinguish images that raise positive emotions in

human users from images that cause bad sentiments [169–172]. Image polarity detection

stimulates interest both from industry and academia, as its applications are countless,

e.g.: human-robot interaction, stock market prediction, political forecasting and social

network analysis. In fact, in recent years, several works addressed this relatively new

topic [162, 163, 173].

Actually, deep networks made available a powerful tool to automate the process of fea-

ture extraction, which may prove challenging when dealing with complex, 2-dimensional

sources of information such as images. Such aspect becomes relevant when consider-

ing that polarity detection can be accomplished only by understanding the interaction

between different components of an image. In this regard, deep networks can effec-

tively support the task of object recognition, which is a prerequisite to characterizing

interaction between objects.

148
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Polarity however cannot be assessed by simply analyzing interactions between objects in

an image. Polarity also depends on the context in which the image is examined; similar

objects and even similar images can induce different polarities in different scenarios. Fig-

ure 6.1 [3] is a shiny example of a picture that can be interpreted in different ways based

on the cultural background and historical moment. The rainbow flags have been associ-

ated to pacifist movements in the past and nowadays are mainly related to homosexual

rights. In general, in the era of social media, content marketing, and custom profiles,

this means that one might need to re-train the polarity detection strategy within a short

time interval (minutes rather than days) to address the change of circumstances. In

fact, re-training a deep network in the context of image sentiment analysis poses major

problems. First, the availability of a huge amount of labeled data cannot be taken for

granted. Second, the complexity of the learning procedure might hinder fast training,

unless massive computational resources are available.

Transfer learning techniques [174] provide an effective solution to both problems. Trans-

fer learning allows one to use a deep network trained on a given domain in the design

of a new predictor that tackles a different domain. In some cases, the setup of the

eventual predictor might not even require the fine tuning of the pre-trained network,

i.e., the update of its parameters by means of a learning procedure involving the new

domain. Anyway, the fine tuning process proves faster than training from scratch. The

literature indeed shows that image polarity detection can achieve excellent performance

by exploiting transfer learning [162, 163, 173]. Nonetheless, a few crucial issues remain

open. First the literature lacks of a fair, comprehensive comparison between the var-

ious setups that have been proposed to combine deep networks and transfer learning

techniques. Second, little attention has given in the past to the trade-off between the

computational cost associated to the transfer learning process and the eventual accuracy

of the predictor.

This research aims at addressing these open issues by defining a unambiguous design of

experiment for the comparison of different approaches to image polarity detection. In

this regard, three different configurations have been analyzed, which correspond to core

of transfer learning literature for the task of polarity detection. The evaluation pro-

cess involved the most prominent architectures based on convolutional neural networks

(CNNs), which proved outstanding in the area of object recognition. The eventual pre-

dictors were mainly compared according to two attributes: classification accuracy and

computational cost of the training process. This set of premises leads to an analysis that

tests the necessary characteristic for the development of these demanding models on re-

source constrained devices. As a major consequence, this work provides a strong baseline
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Figure 6.1: The polarity assigned to this image mostly depends on the cultural back-
ground [3].

for the development of systems for the evaluation of image polarity that present a sat-

isfying trade-off between computational cost and accuracy. Five well-known datasets

provided the benchmarks for the experimental evaluation.

The rest of the Chapter is organized as follow. Section 6.1 provides a brief overview of the

different architectures adopted in the area of object recognition. Section 6.2 analyzes the

literature to report on the different designs that supported the implementation of image

polarity detection via transfer learning. Section 6.3 defines the design of experiment

that has been exploited to fairly evaluate the role played by CNNs in polarity detection

frameworks; accordingly, the three different configurations adopted in the design of

the predictor are introduced. Sec. 6.4 characterizes the three configurations in terms

of computational complexity of the training process. In section 6.5 the outcomes of

the experimental sessions involving the benchmarks are showed and discussed. Finally,

Section 6.6 provides a few concluding remarks.

6.1 CNNs for Object Recognition

CNNs have been obtaining outstanding results in the task of object detection. This

section briefly reviews the most significant CNN architectures, which indeed have been

already used in the development of frameworks addressing image polarity detection.

The AlexNet [175] architecture represents the first deep network that achieved important

results in the field of image classification. In its standard configuration, this architecture

included a total of 8 weight layers (5 convolutional layers and 3 fully connected layers);

overall, AlexNet was characterized by 61 · 106 parameters. Such aspect obviously posed

major problems in terms of computational load, as classification performance was strictly
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Figure 6.2: Example of inception module: the output of ”Previous layer” feeds 4
different feature extractors. The informations provided from the different branches are

merged by the layer ”Filter concatenation”;

related to the availability of very large training sets. This issue was suitably tackled by

exploiting the computational capabilities of Graphic Processing Units (GPUs), which

provided a fundamental tool to deal with the trade-off between training time and size

of the training set. Such setup actually opened the way to the massive use of GPUs as

computational units for deep learning.

Vgg 16 and Vgg 19 [176] improved the architecture of AlexNet by increasing the number

of weight layers to 16 and 19, respectively; besides, these architecture exploited exclu-

sively stacks of 3× 3 convolutions. Both Vgg 16 and Vgg 19 proved able to outperform

AlexNet in terms of classification performance. On the other hand, they also inflated

the number of parameters to be set by the learning process.

In 2014, GoogLeNet [177] introduced major novelties in the design of CNN architectures

by proposing the Inception Module. Such module actually was entitled to implement

a local, small network topology; as a result, GoogLeNet relied on a stack of Inception

Modules. An example of the module is shown in Fig. 6.2. First, the output of the pre-

vious layer feeds different filter operations, which are completed in parallel. Then, the

outcome of the different filters is merged into a single third-order tensor by projecting

the resulting depth to a lower dimension. Such organization allowed the eventual stack

of Inception Modules to limit the amount of parameters involved. In its standard con-

figuration, GoogLeNet featured 22 weight layers and still involved less parameters than

AlexNet. Indeed, this architecture has been updated several time (e.g., Inc V3 [178] and

Inc v4 [179]).

ResNet architectures [180] addressed the design of very deep networks. These architec-

tures exploited as building blocks Residual networks, which replaced standard convolu-

tional blocks; the underlying goal was to deal with the convergence issues brought about
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by deep networks. To introduce the Residual block, it is convenient to denote as H(x)

the mapping to be fit by a few stacked convolutional layers, where x is the input to the

first layer; accordingly, F(x) := H(x)−x is the residual function approximated by such

stacked layers (under the assumption that H(x) and x have the same dimensionality).

