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Abstract 
It is reasonable to consider the stock of any renewable resource as a capital stock and 
treat the exploitation of that resource in much the same way as one would treat 
accumulation of a capital stock. This has been done to some extent in earlier papers 
containing a discussion of this point of view. However, the analysis is much simpler 
than it appears in the literature especially since the interaction between markets and 
the natural biology dynamics has not been made clear. Moreover renewable resources 
are commonly analyzed in the context of models where the growth of the renewable 
resource under consideration is affected by two factors: the size of the resource itself 
and the rate of harvesting. This specification does not take into account that human 
activities other than harvesting can have an impact on the growth of the natural 
resource. Furthermore, natural resource harvesting are not productive factories. 
Fishery economic literature (based on the foundations of Gordon, 1954; Scott, 1955; 
and Smith, 1963) suggests particular properties of the ocean fishery which requires 
tools of analysis beyond those supplied by elementary economic theory. An analysis 
of the fishery must take into account the biological nature of fundamental capital, the 
fish and it must recognize the common property feature of the open sea fishery, so it 
must allow that the fundamental capital is the subject of exploitation. The purpose of 
this paper is the presentation of renewable resources dynamic models in the form of 
differential games aiming to extract the optimal equilibrium trajectories of the state 
and control variables for the optimal control economic problem. We show how 
methods of infinite horizon optimal control theory may be developed for renewable 
resources models. 
 

Keywords: Renewable resources; exploitation of natural resources; dynamic 
optimization; optimal control.  
 

JEL classifications:  C61, C62, Q32 

 

                                                 
[1] Paper presented in the 11th Annual International Conference organized by the 
Association for Public Economic Theory (PET10) at Boğaziçi University, Istanbul 
Turkey, June 25 2010. 
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1. Introduction 

Differential equations in dynamical systems (either in a continuous or a 

discrete framework) are of common use in most models that explain the optimal 

management of natural resources extraction. These systems depend on more than one 

parameter that measure different economic and biological characteristics of the 

exploited resource, so the structural stability is a key point to study, i.e. if the 

qualitative dynamical properties of the system persist when its structure is perturbed. 

In this context, the study of the structural stability is the first step to follow in the 

analysis of the system.  

Moreover, many economic problems can be formulated as dynamic games in 

which strategically interacting agents choose actions that determine the current and 

future levels of a single capital stock. Consider, for example a single capital stock of 

an exhaustible or reproductive resource that is simultaneously exploited by several 

agents that do not cooperate. Each agent chooses an extraction strategy to maximize 

the discounted stream of future utility. The actions taken by agents not only determine 

their levels of utility but also the level of the capital stock. There are several 

implications of the above formulation. First, the actions taken by agents determine the 

size of a single capital stock that fully describes the current state of the economic 

system. Second, if there is no mechanism that forces players to coordinate their 

actions, they will act strategically and play a non–cooperative game. Third, the 

equilibrium outcome will critically depend on the strategy spaces available to the 

agents.  

There is a wide choice of possible actions (strategies) taken by the agents. 

They may choose a simple time profile of actions and pre-commit themselves to these 

fixed actions over the entire planning horizon: the players then use open–loop 

strategies. Alternatively players might choose feedback or closed–loop or Markov 

strategies, they condition their actions on the current state of the system and react 

immediately every time the state variable changes, hence they are not required to pre-

commit. We expose an example of several agents strategically exploiting the same 

renewable resource, like a stock of fish in order to expose the difference between 

open–loop and closed–loop strategies. If the fisheries use open–loop strategies they 

specify a time path of fishing effort in the beginning of the game and commit 

themselves to stick to these pre-announced actions over the entire planning horizon. 

Alternatively, if they use feedback strategies they choose decision rules that determine 
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current actions as a function of current stock of the resource. Feedback decision rules 

capture the strategic interactions present in a dynamic game. If a rival fishery makes a 

catch today that necessarily results in a lower level of the fish stock, the opponents 

react with actions that take this change in the stock into account. In that sense closed – 

loop strategies capture all the features of strategic interactions. 

Within a differential game framework the feedback strategies have the 

property that players choose a state dependent decision rule that for every subgame 

assigns an equilibrium action to the current state of the economic system. This is in 

short the time consistent property in the subgame perfectness sense. The issue of time 

consistency is central in modern economic theory. Since the influential work by 

Kydland and Prescott (1977) economists have attempted different approaches to 

resolve the inconsistency problem. One possible strategy is to consider the interaction 

between the policy maker and the agent in a dynamic game setup. Many researchers 

such as Cohen and Michel (1988) found that a time consistent outcome corresponds to 

a feedback Nash equilibrium.  

On the other hand, it is natural to consider the stock of any renewable resource 

as a capital stock and treat the exploitation of that resource in much the same way as 

one would treat accumulation of a capital stock. This has been done to some extent by 

Clark (1976), Clark and Munro (1975), whose papers contain a discussion of this 

point of view. However, the analysis is much simpler than it appears in the literature 

especially since the interaction between markets and the natural biology dynamics has 

not been made clear. Moreover renewable resources are commonly analyzed in the 

context of models where the growth of the renewable resource under study is affected 

by two factors: the size of the resource itself and the rate of harvesting. This 

specification does not take into account that human activities other than harvesting 

can have an impact on the growth of the natural resource (Levhari and Withagen, 

1992).  

Some externalities may arise in maximum sustained yield programs of 

replenishable natural resource exploitation followed by the two fundamental 

problems. The first is that the existence of a social discount factor (or interest rate) 

may cause the maximum sustained yield program to be nonoptimal (Plourde, 1970). 

