
A Comparative Study of Coq and HOLVincent ZammitComputing Laboratory, University of Kent, Canterbury, Kent, UKAbstract. This paper illustrates the di�erences between the style oftheory mechanisation of Coq and of HOL. This comparative study isbased on the mechanisation of fragments of the theory of computationin these systems. Examples from these implementations are given to sup-port some of the arguments discussed in this paper. The mechanisms forspecifying de�nitions and for theorem proving are discussed separately,building in parallel two pictures of the di�erent approaches of mechani-sation given by these systems.1 IntroductionThis paper compares the di�erent theorem proving approaches of the HOL [10]and Coq [5] proof assistants. This comparison is based on a case study involvingthe mechanisation of parts of the theory of computation in the two systems.This paper does not illustrate these mechanisations but rather discusses thedi�erences between the two systems and backs up certain points by examplestaken from the case studies.One motivation of this work is that many users of theorem provers lack theperspective of knowing more than one such system, mainly due to the amountof time needed to master any such system. Having a single text which builds uppictures of two di�erent systems in parallel allows users of one system to graspbetter how the di�erent approach of the other system a�ects the way theoriesare mechanised. As a result, knowing the main di�erences beforehand facilitatesthe process of learning the other system, and gives a better perspective of thesystem the user is familiar with.The case studies are illustrated separately in [26] and in [27]. The mecha-nisation in HOL is based on the Unlimited Register Machine (URM) model ofcomputation [7], and the main result of the formalisation is a proof that partialrecursive functions are URM computable. The mechanisation in Coq is basedon a model of computation similar to the partial recursive function model andincludes a constructive proof of the Smn theorem. Both implementations are inthe order of 10,000 lines of code. HOL90 version 7 and Coq version 5.10 wereused for the mechanisations.The two systems are introduced in the next section where a brief overviewof each of them is given. Since we are considering the di�erences between howactual mechanisations of theories are performed in practice, this comparativestudy treats the mechanisms for de�nitions (section 3) and theorem proving(section 4) separately. Other considerations are then discussed in section 5 andthe last section gives some concluding remarks.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


It is noted in this comparative study that the strongest point of the Coqsystem is the power of the logic it is based on. The HOL logic is much moresimple but users can rely on a greater 
exibility o�ered by the metalanguage.As a result HOL theorem proving is much more implementation oriented, whilein Coq unnecessary implementation is avoided and discouraged by having aspeci�cation and proof language which bridges the user from the metalanguage.These points are built gradually in the following sections and are discussed inthe conclusion.2 An Overview of Coq and HOLBoth systems are based on the LCF [9] style of theorem proving, where all logicalinferences are performed by a simple core engine. A metalanguage is provided sothat users can extend the system by implementing program modules applyingthe operations of the core engine. The systems di�er from each other howeverby implementing quite di�erent logics and through the 
exibility by which usersare allowed to extend the system.2.1 CoqThe Coq system is an implementation in CAML of the Calculus of InductiveConstructions (CIC) [4], a variant of type theory related to Martin-L�of's In-tuitionistic Type Theory [14, 18] and Girard's polymorphic �-calculus F! [8].Terms in CIC are typed and types are also terms. Such a type theory can betreated as a logic through the Curry-Howard isomorphism (see [25, 18] for intro-ductions of the Curry-Howard isomorphism) where propositions are expressedas types. For instance, a conjunction A ^ B is represented by a product typeA � B, and an implication A ) B is represented by a function type A ! B.Also, a term of type � can be seen as a proof of the proposition represented by� , and thus theorems in the logic are nonempty types. For example, the functioncurry = �f:�x:�y:f(x; y)which has type ((A �B)! C) ! A! B ! C is a proof of the theorem ((A ^B)) C)) (A) B ) C). Objects which have the same normal form accordingto ���-conversion are called convertible, and are treated as the same term by thelogic. �-conversion involves the substitution of a constant by its de�ning term and�-conversion is automation of inductive de�nitions. The CIC implemented in Coqdi�ers from that of LEGO [22] by having two sorts of universes, an impredicativeuniverse for sets in which functions are computable, and a predicative universe fortypes and propositions in which functions (predicates) need not be computable(decidable).Due to the Curry-Howard isomorphism, theorem proving corresponds to theconstruction of well typed terms and the core inference engine of Coq is basi-cally a type checking algorithm of CIC terms. Terms whose type is a theoremare usually called proof objects and are stored in Coq theories. The Coq system