Figure 6.3 schematizes the general structure of a Residual block, which is entitled to

eventually yield F(x) + x. Overall, the architecture was organized as a stack of such

blocks, in which each block was trained on the residual representation of the previous

one. Thus, Res 50, Res 101, and Res 152 increased the number of weight layers to 50,

101, and 152, respectively.

Table 6.1 provides the main details of the architectures discussed above. For each net-

work the table provides: the top-1 accuracy achieved on ImageNet [181] competition (in

percentage); the number of weight layers; the total amount of parameters; the number of

floating point operations performed for a single image classification [182]. The amount of

parameters involved basically affects two aspects: memory occupation and expected size

of the training set. On the one hand, when starting with a pre-trained network, transfer

learning can reduce the amount of patterns required to successfully complete fine tuning.

On the other hand, the size of such training set is still strictly related to the number of

parameters. The number of floating point operations provides a suitable approximation

of the overall computational complexity that characterizes an architecture. In fact, a

detailed metric would take into account that, in general, different instructions have dif-

ferent computational costs (e.g., memory accesses might severely affect computational

performance). The table shows that GoogLeNet is the most convenient choice in terms

of both parameters and computational complexity. However, the other architectures

(except AlexNet) proved able to outperform GoogLeNet in terms of accuracy.

Figure 6.3: Shortcut module: graphical representation of residual concept.
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6.2 Image Sentiment Analysis: State of the Art

Image polarity detection is an emerging topic in the area of sentiment analysis. Indeed,

this topic has been covered by a few interesting surveys [162, 163, 173] recently. However,

these previous works do not focus specifically on the role played by CNN architectures in

the development and ongoing improvement of image polarity detection frameworks. In

this regard, it is worth to mention that several important works addressed image polarity

detection before that deep learning changed the approach to image processing [183–191].

However, currently models based on CNNs represent the state of the art in this area.

In the following, Subsection 6.2.1 will report on the most interesting approaches to

polarity detection based on CNNs. Subsection 6.2.2, on the other hand, will briefly

survey models that did not target specifically polarity detection but indeed included an

image sentiment analysis module. Finally, Subsection. 6.2.3 analyzes the most significant

benchmarks in the area of image polarity detection.

6.2.1 Polarity Detection

In general, polarity detection is tackled by inheriting the core structure from object

recognition frameworks. Thus, according to the transfer learning setting, one deals with

subjectivity detection by exploiting the low-level features extracted by a CNN trained

on object recognition. In practice, such approach leads to two main different designs,

as schematized in Figure 6.4. In the first design (Fig. 6.4(a)), the trained CNN is sub-

ject to changes only in the layers entitled to implement classification. Usually, the last

fully connected layer is replaced with a new fully connected layer that includes as many

neurons as the classes involved in the polarity detection problem. An alternative option

Table 6.1: Attributes of different CNN architectures exploited in the area of object
recognition

Architecture Layers Top-1 Acc
(%)

Operations
(Gflops)

Parameters
(·106)

AlexNet 8 54 0.7 61

Vgg 16 16 71 15.5 138

Vgg 19 19 71 19.6 144

GoogLeNet 58 68 1.6 7

Inc v3 46 78 6 24

Res 50 50 76 3.9 26

Res 101 101 77 7.6 45

Res 152 152 79 11.3 60



Chapter 6. Application: Image Polarity Detection 154

Figure 6.4: Designs of polarity detection frameworks. (a) The low-level features
provided by the pre-trained CNN feeds a classifier entitled to tackle polarity detection.
(b) The low-level features provided by the pre-trained CNN feeds a module entitled to
model an ontology; such mid-level representation feeds the classifier entitled to tackle

polarity detection.

is to feed a given classifier with the low-level features provided by the CNN. By taking

advantage of fine tuning, one can also re-train the CNN to tailor its parameters on the

specific polarity detection problem. In the second design (Fig. 6.4(b)) a two-step proce-

dure leads to the eventual classifier. First, the trained CNN is augmented by replacing

the last fully connected layer with a new architecture, which should model an ontol-

ogy. The eventual layout is re-trained as a whole by using a Visual Sentiment Ontology

(VSO). In the literature, several works relied on adjective noun pairs (ANPs) [169, 170]

to complete this task: these ontologies provide a collection of images for a given pair

{adjective, noun}. In the second step, such new layout becomes the building block of

the polarity detector. Hence, one may replace the last fully connected layer, analogously

to the first design. A second option is to add a given classifier on top of the layout; in

this case, one uses as input of the classifier the probability distribution of the classes

that characterized the underlying ontology. A new training process then is applied to

the final layout. It is worth noting that usually the first step relies on weak labels in the

learning process, as VSOs are generated by automated algorithms that add noise to the

labeling action.

The literature provides different actual implementations of the two designs. Principally,

the implementations differ in the choice of the CNN to be adopted, the transfer learning

technique, and the training data domain. In the same year two distinct works exploited

AlexNet as a low-level feature extractor in the design of (Fig. 6.4(a)). In [169] a logistic

regression layer provided the classifier; the authors compared two different solutions:

1) the classifier replaced the last fully connected layer in the AlexNet architecture; 2)

the classifier was stacked over the the AlexNet architecture. In [192] a support vector
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machine (SVM) was used as classifier. Campos et. al [193] indeed exploited the AlexNet

architecture as feature extractor to complete an interesting analysis on the effects of layer

ablation and layer addition in the eventual accuracy of the polarity detection framework.

A design involving ontology representation (Fig. 6.4(b)) was implemented in [194]; the

authors proposed a layout for sentiment ontologies recognition based on the AlexNet

architecture, in which the last fully connected layer had one neuron for each ANP. This

approach outperformed the previous SentiBank classifier based on SVM [189]. Jou et

al. [195] further improved the predictor presented in [194] by exploiting a multilingual

visual sentiment ontology (MVSO). In [170] the authors proposed a custom architec-

ture for image polarity prediction: the model stacked two convolutional layers and four

fully connected layers. The training procedure involved weak labels provided by ANP.