The second problem relates to the many externalities which may be present in 

harvesting resources. The most significant of these externalities is the stock 

externality in production. That is, there is a potential misallocation of inputs in the 
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production of natural resource product due to the fact that one input, the natural 

resource, contributes to production but may not receive payment, because no one 

owns the resource. 

Finally, natural resources harvesting differs from production. Renewable 

resources economic literature (based on the foundations of Gordon, 1954; Scott, 1955 

and Smith, 1963), suggests particular properties of the ocean fishery which requires 

tools of analysis beyond those supplied by elementary economic theory. An analysis 

of the fishery must take into account the biological nature of fundamental capital, the 

renewable resource, and it must recognize the common property feature of land or 

sea, so it must allow that the fundamental capital is the subject of exploitation.  

2. The optimal control of the recreational model 

Consider an infinite horizon economy harvesting a natural resource. We 

denote by ( )tν  the resource stock at time t , by ( )h t  the harvesting function of the 

resource caused by overall human activities and by ( )( )g tν  the regeneration of the 

natural resource. The function ( )( )g tν  is set to zero in the trivial case which the 

natural resource is a non renewable one. With these functions in the model we obtain 

the system dynamics. 

          ( ) ( )( ) ( )t g t h tν ν= −                       ( )2.1  

This is an accounting identity stating that the natural resource accumulation ( )tν  

must be equal to the regeneration of the natural resource minus harvesting by human 

activities. It is assumed that the production regeneration function is [ ): 0,g ∞ →  is 

continuous, twice continuously differentiable on ( )0,∞  and strictly concave. In 

addition, we assume that ( ) ( )
0

0 0, lim 0g g
ν→

′= =∞ , and that there exists a unique 

resource stock 0ν >  such that ( ) 0g ν = . This implies that ( ) 0g ν >  for all 

( )0,ν ν∈  and ( ) 0g ν <  for all ν ν> . 

The goal of the decision maker is to maximize the discounted utility derived 

over the infinite planning interval [ )0,∞ . That is, the objective functional is 

   ( )( )
0

te F h t dtρ
∞

−∫                    ( )2.2  
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where [ ): 0,F ∞ →  is the utility function. Although the analysis can be carried out 

for a very general class of utility functions, we restrict ourselves to functions of the 

form 

                 ( )
( )1 if 0,1

ln if 0

h
F h

h

β

β

β
β

β

⎧⎪ −⎪ ∈⎪⎪=⎨⎪⎪ =⎪⎪⎩

 

These utility functions have a constant elasticity of intertemporal substitution 

( )1 1 β−  often used in studies of economic growth. The optimal control consists in 

maximizing ( )2.2  subject to the system dynamics ( )2.1  and the non negativity 

constraints ( ) ( )0, 0t h tν ≥ ≥ . 

2.1. Equilibrium analysis 

The Hamiltonian of the problem under consideration is 

( ) ( ) ( ), , ,H h t F h g hβν λ λ ν⎡ ⎤= + −⎣ ⎦ . A necessary and sufficient condition that ( )h t  is 

an interior maximum of ( )( ), , ,H t h tν λ  is 

 ( )( ) ( ) ( )1F h t h t tβ
β λ−′ = =                   ( )2.3  

Equation ( )2.3  has several implications for the costate ( )tλ  and the control function 

( )h t . 

First, for an interior maximum of the Hamiltonian the costate has a positive 

value and second the maximizing value of the control is independent of the state 

variable ( )tν . Solving ( )2.3  w.r.t the control the latter can be written as 

( ) ( ) ( )1 1h t t βλ −= . Substituting the control found as a function of the costate into the 

Hamiltonian, the maximized Hamiltonian can be written as a function of the costate 

and state variables only, that is ( ) ( )( ) ( ) ( )1 1 1* , ,H t F gβ β β
βν λ λ λ λ ν− −= − + , which 

implies that the maximized Hamiltonian is strictly concave w.r.t to the state variable 

( )tν  whenever ( ) 0tλ > . 

Consider now the time derivative of the costate variable. Sufficient conditions 

for the maximization problem (see for example Grass et al, 2008) yield the equation  

   ( ) ( ) ( ) ( ) ( )Ht t t t gλ ρλ λ λ ρ ν
ν

∂ ⎡ ⎤′=− + ⇒ = −⎣ ⎦∂
                 ( )2.4  
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Equation ( )2.4  implies that the stock converges to the steady state level *ν   that is the 

unique solution of the equation ( )g ν ρ′ = , which means,  in the steady states, the 

biological rate of growth must be equal to the discount factor thought as the interest 

rate. 

Further differentiation of ( )2.3  w.r.t. time yields ( )
( ) ( ) ( )

( )

11 h t h t
t

h t

ββ
λ

−
−

=  

and substitution of ( )2.4  in to the latter and making use of ( ) ( ) ( )1 1h t t βλ −=  the final 

equation of time derivative of the harvesting function will be the following 

( ) ( ) ( )( ) ( )1h t h t g tρ ν β⎡ ⎤′= − −⎢ ⎥⎣ ⎦                                 ( )2.5  

Equations ( )2.1  and ( )2.5  is the system of differential equations that constitutes the 

main tool of economic analysis for the optimal control harvesting model. But first of 

all we can observe from equation ( )2.5  a kind of modified Hotelling rule. That is the 

harvesting rate ( ) ( )h t h t  must be equal to the biological rate of growth of the 

population ( )( )g tν′  minus the discount rate ρ  multiplied by the elasticity of 

intertemporal substitution ( )1 1 β− . Equation ( )2.5  verifies the claim of the Hotelling 

rule in the case of non –renewable resources, that is in the absence of the regeneration 

function, which becomes  ( ) ( ) ( )1h t h t ρ β= −  ( )2.6 and the latter says the utility 

grows at the interest rate, since ( ) ( ) ( ) ( ) ( ) ( ) ( )1u t u t h t h t u t u tβ ρ= − ⇒ =− . 

