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Abstract

Optimal traffic control under incident-driven congestion is crucial for road safety

and maintaining network performance. Over the last decade, prediction and sim-

ulation of road traffic play important roles in road network operation. This dis-

sertation focuses on development of a machine learning-based prediction model,

a stochastic cell transmission model (CTM), and an optimisation model under

non-recurrent events using big data of traffic flow, road incidents and rainfall.

Numerical studies were performed to evaluate the proposed models. The results

indicate that the prediction model can capture non-recurrent traffic congestion

under road incidents and rainfall. The stochastic CTM with random demand ar-

rivals and flow capacity is suitable for simulating traffic flow under lane closure.

The traffic control optimisation model via variable speed limit with random de-

mand arrivals and flow capacity is an effective tool for improving traffic flow under

lane closure.
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Chapter 1

Introduction

1.1 Background

The transport of people and goods is crucial for the community’s economic and

social development. To make this possible, significant investment is made in road

networks. However, the majority of transport options are currently facing in-

creased congestion, which may occur during recurrent and non-recurrent events

in most urban locations. Recurring congestion happens primarily during peak

hours while nonrecurring congestion occurs due to accidents, inclement weather,

natural catastrophes, emergency evacuation, construction, and extensive sporting

and cultural events. Aggravate congestion reduces the capacity of a road and may

cause major delays on motorways, which affects the economies of many countries.

There are various negative impacts of traffic congestion which may contribute to

traffic collisions resulting in disability, cessation, and property damage to every-

one involved. Traffic congestion also reduces regional economic health and con-

tributes to air pollution. Thus, traffic management to reduce traffic congestion

on motorways is a challenging problem.

In assessing the functioning of freeways, congestion from irregular sources is

a big concern. In metropolitan regions with daily severe and frequent repeated

congestion, the adverse effects of occurrences are much more apparent. To ef-
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fectively reduce this negative impact, many incident management programs have

been introduced in recent years to track and handle issues. Corridor reliability

analysis can be facilitated by accurate and effective estimation of incident-induced

delay. It can help with locating bottlenecks. Benefits may also result from ap-

plying corresponding measures, such as variable speed limits and ramp metering,

from improving traffic flow and safety. Over the last decade, road network man-

agement services, namely Intelligent Traffic System (ITS), have been developed

to keep the road network accessible for safe usage by road users. It comprises

various approaches such as emergency response, weather-related services, planned

interventions, automatic enforcement, traffic incident detection and management,

and traveller information. It provides drivers with reliable, timely information

on unforeseen or anticipated incidents. Depending on ambient traffic, the road

layout, the incident’s seriousness, lane obstructions, etc., the incident-induced

delay might vary significantly in different contexts.

Several control strategies for traffic congestion have been proposed. However,

two control strategies based on Ramp Metering (RM) and Variable Speed Limit

(VSL) have been intensively studied to manage the on-ramp and mainline input

flows, respectively. The ideal solution would be an implementable algorithm that

dynamically identifies the event-induced delay at the individual incident level for

modelling and performance evaluation. Recently, extensive research has focused

on improving road network operation under non-recurrent events by developing

and integrating simulation modelling and computing technologies in spatial and

temporal analysis.

1.2 Objectives

This dissertation focuses on developing mathematical models for predicting, sim-

ulating and controlling traffic dynamics under non-recurrent events using traffic

flow data (flow rate, density and speed), road incident data and rainfall data.

The primary goal of this study is to:
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1. develop multivariate prediction model based on machine learning approaches

for predicting traffic variables (traffic flow rate, density and speed) under

non-recurrent events;

2. develop a simulation model with uncertain parameters to describe the phys-

ical processes of traffic on the regular freeway and lane-closure freeway using

a stochastic cell transmission model (SCTM);

3. develop an optimal integrated VSL & RM control model based on the SCTM

optimisation model for minimising total travel time;

4. investigate the impact of non-recurrent events on traffic dynamics with and

without any traffic controls.

1.3 Outline of the thesis

This thesis is organised into five chapters. The five chapter titles are: (1) Intro-

duction, (2) Literature review, (3) Multivariate Prediction Models, (4) Stochastic

Simulation Model and Optimal Traffic Control Model and (5) Conclusions and

Further Work.

Chapter 2, the literature review, presents various models that have been de-

veloped to predict, simulate and control freeway/highway traffic under various

scenarios. A comprehensive literature of machine learning (ML) models to fore-

cast traffic flow through time series analysis was reviewed. Various machine

learning models, including the multilayer perceptron (MLP), the convolutional

neural network (CNN), the long short-term memory (LSTM) network, and the

combination of the CNN and LSTM networks (1D-CNN LSTM) and the combi-

nation of an autoencoder and the LSTM networks (AE-LSTM), were described

in detail. Also, the traffic flows based on microscopic and macroscopic scale-type

models were summarised. The microscopic models explain individual vehicle be-

haviour. Three popular microscopic models are the Car-Following model, the
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Intelligent Driver model (IDM) and the Cellular-Automata model.

Since traffic involves flow rate, concentration (density) and speed, traffic flow

may be described in terms of fluid behaviour based on some assumptions of con-

servation and the one-to-one relationship between flow and density or between

density and speed. There are two main types of the model, namely, the one-

equation and the two-equation models. The first one-equation model is the clas-

sical LWR model developed by Lighthill, Whitham and Richard in 1956. Another

is the cell transmission model (CTM) developed by Daganzo in 1994, which has

been widely used and modified. The two-equation models consist of the conser-

vation equation and the equation of speed-density (or flow-density) relation in

which traffic variables (flow, density and speed) are solved at any time and any

road segment of the road network. As a typical model on a micro or macro scale

cannot capture traffic phenomena, many attempts have been made to couple the

microscopic and macroscopic models for predicting the complex traffic phenom-

ena due to congestion. Lastly, optimisation models based on the CTM and the

ML were presented. Traffic flow control on a freeway at on-ramp and off-ramp

merged regions was summarised. Finally, applications of the traffic flow models

for ramp metering and traffic lane changing conditions studies were described.

Chapter 3 demonstrates traffic prediction under non-recurrent events using

machine learning (ML) networks. Various ML architectures based on multilayer

perceptron (MLP), long-short term memory model (LSTM), convolution neu-

ral network (CNN), one-dimensional convolution neural network long-short term

memory model (1-D CNN LSTM) and Autoencoder long-short term memory

(AE-LSTM) networks were designed. The data used in this study includes in-

formation on 1-minute traffic variables, 15-minutes road incidents and rainfall

between 1 January 2018 and 1 November 2018. The timestamp approach is

utilised to generate study data with five columns (classes), including the flow

rate, density, speed, incidents and rainfall. The input data with five features are

split into two sets, 70% for the train set and 30% for the test set. For the best-
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fitted model, two standard metrics, Root Mean Square Error (RMSE) and Mean

Absolute Error (MAE), were used to assess the performance of the prediction

models.

Chapter 4 on a numerical simulation model examines the traffic dynamics

on a freeway with various on-ramp and off-ramp roads using the modified cell

transmission model with uncertain parameters, namely the stochastic cell trans-

mission model (SCTM). Two model parameters (on-ramp flow rates and the flow

capacity) are random variables. A practical example of a freeway under two

road conditions was utilised to validate the efficiency of the simulation model.

A stochastic optimisation model has been proposed. Its control objective is to

minimise total travel time in the road network and queue lengths at the main

road entry, all on-ramp entries. Its constraint is traffic flow along a multilane

roadway described by the SCTM. Using one-minute road data to determine the

four-second demand/supply of the road network, two practical examples of free-

way traffic were carried out to evaluate the performance of the proposed model.

Summarising conclusions and research contributions and suggestions for future

research directions are given in Chapter 5.

5



Chapter 2

Literature review

2.1 General Overview

Throughout human history, transportation has played a vital role in our so-

ciety, particularly in aiding economic development. Economic expansion has

prompted a surge in demand in the transportation sector during the previous

several decades. Ground transportation has long been one of the most advanced

modes of people and commodities moving. However, the number of automobiles

on the road has significantly increased. Various environmental consequences,

such as increased energy usage, faster climate change, transportation safety, traf-

fic congestion, difficulties etc., are some of the repercussions of this transportation

growth.

Among all of these disadvantages, traffic congestion is the most visible and

commonly experienced. For the reasons stated above, numerous freeway traffic

models have been presented in order to map and analyze the dynamics that result

in traffic flow. Studies have also looked into the environmental issues that come

with traffic.
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2.2 Traffic Congestion

Traffic congestion has been a major subject of research. Many studies have been

carried out to determine the origin and remedy of traffic congestion. Congestion

on the transportation network has become one of the most inconvenient aspects

of modern life. The creation of congestion as a phase transition driven by the

nonlinear impact in dynamical equations of motion was studied, and features of

traffic congestion as well as the stability of the congestion structure were investi-

gated (Bando et al., 1995).

Traffic congestion has increased everywhere in the cities with population

growth and is worse than it has ever been (Arnott & Small, 1994). There are

two forms of traffic congestion, including recurrent congestion (RC) produced

by daily traffic patterns and non-recurrent congestion (NRC) brought on by un-

expected incidents such as breakdowns, accidents, and so on (Anbaroglu et al.,

2014; Skabardonis et al., 2003; McGroarty, 2010).

Globally, traffic congestion has been a continuous issue in cities. Working from

home (WFH) can theoretically alleviate commuting-related congestion. WFH

arrangements have been promoted or mandated to limit coronavirus transmis-

sion during the COVID-19 pandemic. It has been observed that traffic conges-

tion has decreased in several locations under these circumstances. Nevertheless,

there hasn’t been much research done on how traffic patterns alter within a city.

Throughout multiple waves of the epidemic, Loo & Huang (2022) concentrated

on the congestion index (CI) in Hong Kong during peak hours, when commuting-

related congestion is frequently the greatest. We have a limited grasp of individual

exposures to traffic congestion during different types of journeys because the ma-

jority of the existing research on this topic focuses on commuting trips. Using taxi

Global Positioning System (GPS) trajectory and Point of Interest (POI) informa-

tion, Kan et al. (2022) assessed individual exposures to traffic congestion during

various types of travel in Wuhan, China. They first used the allure of the POIs to

infer personal travel objectives from GPS trajectories and Bayesian criteria. Par-
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Figure 2.1: Traffic view on Jeddah road, Saudi Arabia.

ticular road congestion exposures related to various journey types were evaluated.

Additionally, they calculated the exposures to excessive traffic-related emissions

linked to different types of journeys because of traffic congestion. Individual traf-

fic congestion exposures are more strongly correlated with the space-time rhythm

of traffic flows than they are with the sorts of journeys or activities taken. The

findings indicate that focusing solely on commutes would understate individual

contact with traffic congestion and increased emissions caused by traffic. They

provide insight into how each individual is impacted by activity-related traffic

congestion at various times and locations.

2.2.1 Recurrent Congestion

Recurring congestion occurs at the same time every day on weekdays during peak

hours (Stopher, 2004). Figure 2.1 presents recurrent traffic congestion on Jeddah

road, Saudi Arabia. Due to the high demand for mobility, recurring congestion

will cause a network to face delays.

There are many sources of recurring congestion. For example, an excess of

people attempting to travel from one location to another during the same period

may be the primary source. Daily, traffic congestion occurs around schools during
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peak morning and evening hours between 6 am and 9 am, then again between 4

pm and 7 pm because of parents’ dropping off and picking up their children. A

bottleneck is also a primary source of recurring congestion (McGroarty, 2010). A

bottleneck at which the flow capacity is unexpectedly reduced is created when a

five-lane highway is suddenly dropped to four lanes because the right or left lane

is forced to exit.

One of the most important aspects of traffic management for reducing delays

and related costs is congestion identification. Thanks to the growing popular-

ity of GPS-based navigation, promising speed data are now available. In Des

Moines, Iowa Zarindast et al. (2022) made extensive use of historical probe data

from the year 2016. To separate the speed signal and identify temporal con-

gestion, they used Bayesian change point detection. The identified congestion

occurrences were then divided into recurring and non-recurring categories. They

recommended a robust statistical, big-data-driven expert system as well as a big-

data-mining method as a result of their findings for recognising both recurrent

and nonrecurring bottlenecks.

2.2.2 Non-recurrent Congestion

Non-recurrent congestion having more irrational transportation sources is un-

usual congestion caused by unforeseen or unpredictable circumstances such as

work zones, inclement weather, and traffic incidents (Hallenbeck et al., 2003;

Stopher, 2004). As non-recurrent congestion does not occur regularly, it is diffi-

cult to predict and address. This form of traffic congestion decreases the overall

transportation system’s capacity and reliability. Road users are usually aware of

recurrent congestion since it occurs regularly, but they do not expect to encounter

non-recurrent congestion. The primary reasons for non-recurrent congestion in-

clude traffic incidents, vehicle breakdowns, temporary construction zones, severe

weather conditions, and special events (Sajjadi, 2013).

• Traffic incidents: Events that cause a road’s traffic flow to be disrupted
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usually involve road incidents such as vehicle crashes or breakdowns. When

a car incident occurs ahead, or a vehicle breakdown occurs, drivers tend to

slow down. As a result, reducing vehicle speed below the free flow speed

affects the road’s operation. Video footage captured by digital cameras

mounted on moving cars is a crucial source of information for various dan-

gerous traffic situations, such as collisions or near-collisions. This knowl-

edge is freely accessible, and numerous methods for reconstructing traffic

accidents using automobile video have already been proven. A fresh al-

ternative method for recreating traffic events from automobile film was

presented by Kolla et al. (2022). The method relies on the fusion of ge-

ometric objects, video evidence processing from a passing car camera, and

kinetic vehicle trajectory modelling inside a 3D laser scanner point cloud.

The method permits statistically gathering thorough technical information

about a traffic event from video footage by correctly reconstructing gen-

eral vehicle movements within the proper temporal domain. As a result,

a moving monocular camera recorded actual vehicle motion and projected

it using physics-based projection in three dimensions. During experimental

test runs, the approach was shown to be accurate in terms of vehicle speed,

distance travelled, acceleration/deceleration, and directional aspects (yaw

rate, yaw angle). Then, the tactic was applied to mimic real-world traffic

scenarios.

• Construction zones: Temporary pavement in work zones may cause one

or more traffic lanes to close and reduce flow capacity as the right, or left

shoulder width may be reduced.

• Weather conditions: Weather (e.g. rain, storms, winds, etc.) is one

environmental risk factor. Severe weather commonly contributes to several

hazards within the transportation sector, such as reduced visibility and

road traction. Wet roads are a significant contributor to road fatalities and

crashes.
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• Special events. Sports events (national and long public holidays, school

vocation, religious festivals, and other festivals cause traffic problems) com-

monly cause traffic jams within the local area.

Traffic congestion causes many problems within the local area. This problem

includes delays, accidents, air pollution and health risks.

Any non-recurring incidents that have a substantial impact on roadway op-

erations, such as traffic crashes, roadway repair and reconstruction projects, dis-

abled cars, special non-emergency events, such as concerts, ball games, or any

other event which can disrupt normal traffic flow, reduction of road capacity, and

so on, are referred to as traffic incidents (Qi et al., 2018). Especially in devel-

oping countries, where traffic flows with many motorbikes, urban road traffic is

particularly complicated, with unpredictability, dynamic, and uncertainty char-

acteristics (Can et al., 2020). Non-recurring congestion is caused by incidents,

for example, around a quarter of total congestion in the United States (Javid &

Javid, 2018).

2.3 Traffic Prediction with Machine Learning

According to some studies (Zhang et al., 2008), traffic engineers, planners, and

individuals benefit from understanding traffic conditions ahead of time. Uncer-

tainty in traffic conditions leads to greater travel time unpredictability, which

has a negative impact on traveller route choice, as well as other drawbacks such

as increased safety hazards, traffic congestion, delays, and pollution. Since the

introduction of Intelligent Transportation Systems (ITS) infrastructure, such as

variable message signs and speed cameras, traffic flow prediction has gained im-

portance among metropolitan planning agencies all over the world. Traffic flow

prediction is useful for advanced traveller information systems (ATIS), traffic con-

trol towers, intelligent public transportation, and commercial vehicle operations.

The weather can have a big impact on people’s everyday decisions and actions.

11



In order to advance technology, specialists integrate weather-related data into

traffic operations. Traffic flow is one element of a transportation system that

is affected by weather variations; this can reduce the effectiveness of the road

network Tsapakis et al. (2013). For the planning and execution of smart cities,

intelligent transportation systems (ITS) must be developed. According to Koes-

Dwiady, building more roads won’t significantly improve the issues of severe traf-

fic congestion, fuel consumption, extended travel times, and safety Koesdwiady

et al. (2016). Since it is crucial for planning preemptive measures to lessen traffic

congestion, anticipating traffic flow ought to be one of the primary ITS goals.

Forecasting traffic flow under non-free flow conditions is still a challenging prob-

lem since traffic information (such as flow, speed, density, travel duration, etc.)

is always highly nonlinear and non stationary and is influenced by many factors

depending on the kind of traffic (e.g., peak hours, weather, incidents, etc.).

The forecasting approach uses traffic data obtained from loop detectors, cam-

eras, radars, and other sources as inputs. Data might be obtained retrospectively

or in real-time. Data from social media, Bluetooth, and others have been used in

traffic forecasts. As a result, the data-driven cum analytical technique was used

to forecast traffic conditions (Zhang et al., 2011a; Chen & Zhang, 2014). Most

current models are concerned with future traffic conditions in terms of some ex-

planatory variables, which define the model’s realism and accuracy. As a result,

there is a need to investigate analytical methodologies that use deep modelling

architecture to bring in a large amount of data.

Due to their ability to adjust parameters without requiring prior knowledge,

machine learning models offer interesting alternatives for traffic prediction in non-

recurrent circumstances, but this has not been well-studied. In order to address

this gap, Chikaraishi et al. (2020) investigated the applicability of various machine

learning models during a transportation network failure, focusing on the model’s

capacity to forecast traffic conditions and the interpretability of the results.

Deep learning, an extension of the machine learning paradigm, has found

12



many applications in research and practice in recent years (Bengio, 2009). Im-

age processing, motion detection, and language processing are some of the more

common applications (Hinton & Salakhutdinov, 2006; Collobert & Weston, 2008;

Goodfellow et al., 2013; Huval et al., 2013; Shin et al., 2012). Deep learning em-

ploys a complex, multilayered architecture to identify characteristics or features

in data, allowing for a comprehensive relationship between features and the vari-

able of interest. Given the complexity of traffic flow, the deep learning technique

may be a good fit for understanding and forecasting it by utilising hybrid data

obtained from multiple sources.

The deep learning method can project a posterior distribution of traffic flow,

which may be used for short-term forecasts to influence traffic management op-

erations, such as maximising vehicle throughput, minimising trip time, and so

on, by finding hidden characteristics in traffic data. Deep learning algorithms are

constantly being refined by researchers to increase their accuracy for real-world

challenges. The primary component of traffic management operations and ITS

systems has remained traffic flow prediction. Thus, traffic flow prediction mod-

elling and its applications in efficient traffic operations with control measures have

extensive literature.

