134,753 research outputs found

    CityScapeLab Berlin: A Research Platform for Untangling Urbanization Effects on Biodiversity

    Get PDF
    Urban biodiversity conservation requires an understanding of how urbanization modulates biodiversity patterns and the associated ecosystem services. While important advances have been made in the conceptual development of urban biodiversity research over the last decades, challenges remain in understanding the interactions between different groups of taxa and the spatiotemporal complexity of urbanization processes. The CityScapeLab Berlin is a novel experimental research platform that allows the testing of theories on how urbanization affects biodiversity patterns and biotic interactions in general and the responses of species of conservation interest in particular. We chose dry grassland patches as the backbone of the research platform because dry grasslands are common in many urban regions, extend over a wide urbanization gradient, and usually harbor diverse and self-assembled communities. Focusing on a standardized type of model ecosystem allowed the urbanization effects on biodiversity to be unraveled from effects that would otherwise be masked by habitat- and land-use effects. The CityScapeLab combines different types of spatiotemporal data on (i) various groups of taxa from different trophic levels, (ii) environmental parameters on different spatial scales, and (iii) on land-use history. This allows for the unraveling of the effects of current and historical urban conditions on urban biodiversity patterns and the related ecological functions.BMBF, 01LC1501, BIBS-Verbund: Bridging in Biodiversity Science (BIBS

    Integrated urban evolutionary modeling

    Get PDF
    Cellular automata models have proved rather popular as frameworks for simulating the physical growth of cities. Yet their brief history has been marked by a lack of application to real policy contexts, notwithstanding their obvious relevance to topical problems such as urban sprawl. Traditional urban models which emphasize transportation and demography continue to prevail despite their limitations in simulating realistic urban dynamics. To make progress, it is necessary to link CA models to these more traditional forms, focusing on the explicit simulation of the socio-economic attributes of land use activities as well as spatial interaction. There are several ways of tackling this but all are based on integration using various forms of strong and loose coupling which enable generically different models to be connected. Such integration covers many different features of urban simulation from data and software integration to internet operation, from interposing demand with the supply of urban land to enabling growth, location, and distributive mechanisms within such models to be reconciled. Here we will focus on developin

    Network geography: relations, interactions, scaling and spatial processes in GIS

    Get PDF
    This chapter argues that the representational basis of GIS largely avoidseven the most rudimentary distortions of Euclidean space as reflected, forexample, in the notion of the network. Processes acting on networks whichinvolve both short and longer term dynamics are often absent from GIscience. However a sea change is taking place in the way we view thegeography of natural and man-made systems. This is emphasising theirdynamics and the way they evolve from the bottom up, with networks anessential constituent of this decentralized paradigm. Here we will sketchthese developments, showing how ideas about graphs in terms of the waythey evolve as connected, self-organised structures reflected in theirscaling, are generating new and important views of geographical space.We argue that GI science must respond to such developments and needs tofind new forms of representation which enable both theory andapplications through software to be extended to embrace this new scienceof networks

    Can geocomputation save urban simulation? Throw some agents into the mixture, simmer and wait ...

    Get PDF
    There are indications that the current generation of simulation models in practical, operational uses has reached the limits of its usefulness under existing specifications. The relative stasis in operational urban modeling contrasts with simulation efforts in other disciplines, where techniques, theories, and ideas drawn from computation and complexity studies are revitalizing the ways in which we conceptualize, understand, and model real-world phenomena. Many of these concepts and methodologies are applicable to operational urban systems simulation. Indeed, in many cases, ideas from computation and complexity studies—often clustered under the collective term of geocomputation, as they apply to geography—are ideally suited to the simulation of urban dynamics. However, there exist several obstructions to their successful use in operational urban geographic simulation, particularly as regards the capacity of these methodologies to handle top-down dynamics in urban systems. This paper presents a framework for developing a hybrid model for urban geographic simulation and discusses some of the imposing barriers against innovation in this field. The framework infuses approaches derived from geocomputation and complexity with standard techniques that have been tried and tested in operational land-use and transport simulation. Macro-scale dynamics that operate from the topdown are handled by traditional land-use and transport models, while micro-scale dynamics that work from the bottom-up are delegated to agent-based models and cellular automata. The two methodologies are fused in a modular fashion using a system of feedback mechanisms. As a proof-of-concept exercise, a micro-model of residential location has been developed with a view to hybridization. The model mixes cellular automata and multi-agent approaches and is formulated so as to interface with meso-models at a higher scale

    Ancient Cartographies as a Basis for Geolocation Models in Public Space: The Case of Giambattista Nolli and its Heritage Application