Into the two–dimensional system of differential equations ( )2.1  and ( )2.5 we observe 

that there is only one initial condition ( ) 00ν ν= , which implies that there exist 

infinitely many solutions of the system. Fortunately, the transversality condition 

( ) ( )lim 0t

t
e t tρ λ ν−

→∞
=  will help us to reduce the number of candidates for optimality to 

a small number, even in a unique candidate. We have drawn the phase diagram of the 

system ( )2.1 , ( )2.5 in order to expose the analysis that follows. 

The solid concave curve ( )h g ν= , the locus of all points at which the right 

hand side of ( )2.1  becomes zero. The vertical line is the locus ν ν= , where ν  is the 

unique resource stock satisfying the steady state condition ( )g ν ρ′ = . This line 
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together with the horizontal coordinate axis is the set of all points where the right 

hand side of ( )2.5  becomes zero. The phase space is partitioned in four regions by the 

two isoclines and for each region the flow is determined by a unique direction as the 

arrows shows. The three points of intersection of the two isoclines are the origin 

( )0,0  the point ( )( ), gν ν  and the point ( ),0ν . The non trivial equilibrium point 

( )( ), gν ν  has the property of saddle point, as can see by computing the Jacobian 

matrix, J , and its eigenvalues. 

                    h                                 0h =  

 

 

 

              ( )g ν                                                                             ( )( ), gν ν  

                                                                            0ν =  

 

 

 

                      0                                  ν                              ν                    ν                         

Figure 1. Phase diagram of the system ( )2.1 , ( )2.5  

 

Simple calculations yield the Jacobian  

                 
( ) ( ) ( )

1
1 0

J
A g g

ρ
ν ν β

⎛ ⎞− ⎟⎜ ⎟=⎜ ⎟⎜ ′′ ⎟⎜ = −⎝ ⎠
 and 0A<  caused by assumptions. 

Consequently the two eigenvalues are ( )2
1,2 2 2r Aρ ρ= ± −  and with 0A<  we 

know that 1r  is negative while 2r  is positive. The last result for the two eigenvalues 

with different signs proves that ( )( ), gν ν  is indeed a saddle point. It follows that for 

every initial state ( )0 0,ν ∈ ∞  there exists a unique solution of the system ( )2.1 , ( )2.5  

that converges to the saddle point. The saddle point path is depicted by the dotted line 

in figure 1. Along this solution we have ( ) 0h t >  and ( ) 0tν >  and the corresponding 
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costate trajectory, which determined by ( )2.3  is also positive. We record the optimal 

natural resources management problem into the following proposition. 

Proposition 2.1.  

The optimal management of the renewable resources model for which the benefits 

enjoyed by harvesting exhibit a constant elasticity of intertemporal substitution, 

admits a unique equilibrium path which converges to the saddle point. Along to the 

equilibrium path all the relevant variables even the costate have positive real values. 

 

3. Extension in two state variables 

Intensive commercial extraction of natural resources requires sometimes 

improvements on the harvesting equipment in order to extract efficiently. But better 

equipment is subject to adjustment costs, e.g. electronic machines, vessels, boats and 

workmen hiring are some of these adjustment costs. The supposition of quadratic 

adjustment costs simplifies the arithmetic but is not essential. With these additional 

assumptions one can treat the harvesting effort not as an instantaneous control but 

rather as a stock variable, and integrating over past adjustments the new control 

variable ( )e t  enters into the model, which describes the evolution of the harvesting 

effort. Moreover, another modification is made in the objective functional, 

introducing the adjustment costs, ( )( )C e t . In this section we stress the analysis in 

concave natural resources regeneration function ( )g ν . The concavity of the function 

( )g ν  states that the law of diminishing returns applies here too.  With these 

modifications the optimal management problem becomes, 

               
( )

( ) ( )( ) ( )( )
0

max ,t

e t
e U h t t C e t dtρ ν

∞
− ⎡ ⎤−⎢ ⎥⎣ ⎦∫          ( )3.1  

subject to             
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

0

, 0 3.2

, 0 3.3

t g t h t

h t e t h h

ν ν ν ν= − =

= =
   

Model ( ) ( )3.1 3.3−  is an optimal control with two state and one control variable, and 

with a quadratic cost function. The necessary conditions required by the maximum 

principle, provide the following four dimensional system of equations: 
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( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )1 1 2 2

, 3.4 3.5

, 3.6 3.7

t g t h t h t e t

H H
h

ν ν

λ ρλ λ ρλ
ν

= − =

∂ ∂
=− + =− +

∂ ∂

     

   together with the optimality 1 0H C
e

λ
∂ ′=− + =
∂

                   ( )3.8 .  

The function, ( ) ( )( ) ( )( ) ( )( ) ( ) ( )1 2,H U h t t C e t g t h t e tν λ ν λ⎡ ⎤= − + − +⎢ ⎥⎣ ⎦  is the 

Hamiltonian current value of the problem ( ) ( )3.1 3.3−  and 1 2,λ λ  are the costate 

variables. According to Hartman (1963), the behavior of the trajectories of system 

( ) ( )3.4 3.7−  around certain equilibrium points can be deduced from the qualitative 

study of the linear system y Jy= , where J  is the Jacobian matrix given by the 

partial derivatives of the functions of the right hand side of system ( ) ( )3.4 3.7−  w.r.t. 

each variable.  The possibility of limit cycles appearance, in models with two state 

variables, was established by Dockner and Feichtinger (1991). Now, we can use an 

explicit quadratic formula for the adjustment cost function that helps the qualitative 

analysis of the system( ) ( )3.4 3.7− . Using the cost function ( ) 21 2C e eβ= 0β> ,  

