51,205 research outputs found

    Integrating IVHM and Asset Design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collection of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Integrating IVHM and asset design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collecting of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Space shuttle propulsion systems on-board checkout and monitoring system development study. Volume 1 - Summary Final report

    Get PDF
    Development of onboard checkout equipment and performance monitoring capability for space shuttles - Vol.

    A model based on clinical parameters to identify myocardial late gadolinium enhancement by magnetic resonance in patients with aortic stenosis: An observational study

    Get PDF
    Objective With increasing age, the prevalence of aortic stenosis grows exponentially, increasing left heart pressures and potentially leading to myocardial hypertrophy, myocardial fibrosis and adverse outcomes. To identify patients who are at greatest risk, an outpatient model for risk stratification would be of value to better direct patient imaging, frequency of monitoring and expeditious management of aortic stenosis with possible earlier surgical intervention. In this study, a relatively simple model is proposed to identify myocardial fibrosis in patients with a diagnosis of moderate or severe aortic stenosis. Design Patients with moderate to severe aortic stenosis were enrolled into the study; patient characteristics, blood work, medications as well as transthoracic echocardiography and cardiovascular magnetic resonance were used to determine potential identifiers of myocardial fibrosis. Setting The Royal Brompton Hospital, London, UK Participants One hundred and thirteen patients in derivation cohort and 26 patients in validation cohort. Main outcome measures Identification of myocardial fibrosis. Results Three blood biomarkers (serum platelets, serum urea, N-terminal pro-B-type natriuretic peptide) and left ventricular ejection fraction were shown to be capable of identifying myocardial fibrosis. The model was validated in a separate cohort of 26 patients. Conclusions Although further external validation of the model is necessary prior to its use in clinical practice, the proposed clinical model may direct patient care with respect to earlier magnetic resonance imagining, frequency of monitoring and may help in risk stratification for surgical intervention for myocardial fibrosis in patients with aortic stenosis

    Prognostic Reasoner based adaptive power management system for a more electric aircraft

    Get PDF
    This research work presents a novel approach that addresses the concept of an adaptive power management system design and development framed in the Prognostics and Health Monitoring(PHM) perspective of an Electrical power Generation and distribution system(EPGS).PHM algorithms were developed to detect the health status of EPGS components which can accurately predict the failures and also able to calculate the Remaining Useful Life(RUL), and in many cases reconfigure for the identified system and subsystem faults. By introducing these approach on Electrical power Management system controller, we are gaining a few minutes lead time to failures with an accurate prediction horizon on critical systems and subsystems components that may introduce catastrophic secondary damages including loss of aircraft. The warning time on critical components and related system reconfiguration must permits safe return to landing as the minimum criteria and would enhance safety. A distributed architecture has been developed for the dynamic power management for electrical distribution system by which all the electrically supplied loads can be effectively controlled.A hybrid mathematical model based on the Direct-Quadrature (d-q) axis transformation of the generator have been formulated for studying various structural and parametric faults. The different failure modes were generated by injecting faults into the electrical power system using a fault injection mechanism. The data captured during these studies have been recorded to form a “Failure Database” for electrical system. A hardware in loop experimental study were carried out to validate the power management algorithm with FPGA-DSP controller. In order to meet the reliability requirements a Tri-redundant electrical power management system based on DSP and FPGA has been develope

    Use of COTS functional analysis software as an IVHM design tool for detection and isolation of UAV fuel system faults

    Get PDF
    This paper presents a new approach to the development of health management solutions which can be applied to both new and legacy platforms during the conceptual design phase. The approach involves the qualitative functional modelling of a system in order to perform an Integrated Vehicle Health Management (IVHM) design – the placement of sensors and the diagnostic rules to be used in interrogating their output. The qualitative functional analysis was chosen as a route for early assessment of failures in complex systems. Functional models of system components are required for capturing the available system knowledge used during various stages of system and IVHM design. MADe™ (Maintenance Aware Design environment), a COTS software tool developed by PHM Technology, was used for the health management design. A model has been built incorporating the failure diagrams of five failure modes for five different components of a UAV fuel system. Thus an inherent health management solution for the system and the optimised sensor set solution have been defined. The automatically generated sensor set solution also contains a diagnostic rule set, which was validated on the fuel rig for different operation modes taking into account the predicted fault detection/isolation and ambiguity group coefficients. It was concluded that when using functional modelling, the IVHM design and the actual system design cannot be done in isolation. The functional approach requires permanent input from the system designer and reliability engineers in order to construct a functional model that will qualitatively represent the real system. In other words, the physical insight should not be isolated from the failure phenomena and the diagnostic analysis tools should be able to adequately capture the experience bases. This approach has been verified on a laboratory bench top test rig which can simulate a range of possible fuel system faults. The rig is fully instrumented in order to allow benchmarking of various sensing solution for fault detection/isolation that were identified using functional analysis