The spatial and temporal evolution of traffic in a road network can be de-

scribed. The following is a symbolic representation of traffic flow conditions:

Consider X t
i to be the traffic flow observed on a road network link I at instant

time t. Traffic flow data is available for several time intervals, i.e. t ∈ [1, T ], where

T is the most recent time interval for which data is available. Traffic flow pre-

diction models attempt to predict traffic flow for time intervals more significant

than T (i.e. T +∆ ) for which no data is available.

Statistical and machine learning models dominate the enormous literature on

traffic flow prediction models. When dealing with short-term traffic forecasting,

the models can be classified as parametric or non-parametric (Li et al., 2015a).

The Autoregressive Integrated Moving Average (ARIMA) model is a widely used
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parametric forecasting method. ARIMA models were utilised in some traffic

engineering studies to produce improved forecasts for changeable traffic flow cir-

cumstances. Hamed et al. (1995) created the first application of the ARIMA

model to predict future traffic flow.

Non-parametric models, in contrast to parametric techniques such as ARIMA,

can account for variability and non-linearity in traffic flow (Zhang et al., 2011b).

Chang et al. (2012), for example, developed a dynamic multivariate prediction

technique based on the k-nearest neighbour (k-NN) algorithm. Castro-Neto et al.

(2009) employed one of the machine learning (ML) techniques, online support

vector regression, for flow prediction. The Artificial Neural Network (ANN),

another ML-based non-parametric approach with a flexible structure, has been

widely utilised in applications to simulate traffic flow (Hu et al., 2010). The

fundamental idea behind ANN is that of a brain that utilises numerous neurons

to process information instantaneously and process the information at the same

time from all neurons (Fitch, 1944). Existing research has shown that social

media data can be utilised to forecast traffic parameters (Ni et al., 2014; Abidin

et al., 2015). Ni et al. (2014) constructed a model for predicting short-term traffic

using Twitter data to anticipate inbound traffic flow ahead of sporting events.

A method was tested using four models: support vector regression, k-nearest

neighbour (k-NN), neural network, and ARIMA. Abidin et al. (2015) applied a

Kalman-filter model and used Twitter data for predicting a bus arrival time.

The results of many, if not all, of the most recent research that examined

the effects of employing non-traffic input datasets for forecasting urban traffic

parameters showed that more precise forecasts were made (Essien et al., 2019a,b;

Jia et al., 2017). A deep bidirectional Long Short-Term Memory (LSTM) model,

for instance, was provided and trained using rainfall and temperature data as

well as traffic flow parameters Essien et al. (2019a). The results of the study

((Jia et al., 2017)) demonstrated an improvement in predicting accuracy when

compared to the baseline, which is only traffic datasets. Similar results were
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noted in tests that used input data other than traffic.

This is because data-driven traffic parameter prediction frequently applies pre-

dictive analytical techniques to observations of historical data in order to identify

trends that may be used to predict observations of the future. This has proven

to be useful because urban traffic statistics are seasonal, recurrent/cyclical. Ex-

amples include peaks during the morning and evening rush hours, which can be

precisely predicted and so anticipated. As a result, if a model can recognise and

understand these tendencies from historical data, it will be ”skilful” at forecasting

future traffic aspects.

Even the most precise prediction models would struggle to account for un-

foreseen or irregular events, such as occurrences or incidents that cannot be pre-

dicted using historical data (Essien et al., 2019b). Non-recurring or stochastic

events/incidents include things like accidents, lane closures, sporting events, and

public gatherings. It is crucial to build strong predictive models since such events

may be unanticipated, uncommon, or unexpected, making it possible to predict

traffic accurately in these circumstances.

For traffic flow prediction, researchers have combined the ANN with various

data mining approaches such as the k-NN (Lin et al., 2013) and the Bayesian

networks (Zheng et al., 2006).

2.3.1 Time Series Prediction with Machine Learning

Various machine learning techniques have been applied to time-series predic-

tion. These include Multilayer Perceptron (MLP), Convolutional Neural Net-

works (CNN), Long short-term memory (LSTM), One-dimensional CNN LSTM

and Autoencoder LSTM network.

• Multilayer Perceptron

The data moves forward in this network as the preceding layer receives the

inputs from the previous layer and feeds the output to the nodes of the

subsequent layer. As seen in Figure 2.2 the neurons in the same layer are
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Figure 2.2: Architecture of MLP network with two hidden layers of 4 neurons.

interconnected. If more than one input is provided, the net input can be

expressed in matrix form. Assume X = (x1, x2, . . . , xi, . . . , xn) that repre-

sents the inputs provided for n features of the input layer and W = wij is

the network’s weight matrix. As a result, the weight matrix for a connected

hidden layer with m neurons is given in equation (2.1)

W =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w11 w12 . . . w1n

w21 w22 . . . w2n

⋮ ⋮ . . . ⋮

wm1 wm2 . . . wmn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.1)

the algorithm that generates results via backpropagation and supervised

learning. These neural networks can learn non-linear functions and may

include one or more hidden layers. The model is trained in three steps:

1. Forward Pass: Pass the input, multiply with weights and add bias b

at every layer. vin = σ(b +∑xiwi), where σ is a non-linear activation

function.

2. Calculate Error/Loss: Ej = ȳj − yj, Total error=E = 1
2 ∑E

2
j
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3. Backward Pass: Then back propagate the loss, i.e. this process leads

from output layer and performs until input layer is reached. It updates

the weights of the model by using gradient ∆wji = −α
∂E
∂vj
yi

where yi is the output of the previous neuron, vj input of the j layer, and

α is a constant.

An MLP is a simple and straight feed-forward ANN with input layers,

hidden layers, and output layers. The number of hidden layers that can be

employed in the procedure is known as the depth of ANN. A specific number

of linked neurons, each with a variable weight, make up each buried/hidden

layer. These weights are changed to establish information-based input-

output relationships. A supervised machine learning method known as

backwards propagation perceptions (Rosenblatt, 1962; Rumelhart et al.,

1985) is used to learn the weights. MLP only contains forward connections

between two neurons when compared to other deep learning architectures

like the feedback loop. By adding more hidden layers, a better prediction

or better resolution of information can be characterised. In reality, a deep

learning algorithm is an MLP with multiple hidden layers.

MLPs have a high degree of robustness and prediction capability in the

event of intricate, nonlinear, and scarcely foreseeable scenarios, according

to earlier studies Ishak et al. (2003); Lam et al. (2005)) employed dual-loop

vehicle detectors to collect data. The data set included the average speed,

vehicle volume, and rainfall to build a journey time prediction model in

non-recurrent congestion.

In order to predict traffic flow, the MLP network was tested with traffic flow

data that included meteorological information. Koesdwiady et al. (2016)

showed that the MLP network performed better than statistical models,

such as the ARIMA model, and had a single hidden layer with 90 neurons.

Since there are fewer parameters in MLPNs and ARIMA methods than in
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Figure 2.3: Structure of convolutional network
(Kumar & Kumar, 2022).

deep architectures, training takes less time and space. This problem can be

viewed as one of deep architecture’s drawbacks. The MLP network is used

in Peng et al. (2018) to forecast traffic flow, utilising data on traffic flow and

rainfall. The MAPE values of the MLP Network are 15.12% when applied

to the traffic flow data and 14.95% when rainfall data is included along with

the traffic flow data, which represent higher prediction accuracy than other

models such as seasonal ARIMA and exponential smoothing. Its structure

has two layers of neurons 40 and 30 for each step ahead forecast. For traffic

prediction during special events, the MLP network is built with three hidden

layers totalling 400 neurons in Ren et al. (2022), and the forecast accuracy

topped that of various statistical models. The BNNN model, a sort of MLP

network, was used to forecast traffic based on rainfall data, however it did

not outperform other deep learning models in terms of prediction accuracy.

• Convolutional Neural Network

The convolutional network is a special kind of deep neural network that is

intended for feature extraction. Two convolutional layers, a pooling layer,

and a convolutional network were used. The convolutional network’s struc-

tural layout is shown in Figure 2.3.

The convolution layer uses convolution rather than scalar multiplication to

extract information from the incoming data. Its training technique, referred

to Goodfellow et al. (2016), includes three features: sparse connection, pa-

rameter sharing, and equivalent representations. Very few features from

the last layer are input to each neuron and filtered in the next levels. The
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ynm = σ (
mn−1

∑
s=1

yn−1s wnsm + bnm) , m ≤ s, s = 1,2,3, . . . ,N (2.2)

yn+1m = σ (
mn

∑
s=1
ynsw

n+1
sm + bn+1m ) , m ≤ s, s = 1,2,3, . . . ,N (2.3)

network’s output is improved via the pooling function. The value extracted

from the convolutional layer at a particular position is altered in order to

represent the summaries of the neighbouring outputs. The pooling layer of

the network (with L2-norm, max-pooling, or average pooling as the func-

tion) decreases complexity while accelerating convergence. The pooling

layer is mathematically represented by Equation (2.2), while the convolu-

tional layer is represented by (2.3). This tactic was taken from Ranjan et al.

(2020).

where ynm is the convolutional layer with mth feature map and yn−1s is the

pooling layer with sth feature map, yn+1m is the pooling layer with mth feature

map and yns is the convolutional layer with sth feature map, w is the weight

matrix, b is the bias vector, N is the number of filter and σ is the element-

wise non-linear activation function.

A feedforward neural network is a convolutional neural network (CNN). A

Typical, deep-learning structure that harvests data features while reducing

model complexity, it looks like a grid. Due to its effective local feature

extraction capability, CNN is commonly used in traffic flow prediction to

accurately evaluate the spatial correlation between traffic flow data (Ma

et al., 2017).

Zhang et al. (2019) short proposed a short-term traffic flow prediction model

built on CNN using traffic flow data to identify temporal and spatial features

and a selection strategy to pick the optimum input data. The effectiveness

of the model was then verified by comparing the results to actual traffic

data.
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An et al. (2019) used a novel fuzzy-based CNN traffic flow prediction model

to identify the characteristics of traffic accidents. They asserted that their

model outperformed others. Similar to how Liu et al. (2018) short discov-

ered their model was effective at forecasting traffic flow, they used a CNN-

attention model to estimate traffic speed. It was also useful to estimate how

various models predict the traffic flow temporal and spatial variables, and

they will affect traffic flow by visually representing the weights generated

by the attention model. Peng et al. (2020) predicted the urban traffic pas-

senger flow using a spatial-temporal incidence by utilising a dynamic graph

recurrent CNN. According to their experiments, their model network had

better prediction capabilities than conventional techniques.

It is critical to forecast weather conditions in order to conjecture traffic

flow in beach areas because the wealth of the beaches depends on vari-

ables like temperature, wind, solar radiation, and others. These climatic

data are therefore also inputs into the model. Braz et al. (2022) used the

CNN, LSTM, and autoregressive LSTM models to calculate traffic flow.

The results demonstrate that it is possible to anticipate traffic flow with a

respectable margin of error within one-hour time intervals. The forecasts

produced using the CNN model had the lowest prediction error values and

used the least amount of forecasting time.

To enhance the accuracy of the predictions made for the entire city in Zhou

et al. (2021), the CNN model has been employed to predict traffic flow

under the temporal transportation flow data with information on weather

conditions and some significant events.

• Long Short-term Memory (LSTM) The MLP network and recurrent

network are both LSTM network extensions. It was developed to address

the recurrent network issue. The buried layer in the recurrent network is

altered by the LSTMN. The cell state is kept in the memory module, also

referred to as the LSTM layer. The information flow in the memory module
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Figure 2.4: Structure of LSTM layer
(Kumar & Kumar, 2022).

is controlled by multiplicative gates at the input (it) and output (ot). Due

to the addition of cell state and extra paired regulating gates, LSTMN can

solve the vanishing error problem in traditional recurrent networks. To

prevent the inner cell values from rising when a continuous time series that

hasn’t already been fragmented is used, a multiplicative forget gate was

added to the memory module. The Figure 2.4 presents the basic structure

of the LSTMN model. This work adheres to the LSTMN mathematical

approach suggested by (Ma et al., 2015). The network processes the input

sequence x = (x1, x2, . . . , xN) by iterating from n = 1 to N in the way of

equation (2.4) to (2.7) (Kumar & Kumar, 2022):

it = σ(uixt + viht−1 +wict−1 + bi) (2.4)

ft = σ(ufxt + vfht−1 +wfct−1 + bf) (2.5)

gt = tanh(ugxt + vght−1 + bg) (2.6)

ot = σ(uoxt + voht−1 +woct + bo) (2.7)

The weight matrices of input, recurrent connections, and cell state are rep-

21



resented, respectively, by w′s, u′s and v′s, while the bias vectors are b′s.

The Logistic and Hyperbolic tangent (or Tansig) activation functions, which

have been employed for gate activation and cell activation, respectively, are

denoted by the symbols sigma and tanh. Equation (2.8) and (2.9) (Kumar

& Kumar, 2022) provide information about these gates as well as the cur-

rent concealed state and internal cell state (or output) (or output). Before

the training phase, the biases and weights were initialised. Once the param-

eters were learned through backpropagation, the loss that occurred during

this process was subsequently optimised using the gradient boost approach.

ct = ft ⊙ ct−1 + it ⊙ gt (2.8)

ht = ot ⊙ tanh(ct) (2.9)

Recurrent Neural Network (RNN) issues owing to gradient disappearance

may arise (Sameen & Pradhan, 2017). Applying LSTM (Hochreiter &

Schmidhuber, 1997), a deep learning structure, to the field of traffic flow

prediction can solve this issue. Ma et al. (2015) discovered that the LSTM

network had a prediction accuracy that was higher than that of most sta-

tistical techniques for capturing the time correlation and nonlinearity of

traffic.

A model for the forecasting of traffic built on LSTM was shown to be able

to identify the correlation for the time and space for the traffic systems

by Zhao et al. (2017b). Zhao et al. (2019) Traffic validated the suggested

LSTM model and discovered that the model can outperform the support

vector regression prediction strategy in terms of prediction performance.

Tian et al. (2018) employed an LSTM model to estimate traffic parameters

and a multiscale smoothing method to restore missing values in data on

traffic flow. Their numerical experiment showed that the LSTM model
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beats other methods in terms of prediction performance.

In addition to these studies, a time series prediction model using LSTMs

based on the attention mechanism was created by Wang et al. (2020). Ac-

cording to Zhang Zhang & Kabuka (2018), the architecture with two hidden

layers of 500 neurons performed better than recurrent architectures with

two hidden layers of 50 neurons, GRU-based architectures with two hidden

layers of 50 neurons, or three hidden layers of 500 neurons, as well as other

statistical models and machine learning models.

Many, if not all, of the most recent studies that looked at the effects of

using non-traffic input datasets for predicting urban traffic parameters have

produced more accurate predictions (Essien et al., 2019a,b; Jia et al., 2017).

In Essien et al. (2019a), a deep bidirectional Long Short-Term Memory (bi-

LSTM) model, for example, was given, which was trained using rainfall and

temperature data as well as traffic flow factors. When compared to baseline

(i.e. traffic-only) datasets, the study’s findings revealed an improvement

in predictive accuracy. In experiments that incorporated non-traffic input

data, similar findings were observed (Jia et al., 2017).

• One-dimensional CNN long short-term memory network

The ConvLSTM network is built by combining the CNN and LSTM layers.

It simultaneously captures both the temporal and spatial components of the

flow. The variable dimensions of the ConvLSTM network are different from

those of the LSTM network, but it is possible to train it to be comparable

to equation (2.4) to (2.9). Cell states and hidden states are designated by

C ′s and H ′s, respectively, whereas input tensors are represented by the

symbol X. Keep in mind that input, forget, and output are represented by

the lettersIt,Ft, and Ot respectively. The ConvLSTM network is expressed
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by equations (2.10) and (2.14) (Kumar & Kumar, 2022):

It = σa(Ui ⊕Xt + Vi ⊕Ht−1 +Wi ⊕Ct−1 + bi) (2.10)

Ft = σa(Uf ⊕Xt + Vf ⊕Ht−1 +Wf ⊕Ct−1 + bf) (2.11)

Ct = Ft ⊙Ct−1 + It ⊙ tanh(Uc ⊕Xt + Vc ⊕Ht−1 + bc) (2.12)

Ot = σa(Uo ⊕Xt + Vo ⊕Ht−1 +Wo ⊕Ct + bo) (2.13)

Ht = Ot ⊙ tanh(Ct) (2.14)

where ⊕ represents the convolutional operator; U ′s, V ′s, and W ′s are the

weight tensors; b′s are the bias tensors.

Researchers are actively looking into the pairing of two machine learning

models, particularly those that are helpful for deep learning, to more accu-

rately predict traffic flow. One study Li et al. (2020) used a one-dimensional

CNN long short-term memory network to evaluate real-time movement-

based traffic volume prediction at signalised junctions (1-D CNN LSTM).

To better understand temporal linkages and assess the spatial aspects of

traffic volume, they used CNN and LSTM in their model. ConvLSTM net-

work is employed in the study cited in Du et al. (2018) to forecast traffic

flow in the event of congestion or accidents (at the trough or peak time pe-

riods). The root mean squared error (RMSE) for the ConvLSTM network

is 9.75, higher than CNN’s RMSE of 9.34 and lower than the RMSE for the

LSTM network of 11.14. According to Ren et al. (2022), the SRCN model

is a type of ConvLSTM network that has been used for traffic prediction

during special events and has a reasonable forecast accuracy.

• Autoencoder LSTM

Archetypal, features or dimensions are extracted using an autoencoder. In

this case, the encoder’s output acts as the decoder’s input. In accordance

with the character sequence T , the decoder duplicates the original data.
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Figure 2.5: Structure of AutoEncoder network
(Wei et al., 2019).

Decoding is carried out to ensure that the qualities that were derived are

accurate. After the AutoEncoder has finished training, we simply utilise the

encoder to extract features from the original data in order to enhance the

internal structure of the data. The Autoencoder’s operation is described as

follows and is represented in Figure 2.5.

ti = σ(wtxi + bt) (2.15)

yi = σ(wyti + by) (2.16)

when σ is the activation function, w′s and b′s are the weights and biases,

respectively. The error is decreased throughout the training phase using

equation (2.17)

E(X,Y ) =
1

2

n

∑
i=1

∥xi − yi∥
2 (2.17)

when the difference between Y and X is sufficiently small or the coding

procedure produces a legitimate result, it is thought that T represents the

features extrapolated from the original data.