( )3.8  becomes 1e λ β=  and finally the conditions that determine the optimal plan of 

a central decision maker, after the appropriate substitutions, are (time is neglected to 

avoid notation overburden) : 

                                

( ) ( ) ( )
( ) ( )

( ) ( )
( )

0

1 0

1 1

2 2 1

, 0 3.9

, 0 3.10
3.11
3.12h

g h

h h h
g U

U
ν

ν ν ν ν

λ β
λ ρ λ
λ ρλ λ

= − =

= =
′= − −

= − +

 

3.1. Theoretic results 

We study the dynamic properties of the system ( ) ( )3.9 3.12− . Stability of this system 

is restricted to saddlepoint stability, i.e., to a two dimensional manifold in the four 

dimensional space of state and costates. According to Dockner’s explicit formula 

(Dockner, 1985) the four eigenvalues , 1,..., 4ir i = of the linearized dynamics of the 

canonical equations given by: 

                    2 2
1,2,3,4 2 4 2 4detr Jρ ρ= ± −Ψ ± Ψ −        ( )3.13  

and the magnitude Ψ  is the sum of determinants of submatrices of the Jacobian J  

expressed as: 
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                  1 22

1 1 1 12 2

1 22

2

h h
hh

hh

ν ν ν ν
ν λ λλ

λ λ λ λλ λ
ν λ λλ

∂ ∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂∂ ∂

Ψ = + +
∂ ∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂∂ ∂

       ( )3.14  

From Dockner’s formula ( )3.13 , it is well known that sufficient conditions for the 

saddle point are: first the positive determinant of the Jacobian matrix and second the 

negativity of  the coefficient Ψ  given by( )3.14 . A positive determinant of the 

Jacobian is crucial for stability, because a negative determinant restricts the stability 

to a one dimensional manifold of initial conditions (with one negative eigenvalue, the 

other three are positive or have positive real parts) and the generic solution is 

unstable. The following figure classifies the eigenvalues depending on det J  and Ψ .  

                                               det J 

                                                        ( )
( )

( )

1,2

3,4

2 2

,
Re 0

Re 0

det 2 2

ir i
r

r

J ρ

∈ ∀

>

=

= Ψ + Ψ

 

                                Region II                                 ( )2det 2J = Ψ  

                                                                      
( )

,
Re 0
i

i

r i
r

∈ ∀

>
 

          
1,2 3,4

,
0, 0

ir i
r r
∈ ∀

> <
                   

( )
( )

1,2

3,4

,

Re 0

Re 0

ir i

r

r

∈ ∀

>

<

      Region III 

                  Region I                                                  
( )

,
Re 0

, , 0

i

i

i i

r i
r or

r i r

∈ ∀

>

∈ ∀ >

Region IV 

                           Region V                                                                                 Ψ  

                       
( )

1,2,4 3

1 3 2,4

0, 0

0, 0, Re 0

r r or

r r r

> <

> < >
            

( )
1,2,4 3

1 3 2,4

0, 0

0, 0, Re 0

r r or

r r r

> <

> < >
 

 

 

Figure 2. Classification of the eigenvalues depending on det J  and Ψ . The solid 
curve is given by ( )22Ψ  and the dashed curve by ( ) ( )2 22 2ρΨ + Ψ . 

 

As we can see in figure 2 there not exist at least one case for which all 

eigenvalues are negative numbers, the latter means that complete stability is 
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impossible. Dockner and Feichtinger (1991) show that a necessary and sufficient 

condition for the eigenvalues to be pure imaginary numbers is ( )21
2det J > Ψ , 

( )2 21 1
2 2det J ρ= Ψ + Ψ . In figure 2 the necessary and sufficient conditions correspond 

to the eigenvalues 3,4r  that cross the imaginary axis when they go from one side of the 

dashed curve to the other. Considering the discount rate ρ  as a parameter, the values 

of ρ  for which the conditions are met, are possible Hopf bifurcations[2] (Kuznetsov, 

1997) and a limit cycle will emerge if the complex eigenvalues 3,4r  crosses the 

imaginary axis with non zero velocity at 0ρ ρ= , i.e. ( )( )
0

3,4Re 0d
d ρ ρ

ρ
ρ =

≠  

Table 1. Classification of the equilibrium according to Ψ  and det J , where the 
regions depicted in figure 2. 
Region/curve Type of equilibrium Local behavior 

I Saddle node Monotonic 

II Saddle focus Transient oscillation 

III Focus Unstable 

IV Focus/node Unstable 

V Saddle Diverging except stable path 

 

Following Dockner’s formula ( )3.13  we compute the Jacobian J  of equations 

( ) ( )3.9 3.12−  at the equilibrium: 

               

1 0 0
0 0 0 1

0
1

h h

h hh

g

J
U g U U g

U U
νν ν

ν

β
ρ

ρ

⎡ ⎤′ −⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥′′ ′− − − −⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

 

and the determinant of J  is: 

 

