5,133 research outputs found

    Cooperative Task Planning of Multi-Agent Systems Under Timed Temporal Specifications

    Full text link
    In this paper the problem of cooperative task planning of multi-agent systems when timed constraints are imposed to the system is investigated. We consider timed constraints given by Metric Interval Temporal Logic (MITL). We propose a method for automatic control synthesis in a two-stage systematic procedure. With this method we guarantee that all the agents satisfy their own individual task specifications as well as that the team satisfies a team global task specification.Comment: Submitted to American Control Conference 201

    Decentralized Abstractions and Timed Constrained Planning of a General Class of Coupled Multi-Agent Systems

    Full text link
    This paper presents a fully automated procedure for controller synthesis for a general class of multi-agent systems under coupling constraints. Each agent is modeled with dynamics consisting of two terms: the first one models the coupling constraints and the other one is an additional bounded control input. We aim to design these inputs so that each agent meets an individual high-level specification given as a Metric Interval Temporal Logic (MITL). Furthermore, the connectivity of the initially connected agents, is required to be maintained. First, assuming a polyhedral partition of the workspace, a novel decentralized abstraction that provides controllers for each agent that guarantee the transition between different regions is designed. The controllers are the solution of a Robust Optimal Control Problem (ROCP) for each agent. Second, by utilizing techniques from formal verification, an algorithm that computes the individual runs which provably satisfy the high-level tasks is provided. Finally, simulation results conducted in MATLAB environment verify the performance of the proposed framework

    Harvesting natural resources: management and conflicts

    Get PDF
    It is reasonable to consider the stock of any renewable resource as a capital stock and treat the exploitation of that resource in much the same way as one would treat accumulation of a capital stock. This has been done to some extent in earlier papers containing a discussion of this point of view. However, the analysis is much simpler than it appears in the literature especially since the interaction between markets and the natural biology dynamics has not been made clear. Moreover renewable resources are commonly analyzed in the context of models where the growth of the renewable resource under consideration is affected by two factors: the size of the resource itself and the rate of harvesting. This specification does not take into account that human activities other than harvesting can have an impact on the growth of the natural resource. Furthermore, natural resource harvesting are not productive factories. Fishery economic literature (based on the foundations of Gordon, 1954; Scott, 1955; and Smith, 1963) suggests particular properties of the ocean fishery which requires tools of analysis beyond those supplied by elementary economic theory. An analysis of the fishery must take into account the biological nature of fundamental capital, the fish and it must recognize the common property feature of the open sea fishery, so it must allow that the fundamental capital is the subject of exploitation. The purpose of this paper is the presentation of renewable resources dynamic models in the form of differential games aiming to extract the optimal equilibrium trajectories of the state and control variables for the optimal control economic problem. We show how methods of infinite horizon optimal control theory may be developed for renewable resources models.Renewable resources; exploitation of natural resources; dynamic optimization; optimal control

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201
    • …
    corecore