The urban traffic network is impacted by the volume of traffic on the current

and surrounding roads. Any changes to the upstream and downstream

traffic levels, as well as the historical traffic flow statistics for the current
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Figure 2.6: AE-LSTM network structure and AutoEncoder extracted features,
and LSTM network used for the prediction of traffic flow (Wei et al., 2019)

.

site, must be reported. We employ AutoEncoder to extract features for

this model from the data on upstream and downstream traffic flow. To

improve the accuracy of the traffic flow estimate for the current location,

the prediction network is then updated with the new features. Figure 2.6

depicts the structural layout of the AE-LSTM network. The essential AE-

LSTM model formulas are provided by equation (2.18)-(2.25) (Wei et al.,

2019; Kumar & Kumar, 2022).

zi = σ(wz(xui + xdi) + bz) (2.18)

yi = σ(wyzui + by) (2.19)

it = σ(uixt + rizt + viht−1 +wict−1 + bi) (2.20)

ft = σ(ufxt + rfzt + vfht−1 +wfct−1 + bf) (2.21)

gt = tanh(ugxt + rgzt + vght−1 + bg) (2.22)

ot = σ(uoxt + rozt + voht−1 +woct + bo) (2.23)

ct = ft ⊙ ct−1 + it ⊙ gt (2.24)

ht = ot ⊙ tanh(ct) (2.25)

The characteristic sequence is defined as Zt = {z1, z2, . . . , zk}, where Xu =
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{xu1, xu2, . . . , xum} and Xd = {xd1, xd2, . . . , xdm} are the inputs of the Au-

toEncoder in terms of the upstream and downstream traffic flow. While

the other parameters are comparable to those of the LSTM network, r′s

represents the weight matrices of Z. In Wei et al. (2019), you may get more

details regarding the AE-LSTM network.

The autoencoder LSTM (AE-LSTM) model combines the autoencoder with

LSTM. The autoencoder network extracts features, and the LSTM network

predicts data. For traffic prediction, the autoencoder is used to extract

features of traffic data, while LSTM is for predicting traffic flow (Wei et al.,

2019). The autoencoder is used to extract features from traffic data for

traffic prediction, whereas LSTM is used to predict traffic flow. The LSTM-

LSTM model, used in Nigam & Srivastava (2023) to forecast traffic flow

utilising both traffic and weather data, is an illustration of an AE-LSTM

network. The prediction outcome of the LSTM-LSTM network is compared

with that of the ConvLSTM, CNN, LSTM, and MLP networks in Nigam

& Srivastava (2023) for the time periods of 5, 15, and 60 minutes. The

LSTM-LSTM confirms that this network is superior to the others. For

forecasting traffic, the AE-LSTM network TBSM has been proposed in

(Ren et al., 2022). Compared to the MAE values of 5.01 for the MLP

network and 4.92 for ConvLSTM, the MAE value of TBSM is 2.48, which

is lower. Wang et al. (2021) uses a specific type of AE-LSTM network called

1DCNN-LSTM-Attention to predict traffic flow, and its performance was

better than that of other AE-LSTM networks when the weather element

was taken into consideration. The AE-LSTM network, which combines

AutoEncoder and LSTM, was introduced in (Wei et al., 2019), to forecast

traffic flow. The AE-LSTM recommended method employs upstream and

downstream data in addition to the time elements to capture the spatial

properties of traffic flow. In trials, the AE-LSTM model outperformed CNN

in terms of performance.
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2.3.2 Model Evaluation

The prediction model’s performance may be evaluated using the following per-

formance metrics (Miglani & Kumar, 2019; Jiang, 2022; Do et al., 2020).

Let yi be the observed values and ŷi be the predicted values and n be total

observations, we have

Root Mean Squared Error (RMSE)

RMSE =

¿
Á
ÁÀ 1

n

n

∑
i=1

(yi − ŷi)2 (2.26)

Mean Absolute Error (MAE)

MAE =
1

n

n

∑
i=1

∣yi − ŷi∣ (2.27)

- Mean Square Error (MSE)

MSE =
1

n

n

∑
i=1

(yi − ŷi)
2 (2.28)

Mean Relative Error (MRE)

MRE =
1

n

n

∑
i=1

∣yi − ŷi∣

ŷi
(2.29)

Absolute Percentage Error (APE)

APE =
ŷ − yi
yt

(2.30)

Variance Absolute Percentage Error (VAPE)

VAPE = var(
y − ŷ

ŷ
) ∗ 100 (2.31)
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Normalised Root Mean Squared Error (NRMSE)

NRMSE =

√
1
n ∑

n
i=1(yi − ŷi)2

max(ŷi) −min(ŷi)
(2.32)

Root Mean Squared Error Proportional (RMSEP)

NRMSE =

√
1
n ∑

n
i=1(yi − ŷi)2

∑
n
i=1 ŷi

. (2.33)

Lower RMSE enhances a model’s performance. An RMSE of 0 represents a

perfect match. The lower values of MAE provide super performance, and it gives

a sense of accuracy which can be achieved by comparing the actual values to the

predicted values.

It is necessary to combine several metrics to evaluate the performance of the

proposed model (Miglani & Kumar, 2019).

2.4 Traffic Modelling

The traffic flow models have been used to investigate the effects on long-term

planning as well as to analyze short-term predictions on traffic movement be-

haviour. Other applications of traffic flow models include infrastructure design

and adjustment, network management to determine the need for intersections,

and assessment of what causes congestion to spread throughout the network.

Several developments have been carried out in the literature for on-ramp and

off-ramp controls, variable speed limits, and rerouting systems.

In order to map and analyze the dynamics that result in traffic flow, several

freeway traffic models have been proposed. Studies have also been conducted to

investigate the environmental concerns associated with traffic. There are numer-

ous types of traffic flow models. The main ones are determined by the variables

and equations used to define the dynamics process. A common classification
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scheme divides models into three types: continuous, discrete, and semi-discrete,

based on how the elements describing a system change in their states. The two

main models are deterministic and stochastic, based on the type of processes

represented within the model.

When considering the degree of underlying traffic behavioural regulations, de-

terministic models are divided into five categories: microscopic, sub-microscopic,

macroscopic, mesoscopic, and hybrid models.

Green shield introduced the first traffic flow model in 1935 (Greenshields et al.,

1935b). Many traffic flow models based on the Green shield model have been pro-

posed. Then, in the 1950s, microscopic and macroscopic models were introduced

(Wardrop & Whitehead, 1952; Pipes, 1953; Moskowitz & Raff, 1954; Lighthill &

Whitham, 1955a; Richards, 1956a; Beckmann et al., 1956; Chandler et al., 1958;

Gazis et al., 1959). Later in the 1960s, mesoscopic models have been proposed

(Edie, 1961; Gazis et al., 1961; Haight et al., 1963; Montroll & Potts, 1964; Drake

& Schofer, 1966; Newell, 1993; Maerivoet & De Moor, 2005; Underwood, 2008).

Understanding the relationships between the distance between cars and their

velocity is critical in traffic flow models. Greenfield examined these relationships

for the first time in the 1930s, you can see (Greenshields et al., 1934, 1935a).

Greenfield offered a number of relationships between these variables, ranging

from linear to parabolic.

In 1934, the fundamental concept of traffic flow was introduced. The relation-

ship between traffic density (vehicles/km) and traffic flow (vehicles/hour) was

described as follows:

1. The density, k, rises as the number of vehicles increases, and equal zero

when there is no vehicle on the road.

2. The displacement situation becomes impossible as more vehicles are added.

This is referred to as jam density, kjam or critical density, kc. The vehicles

will not move, v = 0, and the flow, q, will be zero at the jam density.
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3. The density is typically represented by a parabolic curve, see Figure 2.7.

Figure 2.7: Flow density relationship.

Edie (1961) proposed the fundamental diagram with capacity drop. He de-

scribed that the outflow is slightly lower when compared to the inflow just before

breakdown, taking in a road section.

Treiterer and Myers came to the conclusion that hysteresis can explain a lot

of the dispersed data (Treiterer & Myers, 1974). Kerner and Rehborn argued, in

1997, that other non-unique relationships between density and flow exist (Kerner

& Rehborn, 1997). Newell (1993) presented the idea of hysteresis, which refers

to the phenomenon where, in congested areas, the density-speed relationship is

different from the relationship when cars decelerate.

Chanut & Buisson (2003) proposed a traffic flow model in which Hyperbolic

conservation equations were used. Their model was designed to take into account

the differing impacts of heavy and light vehicles in terms of length and space

on speed and flow behaviours on European roads. However, these researchers

emphasised that their model had limitations that still needed to be addressed,

and recommended that further research be undertaken in this domain.

In efforts to better understand the nature of traffic flow, several models

have been suggested at both macroscopic and microscopic levels in the past few

decades. Various parts of these models have been used to develop a range of

computerised traffic simulation software packages that have contributed to the

development, analysis and visualisation of designs and control scenarios for use

in determining the preferred systems for creating a safe environment. As a re-
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sult, road traffic can now be observed in diagrams at the macroscopic level, and

in the shape of vehicle trajectories at microscopic levels. Basic graphics that

combine traffic flow, speed, and density can now be created to determine the tra-

jectory of vehicles in a variety of circumstances (Ni, 2020). For example, Treiber

et al. (2010) simulated driving movements with accelerations, deceleration and

lane changes in reaction to traffic flow conditions. An empirical study was con-

ducted by Reina and Ahn to examine lane flow distribution in 3-lane congested

freeways (Reina & Ahn, 2019). Their findings identified that lane-specific traffic

behaviours had significantly varying flow trends along with constant lane flow dis-

tribution, with four recurrent combinations identified across the 72 sites of their

analysis. They found that although the varying lane flow distributions were not

uniform, their probability increased when approaching freeway merges. Apart

from experimental models such as these, a number of other mathematical models

including microscopic, macroscopic and mesoscopic models (or coupled micro-

scopic and macroscopic models), have been proposed. However, despite traffic

flow modelling having been extensively examined, when comparing their results

with ideal outcomes, some limitations in both traffic flow theory and simulation

can be found. These include a lack of consistency between the models, a lack of

flexibility in addressing driver diversity, and a lack of ability to provide predictions

into the near future (Reina & Ahn, 2019). Microscopic models, in particular, are

concerned with analysing the behaviour of individual vehicles, with a particu-

lar emphasis on the traffic dynamics of individual vehicles. Macroscopic models,

on the other hand, depict vehicle interaction as a continuous function. Meso-

scopic traffic flow models define the behaviour of separate vehicles by describing

transportation elements in small groups. Cluster models, headway distribution

models, and gas-kinetic models are examples of Mesoscopic models. In recent

years, hybrid mesoscopic models have emerged, which combine microscopic and

macroscopic models.
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Figure 2.8: Model classification.

2.4.1 Microscopic Modelling

In microscopic models, vehicles are numbered to track their behaviour. For ex-

ample, the nth vehicle is followed by the (n+ 1)th vehicle. The behaviour of each

vehicle is then modelled based on the velocity, position, and acceleration of the

leading vehicle.

The road is a series of cells that can be occupied by a single vehicle in Cellular

Automata models.

Figure 2.8, displays an overview of microscopic models and the different model

types making up the classification.

2.4.1.1 Car Following Models

Car-following and cellular automata models are the two most common types

of microscopic models. Leading and following vehicle locations are continuous

functions in car-following models, using ordinary differential equations, and are

dependent on each vehicle’s speed and distance between them.

In the literature, several models have been proposed to characterise the nature

of car following. This entails describing how automobiles in continuous traffic

react to one another. Pipe produced one of the first car-following models in 1953,

emphasising that a linear increase in the minimum safe distance headway may
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occur as speed increases (Pipes, 1953). The model’s shortcoming was that when

speeds were low, the resulting headway distance provided by the model was found

to be less than the on-field observations.

The time gap between the leader and follower cars should not be smaller than

the reaction time measured from the back of the leader car to the head of the

follower car for the model to work properly. This means that the shortest time

stimulating is equal to the reaction time multiplied by the time it takes the leader

car to go a distance of its own length. As a result, the model distinguishes between

the minimum distance that should be maintained at moderate and high speeds.

The simplicity of the Lighthill, Whitham and Richards (LWR) model, together

with the advancements in modelling that were occurring in statistical physics,

sparked the development of various particle system models in the 1990s. As a

result, Nagel & Schreckenberg (1992), introduced the cellular automata model,

which represents a class of computationally efficient microscopic traffic models.

The ideal velocity model was proposed by Bando et al. (1995, 1998), based on

calculating the distance between the lead and follower vehicles. The model’s

fundamental concepts were developed using second-order differential equations,

which were used to create the density pattern of a congested traffic flow. The

model, on the other hand, lacked reaction times. It was shown, in Davis (2002),

that reaction delays were crucial in determining the qualitative behaviour of the

best velocity model via numerical simulations. He presented a methodology to

account for the delays caused by the drivers.

Parameter identification in microscopic driving models is difficult, since re-

action time and sensitivity to stimuli are not evident from typical traffic data.

There is also a scarcity of statistical estimating procedures that are reliable. Many

approaches have been developed in an attempt to address such issues.

Li et al. (2017) developed a car-following model based on the spring-mass

system theory. The model takes advantage of the parallels between traffic flow

acceleration behaviour and spring scaling properties and uses the perturbation
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approach to obtain the stability condition for the proposed model’s stability.

Wen and Karim, Shen & Shikh-Khalil (2017) implemented a microscopic traf-

fic flow model in which each vehicle’s behaviour is determined by the distance

of the automobile in front of it in a monotone manner (follow-the-leader). Their

research focuses on a travelling-wave profile that satisfies a delay differential equa-

tion. They established the existence, uniqueness, and local stability of the wave

profile using very typical methods for (delay) differential equations. Their work

establishes intriguing connections between current results for both continuous

and discrete models of moving waves.

A while back, Hossain & Tanimoto (2022) suggested a knowledge traffic flow

model that takes into account multiple preceding cars and the system time-delay

impact to reproduce a more realistic flow field in the context of the widespread

adoption of intelligent transportation systems with a wireless connection. The

neutral stability criterion and linear stability theory were used to assess the model.

It demonstrates an improvement in the stability of a traffic flow field when

compared to the traditional complete velocity difference model (optimal velocity

model). For nonlinear analysis, the modified Korteweg-de Vries equation was

developed and studied.

2.4.1.2 Intelligent driver models

The intelligent driver model (IDM), a special type of time-continuous car-following

model, is an adaptive Cruise Control (ACC) allowing the vehicle to adjust its

speed in response to the environment. There are various approaches applied to

the IDM models, distinguished by the ease of use and accessibility of the pa-

rameters. For example, the simple approach equation (2.34) is applied when the

actual vehicle deceleration is exceeded during emergency braking. In the case of

safety studies, they ensure driver safety in a severe situation like an accident.

Moreover, emergency braking scenario is utilised to prevent a collision. In

order to improve driver safety and give a realistic response in critical situations
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like accidents, development of the IDM model is to create challenging addressing

the stability requirement in relation to both acceleration and velocity.

In the IDM, longitudinal velocity, vn, and safety time gap, sn, of the nth

vehicle may be described by (Treiber & Helbing, 2002):

dvn
dt

= an
⎛

⎝
1 −

⎛

⎝

vn
v0n

⎞

⎠

4

−
⎛

⎝

s∗(vn,∆vn)
sn

⎞

⎠

2
⎞

⎠
, (2.34)

where an is the maximum acceleration of the nth vehicle v0n are the velocity and

the desired velocity of the nth vehicle. The distance gap sn defined by

sn = ∆xn − ln+1, (2.35)

where ln+1 is nth vehicle length and ∆xn denotes bumper to bumper distance gap.

The vehicle n’s desired minimum gap, s∗, in equation (2.34) is provided by

s∗(vn,∆vn) = s0n + Tnvn −
vn∆vn

2
√
anbn

(2.36)

where s0n is the jam distance of the vehicle n, Tn is the safety time gap, and bn is

desired deceleration.

In traffic simulation models, IDM has also been used to assess VISSIM (Verkehr

In Stdten - SIMulationsmodell: German for Traffic in Cities - Simulation Mode)

and SUMO (Simulation of Urban Mobility). Treiber et al. (2000) investigated

single-lane traffic in homogeneity using the IDM to compute and compare vehi-

cle density and traffic flow with the empirical data of extended congested traffic

to determine the varying percentages of cars and trucks. Analysis of the flow

density and time series found in heterogeneous single-lane traffic revealed a typi-

cal inverse form, with differing gaps between the free and congested traffic data.

The IDM model has been applied in a study designed to simulate longitudinal

vehicle motion in a Multi-model Open-source Vehicular-traffic Simulator with a

lane-changing strategy (Treiber & Helbing, 2002). In comparing the character-
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istics of free and congested traffic, Treiber et al. determined the sensitivity of

the IDM’s parameter in relation to the platoon vehicle’s traffic stability (Treiber

et al., 2006). Kesting (2008) extended the IDM model to human drivers by mod-

ifying its parameters and adding noise to explore the impact of an IDM-equipped

car on traffic flow and journey time in an open system with a bottleneck. Treiber

& Kesting (2011) used the IDM to investigate convective instability in crowded

traffic flow. Their study suggested that extended open systems, such as those

occurring in traffic flow, are unstable when stationary perturbations accumulate

and increase in a single direction, resulting in a departure from the system. Driver

safety studies employing the IDM Model in other investigations of mixed traffic

have been performed Derbel et al. (2012) examined the proportion and relative

safety of IDM’s automated vehicles in the event of accidents when the platoon

leader abruptly brakes and comes to a complete stop following platoon stabilisa-

tion (catastrophic scenario). Their findings suggest that traffic is safer in terms

of collision frequency when there are more IDM-equipped vehicles. The dwell

time safety indicator was used to assess the safety of a mixed-traffic road in the

absence of a collision. Driver safety increases in line with the percentage of auto-

mated vehicles fitted with IDM. Furthermore, driving safety increases as traffic

congestion rises when 80 per cent or more of vehicles in circulation are equipped

with IDM. However, although traffic density has no effect on driver safety, this

may depend on the driver, safety indicator and automated vehicle model is cho-

sen (Two Velocity Difference Model (TVDM) for manual and IDM as ACC for

automated). Derbel et al. (2013) looked at how IDM can be tweaked to improve

driver safety while still respecting the real-world capabilities of the vehicle. A

new IDM version was constructed and evaluated using a microscopic traffic simu-

lator in terms of string stabilisation, taking into account the last two adjustments

and assuming that the driver should take into consideration the tail vehicle be-

haviour. They showed that although an increase of autonomous vehicles (AVs)

in local traffic improves traffic stability, their car-following behaviours are not
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entirely understood due to differences in their black-box controllers. Although

IDM has been utilised in a range of studies, this model presents several flaws re-

lated to driver safety and respect for the true capabilities of a vehicle. Therefore,

this model has been altered to include the addition of a positive term that is

dependent on vehicle speed, deceleration capability, and an additional parameter

of cn, which is calculated based on a collision scenario. The optimal value of this

parameter ensures that both traffic flow and the safety of the driver coincide.

The model also includes a minor constant in the inter-distance term within the

model. These two changes ensure that the model respects the vehicle’s actual

deceleration capabilities. In addition, a third change in the IDM model includes

the human element, hf = 1 for stable platoon’s acceleration and velocity), to al-

low the driver to consider the state of vehicles in front and behind him. Recent

research has focused on the influence of the new IDM version on driver safety

on mixed-traffic roads. Alhariqi et al. (2022) employed data from a real-world

experimental trajectory to calibrate the IDM for mixed autonomous traffic. They

added a standard deviation of velocity to the calibration goal function to account

for stop-and-go traffic. This feature allows us to reproduce the traffic fluctua-

tions observed in the experimental data in the goal function. They claimed that

mixed independent traffic patterns may be modelled using their calibration and

adaptive IDM approaches.