In fact, the authors applied a peculiar multi-step learning process: after each step, the

dataset was pruned by removing the images correctly classified. An empirical comparison

between such architecture, the architectures analyzed in [193], and the architecture pro-

posed in [195] was presented in [172]. In this work, the authors indeed evaluated the role

played by the specific ontology in the transfer learning process. The best performance

was obtained by models relying on the AlexNet architecture and the English version

of MVSO. The Vgg 19 architecture and the GoogLeNet architecture were exploited,

respectively, in [171, 196]. Interestingly, both papers showed that such architectures

proved able to support predictors that improved over state-of-the-art predictors based

on the AlexNet architecture.

The enhancement of ontology representation in the design of (Fig. 6.4(b)) has been the

specific goal of a few works. Fernandez et al. [197] proposed a framework in which

two independent CNNs are adopted to learn ANPs: one network was designed to deal

with nouns, the other network was designed to deal with adjectives. Both predictors

exploited the Res 50 architecture. A similar approach was utilized in [198]; the eventual

framework however relied on a different strategy when merging the information provided

by the two CNNs. Wang et al. [199] indeed proposed a model where adjectives and noun

are predicted by different CNNs; nonetheless, the two networks are coupled by a mutual

supervision mechanism. A modified version of Res 50 supported the model proposed

in [200]; in that case, the residual learning mechanism was extended to multi-task cross-

residual learning. As a result, a single network was able to explicitly consider the

interactions between different ANP couples (e.g.: ‘shiny-cars’, ‘shiny-shoes’).

CNN architectures also supported models for image polarity detection that does not

fit into either of the two designs described above. In [196], the Vgg 19 architecture

processes an image including the conventional R, G, and B and a focal channel; the

additional channel is set to model human attention. Similarly, [201] studied the role

played by saliency in sentiment detection. Attention mechanisms [202, 203] have been
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also explored in [204], where the authors utilized VggNet architectures in combination

with a recurrent neural network (RNN). The RNN allows the model to explore an image

as a composition of small areas, thus mimicking the human attention process where a

person focuses only on the most important parts of the image.

6.2.2 Sentiment Analysis: Other Applications

The automated generation of image captions with sentiment terms is indeed a task closely

related to sentiment prediction: the underlying goal is still to provide an efficient method

for extracting affective information from images. Actually, the true difference resides in

how information is conveyed, as the final user for a caption generation model is a human.

The archetypal model [205] in this area was composed by a CNN architecture that fed

a Gated RNNs [206]. Here, the CNN was entitled to extract low-level features from the

image, while a long short-term memory (LSTM) network modeled the textual description

of the image. In [207, 208] a VggNet architecture has been adopted to extract low-level

features; in [209], such task was addressed by a Res 152 architecture. Karayil et al. [210],

conversely, exploited the AlexNet architecture to model ANPs; a multi-directed graph

eventually ranked the ANP couples provided by the CNN, thus generating captions. To

the purpose of improving sentiment description, Sun et al. [211] extended a pre-trained

caption generation model with an emotion classifier to add abstract knowledge.

Multimodal sentiment analysis also can take advantage of reliable models for image po-

larity detection. Remarkable results have been achieved in [3, 212–215] where ensembles

of handcrafted features were extracted from images and then combined with informa-

tion provided by text analysis. However, such approaches have been outperformed by

frameworks that utilize CNN for extracting features from visual contents [170, 215–218].

In [199, 219, 220] image sentiment analysis has been modeled as a probability distribution

problem. The common rationale behind the three different approaches is that a single

image can evoke different feelings at the same time. From a methodological view point,

though, these works did not introduce any novelty about feature extraction via CNN.

It is worth mentioning, finally, that polarity and sentiment detection is also exploited in

face analysis [221–225], posture analysis [226] and the analysis of groups of people [227].

These methodologies are indeed tailored for specific tasks, and strictly related to video

domain.
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Table 6.2: Benchmarks for image sentiment prediction

Name # data # classes add info

Twitter1 [170] 882 2 n.a.

Twitter2 [189] 603 2 text

Twitter3 [3] 19600 3 text

Flickr [213] 105.587 2 text

Instagram [213] 120.000 2 text

IAPS [228] 394 8 n.a.

Art photo [185] 807 8 n.a.

Abstract paintings[185] 228 8 n.a.

MVSA[229] 23.308 8 n.a.

Twitter LDL [230] 10,045 8 n.a.

Flickr LDL [230] 10,700 8 n.a.

Visual Realism [196] 2520 2 n.a

ANP [189] 1M 3244 adjective name pairs

MVSO(EN) [195] 4M 4422 adjective name pairs

6.2.3 Benchmarks

Table 6.2 lists the most common benchmarks in the area of image sentiment prediction;

the table purposely does not include datasets designed for caption generation, faces

sentiment detection and multi modal analysis. In Table 6.2, the first column gives the

name of the dataset along with the reference paper; the second column gives the size

of the dataset; the third column gives the number of classes; finally, the fourth column

details the additional information provided with the images, if any.

All the benchmarks involving 2 classes explicitly refer to polarity detection. The dataset

Twitter3 can be considered as a special case, as it also includes the class neutral. Except

for Twitter1, these benchmarks also provide the textual message linked to an image.

The benchmarks involving 8 classes actually refer to emotion recognition. The last two

datasets of Table 6.2 provide two examples of ontologies, where a collection of images is

associated to a given adjective noun pair. Such datasets can support the development

of the design showed in Fig. 6.4(b).

6.3 A Compared Analysis

The literature proves that CNNs are widely utilized as feature extractor (in the transfer

learning setup) in all the frameworks that need to rely on image sentiment analysis.
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Indeed, in general, these frameworks differ both in terms of specific design of the feature

extraction process and of overall design of the polarity predictor; thus, one deals with

heterogeneous setups that may be different for the training dataset or for the use of

fine tuning strategies. As a major consequence, it is never easy to evaluate the actual

contribution provided by a given architecture in boosting the performance of image

polarity detection.

The present work wants to address this issue by proposing a formal experimental protocol

that should support a fair comparison between different configurations of the feature

extraction process. To this purpose, the design shown in Fig. 6.4(a) is used as reference.

Such design is indeed implemented according to three distinct configurations, as showed

in Fig. 6.5. These configurations differ in the specific structure of the classification block

that processes the output of the pre-trained CNN and in learning strategy applied to

the resulting predictor, which may either involve or not the adoption of a fine tuning

procedure for the parameters of the pre-trained architecture. In practice, the proposed

configurations covers the most important approaches presented in the literature. In

the figure, bold characters identify blocks that are trained from scratch in the learning

process of the polarity detector, while italic characters identify pre-trained blocks that

are subject to fine tuning. The details of the three configurations will be discussed in

subsections 6.3.1, 6.3.2, and, 6.3.3, respectively.