      
( ) ( )2 hh hr g U g r g U U g U

J νν νν

β

′ ′ ′ ′′− + − − −
=          ( )3.15  

                                                 
[2] Hopf bifurcations occurs when there exist two pure imaginary eigenvalues of the Jacobian matrix. 
Hopf bifurcations, so called bifurcations of co–dimension one, are related to the existence of a simple 
real eigenvalue of Jacobian matrix equal to zero. The dynamic change produced by values of the 
parameter higher than the bifurcation value has the result of closed trajectories (limit cycles). The 
equilibrium point for which there exist any of these two types of eigenvalues is known as non 
hyperbolic equilibrium point. 
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Now we consider the one dimensional control problem without adjustment costs, 

studied by Berck (1981). The Hamiltonian current value of one dimensional problem 

is: ( ) ( )( )1 ,H U h g hν λ ν= + −  and the optimality conditions  

                         0h hH U λ= − =                                           ( )3.16  

                       ( )g Uνλ ρ λ′= − −                                         ( )3.17  

                        ( )g hν ν= −                                                   ( )3.18  

Setting the optimal control ( ),h φ ν λ= ,  the derivatives w.r.t. ,ν λ  

h hhh U Uν ν νφ= =−  and 1 hhh Uλ λφ= = . The Jacobian matrix Ĵ  of the one 

dimensional model without adjustment costs, after these calculations, becomes 

        
( )2

1ˆ h hh hh

h hh h hh

g U U U
J

U g U U U g U U
ν

νν νν ν

ν ν
ν λ

ρλ λ
ν λ

⎡ ⎤∂ ∂
⎢ ⎥ ⎡ ⎤′+ −⎢ ⎥∂ ∂ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥′′ ′− − + − −⎢ ⎥∂ ∂ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

 

Calculating the determinant of the Jacobian Ĵ  one can see that the determinant is 

                  
( ) ( )2ˆ h hh

hh

g U g g U g U
J

U
ν ννρ ρ′ ′ ′ ′′− + − −

=            ( )3.19  

Comparing ( )3.15  and ( )3.19  one can see that the relation between these 

determinants is    
ˆ

hhJ U
J

β
=         ( )3.20  . 

A simple observation of  ( )3.14  reveals that the three terms that summed are 

essentially, the first and second are the determinants of the one dimensional without 

adjustment costs problems, while the third measures the interaction between these one 

dimensional problems. Application of ( )3.14  yields  

                                    ( ) hhg g Uρ β′ ′Ψ = − +                   ( )3.21  

 Hence, the negative marginal growth of the natural resource 0g ′ ≤ ,  and  

0hh hU Uν= = , are assumptions that ensure saddle point stability. These assumptions 

fulfilled for example for logistic growth resource functions. 
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 4. The Gompertz law of population growth  

We consider the basic renewable resource model with a Gompertz growth 

function of the resource. The above growth function is given by the expression (see 

for instance Schafer, 1994) ( ) ( ) ( )( )1 lng t tν ν ν⎡ ⎤= −⎢ ⎥⎣ ⎦  

  

                  ( )g ν  

 

 

 

 

 

 

 

 

                                                   1                                              e                          ν  

Figure 3. The shape of the Gompertz growth function ( ) ( ) ( )( )1 lng t tν ν ν⎡ ⎤= −⎢ ⎥⎣ ⎦  

The Gompertz growth function fulfills the conditions 

( ) ( )lng ν ν′ =−         ( ) 1 0g ν
ν

′′ =− <      ( )0 0g =        

it is right–skew and has the same properties as the logistic growth function, e.g., it has 

the ‘pure compensation property’ in the sense of Clark (1976), and the upper 

stationary solution of ( )gν ν= , i.e., eν = , is asymptotically stable. 

With the Gompertz growth function the stock of the resource evolves according to the 

differential equation: 

            ( ) ( ) ( )( ) 1 21 lnt t t u uν ν ν⎡ ⎤= − − −⎢ ⎥⎣ ⎦  

where , 1, 2iu i =  is the harvesting function for the two players of the model. 

We define the fishing effort for the i  player as ( ) ( ) ( )i ia t u t tν= , then the game is a 

non cooperative one for which every agent choosing a time path of his own fishing 

effort ( )ia t  that maximizes the discounted utility. We transform the utility in the form 
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of an additive separable function, i.e. dependent on the fish stock ( )tν  and on utility 

that every player enjoys from harvesting ( )iu t  as well.  

We specify utility functions to be in logarithmic form given, arisen from the 

following utility function specification usually used in growth models. 

     ( )
( )

( )

1 0,1

ln 0
F

βν
β

ν β
ν β

⎧⎪ −⎪ ∈⎪⎪=⎨⎪⎪ =⎪⎪⎩

  

for which the elasticity of intertemporal substitution is given by ( )1 1 β− . We define 

( ) ( )lny t tν=  in the case 0β = . Easy calculations made in order to set up the 

problem. These calculations are:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )ln y t y td t

y t t t e t e y t t t y t
dt
ν

ν ν ν ν ν= ⇒ = ⇒ = = ⇒ =  and the 

transformed evolution equation now becomes 

( ) ( ) ( )( ) ( )
( )

( )( )
( ) ( )
1 2

1 21 ln 1 ln
t u ut t t u u t
t t t

ν
ν ν ν ν

ν ν ν
⎡ ⎤= − − − ⇒ = − − − ⇒⎢ ⎥⎣ ⎦  

( ) ( ) ( ) ( )1 21y t y t a t a t⇒ = − − −  which is the transformed stock evolution equation, 

that depends on the logarithm of the resource stock and on the players’ fishing effort 

as well. Utility function that maximized is dependent on the resource stock and on the 

effort as follows. We have assume that original present value maximized utility is 

dependent on the harvesting function, that is ( )( )
0

max lnt
ie u t dtρ

∞
−∫  but the latter can 

be transformed as follows: 

           

( )( ) ( )( ) ( )( ) ( )( )

( )
( )

( )( ) ( )( ) ( )

0 0

0 0

max ln max ln ln ln

max ln ln max ln

i i

i i

t t
i iu u

it t
iu a

e u t dt e u t t t dt

u t
e t dt e a t y t dt

t

ρ ρ

ρ ρ

ν ν

ν
ν

∞ ∞
− −

∞ ∞
− −

⎡ ⎤= − +⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥ ⎡ ⎤⎟= ⎜ + = +⎟ ⎢ ⎥⎢ ⎥⎜ ⎣ ⎦⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫
 

The differential game now becomes  

                             ( )( ) ( )
0

max ln
i

t
ia

e a t y t dtρ
∞

− ⎡ ⎤+⎢ ⎥⎣ ⎦∫  

s.t.                           ( ) ( ) ( ) ( )1 21y t y t a t a t= − − −  
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In what follows we explore the Nash equilibria of the game which is may be a time 

consistent one, in the sense of  subgame perfectness.  