2.4.1.3 Cellular-automata Models

Cellular-automata concept was established by Von Neumann (1951) to examine

biological systems. The concept of self-reproduction and theoretical machines

known as kinematics were used to further Neumann’s proposal. The model was

advanced further by incorporating the concept of cellular spaces. The entire

notion describes how cellular automation, also known as a grid of cells, works

physically. Compared to other models, cellular automata have the following ad-

vantages:
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i) the model is essential, making it simple to program on a computer;

ii) the model can represent complex traffic phenomena while also reflecting

traffic flow properties;

iii) roadways are separated into multiple portions, allowing for the simulation

of changing vehicle circumstances;

iv) models are dynamic models with finite discrete space and states;

v) after local cell interactions are handled, the system can be scaled to any

size without any further modelling challenges.

Due to the difficulties of traffic in nature, traffic simulation is one of the most

effective ways to evaluate the effectiveness of traffic systems and to provide solu-

tions to traffic problems. SUMO (Simulation of Urban Mobility) is an open-source

microscopic multi-modal traffic simulator (Krajzewicz, 2010). It enables the user

to model how a particular traffic demand behaves on a specific road network.

Each vehicle is explicitly described, has its own route, and moves around the net-

work independently. It is one of the solutions for high-precision transportation

tasks. The simulation results of Can et al. (2020) show that the duration of the

traffic event has a significant impact on travel time and mean speed. At the same

time, it may result in greater traffic congestion.

2.4.2 Macroscopic Modelling

Macroscopic models describe the traffic flow as a continuum flow of fluids. To

improve incident identification, researchers looked into estimation approaches

that combined traffic states and event severity using a macroscopic traffic model.

Dabiri & Kulcsár (2015) and Wang et al. (2016) showed how incident data may

be incorporated into model-based traffic estimation methods by adjusting cer-

tain parameters (e.g. free flow speed and/or critical density) that represent the
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Figure 2.9: Relationship of density and flux.

incident impact. A macroscopic model uses substantially less memory and calcu-

lation time in the surrounding areas, producing less-detailed results (for instance,

on a highway ring road around an urban area).

2.4.2.1 Classical LWR model

In 1955, a model based on fluid dynamics was introduced as the first macroscopic

flow model, established a relationship between vehicle density and flux (Lighthill

& Whitham, 1955a) as shown in Figure 2.9. One year later, Richards (1956a)

proposed the LWR model (2.37) to describe the evolution of traffic density along

a route in real-time. The road was depicted as a one-dimensional entity, without

the realism of crossings and on-and-off ramps, but including traffic signals. The

density of traffic at the location x at time t is denoted by k(x, t). The LWR

model, based on a basic conservation law for vehicle density, is

∂k

∂t
+
∂

∂x
(q(k)) = 0, (2.37)

where q(k) = kve(k) denotes traffic flow rate (traffic volume) and ve(k) is an equi-

librium (ideal) traffic velocity. The true meaning of such a formulation becomes

clear when the density k(x, t) is integrated over an interval [a, b] on the highway.

Then the rate of change of the total traffic volume in the interval [a, b] is defined
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by

d

dt ∫
b

a
k(x, t)dx = −∫

b

a
(kve(k)xdx = k(a, t)ve(k(a, t) − k(b, t)ve(k(b, t)). (2.38)

The difference between the traffic volume coming at point a per unit time and

the traffic flow departing at point b per unit time is the right-hand-side term.

The velocity ve in equation (2.38) must satisfy the following conditions:

1. ve(kmin) = vf indicating a maximum speed at low traffic density,

2. ve(kjam) = 0, where kjam indicates a maximum traffic density at which the

speed comes to a halt;

3. kve(k) is a concave function of k. Because such nonlinear conservation laws

tend to have solutions with embedded shocks and rarefaction waves, this

latter criterion is a bit technical, but it allows for a simplified explanation

of the set of solutions to such a differential equation. To explain the long-

term behaviour, consider that the number kve(k), also known as the flux,

is concave.

We can look at an example to better understand the phenomena. Suppose

that

ve(k) = 1 − k for 0 ≤ k ≤ 1 = kjam,

the flux function

q(k) = kve(k) = k(1 − k).

For smooth traffic density, we can write the conservation law as

kt + q
′(k)kx = 0, (2.39)

where q′(k) = 1−2k. Since q′′(k) = −2, q(k) is concave on the interval [0,1]. This

form of the conservation law implies that along characteristics, i.e, curves x(t)

for which
dx

dt
= q′(k) that dk(x(t),t)

dt = 0, and therefore that k(x(t), t) is constant
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along such characteristics. Therefore, a = q′(k) is constant along such a character,

and we see that k(x0 + at, t) = k(x0,0). The characteristics’ method breaks down

when different characteristics intersect at the positive time when shocks form, or

when diverging initially nearby characteristics produce what are called rarefaction

waves.

In 1955, Lighthill & Whitham (1955b) proposed the traffic flow model while

taking into account the kinematic wave (KW) theory. Their theory held that a

flow of water was equal to a flow of traffic, the speed of which is defined by the

slope of the flow-density graph relative to the road. Bottlenecks and intersections

were discussed in relation to traffic flow. Their design, on the other hand, has

a significant flaw because it was created especially for long-distance cars. A

year later, Richards (1956b) proposed the model, giving it the name Lighthill-

Whitham-Richards (LWR) model. The foundation of this model is the partial

differential equation that represents the evolution of traffic density along a road.

2.4.2.2 Modified LWR models

For lane-changing effect, various models, namely the kinematic wave theory (KW)

model, have been developed based on either the Lighthill-Whitham-Richard (LWR)

method (Lighthill & Whitham, 1955b; Richards, 1956b), or the speed gradient

(SG) method (Jin, 2010a; Chang-Fu et al., 2007). In the kinetic wave (KW)

model, the traffic flow is modelled in terms of kinematic waves in either of three

quantities: flow q, speed v and density k. The model describes two basic forms

of waves:

1) decelerating shock waves, which generally arise due to slow moving vehicles,

2) accelerating rarefaction waves, which generally occur when a congested

regime of traffic enters a low traffic density area.

In a KW model, conservation of traffic is applied to obtain a partial derivative

equation given in equation
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∂k

∂t
+
∂

∂x
(q) = 0, (2.40)

In other words, KW models assume that flow q is expressed in terms of density

k. Upon substituting this relationship in equation (2.40), one gets a simplified

version which is shown in equations

∂k

∂t
+
∂

∂x
(q(k)) = 0, (2.41)

and

v = v(k) =
q(k)

k
. (2.42)

Some important points from the KW model may be concluded as follows.

• As k approaches zero, q also approaches zero.

• Initially, more k leads to higher q which occurs until the maximum q value

which is known as capacity of a road

• Beyond capacity, any further addition to k leads to lower q value.

• As k continues to increase, there comes a point when the q value approaches

zero. This is known as jam density of a road.

Jiang et al. (2002), proposed an anisotropic model with the speed gradient

term instead of the density gradient term in the dynamic equation. Another

novel anisotropic continuum model was proposed by Gupta & Katiyar (2006,

2005), which was based on an improved car-following model. Tang et al. (2008b,

2014), developed higher order models which took into consideration the varying

physical and traffic conditions on the roads along with the traffic interruption

probability. Furthermore, Chen et al. (2013) included the impact of the gradient

of the roads in the macroscopic model. The speed gradient model developed by

Jiang et al. (2002) comprised the traditional continuity equation (shown earlier

in equation (2.40) along with the dynamic equation shown in equation (2.43)
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∂v

∂t
+ v

∂v

∂x
=
ve(k) − v

T
+ c0

∂v

∂x
, (2.43)

where T is the relaxation time and c0 is the speed at which the disturbance

propagates. The first term on the right of equation (2.43), referred to as the

relaxation term, represents the situation when a driver adjusts its speed to attain

equilibrium speed. The second term represents that the driver reacts to the down-

stream (in-front) traffic conditions, which is also referred to as the anticipation

term. Many researchers have proposed experimental models and mathematical

models to describe the traffic flow on lane-changing roads with two lanes (Tang

et al., 2008a; Jin, 2010b; Huang et al., 2006), three lanes (Hu et al., 2018; Chen &

Fang, 2015) and multi-lanes (Delis et al., 2018; Laval & Daganzo, 2006; Shvetsov

& Helbing, 1999). To understand the free-flow traffic on a freeway, analysis of

real-time traffic data is essential. Many experimental frameworks have been pro-

posed to investigate many traffic aspects such as traffic jams without bottleneck

(Sugiyama et al., 2008), and instability of traffic flow (Jiang et al., 2018; Jin et al.,

2019).

As the lane changes may be induced by on-ramp traffic and road conditions

such as closures and other incidents. In an urban traffic region, a lane-changing

vehicle is likely to generate a temporary movement bottleneck on its target lane

while it increases the speed acceleration on that lane (Laval & Daganzo, 2004).

For controlling vehicle traffics, understanding the effect of lane-changing activity

on the traffic flow is important. Research in this area has received increasing

attention to help civil engineers control freeway traffics.

A lane change manoeuvre is characterised by the transition of a vehicle from

a lane to an adjoining lane (Mathew, 2014). These inter-lane movements create

hindrances for other vehicles in the vicinity, which eventually has implications

on the micro and macroscopic traffic flow (Al-Kaisy et al., 2005; Daganzo et al.,

1999). While it is easy to model the intraplate movement of a vehicle (by taking

into consideration the speed and spacing of the leading vehicle), lane change is
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more complex as it involves multiple criteria (the available gap between the sub-

ject vehicle and leading vehicle in the adjoining lane for example) to determine

a safe manoeuvre. Frequent lane changes lead to speed reduction and capac-

ity drop, resulting in the formation of shock waves (Jin, 2010a; Sasoh & Ohara,

2002). Furthermore, these manoeuvres, which are usually concentrated around

ramps, lead to the formation of traffic oscillations, eventually resulting in stop-go

waves during congested traffic in a highway (Daganzo et al., 1999; Hoogendoorn

& Bovy, 2001; Wall & Hounsell, 2020). These stop-go waves require more drivers’

focus, leading to driver frustration and safety concerns. Thus, developing a lane

change model that genuinely reflects real-world conditions is essential in traffic

flow modelling. The real-world applications of lane change models are visible

in two domains, namely: Adaptive Cruise Control (ACC) and simulations. The

ACC, which is equipped with modern automobiles and facilitates driving assis-

tance, can be further subdivided into collision avoidance and automation models.

While the former aids the driver in undertaking safe lane change manoeuvres,

the latter automatically controls the steering wheel to execute a safe lane change

(Rahman et al., 2013).

Most of the lane change models, in general, comprise a two-stage decision

process, namely: lane selection and execution. The desire to change lanes is

generally triggered by two factors: 1) Compulsory or Mandatory Lane Changing

(MLC) (i.e., approaching the end of the lane, avoiding an incident, etc.), and

2) Optional or Discretionary Lane Changing (DLC) (overtaking a slow, leading

vehicle, etc.). The behavioural characteristics of drivers motivate them to under-

take the lane selection process (Ramanujam, 2007). The execution of lane change

is characterised by lane selection followed by applying gap acceptance models.

Toledo (2007) conducted an extensive review of the literature in lane change

modelling and reported that the key shortcoming of a majority of the existing

models was the inability to accurately model driver characteristics and prefer-

ences such as temporal correlations among driving decisions, short-term decision-
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making, etc. A similar literature survey was conducted by Moridpour et al.

(2010), to discuss the pros and cons of the several existing methods. The change

method is classified into two categories, rigid mechanistic models and AI-based

models. The shortcomings of the existing lane-change decision models are as

follows.

Firstly, none of the developed methods models the decisions of the drivers

of heavy vehicles. Secondly, a majority of the models focus mainly on the lane-

change decision models and do not much on the execution component. Thirdly,

the models were validated against macroscopic traffic information.

Similarly, Rahman et al. (2013) reviewed the state-of-the-art microscopic lane-

change modelling used in simulations. The authors discussed how advancements

in data collection techniques such as detailed vehicle trajectory information could

potentially contribute to the development of newer models. Zheng (2014) re-

viewed the existing lane-change models with lane-change behaviours, including

capturing the decision-making process of the driver and determining the impact

of lance change on the nearby vehicles.

Tang et al. (2009) developed a macroscopic lane-change model for a two-lane

road using the linear stability theory. Their model was found to affect the stable

region and wave speeds emanating from the first and second-order models. The

flow-density relationship was expressed as a function of the rate of a given flow,

its difference with the expected flow and lane change.

Jin (2010a) implemented the KW model to study the impacts of two lane-

changing traffic on overall traffic flow with bottleneck region. Jin (2013) mod-

ified the LWR model to determine lane change for different vehicle categories.

The fundamental diagram for each vehicle category was obtained using the car

following model having lane-change parameters along with road and traffic char-

acteristics. The fundamental diagrams were calibrated and validated using the

available data. Using entropy maximisation, the multicommodity LWR model

was solved using the Riemann problem over a homogeneous lane-changing area.
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The resulting flux function was obtained, relating to demand and supply. The

flux function was then used to study the impact of lane change for a site expe-

riencing lane reduction. It was suggested that the modified LWR model with

lane-changing could be integrated into a mesoscopic framework for alleviating

bottleneck formation due to frequent lane changes. Tang & Huang (2004) pro-

posed an SG model to study traffic dynamics for two-lane freeways where the

faster vehicles are allowed to travel on both lanes while the slower ones are on

one lane only. Chuan & Di-Hua (2010) proposed a continuum model based on

the SG approach. The initial conditions and boundary conditions for density and

velocity fields were given. The equilibrium speed-density relationships for both

lanes were presented. Many multi-lane changing models have been proposed to

quantify the impacts of lane-changing manoeuvres on traffic flow. Chen & Fang

(2015) proposed an SG traffic flow model for a three-lane highway taking into

account lane changing. They claimed that their model could capture real traffic

phenomena such as shock, rarefaction, stop-and-go waves and local clusters. Hu

et al. (2018) proposed a lattice model based on the KW approach to study the

characteristics of lane-changing traffic flow on a three-lane freeway. Delis et al.

(2018) proposed a multi-lane SG model to simulate lane changes due to vehicle

interaction on the three-lane motorway. The effects of adaptive cruise control

or cooperatives were investigated. Zhang et al. (2018) studied the effect of off-

ramps on lane changes and traffic performance across several traffic conditions

using the Shanghai Naturalistic Driving Study (SH-NDS) data. The SH-NDS

captures driver behaviour in a naturalistic environment over an extended period.

A logistic regression was carried out to model driver choice towards the target

lanes across three traffic conditions: free flow, medium flow and heavy flow. The

results showed that the behaviour exhibited by the drivers using the off-ramp was

a combination of route planning and preferring better driving conditions. In fact,

under heavy flow, the latter behaviour became more prevalent. It was also found

that the speed distribution was more dispersed for the scenario which involved
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a vehicle moving from a slower lane to a faster lane, thus increasing the crash

likelihood. The contribution of the study was to understand the driver behaviour

around off-ramp locations and implement strategies aimed at an overall improve-

ment in traffic performance and minimising traffic incidents. Similarly, Zhang

et al. (2018) also studied driver lane-changing behaviour on three highways in

China. With different lane changing patterns (lane change rate, choice of target

lane, etc.) and the impact of ramps, high-speed lanes vehicle types were studied.

The results show that lane change is an instantaneous decision which is triggered

due to aggressive driving behaviour of drivers. These existing models give a basic

understanding of the effect of lane changes on traffic flow. However, there are

limitations to the model.

2.4.2.3 Cell Transmission Model (CTM)

To characterise the propagation process of congestion in road networks, Daganzo

(1994) introduced a cellular transmission model based on traffic flow theory. In

simulating metropolitan settings, this model presents a discrete road network

form equivalent to the Godunov (1959) approach. Several CTM-based techniques

for explaining the propagation characteristics of recurring and incident congestion

have been developed using simple implementations (Long et al., 2011; Zhang &

Gao, 2012; Tao et al., 2016).

However, although much research has been undertaken in the field of con-

gestion propagation, many models have been impractical due to various mathe-

matical assumptions and the oversimplified modelling of road networks in regular

grids (Qi et al., 2013; Zhao et al., 2017a). Assuming that the equilibrium traffic

velocity is solely determined by density is unrealistic, which is why so many efforts

have been made to improve the models. Forward-looking drivers can maintain

a lower front traffic density by accelerating (accelerating), and decelerating as

traffic density increases in the forward direction.
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As the velocity is the function of car position at time t,

dv(t)

dt
=
dv(x(t), t)

dt
= vt + vx

dx

dt
= vt + vvx. (2.44)

The two-equations model of traffic flow, namely, the Payne (1971),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kt + (kv)x = 0

vt + vvx =
ve(k)−v

τ −
ν(k)
kτ (k)x

(2.45)

where τ is relaxation time and v is anticipation coefficient (Payne, 1971)

The vehicle’s acceleration is on the right side of the equation (2.45), which is

then the models on the right side. The velocity is then driven to the equilibrium

velocity by the first term on the right side of (2.45), where τ is a relaxation time.

The second component is effectively a term of deceleration: when the forward-

looking traffic density grows (k, x > 0), and when the forward-looking density

decreases, the term of acceleration increases.

The vast majority of traffic flow models are isotopic. On the other hand,

it was suggested, in Daganzo (1995), that vehicles travelling backwards have

anisotropic behaviour. The anisotropic models have progressed quickly as a result

of Daganzo’s work. The most well-known model is arguable that in Aw & Rascle

(2000). Instead of Payne’s velocity equation (2.45), the velocity equation is

∂

∂t
(v + p(k)) + v

∂

∂x
(v + p(k)) = 0 (2.46)

with a pressure term p(k) = kc with some constant c > 0. In 2002, it was presented

the so-called speed gradient model (Jiang et al., 2002). In equation (2.46), the

speed gradient substitutes the density gradient in the motion equation, ensuring

that the characteristic velocities do not exceed the macroscopic flow velocity.

Backward travel is not a problem in the (2.46) model, as it is in other models.
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For instance, consider the following Payne model (Payne, 1971).

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

kt + (kv)x = 0

vt + vvx =
ve(k)−v

τ + c0vx,
(2.47)

where the second term on the right side of (2.47) controls the driver acceleration

and deceleration for stop-and-go waves, shock waves, and rarefaction waves. For

the local cluster impact on highway flow dynamics, the following model has been

proposed (Jiang et al., 2002):

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

kt + ve(k)kx + kvx = 0

vx + vvt =
ve(k)−v

τ + k1v′e(k)
ξ
τ kx + k2

η
τ vx,

(2.48)

where K1 and K2 are model parameters and ξ = ξ(k, v) is for the anticipating

driving behaviour and η = η(k, v) is for the adaptive driving behaviour. Stability

for the model (2.48)requires that,

kv′e(k) + k1
ξ

τ
+ k2

η

τ
≥ 0. (2.49)

Recently, various studies have applied these concepts to more realistic traffic con-

ditions. Soheili et al. (2013) simulated adaptive traffic flow density. Tang et al.