In principle, the configurations schematized in Fig. 6.5 allows one to suitably evaluate

the role played by the specific architecture in the predictor. In this regard, it is worth

noting that this work aims at analyzing mainly two aspects: the accuracy of the predictor

and the computational load involved in the corresponding learning procedure. Actually,

configurations that might stem from the design of Fig. 6.4(b) would not be as useful in

supporting a fair comparison between different architectures. In fact, the intermediate

layer set to model ontologies could actually introduce biases brought about both by

the configuration of this layer and by the adopted ANP; the latter element is indeed

critical as ontologies might also add a cultural bias [195]. In the proposed configurations,

an unbiased background has been set by relying only on CNNs pre-trained using the

ImageNet dataset [181], a well-established benchmark for the object recognition area.

6.3.1 Layer Replacement

The configuration schematized in Fig. 6.5 (a) refers to the most common outline for

image polarity detection. Here, the last fully connected layer of a CNN trained on object

recognition is replaced by a new fully connected layer, which serves as classification

layer for the eventual predictor and includes as many neurons as the number of classes
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Figure 6.5: Three different configurations of the polarity predictor: (a) Layer Re-
placement; (b) Layer Addition; (c) Classifier. Blocks with bold characters refer to
modules that are retrained from scratch; blocks with italic characters refers to modules

that are subject to fine tuning

represented in the polarity problem. Accordingly, the eventual predictor is a universal

approximator combining a feature extraction block that inherits its parameterization

from object recognition and a classification layer that should be trained from scratch.

In the learning procedure, the predictor is trained on the new domain by utilizing a

small number of epochs. Training is indeed extended to the feature extraction block,

thus adopting fine tuning; by suitably setting the learning rate, the involved parameters

are only subject to small perturbations [174].

Actually, similar, yet alternative configurations might be obtained by exploiting different

strategies of layer ablation. Campos et al. [172], though, has showed that replacing the

last fully connected layer represents the most convenient choice when addressing image

sentiment analysis. This outcome seems reasonable when considering that the last fully

connected layer is entitled to model the probability distribution of different objects in

the image.

6.3.2 Layer Addition

The second configuration (Fig. 6.5 (b)) augments the standard layout presented above.

The building block is still provided by a pre-trained CNN that had the last fully con-

nected layer removed. In this case, though, this block feeds a fully connected layer

including Nh neurons; the classification layer is then stacked on top of such interme-

diate layer. Therefore, in the resulting layout one has a Single Layer Feed-forward

Network (SLFN) that processes the features provided by the CNN. As SLFNs are uni-

versal approximators themselves, this configuration does not need to rely on the linear

separability of data in the feature space. This element differentiates such configuration

from the first configuration, in which a linear separator processes the data represented
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in the feature space. Accordingly, in the Layer Replacement configuration fine tuning is

expected to suitably adjust the feature space.

The learning procedure resembles the one adopted for the first configuration. Thus,

training involves a small number of epochs. The main goal is to train from scratch the

SLFN, while the parameters of the feature extraction block are subject to fine tuning.

In principle, the training process is made easier and thus faster by the presence of the

SLFN, as convergence might be reached without satisfying linear separability in the

feature space. On the other hand, one should deal with two possible drawbacks: 1) Nh

represents an hyper-parameter that should be properly set; 2) this configuration is prone

to overfitting, as one expects to utilize relatively small training sets.

6.3.3 Classifier

The third configuration (Fig. 6.5 (c)) inherits from the second configuration the overall

concept: using a universal approximator to classify the data that lies in the feature space

provided by the CNN. The eventual implementation indeed utilizes a SVM as classifier.

In general, other classifiers could play the same role in this configuration; however, SVM

combines excellent generalization performance with a convex optimization problem.

In the proposed layout, the pre-trained CNN (without the last fully connected layer)

feeds a SVM that exploits a Gaussian kernel. The learning procedure is actually enti-

tled to train the SVM classifier by using standard convex optimization methods, which

remove any issue brought about by the presence of local minima. In fact, such setup

precludes any fine tuning process for the feature extraction block, as back-propagation

mechanisms are not involved. This in turn means that one has to fully rely on the feature

space tuned on the object recognition domain. Such aspect may represent a drawback

that stems from the choice of adopting a convex optimization problem. Nonetheless,

one should take into account that the Gaussian kernel, as almost any kernel, involves

hyper-parameters.

6.4 Computational Complexity

The three configurations presented above can be firstly analyzed according to the com-

putational load involved in the learning process of the eventual predictor. Such analysis

does not need to rely on empirical protocols, as the related computational costs can be

formally assessed.
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In the case of the first configuration, Layer Replacement, the computational cost of the

training procedure Olr can be approximated by defining the following quantities:

• ntg: number of training samples;

• nep: number of epochs;

• nlay: number of layers;

• npar,i: number of parameters in the ith layer;

• Off : computational cost of a feed-forward step;

• Obw: computational cost of a backward step, which involves gradient computation

and parameters’update.

The choice of the architecture directly impacts on the last four quantities. Accordingly,

Olr can be expressed as

Olr = nep ∗ ntg ∗ [(Off (P ) +Obw(P )] =

nep ∗ ntg ∗ [(Off (P ) + α ∗Off (P )] =

nep ∗ ntg ∗ (α+ 1)[(Off (P )];

(6.1)

where

P =

nlay∑
i=1

n3par,i. (6.2)

Empirical evidence suggests that the value of the coefficient α in (6.1) can be roughly

approximated with 2 [182].

Equation (6.1) and (6.2) show that both Off and Obw scale cubically with the number

of parameters. Indeed, (6.2) indicates that an architecture is not only characterized by

the total number of parameters. In the case of uneven distribution of the parameters,

the computational cost is mostly determined by the largest layers (in terms of weights).