    Get PDF
    In 1748, the architect and surveyor Giambattista Nolli mapped an abstract reality of the city of Rome. As a challenge to the inherited projections, it represented the city mixing streets, halls, corridors, churches, baths and markets as part of a unique public space network. A new way to design public space and rethink the whole urban system was opened by the possibility of containing in these representations a single layer with all kinds of public space (including the interior of public buildings). Despite this, Nolli's plan remained as a useless instrument since the hegemony of automobile mobility appeared as a pre-eminent system. This research tries to understand how the application of the ancient cartographies' methodology can improve the pedestrian mobility of historic cities by means of enhancing the graphic value of the system of Giambattista Nolli. Nowadays, free public space is represented as empty and built ones, as solid. This proposal would revert this reified conception of the city, understanding this baroque representation as an instrument of identification and assessment of the transitional heritage. The clues unveiled by Nolli seem to be able to integrate the plans of public buildings within the urban tissue, which would result in a step towards the full integration of cartography and mobility. The success of the comprehensive tools offered by large servers such as Alphabet inc. (Google) or Bing Maps confirm the suitability of the combination of new technologies and Big Data with urban planning, reaching the synchronisation of Smart Cities. Nowadays, open public space can be 'walked in' from any electronic device, consequently, the application of the "Nolli methodology" would implement the model of urban geolocation with the assimilation of inner public spaces. In the creation of a great global map of the public space, a chimaera could be intuited. This would be discussed within a tangible reality: every open public space is already housed in the Big Data and it is accessible through geolocation tools. The inclusion of the of the public buildings' interiors would contribute to develop a greater permeability between city and citizens. Furthermore, this representation would optimize pedestrian travel times and would be able to expand the geolocation system network as a documentary repository

    CAST – City analysis simulation tool: an integrated model of land use, population, transport and economics

    Get PDF
    The paper reports on research into city modelling based on principles of Science of Complexity. It focuses on integration of major processes in cities, such as economics, land use, transport and population movement. This is achieved using an extended Cellular Automata model, which allows cells to form networks, and operate on individual financial budgets. There are 22 cell types with individual processes in them. The formation of networks is based on supply and demand mechanisms for products, skills, accommodation, and services. Demand for transport is obtained as an emergent property of the system resulting from the network connectivity and relevant economic mechanisms. Population movement is a consequence of mechanisms in the housing and skill markets. Income and expenditure of cells are self-regulated through market mechanisms and changing patterns of land use are a consequence of collective interaction of all mechanisms in the model, which are integrated through emergence

    Using High-Rising Cities to Visualize Performance in Real-Time

    Get PDF
    For developers concerned with a performance drop or improvement in their software, a profiler allows a developer to quickly search and identify bottlenecks and leaks that consume much execution time. Non real-time profilers analyze the history of already executed stack traces, while a real-time profiler outputs the results concurrently with the execution of software, so users can know the results instantaneously. However, a real-time profiler risks providing overly large and complex outputs, which is difficult for developers to quickly analyze. In this paper, we visualize the performance data from a real-time profiler. We visualize program execution as a three-dimensional (3D) city, representing the structure of the program as artifacts in a city (i.e., classes and packages expressed as buildings and districts) and their program executions expressed as the fluctuating height of artifacts. Through two case studies and using a prototype of our proposed visualization, we demonstrate how our visualization can easily identify performance issues such as a memory leak and compare performance changes between versions of a program. A demonstration of the interactive features of our prototype is available at https://youtu.be/eleVo19Hp4k.Comment: 10 pages, VISSOFT 2017, Artifact: https://github.com/sefield/high-rising-city-artifac

    Sharing 3D city models: an overview

    Get PDF
    This study describes the computing methods now available to enable the sharing of three-dimensional (3D) data between various stakeholders for the purposes of city modeling and considers the need for a seamless approach for sharing, transmitting, and maintaining 3D city models. The study offers an overview of the technologies and the issues related to remote access, collaboration, and version control. It builds upon previous research on 3D city models where issues were raised on utilizing, updating and maintaining 3D city models and providing access to various stakeholders. This paper will also describe a case study which is currently analyzing the remote access requirements for a sustainable computer model of NewcastleGateshead in England. Options available will be examined and areas of future research will be discussed

    Game on! a report on the interactive leisure software subsector in London

    Full text link
    There is a paucity of good quality data on the UK video games industry. Information such as value-added, investment on R&D, average annual expenditure on training and the value of video games in terms of exports, for example, is thin or incomplete. This is a serious problem. If we are to improve the competitiveness of the UK games development sector then we must have better quality information. Games developers will then be able to benchmark their business activities against industry averages. Overseas investors will also then be better informed about the benefits of investing in the UK leisure software sector. This Report confirms the lacunae in our knowledge that exists about the video games industry. For example, the Office of National Statistics still does not have a specific code to identify interactive leisure software businesses. Yet the Report also shines a light on the video games industry in the UK in general and in London in particular

    Representing multifunctional cities: density and diversity in space and time

    Get PDF
    In this paper, we define measures of urban diversity, density and segregation using newdata and software systems based on GIS. These allow us to visualise the meaning of themultifunctional city. We begin with a discussion of how cities have become moresegregated in their land uses and activities during the last 200 years and how the currentfocus is on reversing this trend through limiting urban sprawl and bringing new lifeback to the inner and central city. We define various indices which show how diversityand density manifest themselves spatially. We argue that multifunctionalism is a relativeconcept, dependent upon the spatial and temporal scale that we use to think about themixing and concentration of urban land uses. We present three examples using spatiallysmoothed indicators of diversity: for a world city ? London, for a highly controlledpolycentric urban region ? Randstad Holland, and for a much more diffusely populatedsemi-urban region ? Venice-Padua-Teviso. We conclude by illustrating that urbandiversity varies as people engage in different activities associated with different landuses throughout the day, as well as through the vertical, third dimension of the city. Thisimpresses the point that we need to understand multifunctional cities in all theirdimensions of space and time
    corecore