 Time consistency could be seen as a minimal requirement for the credibility of 

an equilibrium strategy. If player , 1, 2i i =  had an incentive to deviate from his 

strategy iφ  during the time interval [ )0,T , the other player , 1,2j j =  would not 

believe his announcement of  iφ  in the first place. Consequently, player j  computes 

his own strategy taking into account the expected future deviation of player i  which, 

in general, would lead to strategies different from ,j j iφ ≠ . Open loop informational 

structure strategies are not in general time consistent, while closed loop or Markovian 

strategies are certainly time consistent (Dockner et al., 2000). On the other hand 

subgame perfectness is the concept for which an equilibrium strategy remains 

unchanged regardless the starting period the game begins. So, subgame perfectness is 

a sole requirement for the credibility of an equilibrium strategy that is time 

consistency for that strategy. We conclude if we can found an equilibrium strategy for 

the game, independently on the initial state and regardless the informational structure 

employed, the strategy has the subgame perfectness property and can be a time 

consistent strategy. 

4.1 Equilibrium analysis 

 Proposition 4.1 

The game with the Compertz growth function in the resource stock evolution admits 

an equilibrium strategy of the form 1ia ρ= +  that is time consistent. 

Proof 

The Hamiltonian of the above problem for the , 1, 2i i =  player is  

( ) ( ) ( ) ( ) ( ) ( )1 2ln 1i iH y t a t t y t a t a tλ ⎡ ⎤= + + − − −⎣ ⎦  

and the conditions for an interior solution are 
( )

( ) ( )
( )

1 10i
i

i i

H t a t
a a t t

λ
λ

∂
= − = ⇒ =

∂
  

While the adjoint equation becomes ( ) ( ) ( ) ( ) ( )1 1iHt t t t
y

λ ρλ λ ρ λ
∂

=− + ⇒ =− + +
∂

 

with solution ( ) ( )11
1

tt e ρλ
ρ

+= + Ω
+

 along the transversality condition 

( ) ( )lim 0
t

t y tλ
→∞

= , which must satisfied, is reasonable to set 0Ω= , and the costate 
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variable becomes ( ) 1
1

tλ
ρ

=
+

. Substituting the value of the costate variable into the 

strategy, the resulting strategy becomes 1ia ρ= +  independent on the initial state, 

consequently is time consistent. 

Proposition 4.2 

In the case the players cooperate the joint cooperative time consistent equilibrium 

harvesting strategy is given by the expression ( ) 1
2

a t ρ+
= . 

Proof 

The evolution equation in the cooperative case becomes 

( ) ( ) ( )1 2y t y t a t= − −  where ( ) ( ) ( )1 2a t a t a t= +  is the joint fishing effort of the two 

players. Hamiltonian for the cooperative case is, 

( ) ( ) ( ) ( ) ( )ln 1 2cH y t a t t y t a tλ ⎡ ⎤= + + − −⎣ ⎦  and the rest of algebraic manipulations for 

maximization reveals the cooperative equilibrium strategy 1
2

a ρ+
=  which is again 

time consistent.  

4.2. The Value function 

Proposition 4.3 

In the case the players do not cooperate the value function for each player is 

( )1 1ln 1 2
1 1i

yV ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥= + + + −⎢ ⎥+ +⎣ ⎦

 

Proof 

We verify that equilibrium strategies are by proposition 4.1 given. The satisfactory 

HJB becomes:  

( ) ( ) ( ) ( ) ( )max ln 1i
i i i j

VV y t a t y t a t a t
y

ρ
⎧ ⎫⎪ ⎪∂⎪ ⎪⎡ ⎤= + + − − −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪∂⎪ ⎪⎩ ⎭

 

while maximization of the LHS of the HJB equation is: 

( ) ( ) ( ) ( ) ( )

( )

ln 1
10

i
i i j

i

i i

Vy t a t y t a t a t
y V

a y a t

⎡ ⎤∂ ⎡ ⎤⎢ ⎥∂ + + − − −⎢ ⎥⎣ ⎦⎢ ⎥∂ ∂⎣ ⎦ = ⇒ =
∂ ∂

 ( )3.1 . 

Differentiation of the value function w.r.t the state variable y  yields 1
1

iV
y ρ

∂
=

∂ +
 and 

with substitution in the above ( )3.1  1ia ρ= + . 
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5. A Stackelberg Game of Natural Resources Extraction 

 One basic difference between the extraction of non renewable and renewable 

resources is the fact the renewable resource is subject to regeneration while the former 

isn’t. In this way the regeneration function that appears in the right hand side of the 

resource accumulation equation is not present in the case of non renewable resources. 

Similarly, if we can distinguish the two phases of every biomass in the regeneration 

and living phases, in the last phase of its live (for which no recreation process exists) 

the regeneration function vanishes from the model.  

A second but with much more economic implication difference between the 

natural resources is that some renewable, like fish, can be thought as a migratory 

capital. For the recreational reasons the renewables are not stay hooked in a 

determined sea place but migrate from the place in that spawn eggs to another place to 

find food and so forth. For example, pacific salmon travels along the coastline of the 

Pacific Ocean that includes Canada and United States spatial borders, staying in the 

USA high seas for some years, depending on the species, and return back into the 

Canadian seas for breeding. An economic implication for the fishery economy of each 

involved country could be the fact of the sequential mood of play (countries thought 

as players of the fishery game), caused by the migration nature of the resource. 

