75 research outputs found

    Analysis of SHRP2 Data to Understand Normal and Abnormal Driving Behavior in Work Zones

    Get PDF
    This research project used the Second Strategic Highway Research Program (SHRP2) Naturalistic Driving Study(NDS) to improve highway safety by using statistical descriptions of normal driving behavior to identify abnormal driving behaviors in work zones. SHRP2 data used in these analyses included 50 safety-critical events (SCEs) from work zones and 444 baseline events selected on a matched case-control design.Principal components analysis (PCA) was used to summarize kinematic data into “normal” and “abnormal”driving. Each second of driving is described by one point in three-dimensional principal component (PC) space;an ellipse containing the bulk of baseline points is considered “normal” driving. Driving segments without-of-ellipse points have a higher probability of being an SCE. Matched case-control analysis indicates that thespecific individual and traffic flow made approximately equal contributions to predicting out-of-ellipse driving.Structural Topics Modeling (STM) was used to analyze complex categorical data obtained from annotated videos.The STM method finds “words” representing categorical data variables that occur together in many events and describes these associations as “topics.” STM then associates topics with either baselines or SCEs. The STM produced 10 topics: 3 associated with SCEs, 5 associated with baselines, and 2 that were neutral. Distractionoccurs in both baselines and SCEs.Both approaches identify the role of individual drivers in producing situations where SCEs might arise. A countermeasure could use the PC calculation to indicate impending issues or specific drivers who may havehigher crash risk, but not to employ significant interventions such as automatically braking a vehicle without-of-ellipse driving patterns. STM results suggest communication to drivers or placing compliant vehicles in thetraffic stream would be effective. Finally, driver distraction in work zones should be discouraged

    Mathematical Modelling and Analysis of Vehicle Frontal Crash using Lumped Parameters Models

    Get PDF
    A full-scale crash test is conventionally used for vehicle crashworthiness analysis. However, this approach is expensive and time-consuming. Vehicle crash reconstructions using different numerical modelling approaches can predict vehicle behavior and reduce the need for multiple full-scale crash tests, thus research on the crash reconstruction has received a great attention in the last few decades. Among modelling approaches, lumped parameters models (LPM) and finite element models (FEM) are commonly used in the vehicle crash reconstruction. This thesis focuses on developing and improving the LPM for vehicle frontal crash analysis. The study aims at reconstructing crash scenarios for vehicle-to-barrier (VTB), vehicleoccupant (V-Occ), and vehicle-to-vehicle (VTV), respectively. In this study, a single mass-spring-damper (MSD) is used to simulate a vehicle to-barrier or a wall. A double MSD is used to model the response of the chassis and passenger compartment in a frontal crash, a vehicle-occupant, and a vehicle-tovehicle, respectively. A curve fitting, state-space, and genetic algorithm are used to estimate parameters of the model for reconstructing the vehicle crash kinematics. Further, the piecewise LPM is developed to mimic the crash characteristics for VTB, VO, and VTV crash scenarios, and its predictive capability is compared with the explicit FEM. Within the framework, the advantages of the proposed methods are explained in detail, and suggested solutions are presented to address the limitations in the study.publishedVersio

    Mathematical Model and Cloud Computing of Road Network Operations under Non-Recurrent Events

    Get PDF
    Optimal traffic control under incident-driven congestion is crucial for road safety and maintaining network performance. Over the last decade, prediction and simulation of road traffic play important roles in network operation. This dissertation focuses on development of a machine learning-based prediction model, a stochastic cell transmission model (CTM), and an optimisation model. Numerical studies were performed to evaluate the proposed models. The results indicate that proposed models are helpful for road management during road incidents

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    On the Recognition of Emotion from Physiological Data

    Get PDF
    This work encompasses several objectives, but is primarily concerned with an experiment where 33 participants were shown 32 slides in order to create ‗weakly induced emotions‘. Recordings of the participants‘ physiological state were taken as well as a self report of their emotional state. We then used an assortment of classifiers to predict emotional state from the recorded physiological signals, a process known as Physiological Pattern Recognition (PPR). We investigated techniques for recording, processing and extracting features from six different physiological signals: Electrocardiogram (ECG), Blood Volume Pulse (BVP), Galvanic Skin Response (GSR), Electromyography (EMG), for the corrugator muscle, skin temperature for the finger and respiratory rate. Improvements to the state of PPR emotion detection were made by allowing for 9 different weakly induced emotional states to be detected at nearly 65% accuracy. This is an improvement in the number of states readily detectable. The work presents many investigations into numerical feature extraction from physiological signals and has a chapter dedicated to collating and trialing facial electromyography techniques. There is also a hardware device we created to collect participant self reported emotional states which showed several improvements to experimental procedure

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version

    Aeronautical engineering: A continuing bibliography with indexes (supplement 255)

    Get PDF
    This bibliography lists 529 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Evaluating the Impacts of the 2017 Legislative Mandated Speed Limit Increases

    Get PDF
    2019-0275This study evaluated the impacts of speed limit increases that occurred following the enactment of Michigan Public Acts 445 and 447 of 2016. Between May and June of 2017, the maximum speed limits were increased from 70 to 75 mph on 614 miles of rural, limited access freeways. During the same period, the speed limits were increased from 55 mph to 65 mph on 943 miles of rural two-lane roads. In addition, the maximum speed limits for trucks were increased from 60 to 65 mph on all routes where the passenger car limit was at least 65 mph. To assess the impacts of these increases, speed data were obtained from multiple sources including roadside spot-speed studies, permanent traffic recorder stations, and probe vehicles. These data were supplemented by statewide crash data from the Michigan State Police. A series of statistical analyses were conducted to evaluate changes in various speed metrics, including mean and median speeds, various speed percentiles of interest, and the variability in speeds within and across locations. The results showed consistent increases in speeds, ranging from 1.1 mph to 3.2 mph on freeways, and 3.8 mph to 5.1 mph on non-freeways. Crash analyses showed increases in both the frequency and severity of crashes following the speed limit increases. These increases tended to be more pronounced on the freeway network. Economic analyses were conducted to compare the costs incurred in the form of infrastructure upgrades with the benefits of reduced travel times and dis-benefits in the form of increased crashes and fuel consumption. These results showed a positive benefit-to-cost ratio for non-freeways and a larger, negative benefit-to-cost ratio for freeways. These findings provide important insights to inform future policy decisions related to speed limits. The effects of the COVID-19 pandemic on travel behavior were also investigated by examining changes in speed and crash data. The reductions in travel did not show meaningful impacts on speeds at the locations where limits were increased; however, speeds were shown to increase at control sites. Traffic crashes were lower following the onset of the pandemic, though the rate of crashes resulting in fatal or severe injuries increased at the sites that retained lower speed limits, suggesting adverse impacts that may be associated with the higher speeds

    Aeronautical engineering: A continuing bibliography with indexes (supplement 301)

    Get PDF
    This bibliography lists 1291 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    corecore