(2015), proposed a macroscopical traffic flow model taking into account real-time

traffic circumstances. Mollier et al. (2019), developed a two-dimensional macro-

scopic model for large-scale traffic networks. Khan & Gulliver (2018) presented

a macroscopic traffic model to examine flow harmonisation. The macroscopic

models were also used to analyze traffic flow on curving roadways with weather

conditions (Khan et al., 2018; Xue & Dai, 2003). In Suwanno et al.’s work, a

way for quantifying urban flood problems was proposed by applying the notion

of a macroscopic fundamental diagram (MFD) to convey traffic circumstances

in specified ranges. In order to develop a traffic model with vehicle-flow char-

acteristics and evaluate the effectiveness of the transport system, MFD analysis

was used to identify correlations between traffic flow-density and density-velocity.
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The developed model improved the performance of the traffic flow on the road

network under various flood conditions.

2.4.3 Mesoscopic Modelling

To bridge the gap between the microscopic models and the macroscopic models,

mesoscopic traffic flow models were created. Vehicle flow is described by con-

ventional mesoscopic models in aggregate terms. On the other hand, individual

cars have a unique set of rules for acceptable behaviour. Members of the fam-

ily include headway distribution models, cluster models, gas-kinetic models, and

macroscopic models derived from these. Recently, a novel branch of the tree that

combines microscopic and macroscopic models has appeared: hybrid mesoscopic

models.

The mesoscopic traffic flow models have been proposed to ensure accuracy and

computing efficiency (Li et al., 2015b). Various softwares such as DynaMIT (Ben-

Akiva et al., 2002), DynaSMART-X (Mahmassani, 2001), PTV Visum-online

(Ploss & Vortisch, 2006), and DynaTAIWAN (Hu et al., 2005), have been de-

veloped based on simulation-based dynamic traffic assignment techniques with

mesoscopic traffic flow model as the core theoretical model. Traffic flows are cal-

culated using temporal headway in headway distribution models. The time head

ways are independent random variables with the same distribution. The models

depict the distribution of individual vehicle headway rather than directly tracing

the vehicles(Li & Chen, 2017; Buckley, 1968; Branston, 1976).

Moreover, traffic flow is described as a flow of clusters of automobiles in clus-

ter models. Each cluster contains numerous vehicles, and flow parameters such as

velocity and headway are assumed to be uniform within each cluster. When pass-

ing opportunities are restricted, clusters might form, for example, as a buildup

of vehicles behind a slow vehicle. Clusters can either grow or die. The cluster

model is the most common and well-known (Mahnke et al., 2005). Gas-kinetic

models have been developed to investigate the motion of many small particles
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(atoms or molecules). When applied to traffic flow, the gas models can capture

the dynamics of vehicle velocity distribution functions (Kessels, 2019).

To summarise, hybrid models have been created to mix modelling techniques

from different branches. Most hybrid models, also known as multiscale models,

combine a continuum model and a car-following model. In situations and places

where it’s necessary, like the city centre, they often employ a tiny model to get

the level of detail and precision they need.

2.5 Optimisation Models of Traffic Flow under

Non-Recurrent events

Severe traffic jams and dangerous situations can occur at any time and in any

locations. Because of the uncertainty of occurrence, traffic modelling for optimal

management under non-recurrent events is a major required. Civil engineers focus

exclusively on applying adaptive methods in normal (recurrent) traffic conditions.

Various control strategies have been applied to manage traffic under recurrent and

non-recurrent events. However, the use of appropriate control strategies in the

events of catastrophic catastrophes is still a difficult problem, especially when

multi-lane roadways with various intersections are considered. Thus, many opti-

misation models have been proposed to obtain an optimal set of control strategies

for traffic management.

2.5.1 Traditional Optimisation Models

One of the most effective and economical methods to reduce traffic is optimal

traffic control on highway networks.

Over the past two decades, a vision of developing of Intelligent Transportation

Systems (ITS) has led to numerous research works focusing on Ramp Metering

as part of Advanced Traffic Management Systems (ATMs) on highways. Three

primary mechanisms that have been used to regulate and manage the traffic
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throughput on highways are ramp metering (RM), variable speed limit (VSL),

and lane change controls.

It in Variable Speed Limits (VSL) and Ramp Metering (RM) are two of the

most efficient types of control strategies (Papageorgiou & Kotsialos, 2002; Han,

2017). (Maciejowski, 2002) proposed model predictive control (MPC) using net-

work operators to obtain the best control inputs for a road network based on

its current condition across a given time horizon. The control inputs were then

applied to the network (Hajiahmadi et al., 2015; Frejo & Camacho, 2011; Mu-

ralidharan & Horowitz, 2015).

1) Ramp Metering and Lane Change controls

A ramp meter is basically a traffic signal at the entry of a highway, via an

on-ramp, to regulate the number of vehicles which intend to join the highway.

The idea is to allow a vehicle to enter the highway once gaps are detected in the

traffic stream on the highway (Arnold, 1998). The metering rate depends on the

prevailing speed and volume on the highway. Ramp metering restricts bottleneck

formation and delays on the highway by avoiding situations such as bunching of

vehicles around the merge points, which leads to a reduction in the speed on the

highway. Ramp meters in fact shift the location of delay and bottleneck towards

the on-ramp, away from the highway, which facilitates a smooth flow of traffic.

There are two types of ramp metering mechanisms:

• Pre-timed controller which allows a vehicle to enter in fixed time intervals;

• Available gaps on the highway and queue length on ramps before deciding

the green time (Arnold, 1998).

A variety of ramp metering techniques and algorithms have been developed

to date aimed at smoothing traffic flow on highways and making them more ef-

ficient. The choice of a given algorithm is governed by the geographic location

of the highway, ramp and objectives of the traffic management authority. Papa-

georgiou & Kotsialos (2002) conducted an extensive review of the state-of-the-art
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on-ramp metering and pointed out that futuristic highway networks should be

autonomous in their operations to avoid bottleneck formation, delays, and safety

issues. Li et al. (2018) presented an RM model based on CTM which was cali-

brated using traffic data collected on a section of the highway. Hou et al. (2008)

presented an iterative approach as a way to control density using a macroscopic

model comprising highway and ramp meters. The findings were that the iterative

learning control method performed very well in improving the traffic conditions

on the highway. Shaaban et al. (2016) conducted a review of the literature on

the advances made in adaptive ramp metering. The studies taken into consid-

eration were segregated into two categories: traditional and recent strategies.

The traditional methods such as ALINEA, Bottleneck Algorithm, Zone Algo-

rithm, METALINE, HELPER Algorithm, System-Wide Adaptive Ramp Meter-

ing (SWARM), Fuzzy Logic, Linear Programming, Dynamic Ramp Metering, Ad-

vanced Real-Time Metering System (ARMS), COMPASS and Linked Algorithm

have been reviewed and discussed. Recently, a new ramp metering algorithm,

Feedforward ALINEA (FF-ALINEA), for studying the bottleneck formation in

the vicinity or at a distance from on-ramps was proposed by Frejo & De Schutter

(2018). The results from simulations showed that FF-ALINEA was superior to

other algorithms (ALINEA and Proportional Integral ALINEA (PI-ALINEA))

in maintaining the optimal traffic throughput in the system. Furthermore, FF-

ALINEA was found to be more stable under different demand scenarios. In

another recent study, Han et al. (2020) developed a hierarchical control method

to allow for coordinated ramp metering on a highway (including ramps) net-

work. The method uses a simplified aggregate traffic model which expresses total

throughput as the total number of vehicles on the highway. This method was

found to bring further reduction in traffic congestion and the resulting delays.

More recent works have focused on developing novel strategies for achieving

advanced ramp metering. Tajdari et al. (2019)] introduced a novel method involv-

ing ramp metering and lane changes for a highway system that even comprised
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connected and semi-autonomous vehicles. The inclusion of these vehicle types

was based on the idea that a proportion of vehicles in the traffic stream followed

certain instructions received, such as to change lanes, etc. It involved a Linear

Quadratic Integral (LQI) regulator and an anti-windup scheme derived from a

simple Linear Time-Invariant (LTI). The method led to a significant improve-

ment in the throughput on the highway. The performance was tested using a

first-order multi-lane macroscopic traffic flow model with capacity drops and led

to a significant improvement in the throughput on the highway.

Vishnoi & Claudel (2021) proposed an LWR optimisation approach to handle

the problem of VSL control on road networks. They also gave certain mathe-

matical concepts that allow the optimisation problem’s size and computational

time to be reduced. The more recent approaches include Dual Heuristic Program-

ming Control (DHPC), Heuristic Ramp-Metering Coordination (HERO), Addi-

tive Increase Multiplicative Decrease (AIMD) algorithm, Proportional Integral

ALINEA (PI-ALINEA), ALINEA with Speed Discovery, Genetic Fuzzy Logic

Control (GFLC), Zippered Control Strategy (ZCS) and Iterative Local Control

(ILC).

2)Variable Speed Limit Control

The intelligent transportation system (ITS) solutions known as VSL systems

enable for the modification of speed restriction requirements in response to shift-

ing traffic, incidents, and/or weather conditions. Based on variations in traffic

speed, volume detection, and road weather information systems, variable speed

limit systems are utilised to establish the proper speeds for vehicles. The nec-

essary modifications in speed limits are posted on overhead or roadside variable

message signs (VMS). The following are the key advantages of VSL implementa-

tion:

1. Reducing the velocity disparities among cars in the same lane and/or next

to it can increase safety. By synchronising driving habits and discouraging lane-

changing, this decrease in speed variance lowers the risk of an accident.
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2. Steering clear of traffic jams: When traffic is almost at capacity, any

interruption in the flow could cause traffic congestion. A variable speed limit can

help restore freeway capacity by decreasing traffic that would otherwise approach

bottleneck regions and averting or delaying traffic flow disruptions Hegyi et al.

(2005).

3. Increased throughput and environmental benefits: Because traffic conges-

tion is linked to increased fuel consumption and emissions, VSL’s capacity to

improve traffic flow has environmental benefits Zegeye et al. (2009).

Wang et al. (2019) developed a hybrid model to study the nonlinear traffic

dynamics and some other interesting properties around the ramp sections and

the highway by using the finite difference method. The traffic dynamics were

studied by capturing the change in the traffic flow parameters (density, flow

and speed) under different traffic conditions. The robustness of this method

was checked by testing linear and nonlinear dynamics for different traffic states.

Wang et al. (2019) further included variable speed limit signs around the on-

ramp locations to assess their effect on the throughput. A variety of coordinated

and isolated scenarios were tested using micro-simulation to compare the control

strategies. The sources of error were studied by disentangling the forecasting and

simulation models. The results showed improvement in vehicle throughput, each

under the coordinated and isolated cases, the extent of which varied depending

on the prevailing demand.

3)Ramp Metering and Variable Speed Limit Controls

Under highway circumstances, an increase in traffic demand reduces the mo-

torway’s Level of Service (LOS). Increased inflow causes traffic disruptions or

congestion in the on-ramp merging zones of the highway. Due to the merging

of vehicles from the on-ramp into the mainline, the influx slows down the main

traffic flow. Such occurrences are exclusive to peak demand during rush hours. A

bottleneck is when the mainline traffic flow volume on a particular length of high-

way surpasses the designated throughput (capacity) and the traffic flow becomes
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unstable. Vehicle contacts become more intense as a result of the mainline traffic

flow being unsteady due to increased traffic demand. When traffic is moving un-

evenly, a single car or a small group of cars can slightly quicken or slow down the

pace of neighbouring vehicles. On urban freeways, ramp metering and variable

speed limits (VSL) are the two traffic control strategies most frequently employed

(RM). VSL alters the dynamics of the traffic flow by controlling the speed of the

major highway traffic flow. Through the use of Variable Message Signs (VMS),

VSL is able to manage the increase in traffic on the controlled length in an in-

direct manner (Vrbanić et al., 2021). The VSL control system was created in

order to increase operational capacity without adding additional lanes to the cur-

rent traffic infrastructure on metropolitan highways. On the other hand, the RM

used as a closed-loop or open-loop control system restricts the amount of vehicles

using the controlled on-ramp to enter the highway. For instance, the ALINEA

algorithm is a feedback control loop-based RM algorithm. For additional details,

refer to Vrbanić et al. (2021).

2.5.2 CTM-based Optimisation

Gu et al. (2022) proposed a distribution resilient optimisation model using CTM

approach for dealing with the ramp metering problem in the presence of un-

known traffic demand flows. Their model requires only partial distributional

knowledge of stochastic demand flows. To approximate the distribution robust

change requirements, the proposed issue can be conservatively represented as a

semi-definite programming (SDP) problem utilising the Worst-Case Conditional

Value-at-Risk (WCVaR) constraints. They claimed that the distribution robust

control strategy produced consistent results in a range of uncertain environments.

2.5.3 Machine learning-based Optimisation

Machine learning-based optimisation models have been developed to analyse re-

current and non-recurrent traffic behaviours for evaluating congestion levels. In
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Singh and Mohan’s work (Singh & Mohan, 2018), a model including a stacked au-

toencoder was devised in an effort to determine road car accidents. Surveillance

videos were thus adopted to produce pixel-intensity images, with cases exam-

ined in Hyderabad City, India. Wang et al. (2018) described the spatio-temporal

impact of traffic incidents via a mathematical integer programming approach,

resulting in 98 per cent of the total computing time. Zhang et al. (2016) adopted

a dictionary-based comparison theory to observe traffic flow patterns across three

geographical levels, namely detector, intersection, and sub-region. He et al. (2019)

utilised low-frequency probe vehicle data (PVD) to detect traffic congestion, while

Tian et al. (2019) adopted cooperative vehicle infrastructure systems (CVIS) and

machine vision in order to automatically detect car accidents. They also devel-

oped an image database, CAD-CVIS, to improve the approach’s accuracy. In Pu

et al. work (Pu et al., 2019), a framework was developed, named STLP-OD, to

detect non-recurrent traffic outliers by determining propagation between roads.

Machine learning techniques were also deployed. Cheu et al. (2003) used machine

learning algorithms, namely support vector machine (SVM), in order to detect

incidents on freeways in San Francisco. Dogru & Subasi (2018) on the other

hand, used Random Forest models, combined with simulations to detect traffic

incidents. Krupitzer et al. (2019) developed a Gradient Boosting Machine (GBM)

algorithm framework to detect traffic issues with incident detection.

2.6 Concluding Remarks

A comprehensive literature of deep learning models to forecast traffic flow through

time series analysis was reviewed. Three different deep learning models including

MLP, CNN, LSTM, 1D-CNNLSTM and AE-LSTM, were described in detail.

Also, the traffic flow based on microscopic and macroscopic scale-type models

was summarised. Two main types of microscopic models include the car-following

models and the Cellular-automata models. For the macroscopic models, there

are two main parts, including the LWR model and the Cell Transmission Model.
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The typical models cannot capture real traffic phenomena. Therefore, many

attempts have been made to couple the microscopic and macroscopic models

in order to predict the types of phenomena that are frequently observed with

congestion, investigate the effects of disturbances such as a random interrupting

the traffic flow, and also predict the clustering conditions that are frequently

observed during times of high traffic density in real traffic systems. Moreover,

the development of mesoscopic traffic flow models was summarised. They serve

as a link between microscopic models that explain individual vehicle behaviour

and macroscopic models that represent traffic flow as a continuous flow. Lastly,

optimisation models based on CTM and machine learning were presented. Traffic

flow on a freeway with on-ramp and off-ramp regions was summarised. Finally,

applications of the traffic flow models for ramp metering and traffic lane changing

conditions studies were described.

This is due to the fact that data-driven traffic parameter prediction commonly

uses predictive analytical approaches on historical data observations to find pat-

terns that can be utilised to anticipate future observations. Due to the seasonal,

recurrent/cyclical nature of urban traffic statistics, this has turned out to be

helpful. For instance, peaks during the morning and evening rush hours can be

clearly predicted and thus anticipated. As a result, a model will be ”skilful” at

forecasting future traffic features if it can identify and comprehend these trends

from prior data.

With unexpected or non-recurring events, such as occurrences or incidents

that cannot be predicted based on prior data, even the most accurate prediction

algorithms would struggle (Essien et al., 2019b). Non-recurring or stochastic

events/incidents include things like accidents, lane closures, sporting events, and

public gatherings. It is crucial to build strong predictive models since such events

may be unanticipated, uncommon, or unexpected, making it possible to predict

traffic accurately in these circumstances.
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Chapter 3

Multivariate Prediction Models

3.1 General Overview

Determining future traffic flow conditions is a vital component in managing traf-

fic operations. A variety of Intelligent Transport System (ITS) infrastructure

methods such as variable message signs can anticipate future traffic conditions

resulting from traffic incidents and bad weather. Traffic flow prediction is a widely

researched field in transport engineering, with numerous statistical and machine

learning techniques developed to determine future traffic conditions using exist-

ing data. Recently, there has been an interest in exploring the effectiveness of

deep learning techniques in traffic flow prediction.

This chapter concerns multivariate machine learning-based prediction models

of freeway traffic flow under non-recurrent events.1 2. Five model architectures

are based on the multi-layer perceptron (MLP), convolutional neural network

(CNN), long short-term memory (LSTM), CNN-LSTM and Autoencoder LSTM

1Copyright permission: please see in Appendix A.
F. Aljuaydi, B. Wiwatanapataphee and Y. H. Wu, ”Deep Learning-Based Prediction Mod-
els for Freeway Traffic Flow under Non-Recurrent Events,” 2022 8th International Confer-
ence on Control, Decision and Information Technologies (CoDIT), 2022, pp. 815-820, doi:
10.1109/CoDIT55151.2022.9803892.

2Copyright permission: please see in Appendix A.
F. Aljuaydi, B. Wiwatanapataphee and Y. H. Wu, ”Multivariate machine learning-based predic-
tion models of freeway traffic flow under non-recurrent events, Alexandria engineering journal
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(AE-LSTM) networks have been developed to predict traffic flow under a road

crash and the rain. Using an input dataset with five features (the flow rate, the

speed, and the density, road incident and rainfall) and two standard metrics (the

Root Mean Square error and the Mean Absolute error), models’ performances are

evaluated. The models have been developed using series traffic data for Kwinana

freeway.

The remaining chapter’s sections are divided as follows. Section 3.2 presents

the study area and available data set. Section 3.3 describes the study data anal-

ysis (road incident data and traffic flow data). It also describes the effect of road

incidents on traffic flow. Section 3.4 studies predictions of freeway traffic flow

under non-recurrent events using multivariate machine learning models including

the multilayer perceptron network, Convolutional Neural Networks, Long Short-

term Memory, the one-dimensional CNN long short-term memory network and

the Autoencoder LSTM networks. Section 3.6 describe the conclusion remark.

3.2 Study area

The study area, the Kwinana Smart Freeway in Western Australia between the

Cranford on-ramp and the Canning Highway off-ramp (link 9) with a total length

of 2.13 kilometres as shown in Figure 3.1, is chosen because it has a distinguished

record of the highest number of road accidents. For an effective multivariate

ML model for long short-term traffic prediction, a dataset of traffic variables

(the flow rate, the speed, and the density), road incidents and rainfall is used

in this study. Traffic data including the flow rate (volume), the speed and the

density from the Main Road Western Australia (WRWA) are available between

1 January and 25 November 2018. In the same period of available traffic data,

road incidents and rainfall data are obtained from the Web Emergency Operations

Centre (WebEOC) and the Bureau of Meteorology (BOM) WA, respectively.
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Figure 3.1: Study region (red curve), Link9: between the Cranford Avenue on-
ramp and the Canning Highway northbound off-ramp (Aljuaydi et al., 2022).