Fishery takes place regardless the place in that natural resource temporarily lives but 

one of the two players of the game (the leader) plays first, while the other follows. In 

this section we propose a sequential dynamic game, well known as a Stackelberg 

game, of natural resource exploitation for which the resource migrates form a spatial 

harvesting place into another. 

5.1. The model 

We assume the linear growth function of the form ( )g Aν ν=  and with this 

function the evolution equation that describes the resource rate of growth becomes 

( ) ( ) ( ) ( )1 2t A t h t h tν ν= − −  where , 1, 2ih i =  is the harvesting rate for both players. 

Linearity implies, in the absence of human harvesting, an exponential growth of rate 

for the resource as the solution of equation ( ) ( )t A tν ν=  becomes ( ) ( )0 Att eν ν= . 

The latter may be in reality, but under ideal conditions, where the availability of space 

and other resources does not inhibit growth, many biological populations are observed 

to grow at an approximately exponential rate initially. As the growth of the fish is 

limited by neither the big spatial size of coastline in that travels, nor by the infinite 
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food supply along the same spatial coastline in that species lives. Finally it is true that 

species survival is endangered by mass exploitation rather than by natural forces. 

The objective of player 1 is to maximize the discounted sum of its instantaneous net 

benefits ( )( )1 1 1
0

tJ e R h t dtρ
∞

−= ∫  subject to the evolution equation. 

Similarly the objective of player 2 is to maximize 

( ) ( )( )2 2 2 1
0

, ,tJ e R h t h t dtρ ν
∞

−= ∫  subject to the same constraint. Assuming that both 

players use Markovian informational structures, to ensure time consistency, we seek 

to find in equilibrium the stationary strategies ( )1 1h h ν=  and ( )( )2 2 1 ,h h h ν ν= . The 

above strategies follows the sequential (or Stackelberg) nature of the game, because 

the first player (the leader) conditions his actions only on the current resource stock 

while the second (the follower) is informed of the catch of the first player before 

taking its action. Since the harvesting rate of the follower depends on the rate of the 

leader, which it observes before taking its own rate, and since the leader knows this 

(and takes into account), the solution of the described game is a purely Stackelberg 

one. Normally a Stackelberg equilibrium is a Nash equilibrium for which the strategy 

space of the follower is restricted over the set of all feasible reaction functions[3]. 

5.2. Equilibrium Analysis 

The net benefits for every player of the game is assumed to depend on the 

harvesting rate ( )ih t  which is dependent on the fishing effort ( )iE t  and on the 

remaining stock of fish biomass ( )tν , in a multiplicative form ( ) ( ) ( )i ih t E t tν= . As 

fishing effort we may think for example the total number of vessel – days per unit 

time or in other cases more detailed information regarding the number of nets, lines, 

or traps hauled is available. On the other hand, the stock may be a good proxy for the 

recreational value of the resource (think of a sand beach), or it may have a direct 

effect on the agents’ profit (for example, the cost of harvesting fish may depend on 

the stock of fish). With these considerations net benefits can take the functional form. 

( ) ( )( ) ( ) ( ), ,0 1 2i i it E t E t t
β

υ ν ν β⎡ ⎤= < <⎣ ⎦ , which is a concave function in the harvest 

rate ih . For example, if the harvest is sold in an international market at a constant 

                                                 
[3] See Dockner et al (2000) chapter 5 for more details about the hierarchical games 
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price, then the net benefit determined as the total revenues minus the total costs. If 

total revenue is linear and total cost is convex, then net benefit is concave. In the case 

where the harvest sold in the home country’s market is segregated from the world 

market, the net benefit to the home country is taken to be the sum of consumers’ 

surplus plus the producers’ surplus, since the consumer’s surplus is normally concave 

and the cost function of catching fish is usually concave the final result of the net 

benefit is a concave function. Furthermore, for the special nature of some species for 

which the recreation of the population occurs in some protected areas at which 

commercial fishing is prohibited by the law and in some cases the areas are not the 

open seas (e.g. the pacific salmon) but the rivers, we assume the regeneration function 

becomes zero and we treat the natural resource reduction caused only by human 

activities like harvesting. 

With these assumptions, the dynamic problem is formulated as follows. 

 

s.t. ( ) ( ) ( ) ( )( ) ( )
2

1 2
1

, , j
j

t f t E t E t E tν ν
=

= =−∑  

In the strongly time consistent Nash equilibria the following HJB equation must be 

satisfied   ( )
( )

( )
2

1

max
i

i
i i jE j

V
V E E tβ ν
ρ ν

ν =

⎧ ⎫⎡ ⎤⎪ ⎪∂⎪ ⎪⎢ ⎥= −⎨ ⎬⎢ ⎥⎪ ⎪∂⎪ ⎪⎣ ⎦⎩ ⎭
∑  

Maximization of the right hand side of the above equation yields the feedback 

equilibrium strategies 

  

( ) ( ) ( )
( )

( )

( )
( )

2

1 1

1 1
1 1

*

0

5.1

i
i j

j i
i

i

i

i i
i

V
E E t

V
E

E

V

E E
V

β

β β

β β

β

β

ν
ν

ν ν
βν

ν

ν
βνν

νβν
ν

= −

− −

⎧ ⎫⎡ ⎤⎪ ⎪∂⎪ ⎪⎢ ⎥∂ −⎨ ⎬⎢ ⎥⎪ ⎪∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭ = ⇒ = ⇒
∂ ∂

⎡ ⎤ ⎡ ⎤∂⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂⇒ = ⇒ =⎢ ⎥ ⎢ ⎥

∂⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂⎣ ⎦ ⎣ ⎦

∑

       