Equation (6.1), in practice, also approximates the computational cost Ola of the training

procedure for the second configuration, Layer Addition. Actually, such configuration

only add a single fully connected layer to the layout of the first configuration; besides,

this layer is expected to include a small number of neurons (Nh < 500), as small or

medium size datasets are involved. Thus, Ola ≈ Olr.
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The third configuration, conversely, relies on a different learning process, as fine tuning of

the pre-trained CNN is not requested. Hence, the training procedure basically includes

two steps: 1) to project all the training samples into the feature space defined by the

CNN, and 2) to train the SVM on those data by exploiting a convex optimization

problem. Let OSVM be the computational cost of SVM training; then, the computational

cost Ocl of the overall training procedure can be expressed as:

Ocl = Off (P ) ∗ ntg +OSVM (n3tg). (6.3)

In Equation (6.3), Off scales cubically with the number of parameters in the largest layer

of the architecture, while OSVM scales cubically with the number of training samples.

Therefore, the second component is expected to prevail over the first component only

when large training sets are involved, as ntg > npar,i for any i.

A comparison between the three configurations cannot be completed without taking into

account a few elements that do not emerge in equations (6.1) and (6.3). First, all the

configurations need -in principle- to rely on model selection; this in turn means that

the actual learning process encompasses multiple runs of the training algorithm. In this

regard, the second configuration might be more computationally demanding than the

first configuration, even if Ola ≈ Olr, as one adds Nh to the parameters to be set by

model selection.

Second, the issue of sub-optimal solutions affects heuristic optimization techniques such

as stochastic gradient descent. As transfer learning relies on small datasets, such issue

may plausibly perturb the training of polarity predictors based on the first and second

configurations. Besides, the risk of being trapped in local minima is increased by the

adoption of early stopping strategies, which on the other side prevent overfitting. Actu-

ally, multi-start optimization represents a suitable solution. However, this solution also

inflates the computational load of the learning procedure, which might require multiple

runs of the training algorithm. On the contrary, the third configuration does not suffer

from the issue of local minima, as it fully relies on a convex optimization problem. As

a major consequence, such configuration may be preferred when one wants to avoid the

computationally demanding multi-start optimization.

Third, the actual execution time of a CNN architecture might not depend only on P. On

the one hand, GPUs are designed to fully exploit data and model parallelism. On the

other hand, CNNs are realized as a stack of layers that should be completed sequentially.

As a result, the execution time of architectures such as Vgg 16 and Vgg 19 might be

lower than the execution time of Res 152. While the latter architecture is undeniably

lighter in terms of parameters, both Vgg 16 and Vgg 19 involve a sensibly smaller
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number of layers. Accordingly, GPUs supported by large memories can suitably take

advantage of the configuration {small number of layers, several parameters per layer}
to boost computational time.

6.5 Experimental Results

The experimental campaign aimed at assessing the generalization ability of the deep

convolutional neural networks inherited by object recognition. The CNNs are tested

based on the configurations presented in Section 6.3. Indeed, the goal was also to

evaluate how the design of the feature-extraction module influenced the performance of a

given configuration. For the sake of consistency, all the experiments were implemented in

MATLAB R©with the Neural Network Toolbox, which provided the pre-trained versions

of the architectures listed in Table 6.1. Actually, Res 152 was the only architecture

not included in the experiments, as the Neural Network Toolbox did not provide its

implementation.

6.5.1 Datasets

The experiments involved five datasets: Twitter1 (Tw 1) [170], Twitter2 (Tw 2) [189],

Twitter3 (Tw 3a and Tw 3b) [3], and ANP40 [189]. Table 6.3 gives respectively, for

each dataset, the total number of patterns, the number of patterns belonging to the

class “positive polarity”, and the number of patterns belonging to the class “negative

polarity”.

Twitter1 is the most common benchmark for image polarity recognition. In its original

version, the dataset collected 1269 images obtained from image tweets, i.e., Twitter

messages that also contain an image. All images have been labeled via an Amazon

Mechanical Turk (AMT) experiment. This experimental session actually utilized the “5

agree” version of the dataset. Such version includes only the images for which all the

five human assessors agreed on the same label. Thus, the eventual dataset included a

total of 882 images (581 labeled as “positive” and 301 labeled as “negative”).

Twitter2 [189] is a second dataset that collects image tweets; it includes a total of

603 images. Labeling was indeed completed via an AMT experiment. Eventually, 470

images were labeled as “positive” and 133 images were labeled as “negative”. Such

dataset indeed represents a challenging benchmark as 1) it is small, and 2) it is very

unbalanced.
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Table 6.3: Benchmarks adopted in the experimental sessions

Name # data # positive # negative

Tw 1 [170] 882 581 301

Tw 2 [189] 603 470 133

Tw 3a [3] 702 351 351

Tw 3b [3] 702 351 351

ANP40 [189] 17114 11857 5257

Twitter3 also provides a collection of image tweets [3]. In this case, tweets were filtered

according to a predetermined vocabulary of 406 emotional words. Thus, the dataset

incorporated only the tweets that contained in the text message (hashtags included) at

least one of those words. The vocabulary encompassed ten distinct categories covering

most of the feelings of human beings (e.g., happiness and depression). Three annotators

labeled the pairs {text,image} by using a three-value scale: positive, negative, and

neutral; text and image were annotated separately. This work utilized a pruned version

of the dataset: only images for which all the annotators agreed on the same label were

employed, thus obtaining a total of 4109 images. As only 351 images out of 4109 were

labeled as negative, such pruned version of Twitter3 resulted very unbalanced. Thus,

two different balanced datasets (Tw 3a and Tw 3b) were generated by adding to the

351 “negative” images two different subsets of 351 images randomly extracted from the

total amount of “positive” images.

The ANP dataset implements an ontology and is composed of a set of Flickr images [189].

The dataset includes 3,316 adjective noun pairs; for each pair, at most 1,000 images

were provided, thus leading to a total of about one million images. The ANP tags

assigned from Flickr users have been utilized as labels for the images. Thus, noise

affects severely this dataset. To tackle this issue, a pruned version of the dataset is

proposed. Accordingly, the 20 ANPs with the highest polarity values and the 20 ANPs

with the lowest polarity values were selected (the website of the dataset’ authors 1 was

exploited as reference). Eventually, the dataset involved in the experiments included

11857 “positive” images and 5257 “negative” images.

6.5.2 Experimental Setup

The experimental campaign encompassed two different sessions. In the first session,

Tw 1, Tw 3a, Tw 3b, and ANP40 were used as benchmarks. The first three bench-

marks were utilized to assess the performance of the three configurations presented in

1http://visual-sentiment-ontology.appspot.com/
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Sec. 6.3 under the most common scenario: a small training set is available. On the other

hand, ANP40 covered the case in which a large dataset is available. The second session

involved only Tw 2 as benchmark. Such session was separated from the first session

in consequence of the peculiar properties of this dataset, which is small and also very

unbalanced.