    Rock falls impacting railway tracks. Detection analysis through an artificial intelligence camera prototype

    Get PDF
    During the last few years, several approaches have been proposed to improve early warning systems for managing geological risk due to landslides, where important infrastructures (such as railways, highways, pipelines, and aqueducts) are exposed elements. In this regard, an Artificial intelligence Camera Prototype (AiCP) for real-time monitoring has been integrated in a multisensor monitoring system devoted to rock fall detection. An abandoned limestone quarry was chosen at Acuto (central Italy) as test-site for verifying the reliability of the integratedmonitoring system. A portion of jointed rockmass, with dimensions suitable for optical monitoring, was instrumented by extensometers. One meter of railway track was used as a target for fallen blocks and a weather station was installed nearby. Main goals of the test were (i) evaluating the reliability of the AiCP and (ii) detecting rock blocks that reach the railway track by the AiCP. At this aim, several experiments were carried out by throwing rock blocks over the railway track. During these experiments, the AiCP detected the blocks and automatically transmitted an alarm signal

    Evaluation of the primitive fraction by functional in vitro assays at the RNA and DNA level represents a novel tool for complementing molecular monitoring in chronic myeloid leukemia

    Get PDF
    Quantification of BCR-ABL1 mRNA levels in peripheral blood of chronic myeloidleukemia patients is a strong indicator of response to tyrosine-kinase inhibitors (TKI)treatment. However, additional prognostic markers are needed in order to better classify patients. The hypothesis of leukemic stem cells (LSCs) heterogeneity and persistence, suggests that their functional evaluation could be of clinical interest. In this work, we assessed the primitive and progenitor fractions in patients at diagnosis and during TKI treatment using functional in vitro assays, defining a ?functional leukemic burden? (FLB). We observed that the FLB was reduced in vivo in both fractions upon treatment. However, different FLB levels were observed among patients according to their response to treatment, suggesting that quantification of the FLB could complement early molecular monitoring. Given that FLB assessment is limited by BCR-ABL1 mRNA expression levels, we developed a novel detection method of primitive cells at the DNA level, using patient-specific primers and direct nested PCR in colonies obtained from functional in vitro assays. We believe that this methodcould be useful in the context of discontinuation trials, given that it is unknown whether the persistent leukemic clone represents LSCs, able to resume the leukemia upon TKI removal.Fil: Ruiz, María Sol. Fundación Cáncer. Centro de Investigaciones Oncológicas; ArgentinaFil: Sanchez, María Belén. Fundación Cáncer. Centro de Investigaciones Oncológicas; Argentina. Argenomics; ArgentinaFil: Gutierrez, Leandro German. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Instituto Alexander Fleming, Bs. As.; ArgentinaFil: Koile, Daniel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Yankilevich, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Mosqueira, Celeste. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Cranco, Santiago. Fundaleu; ArgentinaFil: Custidiano, María del Rosario. Hospital Italiano de La Plata; ArgentinaFil: Freitas, Josefina. Provincia de Buenos Aires. Hospital Nacional Profesor A. Posadas; ArgentinaFil: Foncuberta, Cecilia. Instituto Alexander Fleming; ArgentinaFil: Moiraghi, Beatriz. Fundación Cáncer. Centro de Investigaciones Oncológicas; ArgentinaFil: Pavlovsky, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Pérez, Mariel Ana. Fundación Cáncer. Centro de Investigaciones Oncológicas; ArgentinaFil: Ventriglia, Verónica. Provincia de Buenos Aires. Hospital Nacional Profesor A. Posadas; Argentina; ArgentinaFil: Sánchez Ávalos, Julio César Américo. Instituto Alexander Fleming; ArgentinaFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Cáncer. Centro de Investigaciones Oncológicas; ArgentinaFil: Larripa, Irene Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Bianchini, Michele. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Cáncer. Centro de Investigaciones Oncológicas; Argentin

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD
    corecore