3.3 Data Analysis

3.3.1 Road incident data

The data of road incidents affecting traffic capacity during the study period come

from the following two sources, MAINROADs WA (MRWA) and Web emergency

operation centre (WebEOC):

• MRWA: Weather flood/fog hazard; Heavy/moderate; stand still Jam; Ma-

jor and minor accidents; Road closure

• WebEOC: Break down/tow away; Road crash; Debris/trees/lost loads; Ve-

hicle fire; Animal/livestock; Pothole/road surface damage

Breakdown, road crashes, and road debris are common incident types in this

link. Figure 3.2 shows the study region’s frequency of road traffic incidents.

Locations in latitude and longitude coordinates of traffic incidents are shown in

Figure 3.3, in which a bigger circle size indicates a longer incident duration.
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Figure 3.2: Frequency of road incidents on the study region.

Figure 3.3: Locations in latitude and longitude coordinates of traffic incidents
and incident duration on the study region.
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Figure 3.4: Box plot showing distribution and skewness of traffic variables asso-
ciated with road incidents on the study region.

As shown in Figure 3.4, the box plot shows the distribution and skewness of

traffic data associated with road incident types. It is noted that traffic capacity

is associated with road crashes and breakdowns.

Road incident data is converted into Boolean data by considering the non-

existence as zero and the existence of the incident as one. For rainfall message,

rain rate intensity, is considered in three categories including the light rain with

precipitation less than 0.1 inches per hour (iph), the moderate rain with precipi-

tation between 0.1 and 2.5 iph and the heavy rain with rainfall greater than 2.5

iph. The input data is then obtained by matching the timestamp of the traffic

data, the boolean incident data and the rainfall data. In this study, we have a

1-min input dataset with 429,120 observations and five features.
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Figure 3.5: Fundamental diagrams showing relationship of traffic variables: (a)
speed (km/hr) and volume (veh/min); (b) flow rate (veh/min) and density (ve-
h/km); (c) speed (km/hr) and density (veh/km).

3.3.2 Traffic data

Traffic data of flow rate (volume), speed and density is provided by Main Roads

Western Australia (MRWA) between 1 January and 25 October 2018. It is 1-

min dataset with 429,120 observations and 3 features including traffic flow rate

(veh/min), speed (km/hr) and density (veh/km).

Figure 3.5 shows fundamental traffic flow diagrams on the study road, i.e., the

relationship of the speed and the flow rate, the relationship of the flow rate with

the density, and the relationship of the speed, and the speed with the density,

respectively.

3.3.3 Road incidents and rain effects

Road incidents including crashes, vehicle breakdowns and debris commonly affect

the flow of traffic. Figure 3.6 shows the relationships of traffic variables under

road incidents and rainfall effects. It is noted that the road incidents have an

impact on the traffic flow on the roadway. It may reduce 10 - 25% of traffic

capacity. Figure 3.7 presents speed profile with rain’s effect on Link 9 between 1

August and 1 November 2018. It indicates that speed will drop on the roadway

when it rains, as a driver driving in the wet commonly reduces the speed to allow

the car’s tyres to grip to the road at all times.

Figure 3.8 presents a box plot showing traffic flow with and without the impact

of the road incidents and the rain. It demonstrates that the road incidents have
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(a) Road incident effect

(b) Rainfall effect

Figure 3.6: Relationships of traffic variables under road incidents and rainfall
effects: (a) road incident; (b) rainfall between medium and heavy level.

Figure 3.7: Effect of rain on traffic speed from 1 August to 1 November 2018.
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Figure 3.8: Box plot of traffic variables with and without road incident and rain.

a negative impact on the speed and the density of traffic, and the rain seems

to magnify the effect of road incidents on the flow of traffic, indicating by the

significant higher density and lower speed. When road incidents occur, the flow

capacity decreases while the density increases.

Figure 3.9: Machine learning workflow.

3.4 Multivariate learning models

This section concerns building model architectures of multivariate prediction

models based on the MLP, CNN, LSTM, CNN-LSTM and Autoencoder LSTM

networks to predict traffic flow rate, speed and density under non-recurrent

events. As shown in Figure 3.9, the machine learning workflow comprises prepar-
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ing the data, pre-processing, model training, and model testing.

3.4.1 Preparing data and pre-processing

Gathering, sorting and cleaning all datasets are needed for development of the

predictive learning model as any discrepancies in the data will lead to the failure

analysis of the predictive model. The input dataset with n observations and five

features (classes) is in the form of

X = (X1
i ,X

2
i ,X

3
i ,X

4
i ,X

5
i )
n
i=1,

where traffic parameters X1, X2, X3 denote respectively traffic volume, speed

and density, X4 is the boolean road incident data, and X5 is the rainfall data.

The traffic parameters, road incident and rainfall data are homogenised by

feature scaling. By implementing the min-max normalisation, xci is transformed

to ξci , provided ξci greater than zero and less than 1,

ξci =
xci −minc

maxc −minc
, c = 1, ....,5, (3.1)

where Xc is the values of the observed set of xci , maxc and minc represent the

maximum and minimum values of Xc, respectively.

3.4.2 Models’ architecture

Five ML models are used in our thesis. The following subsections explain them in

more details. In this section, we describe the training configuration and evaluation

metrics used in the performance evaluation.

The normalised input data with n observation and five features are split into

the test set (30%) and the training set (70%). For each ML model, its optimal

hyperparameters are found by grid searching, the Adam optimiser Kingma &

Ba (2014) and an early stopping technique. The accuracy and efficiency of each

trained model are assessed by two standard metrics, the Mean Absolute Error
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Figure 3.10: Average traffic profiles of flow rate, speed and density during the
study period.

(MAE) and the Root Mean Squared Error (RMSE). These accuracies and effi-

ciency give information about the goodness of the learning model. The deviation

from the mean value estimated through the MAE and RMSE can be calculated

using the following equations:

MAE =
1

n

n

∑
i=1

∣yi − ŷi∣, (3.2)

and

RMSE =

¿
Á
ÁÀ 1

n

n

∑
i=1

(yi − ŷi)2. (3.3)

respectively. A lower value of the RMSE or the MAE signifies a better model fit,

as the level of deviation is low.
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3.4.3 Baseline

The benchmark performance of all other models utilised for any particular prob-

lem provides an insight into how accurately it works for that problem along with

comparison as well. The used model should perform better than the benchmark

(baseline) test case, in case it will under perform then there is a need to fix

the utilised method/technique or replaced it with the suitable one. Our baseline

model is the average traffic variables from the training set (Figure 3.10) to find

the suitable model for the freeway traffic predictions under non-recurrent events.

3.4.4 Multilayer Perceptron (MLP)

Figure 3.11 shows the MLP model used in our study. The model consists of the

input layer followed by a flatten layer. Then, three dense fully connected layers

are used before the output layer. A ReLu activation function is used after every

dense layer except the output layer.

Figure 3.11: MLP architecture.
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The models with a batch size of 30 are fit over 20 epochs, as shown in Figure

3.12.

Figure 3.12: Squared error loss, L2 = (y− ŷ)2, for the training and the validation
datasets in the MLP model.

3.4.5 Convolutional Neural Networks (CNN)

Figure 3.13 shows the CNN model used in our study. The model consists of the

input layer followed by three 1-D convolutional layer and a flatten layer. Then,

one dense fully connected layer is used before the output layer. A ReLu activation

function is used after every layer except the output layer.

The models with a batch size of 30 are fit over 20 epochs, as shown in Figure

3.14.

3.4.6 Long Short-term Memory (LSTM)

Figure 3.15 shows the LSTM model used in our study. The model consists of

the input layer followed by three LSTM layers and the output layer. A ReLu

activation function is used after every layer except the output layer.

The models with a batch size of 30 are fit over 20 epochs, as shown in Figure

3.16.
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Figure 3.13: CNN architecture.

Figure 3.14: Squared error loss, L2 = (y− ŷ)2, for the training and the validation
datasets in the CNN model.
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Figure 3.15: LSTM architecture.

Figure 3.16: Squared error loss, L2 = (y− ŷ)2, for the training and the validation
datasets in the LSTM model.
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3.4.7 Convolutional Neural Networks -Long Short-term

Memory (CNN-LSTM)

Figure 3.17 shows the 1-D CNN LSTM model used in our study. The model

consists of the input layer followed by a 1-D convolutional layer followed by two

LSTM layers and the output layer. A ReLu activation function is used after every

layer except the output layer.

Figure 3.17: 1-D CNN LSTM architecture.

The models with a batch size of 30 are fit over 20 epochs, as shown in Figure

3.18.

3.4.8 Autoencoder LSTM (AE-LSTM)

Figure 3.19 shows the Autoencoder LSTM model used in our study. The model

consists of the input layer followed by LSTM layer, Repeat Vector layer, Time

Distributed layer and another LSTM layer. Finally, a flatten layer and the output
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Figure 3.18: Squared error loss, L2 = (y− ŷ)2, for the training and the validation
datasets in the 1-D CNN LSTM model.

layer are added. A ReLu activation function is used after every LSTM layer.

The models with a batch size of 30 are fit over 20 epochs, as shown in Figure

3.20.

3.5 Results and discussion

Table 3.1 presents model validation using two standard metrics, the RMSEs and

MAEs. A lower value of the MAE or the RMSE signifies a better model fit.

The results indicate that all ML models give better prediction than the baseline

model and the 1D CNN-LSTM model outperforms other ML models including

the MLP, the CNN, the LSTM and the Autoencoder LSTM models. Comparing

the RMSEs and the MAEs of other models, the 1D CNN-LSTM model gives the

lowest values of the RMSEs and MAEs for all cases, i.e., RMSEs of 2.65, 4.63

and 6.70 and the MAEs of 3.75, 2.50 and 5.0 for the flow rate, speed and density

predictions, respectively.

For long and short-term predictions of traffic flow under a road crash and the

wet road with rain intensity between medium and high rate, the Link-9 observed

traffic flow under non-recurrent events on 4 September 2018 is chosen in this

study because there was a long-period road crash between 10:24 and 13:09 (black

star with dark solid line) and three periods of heavy rain, i.e., 4:30-6:00, 14:00-

14:30 and 19:00-21:30 (purple star with purple solid line) as shown in Figure 3.21.
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Figure 3.19: AE-LSTM architecture.

Figure 3.20: Squared error loss, L2 = (y− ŷ)2, for the training and the validation
datasets in the AE-LSTM model.
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Table 3.1: Two standard metrics, RMSEs and MAEs, of ML models for each
traffic parameter.

RMSE

Parameter
Baseline MLP CNN LSTM CNN-LSTM AE-LSTM

Train Test Train Test Train Test Train Test Train Test Train Test
Flow rate 11.02 11.75 3.58 3.61 3.10 3.15 3.02 3.08 2.50 2.65 2.89 2.90
Speed 10.25 10.81 5.23 5.35 5.0 5.09 4.89 5.0 4.60 4.63 4.75 4.77
Density 24.15 24.71 7.32 7.55 7.22 7.29 7.02 7.11 6.65 6.70 6.75 6.80

MAE

Parameter
Baseline MLP CNN LSTM CNN-LSTM AE-LSTM

Train Test Train Test Train Test Train Test Train Test Train Test
Flow rate 6.52 6.98 4.18 4.63 4.0 4.10 3.90 3.98 3.70 3.75 3.75 3.80
Speed 5.49 6.18 2.75 2.80 2.70 2.71 2.58 2.60 2.46 2.50 2.50 2.55
Density 11.14 11.95 5.51 5.48 5.32 5.39 5.12 5.15 4.52 5.0 5.01 5.08

Using all proposed ML models, traffic variables including the flow rate, the speed

and the density under non-recurrent events on Link 9 of the Kwinana Freeway

are predicted and compared to find the optimal prediction model.

Figure 3.21: Observed traffic flow rate (top), speed (middle) and density (bottom)
with road crashes and rainfall during the prediction period (4 September 2018).

Figure 3.22 shows long-term predictions of traffic parameters using the base-

line model. As the baseline model gives average values of each traffic parameters,

it thus cannot capture traffic patterns during non-recurrent events. Here, we

present the performance of various ML models for predicting traffic pattern un-

der the road crash and the rain.
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Figure 3.22: Baseline predictions of traffic flow rate (veh/min), speed (km/hr)

and density (veh/km) under a road incident (8) and rain.

Figures 3.23, 3.24, 3.25, 3.26 and 3.27 show long-term predictions of traffic

parameters using the MLP, CNN, LSTM, 1D CNN-LSTM and AE-LSTM models,

respectively. It is found that the best long-term prediction model is based on the

1D CNN-LSTM networks.

For short-term prediction of traffic flow under non-recurrent events, we con-

sider separately the effect of a road crash and the heavy rain on traffic flow within

30 minutes after the occurrence of the incident (solid line).

In this thesis, observed data of traffic flow under a road crash (a dark star)

between 10:25 and 10:55, and the heavy rain (a purple star) between 20:10 and

20:40 were compared with the predicted data. Figure 3.28 presents the short-

term prediction of traffic flow under a road crash. It illustrates that two ML

models based on the LSTM and the 1D CNN-LSTM networks performed better

than other ML models as they attained the low values of the RMSEs of 1.75, 2.85

and 2.50, and MAEs of 2.30, 2.18 and 2.75 for the flow rate, speed and density

predictions, respectively, as shown in Table 3.2.
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Figure 3.23: Long-term traffic prediction of the flow rate (veh/min), speed
(km/hr) and density (veh/km) obtained from the best multivariate ML model
based on the MLP network.

Figure 3.24: Long-term traffic prediction of the flow rate (veh/min), speed
(km/hr) and density (veh/km) obtained from the best multivariate ML model
based on the CNN network.
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Figure 3.25: Long-term traffic prediction of the flow rate (veh/min), speed
(km/hr) and density (veh/km) obtained from the best multivariate ML model
based on the LSTM network.

Figure 3.26: Long-term traffic prediction of the flow rate (veh/min), speed
(km/hr) and density (veh/km) obtained from the best multivariate ML model
based on the CNN-LSTM network.
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Figure 3.27: Long-term traffic prediction of the flow rate (veh/min), speed
(km/hr) and density (veh/km) obtained from the best multivariate ML model
based on the AE-LSTM network.

Table 3.2: RSMEs and MAEs of ML models’ performance for short-term predic-
tion under a road crash.

RMSE
Parameter Baseline MLP CNN LSTM CNN-LSTM AE-LSTM
Flow rate 9.65 1.85 1.82 1.80 1.75 1.78

Speed 14.26 3.57 2.98 2.92 2.85 2.89
Density 10.38 3.59 2.65 2.63 2.50 2.55

MAE
Parameter Baseline MLP CNN LSTM CNN-LSTM AE-LSTM
Flow rate 5.93 2.38 2.38 2.33 2.30 2.35

Speed 7.14 3.15 2.27 2.24 2.18 2.22
Density 5.09 3.65 2.80 2.85 2.75 2.79
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Figure 3.28: Short-term predictions under a road incident on 4 September 2018
between 10:25 and 10:55 obtained from five prediction models based on various
ML networks: the MLP, the CNN, the LSTM, the 1D CNN-LSTM and the
Autoencoder LSTM networks.
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Figure 3.29: Short-term predictions under the rain on 4 September 2018 between
20:10 and 20:40 obtained from five prediction models based on various ML net-
works: the MLP, the CNN, the LSTM, the 1D CNN-LSTM and the Autoencoder
LSTM networks.
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Figure 3.29 shows the short-term prediction of traffic flow under the heavy

rain. The results indicate that the MLP model gives the worst prediction with

RMSEs of 4.03, 5.30 and 7.09 for the flow rate, speed and density predictions,

respectively. The 1D-CNN LSTM model performed better than other models as

it attained RMSEs of 1.18, 3.45 and 1.15, and MAEs of 1.67, 1.73 and 1.87 for

the flow rate, speed and density predictions, respectively, as shown in Table 3.3.

Table 3.3: RSMEs and MAEs of ML models’ performance for short-term predic-
tion under the rain.

RMSE
Parameter Baseline MLP CNN LSTM CNN-LSTM AE-LSTM
Flow rate 9.65 4.03 3.30 1.23 1.18 1.78

Speed 14.26 5.30 4.10 3.80 3.45 3.50
Density 10.38 7.09 4.55 1.26 1.15 3.75

MAE
Parameter Baseline MLP CNN LSTM CNN-LSTM AE-LSTM
Flow rate 5.93 3.38 2.79 1.78 1.67 1.81

Speed 7.14 3.15 1.89 1.82 1.73 1.79
Density 5.09 3.65 2.80 2.09 1.87 3.23

3.6 Concluding remark

Using an input data with large observations and five features, the multivariate

prediction models based on the Multilayer Perceptron (MLP), One-dimensional

Convolutional Neural Network (1-D CNN), the Long Short-term Memory (LSTM)

network, 1D-CNN LSTM and Autoencoder LSTM networks have been developed

to predict freeway traffic under non-recurrent events. The data features include

the flow rate, speed, density, the boolean incident and rainfall. From the results

obtained from our proposed multivariate prediction models, we can conclude that:

• The proposed models capture traffic pattern under non-recurrent events.

Few discrepancies have been observed in the traffic flow rates between the

predicted and observed values. The difference is noticeable when there was

an incident.
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• The 1D-CNN LSTM prediction model for the density, flow rate, and speed

gives more accurate results than those obtained from other ML models.

In the off-ramp and on-ramp areas, more delays and disruption occur, further

research will look at the congestion that happens due to the lane change and non-

recurrent events. For this purpose, the traffic flow characteristics will be predicted

by the time-delay deep neural network model. A deep traffic congestion model

will be developed to predict the bottleneck in the traffic flow. This will help to

predict the congestion propagation for the targeted routes.
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Chapter 4

Simulation Models

4.1 General overview

As freeway traffic involves various uncertainties, a stochastic model can describe

queue accumulate and collision in a coherent manner with traffic stream princi-

ples. This section presents a stochastic LWR model describing the traffic flow

evolution under non-recurrent events and a stochastic optimisation model pre-

senting the impact of traffic control strategies on traffic congestion.

4.2 Stochastic Cell Transmission Model

Freeway traffic dynamics with on-ramps and off-ramps are described by the first-

order partial differential equation (the LWR model):

∂

∂t
k(x, t) +

∂

∂x
(q(x, t) + r(x, t) − s(x, t)) = f(x, t), (4.1)

where k(x, t) is traffic density, q(x, t) denotes flow rate, f(x, t) is a force term

due to lane change, r(x, t) and s(x, t) are incoming on-ramp flow and outgoing

off-ramp flows, respectively.

For simplicity, any quantity f(x, t) is denoted by f ti and the speed β(x, t)vf

is represented by v̂i.
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4.2.1 Traffic flow dynamics

In any road segments (cells) of the multi-lane roadway, if the ith cell has li lanes

and lane capacity of Ci (veh/h/lane), its maximum flow rate, qmaxi , and maximum

density, kmaxi , will be

qmaxi = liCi and kmaxi = likjam, (4.2)

respectively. From equation (4.1), the traffic density of the ith segment, according

to the conservation of vehicles, are respectively determined by

kti = k
t−1
i +

△t

△xi
(qti−1 − q

t
i + r

t
i − s

t
i) , (4.3)

where qti−1 and qti denote incoming from the upstream cell and outgoing flows to

the downstream cell of the ith cell in different zones.