In all the session, the setup of the Layer Replacement configuration was organized as

follows. Stochastic Gradient Descent with Momentum was exploited as optimization

strategy, with momentum = 0.9 and learning rate = 10−4 for all the layer belonging to

the pre-trained CNN. In the classification layer the learning rate was set to 10−3 and the

regularization parameter was set to 0.5. Early stopping was adopted, with validation

patience set to 2. Training involved a maximum of 10 epochs.

The same setup was adopted for the Layer Addition configuration. In this case, the

learning rate was set to 10−3 and the regularization parameter was set to 0.5 both

for the fully-connected layer and the classification layer. Besides, cross validation was

utilized to set the hyper-parameter Nh, which admitted the following values: {10, 50,

100, 200}.

In the Classifier configuration fine-tuning is not involved. The SVM with Gaussian kernel

was trained by using a standard algorithm. The two hyper-parameters, regularization

term C and kernel standard deviation σ, were set via model selection.

6.5.3 Experimental Session #1

According to the proposed experimental design, seven different pre-trained architectures

were utilized to generate as many implementations of each single configuration. The

experimental session aimed at assessing and comparing the generalization performance

of such implementations.

Given a configuration, the performance of the seven predictors has been evaluated by

exploiting a 5-fold strategy. Hence, for each dataset, the classification accuracy of a

predictor has been measured via five different experiments, corresponding to as many

different training/test pairs. Indeed, five separate runs of each single experiment were

completed; each run involved a different composition of the mini-batch. As a result,

given a predictor and a benchmark, 25 measurements of the classification accuracy on

the test set were eventually available.

Table 6.4 reports on the performance obtained with the Layer Replacement configuration

on Tw 1, Tw 3a, Tw 3b, and ANP40. In each row, the first column indicates the pre-

trained architecture adopted in the implementation of the predictor; the second column
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gives -for the Tw 1 dataset- the average accuracy obtained by the predictor over the 25

experiments, along with its standard uncertainty (between brackets); the third, fourth,

and fifth columns give the same quantities for the experiments involving Tw 3a, Tw 3b,

and ANP40, respectively. Experimental outcomes showed that Res 101 was able to

slightly outperform the other architectures on Tw 1 and Tw 3a. Vgg 19 scored the

best average accuracy on Tw 3b; the gap between such predictor and both Vgg 16 and

Inc v3, though, was very small, especially if one considers the corresponding standard

uncertainties. Analogously, one can conclude that Inc v3 and Res 101 shared the role

of best predictor on ANP40. Indeed, it is worth noting that six predictors out of seven

achieved an average accuracy ranging between 79.7% and 78.7%; in practice, only the

predictor based on AlexNet proved to be slightly less effective on ANP40. Such balance

possibly stems from the availability of a larger dataset.

The experiments involving the Layer Replacement configuration can also reveal which

architecture has been the most consistent over the different dataset and the different

training/set pairs. Thus, for each benchmark and for each training/set pair, the seven

architectures have been ranked according to the classification accuracy scored by the

corresponding predictor. In this case, the classification accuracy associated to a predictor

was the best accuracy over the five runs completed for a given training/set pair. In each

rank, one point was assigned to the best predictor, two points were assigned to the

second best predictor, and so on until the worst predictor, which took seven points.

Accordingly, Figure 6.6 provides, for each architecture, the total points marked over the

20 ranks (5 training/test pairs × 4 benchmarks). Thus, in principle, a predictor could

not mark less than 20 points, which meant first position in the rank (i.e., best predictor)

for every rank. The plot shows that the predictors based on Vgg 16 and Vgg 19 proved

to be the most consistent, i.e., these predictors often occupied the highest positions in

the rank over the different experiments. Such outcome is indeed consistent with the

results reported in Table 6.4, which showed that Vgg 16 and Vgg 19 were always able

to score effective performance over the different benchmarks.

Table 6.5 reports on the performance obtained with the Layer Addition configuration

on Tw 1, Tw 3a, Tw 3b, and ANP40. The table follows the same format of Table 6.4.

In each of these experiments, the training set was further split into the actual training

set and a validation set to support the model-selection procedure that led to the setup

of Nh in the eventual predictor. Experimental outcomes show that Res 101 was able to

score the best average accuracy on Tw 1, Tw 3a, Tw 3b. Indeed, the gap with the sec-

ond best predictor was always small, especially in the case of the experiments involving

Tw 3b. On ANP40, again, six predictors out of seven almost achieved the same average

accuracy. This in turn confirmed that the availability of a large dataset somewhat coun-

terbalanced the differences that might exist between the different architectures. Overall,
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Table 6.4: Experimental Results: Session #1, Layer Replacement

Arch. Tw 1 Tw 3a Tw 3b ANP40

AlexNet 82.5 (0.6) 66.2 (0.5) 65.4 (0.7) 76.3 (0.3)

Vgg 16 86.6 (0.4) 68.9 (1.0) 70.7 (1.0) 79.0 (0.3)

Vgg 19 86.4 (0.5) 69.2 (0.7) 71.0 (0.8) 78.7 (0.3)

GoogLeNet 84.2 (0.5) 66.0 (0.6) 68.2 (0.5) 79.2 (0.3)

Inc v3 86.5 (0.7) 68.1 (0.7) 70.5 (0.9) 79.9 (0.2)

Res 50 85.8 (0.6) 68.9 (0.9) 68.8 (1.5) 79.2 (0.2)

Res 101 88.2 (0.4) 70.8 (0.6) 69.2 (0.8) 79.7 (0.2)
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Figure 6.6: Consistency evaluation of the seven architectures under the Layer Replace-
ment configuration; the plot gives the architectures on the x -axis and the corresponding

total amount of collected points on the y-axis

it is interesting to emphasize that under the Layer Addition configuration the predic-

tors attained better average accuracies than under the Layer Replacement configuration.

Such improvement comes at the cost of a more complex training procedure, as the Layer

Addition configuration involves model selection for the setup of Nh.

Figure 6.7 provides the outcomes of the consistency assessment for the Layer Addition

configuration. As above, the plot gives -for each architecture- the total points marked

over the 20 ranks (5 training/test pairs × 4 benchmarks). In this case, again, Vgg 19

proved to be the most consistent architecture; however, it did not share its status with

Vgg 16, which collected as much points as Res 101.

