3,880 research outputs found

    A theorem proving framework for the formal verification of Web Services Composition

    Get PDF
    We present a rigorous framework for the composition of Web Services within a higher order logic theorem prover. Our approach is based on the proofs-as-processes paradigm that enables inference rules of Classical Linear Logic (CLL) to be translated into pi-calculus processes. In this setting, composition is achieved by representing available web services as CLL sentences, proving the requested composite service as a conjecture, and then extracting the constructed pi-calculus term from the proof. Our framework, implemented in HOL Light, not only uses an expressive logic that allows us to incorporate multiple Web Services properties in the composition process, but also provides guarantees of soundness and correctness for the composition.Comment: In Proceedings WWV 2011, arXiv:1108.208

    Translating HOL to Dedukti

    Get PDF
    Dedukti is a logical framework based on the lambda-Pi-calculus modulo rewriting, which extends the lambda-Pi-calculus with rewrite rules. In this paper, we show how to translate the proofs of a family of HOL proof assistants to Dedukti. The translation preserves binding, typing, and reduction. We implemented this translation in an automated tool and used it to successfully translate the OpenTheory standard library.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    Mechanizing Principia Logico-Metaphysica in Functional Type Theory

    Full text link
    Principia Logico-Metaphysica contains a foundational logical theory for metaphysics, mathematics, and the sciences. It includes a canonical development of Abstract Object Theory [AOT], a metaphysical theory (inspired by ideas of Ernst Mally, formalized by Zalta) that distinguishes between ordinary and abstract objects. This article reports on recent work in which AOT has been successfully represented and partly automated in the proof assistant system Isabelle/HOL. Initial experiments within this framework reveal a crucial but overlooked fact: a deeply-rooted and known paradox is reintroduced in AOT when the logic of complex terms is simply adjoined to AOT's specially-formulated comprehension principle for relations. This result constitutes a new and important paradox, given how much expressive and analytic power is contributed by having the two kinds of complex terms in the system. Its discovery is the highlight of our joint project and provides strong evidence for a new kind of scientific practice in philosophy, namely, computational metaphysics. Our results were made technically possible by a suitable adaptation of Benzm\"uller's metalogical approach to universal reasoning by semantically embedding theories in classical higher-order logic. This approach enables one to reuse state-of-the-art higher-order proof assistants, such as Isabelle/HOL, for mechanizing and experimentally exploring challenging logics and theories such as AOT. Our results also provide a fresh perspective on the question of whether relational type theory or functional type theory better serves as a foundation for logic and metaphysics.Comment: 14 pages, 6 figures; preprint of article with same title to appear in The Review of Symbolic Logi

    A Comparative Study of Coq and HOL

    Get PDF
    This paper illustrates the differences between the style of theory mechanisation of Coq and of HOL. This comparative study is based on the mechanisation of fragments of the theory of computation in these systems. Examples from these implementations are given to support some of the arguments discussed in this paper. The mechanisms for specifying definitions and for theorem proving are discussed separately, building in parallel two pictures of the different approaches of mechanisation given by these systems

    Set Theory or Higher Order Logic to Represent Auction Concepts in Isabelle?

    Full text link
    When faced with the question of how to represent properties in a formal proof system any user has to make design decisions. We have proved three of the theorems from Maskin's 2004 survey article on Auction Theory using the Isabelle/HOL system, and we have produced verified code for combinatorial Vickrey auctions. A fundamental question in this was how to represent some basic concepts: since set theory is available inside Isabelle/HOL, when introducing new definitions there is often the issue of balancing the amount of set-theoretical objects and of objects expressed using entities which are more typical of higher order logic such as functions or lists. Likewise, a user has often to answer the question whether to use a constructive or a non-constructive definition. Such decisions have consequences for the proof development and the usability of the formalization. For instance, sets are usually closer to the representation that economists would use and recognize, while the other objects are closer to the extraction of computational content. In this paper we give examples of the advantages and disadvantages for these approaches and their relationships. In addition, we present the corresponding Isabelle library of definitions and theorems, most prominently those dealing with relations and quotients.Comment: Preprint of a paper accepted for the forthcoming CICM 2014 conference (cicm-conference.org/2014): S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, Springer International Publishing Switzerland 2014. 16 pages, 1 figur
    corecore