For merging zone, there are two upstream cells of the merging cell: the source

and the ordinary cell, as shown in Figure 4.1.

Figure 4.1: Merging zone

Let’s define

qtemp = min{(1 − βti)vfk
t
i−1; wi (kjam − kti) ; qmaxi } , (4.4)

rtemp = (1 − αti)(d
t
i +

N t
i

△t
) , (4.5)

where wi (kjam − kti) is the flow capacity when the density is higher than the

critical density, dti is demand and N t
i is the maximum number of vehicles that
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can be present in cell i at time t.

If qtemp + rtemp < wi (kjam − kti) then the upstream and on-ramp incoming vol-

umes are

qti−1 = qtemp and rti = rtemp. (4.6)

Otherwise,

qti−1 =
qtemp

qtemp + rtemp

wi (kjam − kti) , (4.7)

rti =
rtemp

qtemp + rtemp

wi (kjam − kti) . (4.8)

Flow out from the merged cell is given by

qti = min{qti−1 + r
t
i ; (1 − β)vfk

t
i ; wi+1(kjam − kti+1); q

max
i+1 } . (4.9)

For the diverging zone, there are two downstream cells of the diverging cell:

the sink cell and the ordinary cell, as shown in Figure 4.2.

Figure 4.2: Diverging zone

Suppose that discharge rate, sti, is given; traffic volume flowing out to the next

cell may be determined by

qti = min{qti−1 − s
t
i; (1 − β)vfk

t
i ; wi+1(kjam − kti+1); q

max
i+1 } . (4.10)

In other zones, particularly the first cell, let dt0 and N t
0 be the arrival rate and

the number of vehicles in the main-road queue, N t
0. Suppose that dt0 and N t

0 are
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given; traffic volume flowing into the first cell of the road network and flowing

out from the cell may be determined by

qt−1 = min{dt0 +
N t

0

△t
; qm0 ax; w0(kjam − kt0)} , (4.11)

qt0 = min{qt−1; (1 − β)vfk
t
0; w1(kjam − kt1); q

max
1 } , (4.12)

For the traffic flowing out from an ordinary cell, it may be given by

qti =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min{qti−1; (1 − β)vfkti} the last cell

min{qti−1; (1 − β)vfkti ; wi+1(kjam − kti+1); q
max
i+1 } Otherwise

(4.13)

The number of vehicles in each cell is calculated by nti = k
t
i △ x in which the

density kti depends on traffic flowing in and out of the cell. These cells include the

first cell, the ramp cell and the ordinary cell. Therefore, the number of vehicles

in each cell can be determined as follows:

• the first cell,

nt+10 = nt0 +△t (q
t
in − q

t
0) , (4.14)

• a merged cell with two incoming flows,

nt+1i = nti +△t (q
t
i−1 + r

t
i − q

t
i) , (4.15)

• a diverging cell with outgoing flow, sti,

nt+1i = nti +△t (q
t
i−1 − s

t
i − q

t
i) , (4.16)

• an ordinary cell, the number of vehicles is

nt+1i = nti +△t (q
t
i−1 − q

t
i) . (4.17)

Using the demand/supply of the road network, virtual queues at the start and
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three on-ramps at time step t + 1 may be calculated by

N t+1
0 = N t

0 +△t(d
t
0 − q

t
0), (4.18)

N t+1
i = N t

i +△t(d
t
i − r

t
i), (i = 1,2,3), (4.19)

where dt0 and dti are, respectively, the arrival rates at the start and the ith ramp,

qt0 is the outflow rate from the first cell of the road network, and rti represents the

outflow from the ith on-ramp.

Figure 4.3: Relationship of traffic variables.

The fundamental triangular diagram shown in Figure 4.3 shows the funda-

mental relationship of traffic variables. From the CTM, the number of vehicles

in each cell, nti, The traffic speed in the cell is determined by

vti =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

v̂i for kti < k
t
c

(
kjam
kti

− 1)wti otherwise.
(4.20)
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Algorithm 1 CTM-SIM algorithm

1: procedure main(start, end)
2: cells, `,L = roadnetwork()
3: d, s = DATA(start, end, d0, d1, d2, d3, s0, s1)
4: dx← 0.1 ▷ cell length (km)
5: Global TotCell ← ∑Li/dx
6: Global vf ← vmax/3600 ▷ free speed (km/s)
7: dt← dx/vmax ▷ timestep (s)
8: TotStep← (end − start)/dt
9: Global q ← [[0.0] ∗ TotCell] ∗ TotStep ▷ flowout (veh/s)

10: Global k ← [[0.0] ∗ TotCell] ∗ TotStep ▷ density (veh/km)
11: n← [[0] ∗ TotCell] ∗ TotStep ▷ # vehs (veh/cell)
12: N ← [[0] ∗ 4] ∗ TotStep ▷ queue (veh)
13: ramp← [[0] ∗ 3] ∗ TotStep ▷ ramp flow (veh/s)
14: q0← [0] ∗ TotStep ▷ Inlet flow (veh/s)
15: Global Q← ` ∗ qmax/3600 ▷ Flow capacity (veh/s)
16: Global K ← ` ∗ kmax ▷ Jam density (veh/km)
17: Global w ← w/3600 ▷ Shock speed (km/s)
18: t← 0
19: while t ≤ TotStep do
20: q0, q, ramp = FLOW(t, dt, dx, n,N, d)
21: N = QUEUE(t, dt,N, d, q0, ramp)
22: n = CAR(t, dt, n, s, q0, ramp)
23: t← t + 1
24: end while
25: return q, n, N
26: end procedure
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Algorithm 2 SCTM-SIM algorithm

1: procedure main(cellc, βmin, βmax, qmin, qmax, start, end)
2: cells, `,L = roadnetwork()
3: d, s = DATA(start, end, d0, d1, d2, d3, s0, s1)
4: dx← 0.1 ▷ cell length (km)
5: Global TotCell ← ∑Li/dx
6: Global vf ← vmax/3600 ▷ free speed (km/s)
7: dt← dx/vmax ▷ timestep (s)
8: TotStep← (end − start)/dt
9: Global q ← [[0.0] ∗ TotCell] ∗ TotStep ▷ flowout (veh/s)

10: Global k ← [[0.0] ∗ TotCell] ∗ TotStep ▷ density (veh/km)
11: n← [[0] ∗ TotCell] ∗ TotStep ▷ # vehs (veh/cell)
12: N ← [[0] ∗ 4] ∗ TotStep ▷ queue (veh)
13: ramp← [[0] ∗ 3] ∗ TotStep ▷ ramp flow (veh/s)
14: q0← [0] ∗ TotStep ▷ Inlet flow (veh/s)
15: Global Q← ` ∗ qmax/3600 ▷ Flow capacity (veh/s)
16: Global K ← ` ∗ kmax ▷ Jam density (veh/km)
17: Global w ← w/3600 ▷ Shock speed (km/s)
18: α ← 0
19: β ← [[0] ∗ TotCell] ∗ TotStep ▷ VSL parameters
20: t← 0
21: while t ≤ TotStep do
22: β, qmax = STOCHASTIC(βmin, βmax, qmin, qmax, cellc)
23: Q← ` ∗ qmax/3600
24: q0, q, ramp = SFLOW(t, dt, dx,α, β, n,N, d,Q,K, vf ,w)

25: N = QUEUE(t, dt,N, d, q0, ramp)
26: n = CAR(t, dt, n, s, q, q0, ramp)
27: t← t + 1
28: end while
29: return q, n, N
30: end procedure
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Algorithm 3 Tool functions

procedure FIN(cell, t, dt, arr,Queue)
i← cell
q1←min(vf ∗ k[i][t],w[i + 1] ∗ (K[i + 1] − k[i + 1][t]),Q[i])
q2← arr + (Queue/dt)
if q1 + q2 ≤ w[i + 1] ∗ (K[i + 1] − k[i + 1][t]) then

qout, ramp← q1, q2
else

qout ← (q1/(q1 + q2)) ∗w[i + 1] ∗ (K[i + 1] − k[i + 1][t])
ramp← (q2/(q1 + q2)) ∗w[i + 1] ∗ (K[i + 1] − k[i + 1][t])

end if
return qout, ramp

end procedure
procedure FOUT(cell, t, dt, ramp)

i← cell
q0 ← q[i − 1][t] + ramp
qout ←min(q0, vf ∗ k[i][t],w[i + 1] ∗ (K[i + 1] − k[i + 1][t]),Q[i])
return qout

end procedure
procedure SFIN(cell, t, dt, α, β, arr,Queue)

i← cell
q1←min((1 − beta) ∗ vf ∗ k[i][t],w[i + 1] ∗ (K[i + 1] − k[i + 1][t]),Q[i])
q2← (1 − α)(arr + (Queue/dt))
if q1 + q2 ≤ w[i + 1] ∗ (K[i + 1] − k[i + 1][t]) then

qout, ramp← q1, q2
else

qout ← (q1/(q1 + q2)) ∗w[i + 1] ∗ (K[i + 1] − k[i + 1][t])
ramp← (q2/(q1 + q2)) ∗w[i + 1] ∗ (K[i + 1] − k[i + 1][t])

end if
return qout, ramp

end procedure
procedure SFOUT(cell, t, dt, β, ramp)

i← cell
q0 ← q[i − 1][t] + ramp
qout ←min(q0, (1−beta)∗vf ∗k[i][t],w[i+1]∗(K[i+1]−k[i+1][t]),Q[i])
return qout

end procedure
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Algorithm 4 Tool functions (continue)

procedure QUEUE(t, dt,N, d, q0, ramp)
N[0][t + 1]← N[0][t] + dt ∗ (d[0][t] − q0[t]) ▷ Queue length
N[1][t + 1]← N[1][t] + dt ∗ (d[1][t] − ramp[0][t])
N[2][t + 1]← N[2][t] + dt ∗ (d[2][t] − ramp[1][t])
N[3][t + 1]← N[3][t] + dt ∗ (d[3][t] − ramp[2][t])
return N ▷ quenue lengths at inlet, all on-ramps

end procedure
procedure CAR(t, dt, β, n, s, q, q0, ramp)

nmin← 0
for i in cells do

switch(i)
Case i is the first cell
n[0][t + 1]← n[0][t] + dt ∗ (q0[t] − q[0][t])
Case i is the 1st merge cell
n[i][t + 1]← n[i][t] + dt ∗ (q[i − 1][t] + ramp[0][t] − q[i][t])

Case i is the 2nd merge cell
n[i][t + 1]← n[i][t] + dt ∗ (q[i − 1][t] + ramp[1][t] − q[i][t])

Case i the 3rd merge cell
n[i][t + 1]← n[i][t] + dt ∗ (q[i − 1][t] + ramp[2][t] − q[i][t])

Case i is the 1st diverge cell
n[i][t + 1]← n[i][t] + dt ∗ (q[i − 1][t] − s[0][t] − q[i][t])

Case i is the 2nd diverge cell
n[i][t + 1]← n[i][t] + dt ∗ (q[i − 1][t] − s[1][t] − q[i][t])

Case Default
n[i][t + 1]← n[i][t] + dt ∗ (q[i − 1][t] − q[i][t])

end switch
end for
return n ▷ number of vehicles

end procedure
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Algorithm 5 Tool functions (continue)

procedure FLOW(t, dt, dx, n,N, d)
ramp← [[0] ∗ 3] ∗ TotStep ▷ ramp flow (veh/s)
q0← [0] ∗ TotStep ▷ Inlet flow (veh/s)
for i in cells do

k[i][t]← n[i][t]/dx
switch(i)
Case i is the first cell
q0[t]←min((d[0][t] + (N[0][t]/dt),Q[0],w[0] ∗ (K[0] − k[0][t]))
q[0][t]←min(q0[t], vf ∗ k[0][t],w[1] ∗ (K[1] − k[1][t]),Q[0])

Case i is the upstream cell of 1st merge cell
q[i][t], ramp[0][t] = FIN(i, t, dt, d[1][t],N[1][t])

Case i is the 1st merge cell
q[i][t] = FOUT(i, t, dt, ramp[0][t])

Case i is the upstream of 2nd merge cell
q[i][t], ramp[1][t] = FIN(i, t, dt, d[2][t],N[2][t])

Case i is the 2nd merge cell
q[i][t] = FOUT(i, t, dt, ramp[1][t])

Case i is the upstream of 3rd merge cell
q[i][t], ramp[2][t] = FIN(i, t, dt, d[3][t],N[3][t]])

Case i the 3rd merge cell
q[i][t] = FOUT(i, t, dt, ramp[2][t])

Case i is the last cell
q[i][t]←min(q[i − 1][t], vf ∗ k[i][t],Q[i])

Case Default
ψ = min{vf ∗ k[i][t],w[i + 1][t] ∗ (K[i + 1] − k[i + 1][t]),Q[i]}
q[i][t]←min(q[i − 1][t], ψ)

end switch
end for
return q0, q, ramp

end procedure
procedure STOCHASTIC(v1min, v1max, v2min, v2max, cellc)

import random
for i in cellc do

v1[i]← random.uniform(v1min, v1max)
v2[i]← random.uniform(v2min, v2max)

end for
return v1, v2

end procedure
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Algorithm 6 Tool functions (continue)

procedure SFLOW(t, dt, dx,α, β, n,N, d)
ramp← [[0] ∗ 3] ∗ TotStep ▷ ramp flow (veh/s)
q0← [0] ∗ TotStep ▷ Inlet flow (veh/s)
for i in cells do

k[i][t]← n[i][t]/dx
switch(i)
Case i is the first cell
q0[t]←min((d[0][t] + (N[0][t]/dt),Q[0],w[0] ∗ (K[0] − k[0][t]))
φ← {q0[t], (1 − β[0]) ∗ vf ∗ k[0][t],w[1] ∗ (K[1] − k[1][t]),Q[0]}
q[0][t]←min(φ)

Case i is the upstream cell of 1st merge cell
q[i][t], ramp[0][t] = SFIN(i, t, dt, α[i], β[i], d[1][t],N[1][t])

Case i is the 1st merge cell
q[i][t] = SFOUT(i, t, dt, β[i], ramp[0][t])

Case i is the upstream of 2nd merge cell
q[i][t], ramp[1][t] = SFIN(i, t, dt, α[i], β[i], d[2][t],N[2][t])

Case i is the 2nd merge cell
q[i][t] = SFOUT(i, t, dt, β[i], ramp[1][t])

Case i is the upstream of 3rd merge cell
q[i][t], ramp[2][t] = SFIN(i, t, dt, α[i], β[i], d[3][t],N[3][t])

Case i the 3rd merge cell
q[i][t] = SFOUT(i, t, dt, α[i], β[i], ramp[2][t])

Case i is the last cell
q[i][t]←min(q[i − 1][t], (1 − β[i]) ∗ vf ∗ k[i][t],Q[i])

Case Default
ψ = min{(1−β[i])∗vf ∗k[i][t],w[i+1][t]∗(K[i+1]−k[i+1][t]),Q[i]}
q[i][t]←min(q[i − 1][t], ψ)

end switch
end for
return q0, q, ramp

end procedure
procedure DATA(start, end, d0, d1, d2, d3, s0, s1) ▷ read data

dt← 0.4 ▷ time step (s)
while t ≤ (end − start)/dt do ▷ simulation time

d[0][t]← d0[t + start]/3600 ▷ Main demand
d[1][t]← d1[t + start]/3600 ▷ H558 demand
d[2][t]← d2[t + start]/3600 ▷ H554 demand
d[3][t]← d3[t + start]/3600 ▷ H553 demand
s[0][t]← s0[t + start]/3600 ▷ H559 demand
s[1][t]← s1[t + start]/3600 ▷ H551 demand

end while
return d, s ▷ arrival and discharge rates

end procedure
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Table 4.1: The road network structure of study region.

Edge From To Length (m) lanes Remarks

1 start J1 100 3
2 J1 H559 100 3 Off to Leach Hwy
3 H559 J2 100 3
4 J2 H558 587 3 Leach WB on-ramp
3 H558 J3 230 4
4 J3 H554 210 3 Leach EB on-ramp
5 H554 J4 125 4
6 J4 H553 190 3 Cranford on-ramp
7 H553 J5 2000 4
9 J5 J6 100 3 **lane closure
10 J6 H551 589 3 Off to Canning Hwy
11 H551 end 100 3

4.2.2 Numerical studies

In this study, the region is the road network from the Off-to-Leach (H559) to Off-

to-Canning (H551) of the Kwinana Freeway northbound (see Table 4.1). There

are three on-ramps and two off-ramps, as shown in Figure 4.4.

Figure 4.4: CTM road network.

The road network comprises several road links (segments) from the main road,

three on-ramps and two off-ramp roads. The main road, as shown in Figure 4.4,

has 11 edges with variable lengths △Li. To ensure numerical stability, each edge

is discretised into a number of cells with nc cells with maximum length of △x,
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Figure 4.5: Road network with 3 on-ramps and 2 off-ramps.

and

Li =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

nc△ x if Li mod △ x = 0

(nc − 1)△ x + Li

△x otherwise.
(4.21)

In this study, for the cell length of 100 m and a free speed, vf , of 90 km/hour

during the daytime between 6 am and 6 pm, the size of time steps is give by

△ t =
`c
vf

=
100 m.

90 km/hour
= 4 seconds. (4.22)

Based on the Godunov scheme for a chain of segments, traffic density is updated

every time step based on incoming flow (outgoing flow) to (from) the main road.

The simulation starts with the initial solution

k
(0)
i = k̂i. (4.23)

Using traffic data from the Mainroad Western Australia (MRWA), the on-ramp

arrival rate and the off-ramp discharge rate are updated every 15 minutes (at

t0+225△ t), while for the main road segments, the arrival rate and discharge rate

are applied every minute (at t0 + 15△ t) to the first cell and the last cell of the

road network.

For SCTM, the following model parameters are defined as random variables:
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Figure 4.6: Incoming and outgoing flows on 4 September 2018.

• Free speed of an ordinary cell is in the range of 90 to 100 km/h;

• Free speed of an upstream merging cell, the lane-closure cell and its up-

stream cell is in the range of 40 to 50 km/h;

• Flow capacity per lane is in the range of 2000 and 2200 veh/h;

• Variable speed limit parameter, β, of the diverging cell, the lane-closure

cell, and its upstream cell is in the range of 0.35 and 0.45.

Figure 4.6 represents the incoming and outgoing flows on September 4, 2018.

Incoming flow shows demand arrival rates at the main entry and three on-ramp
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roads, and outgoing flow shows the supply discharging rates at two off-ramp

roads.

Using Algorithm 1, Algorithm 2 and various tool functions, these following

results for the cell transmission model (CTM) and Stochastic cell transmission

model (SCTM) are obtained. Figure 4.7 presents the number of vehicles waiting

in the queue at the first cell of the main road with no lane closure and three

on-ramp cells for the CTM and the SCTM. The On-ramp vehicle queue length is

very small compared to the main road queue. The maximum queue lengths occur

during peak hours in the morning from 7:00 am to 8 am and in the afternoon

from 5 pm to 7 pm. Particularly during evening peak hours on the main road, it

may reach over 150 vehicles waiting in the queue of SCTM, with over 300 vehicles

waiting in the queue of CTM.