Substitution of the strategy into the satisfactory HJB equation yields 

( ) ( )
0

0

max
i

t
iE

e E t t dt
βρ ν

∞
−

≥
⎡ ⎤⎣ ⎦∫
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( )
( ) ( )

( )
( )

( ) ( )

1
11

1

1
1

2

1 2

i
i

ii

i
i

VV
VV

V
V

β

β
β

β β

β
ββ

β

βν βν
ρ ν ν

ννν
νν

ν
ρ ν βν β

ν

−
−

−
−

⎡ ⎤ ⎧ ⎫⎪ ⎪⎛ ⎞⎢ ⎥ ⎪ ⎪⎡ ⎤⎟⎜⎢ ⎥⎟ ⎪ ⎪⎜ ⎢ ⎥⎟ ⎪ ⎪⎜⎢ ⎥⎟ ⎪ ⎪⎜ ∂ ⎢ ⎥⎟ ⎪ ⎪⎜⎢ ⎥⎟= − ⇒⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟⎡ ⎤ ⎪ ⎪∂∂∂ ⎢ ⎥⎟⎜ ⎪ ⎪⎢ ⎥⎟⎢ ⎥⎜ ⎪ ⎪⎢ ⎥⎟⎜⎢ ⎥ ⎪ ⎪⎟⎢ ⎥ ⎢ ⎥∂⎜ ⎟∂ ⎣ ⎦⎪ ⎪⎝ ⎠⎢ ⎥⎣ ⎦ ⎪ ⎪⎩ ⎭⎢ ⎥⎣ ⎦

⎡ ⎤∂⎢ ⎥⇒ = −⎢ ⎥∂⎣ ⎦

   

We try with the value function of the form ( )
( )2 2 2 12i

i

V
V β βν

ν βν β ν
ν

−∂
= ⇒ =

∂
 and 

further substitution into the satisfactory HJB yields the feedback Nash equilibrium 

strategies:    ( )*

2 4iE
a

ρν
ν =

−
                     ( )5.2  

We turn now into the Stackelberg game. We suppose player 1 is the leader. 

The leader takes into account the follower’s reaction function( )5.1 and the HJB 

equation for his problem now is described by 

( ) ( )
( )

( )1

1
1

1
1 1 10

2

max
E

V
V x E E

V

β β
β ν βν

ρ ν
ν ν

−

≥

⎧ ⎫⎛ ⎞⎪ ⎪⎟⎪ ⎪⎜ ⎡ ⎤ ⎟∂⎪ ⎜ ⎪⎟⎪ ⎪⎢ ⎥⎜ ⎟= − +⎨ ⎬⎜ ⎟⎢ ⎥⎜⎪ ⎪⎟∂ ⎜ ⎢ ⎥ ⎟⎪ ⎪⎣ ⎦ ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭

              ( )5.3  

The maximization of the right hand side of equation ( )5.3  yields the feedback 

equilibrium strategy for the leader 

   

( ) ( )
( )

( )

1
1

11
11 1

2

1
11

0

V
E E

V
E

VE

β β
β

β

β

ν βν
ν

ν ν
βν

ν
ν

−

−

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎛ ⎞⎢ ⎥∂⎪ ⎪⎟⎜⎪ ⎪⎢ ⎥⎟∂ − +⎜⎨ ⎬⎟ ⎡ ⎤⎜⎢ ⎥⎟⎪ ⎪⎜∂ ⎝ ⎠ ⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪ ⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭ = ⇒ = ⎢ ⎥
∂∂ ⎢ ⎥
⎢ ⎥⎢ ⎥∂⎣ ⎦

       ( )5.4  

which is the same with the Nash equilibrium feedback strategy. We suppose now that 
player 2 is the leader. By the same argument the feedback equilibrium strategy is 

given by                  
( )

1
1

2
2

E
V

β

ββν
ν

ν

−⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
∂⎢ ⎥
⎢ ⎥⎢ ⎥∂⎣ ⎦

                    ( )5.5  

The coincidence of the two equilibria leads us to conclude the next proposition. 
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Proposition 5.1. 

In the two players differential game of harvesting for which one is the leader and the 

other is the follower – a Stackelberg differential game – the first mover advantage 

disappears and the feedback Stackelberg equilibria coincides with the feedback Nash. 

6. Conclusions 

 In this study we investigate the natural resources as capital resource and treat 

the exploitation of these resources as one would treat accumulation of a capital stock. 

The analysis taken place is concentrated on the two basic factors that affect the fishing 

industry, the size of the resource itself and the rate of human harvesting.  The above 

specification does not take into account any other human activities that affects on 

biomass, for example like coastlines pollution. The analysis of the fishery takes into 

account the biological nature of fundamental capital, for which we have recognized 

the common property feature of the open sea fishery. We setup and solve the optimal 

control management for the recreational model in that under a well known growth 

function a kind of modified Hotelling rule emerges. The properties of the variables 

involved in a fishery game model are analyzed and some special interdependence for 

these variables recognized.  

Moreover a differential game for two players is proposed for which the well 

known from biology population growth function (the Gompertz growth function) is 

used. In equilibrium of the model we found the time consistent strategies for every 

player in order to have an efficient economic outcome. The last model of the paper is 

a Stackelberg model for a special kind of species that travels along the coastlines in 

their living phase. In the last model we make the assumption that human harvesting 

takes place in unprotected places, while the protected are the habitats of the species in 

which they spawn eggs, e.g. rivers, therefore the regeneration function vanishes from 

the basic model of harvesting. Further analysis of the model reveals that is indifferent 

of which player plays first, having the first mover advantage, which disappears and 

the equilibrium feedback strategies coincide with the Nash equilibrium strategies. 
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