Table 6.6 reports on the performance obtained with the Classification configuration on

Tw 1, Tw 3a, Tw 3b. The table again follows the same format of Table 6.4. In this

case, though, ANP40 was not included in the experiments, as (6.3) suggested that such

configuration should be avoided for computational reasons when large training sets are
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Table 6.5: Experimental Results: Session #1, Layer Addition

Arch. Tw 1 Tw 3a Tw 3b ANP40

AlexNet 84.9 (0.4) 68.2 (0.4) 69.9 (0.7) 78.6 (0.2)

Vgg 16 88.0 (0.3) 70.9 (0.6) 72.3 (0.8) 80.0 (0.3)

Vgg 19 87.6 (0.4) 71.0 (0.7) 73.4 (0.6) 80.3 (0.2)

GoogLeNet 86.3 (0.3) 70.0 (0.4) 71.3 (0.5) 80.0 (0.3)

Inc v3 85.3 (0.4) 66.4 (0.4) 68.5 (0.7) 80.3 (0.2)

Res 50 87.0 (0.3) 69.4 (0.6) 72.1 (0.8) 80.1 (0.2)

Res 101 89.1 (0.3) 72.1 (0.7) 73.9 (0.6) 80.2 (0.2)
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Figure 6.7: Consistency evaluation of the seven architectures under the Layer Addi-
tion configuration; the plot gives the architectures on the x -axis and the corresponding

total amount of collected points on the y-axis

involved. The Classification configuration required a model-selection procedure, sim-

ilarly the Layer Addition configuration. Hence, in each experiment, the training set

was further split into the actual training set and a validation set to support the model-

selection procedure that led to the setup of C and σ in the eventual predictor. It is

worth noting that predictors based on the Classification configuration relied on a convex

optimization problem in the training phase. Thus, the classification accuracy obtained

with a given training/test pair could be estimated without resorting to multiple runs of

the experiment. As a result, the table gives the average classification accuracy over the

five training/test pairs, along with the corresponding standard uncertainty. Experimen-

tal outcomes point out the peculiarities of such configuration, which did not exploit fine

tuning. First, the predictor based on Res 101 never scored the best average accuracy.

In fact, each benchmark led to a different result in terms of best predictor. Second, the

standard uncertainty associated to the average accuracy was always large or even very

large. Therefore, given a benchmark and an architecture, the variance of the accuracies
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Table 6.6: Experimental Results: Session #1, Classifier

Arch. Tw 1 Tw3 1 Tw 3 2

AlexNet 80.7(3.7) 63.5(3.7) 70.2(1.0)

Vgg 16 86.3(0.1) 70.7(1.0) 70.4(2.3)

Vgg 19 85.3(1.3) 70.4(1.2) 73.3(1.6)

GoogLeNet 79.1(5.3) 67.7(1.3) 69.5(1.7)

Inc v3 85.1(2.1) 72.1(0.9) 75.2(1.7)

Res 50 84.5(4.6) 72.4(2.3) 72.9(2.4)

Res 101 80.0(5.7) 70.5(1.6) 74.3(1.8)
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Figure 6.8: Consistency evaluation of the seven architectures under the Classifier
configuration; the plot gives the architectures on the x -axis and the corresponding

total amount of collected points on the y-axis

over the five experiments was always quite wide; that is, the composition of the training

set played a major role. In practice, this means that by adopting the Classification

configuration one increases the risk of incurring in a weak predictor, independently of

the architecture.

Figure 6.8 provides the outcomes of the consistency assessment for the Classification con-

figuration by using the same format adopted above. The plot gives -for each architecture-

the total points marked over the 15 ranks (5 training/test pairs × 3 benchmarks). As

expected, this plot is different from those examined above. Under the Classification

configuration, Res 50 and Inc v3 proved to be the most consistent architectures, while

Vgg 16 and Vgg 19 did not attain satisfactory performance.
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6.5.4 Experimental Session #2

The dataset Tw 2 poses major challenges to polarity predictors. In fact, a naive classifier

that always predicts “positive” would achieve a 78% accuracy on this dataset. On the

other hand, the literature proved that is very difficult to attain a predictor that can

score satisfactory accuracies on both the classes of this benchmark.

The experimental session revealed that nor the Layer Replacement configuration not

the Classification configuration were able to achieve acceptable result on Tw 2. Hence,

this section will provide only the outcomes of the experiments involving the Layer Ad-

dition configuration. The performance of the corresponding seven predictors has been

evaluated by exploiting a 5-fold strategy. Accordingly, the classification accuracy of a

predictor has been measured via five different experiments, corresponding to as many dif-

ferent training/test pairs. In each experiment, the originally imbalanced training set was

eventually processed to obtain a more balanced set. To this purpose, oversampling [231]

was applied to the negative class, i.e., the minority class.

Given a predictor, five separate runs of each single experiment were completed; each run

involved a different composition of the mini-batch. Indeed, such routine was repeated

over the four admissible values of Nh. As a result, 100 measurements of the classification

accuracy on the test set were eventually available for each predictor. Table 6.7 reports

on the outcomes of this experimental session by providing -for each predictor (first

column)- two quantities: the second column gives the number of successful trials, i.e.,

the trials that led to a classification accuracy greater than 50% on both the classes; the

third column gives the average accuracy over the number of successful trials. The table

stimulates two remarks. First, only Inc v3 and Res 50 collected an acceptable amount

of successful trails. Second, Vgg 16, Vgg 19, and Res 101 proved able to overcome the

other architectures in terms of average accuracy in the few cases where successful trials

were completed. Thus, on the one hand the latter architectures confirmed to be effective

in dealing with polarity detection; on the other hand, they proved to be more prone to

problem of local minima.

6.6 Concluding Remarks

This analysis evaluated the role played by CNNs and fine tuning strategies in image

polarity detection. The experimental protocol focused on three different configurations

of the predictor, which indeed covered the most significant approaches proposed in the

literature. The predictors have been analyzed and compared both in terms of gener-

alization performance and in terms of computational complexity. As image polarity
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Table 6.7: Experimental Results: Session #2, Layer Addition

Arch. Successful Trials Accuracy

AlexNet 4 66.5

Vgg 16 10 72.4

Vgg 19 5 72.6

GoogLeNet 8 67.0

Inc v3 50 62.5

Res 50 45 69.7

Res 101 20 72.9

detection usually relies on small datasets, the assessment of generalization performance

allows one to investigate on the ability of a given architecture/configuration to deal with

such scenario. At the same time, computational costs may represent a key factor when

one should target the implementation of the whole prediction system on an electronic

device.