Figures 4.8 and 4.9 show flow rate and density results obtained from the CTM

and SCTM with no lane closure. The maximum flow is 6000 of CTM and 6168

of SCTM when the flow increases and the density decreases. The size of mainline

density increasing from bottom to top is shown in Figure 4.8.

These graphs 4.10 show the number of vehicles waiting in the queue at the

first cell of the main road with lane closure and three on-ramp cells of CTM

and SCTM. The maximum queue lengths occur all day. Especially for Figure

4.10 (a) on the main road, it may reach less than 6000 vehicles waiting in the

queue of, and on-ramp vehicles waiting in the queue are more than those in

the standard simulation with no lane closure. As shown in Figure 4.10 (b) it

may reach over 6000 vehicles waiting in the queue on the main road, with on-

ramp vehicles waiting in the queue numbering more than those in the standard

simulation with no lane closure. Results presented in Figures 4.11 and 4.12 show

the flow rates and density obtained from the CTM and SCTM with lane closure

at the cell 35 from 3 to 2 lanes from 8:00 am to 10:00 am. The results of this

implementation show the congestion at upstream cells caused by lane closure.

The lane closure of cell 35 caused the freeway section prior to the incident to
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(a) CTM

(b) SCTM

Figure 4.7: Queue size (veh) at the beginning and three on-ramps, including H558
(Leach WB on-ramp), H554 (Leach EB on-ramp) and H553 (Cranford AVE on-
ramp) obtained from the CTM and the SCTM.
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Figure 4.8: Surface and heatmap plots of flow rate (veh/h) and density (veh/km)
obtained from the CTM.
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Figure 4.9: Surface and heatmap plots of flow rate (veh/h) and density (veh/km)
obtained from the SCTM
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(a) lane-closure CTM

(b) lane-closure SCTM

Figure 4.10: Queue size (veh) at the beginning and three on-ramps, including
H558 (Leach WB on-ramp), H554 (Leach EB on-ramp) and H553 (Cranford AVE
on-ramp) obtained from the CTM and SCTM with lane closure from 6:00 am to
10:00 am.
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]

Figure 4.11: Surface and heatmap plots of flow rate (veh/h) and density (veh/km)
obtained from the CTM with lane closure from 6:00 am to 10:00 am

become very backed up, with the flow dropping and density rising more than in

the standard simulation with no lane closure.

4.3 Stochastic Optimisation Model

The freeway congestion can be avoided with the speed limits, as sometimes the

ramp meter is not able to control the traffic flow effectively. This hypothesis was

demonstrated by utilising a simple but effective combination of variable speed

limits and demand ramp metering by keeping the lane close initially and then

without the lane closure.
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Figure 4.12: Surface and heatmap plots of flow rate (veh/h) and density (veh/km)
obtained from the SCTM with lane closure from 6:00 am to 10:00 am.
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4.3.1 Objective function and constraints

For optimal traffic flow, minimising total travel time, on the roadway with a lane

closure at one segment in the time horizon Hc using the RM & VSL controls,

decision variables α(t) = [ατ1 , . . . , α
τ
RM]

Hc−1
τ=0 and β(t) = [βτ1 , . . . , β

τ
V SL]

Hc−1
τ=0 may be

obtained by solving the following optimisation model:

min∑
t

△t{∑
i

△x kti +∑
r

N t
r} (4.24)

subject to the following constraints:

• Transport equation

∂

∂t
k(x, t) +

∂

∂x
q(x, t) =

∂

∂x
f(x, t), (4.25)

with f(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 − α(t)) (d(x, t) + N(x,t)
△t ) x ∈ a merging cell

s(x, t) x ∈ a diverging cell

0 otherwise

which can be expressed in an explicit form as

kti = k
t−1
i +

△t

△x
(qt−1i−1 − q

t−1
i − f t−1i ) . (4.26)

• Optimal flow rate

- For upstream-merged cells, let

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

qtemp = min{vtek
t
i−1; wi (kjam − kti) ; qmaxi }

rtemp = (1 − αti) (d
t
i +

Nt
i

△t) ; αti < 1 (the RM parameter)

∗ if qtemp + rtemp ≤ wi+1(kjam − kti+1) then

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

qti = qtemp

rte = rtemp

∗ otherwise,

qti =
qtemp

qtemp + rtemp
wi+1(kjam − kti+1),
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rte =
rtemp

qtemp + rtemp
wi+1(kjam − kti+1).

- For other cells,

qti =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{qt0; v
t
ek
t
0; w1(kjam − kt1); q

max
0 } for the first cell

min{qti−1; vtek
t
i ; q

max
i } for the last cell

min{qti−1 + rte; vtek
t
i ; wi+1(kjam − kti+1); q

max
i } for a merged cell

min{qti−1 − s
t
i; v

t
ek
t
i ; wi+1(kjam − kti+1); q

max
i } for a diverged cell

min{qti−1; vtek
t
i ; wi+1(kjam − kti+1); q

max
i } Otherwise

(4.27)

with vte = (1 − βti)vf and βti < 1 (the VSL parameter). The term rte

represents the incoming flow from the on-ramp upstream-merged cell.

The terms d(x, t) and s(x, t) which are observed data represent on-

ramp arrival rates and off-ramp discharge rate, respectively. The term

N t
i represent the queue length of the incoming-flow cell.

– For any cell within the incident zone, vehicles allow moving with the

speed of v` and the flow rate

qti =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

min{qti−1; v`k
t
i ; wi+1(

`−1
` kjam − kti+1);

`−1
` q

max
i } incident period

min{qti−1; vtek
t
i ; wi+1(kjam − kti+1); q

max
i } otherwise.

(4.28)

4.3.2 Numerical studies

This section presents the effects of VSL control on freeway traffic flow with and

without lane closure. Using Algorithm 7 and various tool functions, these fol-

lowing results are obtained. Figure 4.5 presents the structure of road network in

which cell 35 has an accident and one lane is closed. VSLs are applied at various

upstream cells, including cells 2, 8, 13, 17, 18, 22, 26, 30 and 34. The track was

divided into 44 units, each with the length of 100 m. One of the busiest in Perth

is chosen as the road segment, it has three on-ramps and two off-ramps. The

108



Algorithm 7 Optimisation algorithm

1: procedure main(start, end, startc, endc)
2: cells, cellc, cellV SL, cellX , `,L = roadnetwork()
3: d, s = DATA(start, end, d0, d1, d2, d3, s0, s1)
4: dx← 0.1 ▷ cell length (km)
5: Global TotCell ← ∑Li/dx
6: Global vf ← 90/3600 ▷ free speed (km/s)
7: dt← 4 ▷ timestep 4 s
8: T ← 15 ∗ dt ▷ Update VSL every 1 min
9: Global TotStep← (end − start)/dt

10: Global TotC ← (endc − startc)/T
11: Global q ← [[0.0] ∗ TotCell] ∗ TotStep ▷ flowout (veh/s)
12: Global k ← [[0.0] ∗ TotCell] ∗ TotStep ▷ density (veh/km)
13: n← [[0] ∗ TotCell] ∗ TotStep ▷ vehs (veh/cell)
14: N ← [[0] ∗ 4] ∗ TotStep ▷ queue (veh)
15: Global Q← ` ∗ qmax/3600 ▷ Flow capacity (veh/s)
16: Global K ← ` ∗ kmax ▷ Jam density (veh/km)
17: Global w ← w/3600 ▷ Shock speed (km/s)
18: X ← [[0] ∗ TotCell] ∗ TotStep ▷ VSL parameters
19: X = OPTIMISE(startc, endc, T, dt, cellV SL, cellX , d, s,X)

20: q, n,N = SCTMSIM(αmin, αmax, qmin, qmax, cellc, t, dt, dx,X,n,N, d)
21: end procedure
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Algorithm 8 Tool functions

procedure OPTIMISE(startc, endc, T, cdt, cellV SL, cellX , d, s, β)
control = []

M ← len(cellV SL)
tc← 0
X = OPDE(startc, endc, T, dt, cellV SL, cellX , d, s, β)
for i in range(TotC) do

vsl = []
for j in range(M) do

vsl.append(X[M * tc + j])
if not i mod T then

tc← tc + 1
end if
control.append(vsl)

end for
end for
# update β
tc← 0
for i in range(TotC) do

for j in range(TotCell) do
if j in cellV SL then

β[j][startc + i]←X[tc]
tc← tc + 1

end if
end for

end for
return β

end procedure
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Algorithm 9 Tool functions

procedure OPDE(startc, endc, T, dt, cellV SL, cellX , d, s, β)
procedure OBJ(X) ▷ Objective function

V HT ← 0.0
tc← 0
for i in range(TotC) do

for j in cellV SL do
β[j][startc + i] =X[tc]
tc← tc + 1

end for
end for
q, n,N = SCTMSIM(αmin, αmax, qmin, qmax, cellc, t, dt, dx,X,n,N, d)
func = (n.sum().sum() +N.sum().sum()) ∗ (T /3600)
return func

end procedure
bounds = []

vslmin, vslmax = 0.4,0.6
for i in range(len(cellV SL)) do

bounds.append((vslmin, vslmax))
end for
bounds = bounds ∗ TotC
res = de(OBJ, bounds) ▷ call DE algoritm
β = res[0]
return β

end procedure
procedure SCTMSIM(αmin, αmax, qmin, qmax, cellc, t, dt, dx, β, n,N, d)

ramp← [[0] ∗ 3] ∗ TotStep ▷ ramp flow (veh/s)
q0← [0] ∗ TotStep ▷ Inlet flow (veh/s)
t← 0
while t ≤ TotStep do

α, qmax = STOCHASTIC(αmin, αmax, qmin, qmax, cellc)
Q← ` ∗ qmax/3600
q0, q, ramp = SFLOW(t, dt, dx,α, β, n,N, d,Q)

N = QUEUE(t, dt,N, d, q0, ramp)
n = CAR(t, dt, n, s, q, q0, ramp)
t← t + 1

end while
return q, n, N

end procedure
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peak hours, from 8:00 am to 10:00 am, are the ones are chosen. Cells 9, 14, and

18 serve as on-ramps, whereas cells 2 and 41 serve as off-ramps.

Optimal traffic performance on a normal roadway here is obtained by con-

trolling the speed limit, (1 − β)vf with β ∈ [0.1, 0.4], at 5 cells of the roadway

including two diverging cells (cell 2 and cell 41) and three upstream cells of merg-

ing cells (cell 8, cell 13 and cell 17).

Figure 4.13: Queue size (veh) at the beginning and three on-ramps, including
H558 (Leach WB on-ramp), H554 (Leach EB on-ramp) and H553 (Cranford AVE
on-ramp) obtained from the optimisation model.

Figures 4.13 show the number of vehicles waiting in the queue at the first cell

of the main-road without lane closure and three on-ramp cells of an optimisation

model. The On-ramp vehicle queue length is minimal compared to the main-road

queue. The maximum queue lengths occur during peak hours in the morning from

7:00 am to 8:00 am on (Leach EB and Cranford AVE) and the afternoon from

13:00 pm to 19:00 pm on (Leach WB and Leach EB). Particularly on the main-

road during evening peak hours, vehicles waiting in the queue may reach over 300,

which is similar to results in Figure 4.7 (a). However, the optimisation model

shows a reduction of queue lengths on the main-road and three on-ramps.
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Figure 4.14: Surface and heatmap plots of flow rate (veh/h) and density (veh/km)
obtained from the optimisation Model.
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Figure 4.15: Variable speed limit (km/h) obtained from the optimisation model.

Figure 4.15 shows the variable speed limit obtained from the optimisation

model. Here, the VSL range is between 60 and 95 km per hour at the control

cells.

For the lane-closure Roadway, optimal traffic performance on a lane-closure

roadway here is obtained by controlling the speed limit, (1 − β)vf with β ∈

[0.4, 0.6], at 10 cells of the roadway including two diverging cells (cell 2 and

cell 41), upstream cells of merging cells (cell 8, cell 13 and cell 17), and five up-

stream cells of the lane-closure cell (cell 18, cell 22, cell 26, cell 30 and cell 34).

Figures 4.16 show the number of vehicles waiting in the queue at the first

cell of the main-road with lane closure and three on-ramp cells of an optimisation

model. The On-ramp vehicle queue length is minimal compared to the main-road

queue. The maximum queue lengths occur during peak hours in the morning from

7:00 am to 8:00 am on (Leach EB and Cranford AVE) and the afternoon from

13:00 pm to 19:00 pm on (Leach WB and Leach EB). Particularly on the main-

road during evening peak hours, vehicles waiting in the queue may reach over 300,

which is similar to results in Figure 4.7 (a). However, the optimisation model
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Figure 4.16: Queue size (veh) at the beginning and three on-ramps, including
H558 (Leach WB on-ramp), H554 (Leach EB on-ramp) and H553 (Cranford AVE
on-ramp) obtained from the optimisation model with lane closure.

shows a reduction of queue lengths on the Main-road and three on-ramps.

Figures 4.14 and 4.17 show the results of flow rate and density obtained from

the optimisation model. The results here show the flow rate and density. Here,

the congestion at upstream cells caused by lane closure is improved with VSL

control on the freeway, with and without lane closure.

Figure 4.18 shows the variable speed limit (km/h) obtained from the optimi-

sation model with lane closure. The VSL range is between 35 and 55 km per hour

at these control cells. These results show that the proposed data-driven traffic

optimisation model is helpful for traffic control and management.

The control was optimised in both scenarios so that total time spent in the

network was minimal, with coordinated case results in both networks showing

higher outflows and reduction in total time. These results indicate that decisions

made between variable speed limits and ramp metering need to be made according

to random demand arrivals on both the on-ramp and freeway.
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Figure 4.17: Surface and heatmap plots of flow rate (veh/h) and density (veh/km)
obtained from the optimisation Model with lane closure

116



Figure 4.18: Variable speed limit (km/h) obtained from the optimisation model
with lane closure.
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4.4 Concluding Remarks

In summary, findings of the SCTM reveal that lane closure in upstream cells

results in congestion, with lane closure in cell 35 prior to the incident causing

a traffic backup in the freeway section. As a result, the traffic flow drops, with

density rising to higher than the standard simulation in which there has been no

lane closure.

Based on the above findings, this study recommends the utilisation of a

stochastic cell transmission model (SCTM) set in a Kwinana freeway section

to simulate both the density and flow rate of traffic under measuring rates of

arrival at the main entrance and three on-ramp roads and discharging rates at

two off-ramp roads. In the SCTM, random parameters of the fundamental flow-

density diagrams (i.e. capacities, variable speed limits, ramp metering & free-flow

speeds) govern the stochastic ties of both sending and receiving functions. Data-

driven Traffic simulation based on the SCTM method can describe traffic flow on

the freeway with lane closure.

The optimisation model presenting the problem of ramp metering and variable

speed limits with non-recurrent traffic demand flows reveals that robust optimi-

sation can effectively control total delays and mitigate traffic congestion when

there is uncertainty in the system in a range of scenarios. Results also show it

also offers a more effective way to manage the problem of total system delay.

Although many traffic control measures (e.g. variable speed limit controls and

ramp-metering & route guidance) have been used to optimise traffic distribution

on road networks, traffic optimisation using system engineering under the guid-

ance of system science is clearly a better way to optimise current transportation

facilities. This method can more effectively be used better to adjust the relation-

ships between traffic demand and supply to improve the use of road resources.

Further studies could also employ this approach to create models under set-valued

fundamental diagrams to determine the route choice behaviours of drivers.
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Chapter 5

Conclusions and Further Work

It is well known that many mathematical techniques have been employed to

depict the same process when studying traffic flow modelling from various angles.

It also has trouble deciding on a suitable technique for generating the physical

appearance on the freeway under non-recurrent events. Although over the last

decade non-recurrent traffic congestion has been examined in various aspects

and provides a basic understanding of the traffic problem, traffic congestion is

still discussed and researched in several areas. This dissertation focuses on two

aspects, traffic prediction and traffic control under non-recurrent events. The

research efforts of this dissertation are described in Section 5.1. The potential

future study directions in specific areas are given in Section 5.2.

5.1 Contributions

The main contribution of this dissertation is the development of mathematical

tools for traffic control on the freeway under non-recurrent events. The tools

consist of the multivariate prediction models of traffic parameters, the traffic

simulation model and the optimisation model of traffic flow control via variable

speed limit and ramp metering.
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1. As short-term traffic prediction is critical to the freeway traffic oper-

ating system, the proposed forecasting model aims to predict the next

30 minutes of traffic parameters including the flow rate (volume), den-

sity and speed.

2. For transportation management and control systems, traffic informa-

tion during peak hours or road incidents is essential. Macroscopic

traffic flow models have been proposed to capture traffic flow dynam-

ics including the creation and dissipation of lines of traffic, shock

waves, etc. The proposed traffic simulation model is implemented

from the original LWR model by taking into account the effect of

uncertainty on the demand and supply of the road network. Numeri-

cal experiments were performed and evaluate the model efficiency. In

conclusion, we may state that

• The models are simple for the real-time modelling of traffic dy-

namics on road networks and sufficient for analysing character-

istics of the flow-Density dynamic under non-recurrent events.

• The models require less processing power. Additionally, the com-

putational demand is independent of the number of vehicles in

the network and does not rise with rising traffic volumes.

• The models can predict traffic parameters with less input sensi-

tivity and estimate the total kilometre travel, total hour travel

and total delay, numerically.

• The proposed model with real-time traffic demand and uncer-

tainty free speed and flow capacity can capture traffic phenom-

ena under non-recurrent events.

3. For the on-ramp and mainline traffic control, two control strategies,

Ramp Metering (RM) and Variable Speed Limit (VSL), are exten-

sively studied to improve the overall traffic condition. As the traffic
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parameters are uncertain, a stochastic optimisation model with the

list of RM and VSL parameters during horizontal times as the de-

cision variables is proposed. The optimisation model is subject to

two constraints, including the explicit SCTM traffic flow and the cell

capacity of each road segment. The results show that the proposed

optimisation model with random on-ramp flow rates gives and the

optimum VSL parameters by minimising total travel time.

5.2 Future Research

As traffic theories are a crucial element of traffic model and analysis, the devel-

opment of traffic engineering theories and their applications are important for

better description of the interactions among vehicles, drivers, and the highway

system with control devices, signage, and markings.

A suggestion for future research is the development of traffic engineering mod-

els of multicommodity flow problem with a supply-demand uncertainty and the

optimal total throughput by maximising the sum of all demands. Moreover, fur-

ther applications are in the development of traffic simulation models with various

control strategies including ramp metering, variable speed limit, additional lanes

and signage, etc.

Moreover, traffic congestion modelling with a particular emphasis on the abil-

ity to predict unexpected events in traffic flow is essential as there are many

random aspects in both driver behaviour and traffic conditions. In addition,

cross-comparisons of the enhanced models with other exist models in terms of

the accuracy and computational effort are also necessary.
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