The outcomes of the experimental protocol provided useful insights both on the predic-

tor’s configuration (and the underlying fine tuning strategy) and on the convolutional

architectures. Among the tested configurations, Layer Addition proved to be the most

effective in terms of classification accuracy. This approach is also the most computa-

tionally demanding among the three configurations; the training process involves the

back propagation procedure and also the model selection procedure that should support

the setup Nh. Besides, in principle, the regularization parameter represents indeed an

hyper parameter. In this work such parameter was always set to 0.5 to the purpose

of exploiting regularization properties of early stopping to tune the fitting degree. On

the other hand, by adopting a proper model selection one might be able to improve

the generalization performance of a predictor. This obviously implies an increase of the

overall computational load.

The Classifier configuration in fact represents the most convenient option from the com-

putational point of view. Unfortunately, this approach proved to be too sensitive to

the actual composition of the training set. Such issue makes the application of this

approach in real word scenario inadvisable. Conversely, the Layer Replacement config-

uration achieved a satisfactory balance between accuracy, convergence of the training

process, and computational cost. It is worth noting that the training procedure of both

Layer Replacement and Layer Addition can be simplified by inhibiting fine tuning in

the lowest layers of the CNN. Thus, only the upper layers of the architecture would be

involved in the training process. The experimental protocol did not explore this setup
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because the networks differ significantly in the number of layers (from 8 to 101) and a

fair comparison would be difficult.

Vgg 16, Vgg 19, and Res 101 proved to be the most powerful architectures. In terms of

generalization abilities they seemed almost comparable. Indeed, computational aspects

may represent a discriminative factor. VggNets require the storing of a number of

parameters that is almost 3 or 4 time bigger than Res 101 ; furthermore, the forward

phase of VggNets involves 2 or 3 times the number of floating point operation. However,

most of the parameters and operations are introduced in the last fully connected layers of

VggNets. Thus, such layers may take advantage of parallel computing, which can boost

the overall execution time. In Res 101, conversely, parameters and operations are evenly

distributed among the numerous layers. As a major consequence, parallel computing

cannot really improve the execution time. Hence, Vgg 16 and Vgg 19 may represent the

best option when a GPU with a considerable amount of memory is available. Res 101

should be preferred when one has to deal with memory constraints.



Chapter 7

Conclusion

This thesis has addressed both theoretical problems and engineering applications of fast

learning models. From the theoretical point of view this Thesis mainly contributed with

two analysis. Firstly, this dissertation showed that the theory of learning with similar-

ity functions can provide the basis for the development of novel insights on the ELM

model. The crucial outcome is that it is possible to reinterpret the ELM mapping layer

by introducing the concepts of similarity function and landmark. As a major result,

the learning scheme applied by ELM can be described as a viable strategy to search for

a consistent (ε, γ)-good similarity function. Within this context, the thesis suggested

three possible enhancement strategies by focusing on the peculiar role played by the

free parameters of the activation/similarity function. These strategies covered different

scenarios based on peculiarities of the function at hand. As a result, the contribution of

the Thesis consists of ad-hoc training strategies that inherit the advantages of method-

ologies based on random feed forward neural networks while minimizing the well known

waste of computational resources in the inference phase.

A second outcome consists on the investigation of how the theory of learning with

similarity functions can support the development of an efficient framework that deals

with multi-way data inherently. The notion of similarity is built on the decomposition

of a tensor into two components: the core tensor and the corresponding orthonormal

basis. The degree of similarity between a pattern and a landmark is then assessed

by taking into due account the alignment between the respective basis. This, in turn,

means that similarity is not just estimated by conventionally comparing the standard

r-mode eigenvalues of the two tensors; this procedure in fact can only provide partial

information on the degree of resemblance between the tensors. Nonetheless, it is worth

to note that the framework proposed in this thesis can utilize MLSVD to characterize the

intrinsic structural properties of each single landmark; as a major result, one can more
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reliably capture the local structure of multimodal data manifold. Notably, the proposed

solution proved convenient both in term of generalization capabilities and computational

cost with respect to state-of-the-art methodologies.

From an applicative point of view, this thesis addressed the efficient implementation of

random basis neural network classifiers on low-resources digital reconfigurable devices.

The research focused on predictors that exploit the hard-limiter activation function as

non linearity. In addition, random networks properties have been exploited to reduce

memory requirements. As a result, the Thesis provides two architectures explicitly for

implementation on low-power low-cost devices. The two proposal differ in the area/la-

tency trade-off. In particular, the first solution achieves state-of-the-art performances in

term of area consumption when implemented on digital devices, meanwhile the second

one is characterized by a latency that is almost independent of the input dimensionality.

Lastly, few engineering applications and algorithmic improvements for sentiment de-

tection were discussed and developed in Chapters 5 and 6. Chapter 5 discusses two

applications related to sentiment analysis on text. The first outcome is a novel archi-

tecture suitable to filter out neutral content in a time and resource effective manner.

The framework for subjectivity detection consists in the effective integration of CNNs

and the newly proposed BNELM, where the former learns significant features from the

training set and, hence, feeds them to the latter. Secondly, the chapter presents an

inspection algorithm designed to link psychological models with the properties of nu-

merical embedding for text. This analytic instrument sets the basis for the development

of consistent embedding of affective properties of the terms . As a consequence, the

inference problem becomes simpler implying a training process and resulting predictors

that can be accomplished using relatively simple models.

Finally, Chapter 6 produces a formal evaluation of the role played by deep convolutional

architectures in the task of image polarity detection. In particular, existing state-of-the-

art architectures are compared in term of generalization performances and computational

cost providing a strong starting point for the development of predictors in resource

constrained systems.

There are several extensions of the proposed work that could be explored. The im-

plementation on FPGA of the training phase of fast learning approaches described in

Chapter 2 would offer a low power solution for the training of classifiers in embedded

devices. Similar observations hold for the tensor based approach discussed in Chapter

3. A further extension of the given results involves a deeper study on the application of

the techniques proposed in chapters 2, 3 on the applications discussed in chapters 6, 5.
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