provides the speci�cation and proof language Gallina in which users performthe actual interactive theorem proving. Gallina constructs include commandsfor specifying de�nitions and for tactic based theorem proving (section 4 dis-cusses this in more detail), and Coq users can extend the Gallina language byimplementing new contructs in CAML. The �les which Gallina accepts duringtheorem proving are usually called scripts (or proof scripts).2.2 HOLThe HOL system implements (in Standard ML of New Jersey for the case ofHOL90) a classical higher order logic based on Church's simple theory of types[3] extended with polymorphic types and inference rules for de�nitions. Thus,HOL terms are typed, where types represent nonempty sets and can be eithertype constants, type variables (which make the type theory polymorphic), func-tion types (which make the logic higher order) or the application of some typeoperator to a number of types1. Terms are either constants, variables, lambdaabstractions or applications; sequents consist of a �nite set of terms (the as-sumptions) and one term (the conclusion), and theorems are sequents which areproved by one of a number of primitive inference rules.Theorems in the HOL system are represented by an abstract datatype (withname thm) having as constructors a small number of functions corresponding tothe logic's primitive inference rules. The implementation of this datatype is thecore inference engine of HOL, and the type checking mechanism of ML ensuresthat objects of type thm are constructed only by using the type's constructors.Theorem proving in HOL involves the implementation of programs in the met-alanguage which yield terms of type thm. All support for specifying de�nitions,constructing types and terms (which can be done by quotation in which a systemfunction parses expressions written in a readable syntax into HOL representa-tion), and theorem proving is provided through ML functions which are visibleto HOL users. Thus, users can extend the system by implementing new MLfunctions representing higher level inference rules, decision procedures, proofstrategies, de�nition mechanisms, etc. .3 De�nitionsA de�nition can be considered as a name given to a term or type by which itcan be referred to in a theory. For example the de�nitioncomputable n f =def 9p. computes p n fintroduces the new object computable in the current theory and makes the twoexpressions computable n f and 9p. computes p n f for any term f , in somesense interchangeable. In a mechanisation (or formalisation) of a theory, giv-ing de�nitions is a mechanism by which mathematical concepts are formalised1 A function type � ! � can be considered as the application of the operator ! onthe types � and �, and type constants as type operators with arity 0.



by specifying them as being equivalent to expressions containing only alreadyde�ned terms. The above example illustrates how the concept of a computablen-ary function can be formalised. A concept can also be formalised throughthe declaration of axioms and both systems allow users to introduce axioms intheories. However, an axiomatic theory can be inconsistent while the de�nitionmechanisms of Coq and HOL guarantee that purely de�nitional theories arealways consistent.The de�nition mechanism in Coq introduces new constant names in an envi-ronment and allows these terms to be convertible with their de�ning terms. Thisapplies to both simple abbreviations (�-conversion) and inductive de�nitions (�-conversion). Since proofs and theorems are �rst class objects in CIC, the nameof a theorem is actually a constant de�nition given to its proof term. In fact,although the speci�cation language Gallina gives di�erent constructs for de�n-ing terms and for theorem proving, one can, for instance, use tactics to de�neterms and the de�nition mechanism to prove theorems. The system di�erentiatesbetween de�nitions and theorems by labeling the former objects as transparentand the latter as opaque. Transparent objects are convertible with their de�ningterms while opaque objects are not. Gallina commands for labeling objects asopaque or transparent are also provided.The HOL logic treats type and constant de�nitions di�erently, and the coresystem provides one primitive inference rule for type de�nitions and two forconstant de�nitions. Other inference rules are given for deriving theorems. Thefunction of the HOL primitive rules for de�nitions is illustrated below, where thedi�erences between the de�nition mechanism in HOL and in Coq are discussed.3.1 Type De�nitionsThe HOL system has one primitive rule for type de�nitions, which introduces anew type expression � as a nonempty subset of an existing type �, given a termP : � ! bool which denotes its characteristic predicate. However, in practice,the user introduces new types through the type de�nition package [15] whichspeci�es ML style polymorphic recursive types as well as automatically derivinga number of theorems specifying certain properties about the type (such as thefact that the type constructors are injective).Such types are speci�ed in Coq by inductively de�ned sets and types, andthe corresponding theorems derived by HOL's type de�nition package are eitherreturned as theorems by the de�nition mechanism of Gallina or follow from theelimination and introduction rules of the set or type.The obvious advantage of having types as terms in CIC over HOL's simpletype theory is a much more expressive type system which allows quanti�cationover types and dependent types. A dependent type is a type which depends onthe value of some particular term. The `classical' examples of dependent typesinclude Nat(n), the type of the natural numbers less than n, and vector(A; n),the type of vectors (or lists) having n elements of type A. This type is de�nedinductively in [27]:



vector A =def Vnil: (vector A 0)| Vcons: (n: nat) ! A ! (vector A n)! (vector A (S n)).and by de�ning the type for relationsRel =def �A,B:Set. A ! B ! Prop.the type of n-ary partial functions over the natural numbers can be de�ned tobe single valued relations between vector nat n and nat:one_valued =def �A,B:Set, R:Rel A B. 8a:A, b1,b2:B.(R a b1) ! (R a b2) ! (b1 = b2).pfunc arity =def mk pfuncf reln : (Rel (vector nat arity) nat);One valued: (one valued (vector nat arity) nat reln)g.pfuncs =def Pfuncs: (n: nat) ! (pfunc n) ! pfuncs.The type pfunc is a record where the �eld reln is a relation between vectorsand natural numbers, and the �eld One_valued is a theorem stating that reln issingle valued. It can be seen that this is a dependent record as the type of thesecond �eld depends on the value of the �rst �eld. The type pfunc can be seenin some sense as a subtype of reln, as objects of type pfunc are the objects oftype reln which are proved to satisfy the property given by One_valued.With this type system one can de�ne the notion that a program computes afunction by8n:nat, p:prog, f:(pfunc n). computes p n f=def 8v:(vector nat n), x:nat. exec p v x , reln n f v xwhich is more compact and elegant than an equivalent HOL de�nition, since theinformation stored in types has to be speci�ed as terms:8n:num, p:prog, f:pfunc. computes p n f =def one_valued n f ^8v:num list. length v = n )8x:num. exec p v x , apply f v xA mechanism which translates objects in a dependent type theory into HOLobjects is illustrated in [13] and an extension of the HOL logic to cover quanti�-cation over types is proposed in [17].3.2 Constant De�nitionsHere we list the di�erent mechanism by which constant de�nitions can be spec-i�ed in Coq and in HOL.



Simple De�nitions In HOL given a closed term x : � , a new constant c :� can be introduced in the current theory by the primitive rule of constantde�nition which also yields the theorem ` c = x. Thus, while in the Calculus ofConstructions constants are convertible with their de�ning terms, in HOL theinterchangeability of c and x is justi�ed by the above theorem, which needs to beused whenever c and x have to be substituted for each other in other theorems.Speci�cations The second primitive rule which introduces constants in HOLtheories is called the rule of constant speci�cation. It introduces a constantc : � obeying some property P (c), if its existence can be shown by a theorem` 9x:P (x). The theorem ` P (c) is returned by the rule. Note that only theexistence of some x is required, rather than the existence of a unique x, andnothing else can be inferred about c, apart from P (c) (and anything which canbe inferred from P (c)). There is no such rule in the Calculus of Constructionsalthough any constructive proof of 9x: �:P (x) is actually a pair (w: �; p:P (w))containing a term of type � and a proof stating that this term satis�es P . TheHOL manual [10] introduces a primitive inference rule for type speci�cation aswell but there is no implementation of this rule yet.Recursive De�nitions The de�nition of primitive recursive functions over arecursive type is justi�ed in HOL by a theorem stating the principle of primitiverecursion which can be automatically derived by the type de�nition package. Alibrary for de�ning well-founded recursive functions, which in general requiresuser intervention for proving that a relation is well-formed, is also included inthe HOL system [24]. In Coq, primitive recursive functions are de�ned by a�xpoint operator. The syntax of actually de�ning such functions implicitly inthe Coq is very crude. However, a mechanism which allows function de�nitionsin an ML like systax with pattern matching is provided in the Gallina languageas a macro for specifying case expressions. This mechanism can also be used onthe de�nition of functions over dependent types.Inductive De�nitions The CIC includes rules for inductive de�nitions and arethus inbuilt in Coq. The Gallina speci�cation language provides constructs forintroducing (possibly mutually) inductive de�nitions as well as tactics for rea-soning about them. Inductive de�nitions can be used for introducing inductivetypes and sets as recursive datatypes (as seen in section 3) and also for induc-tively de�ned relations. Since the implementation of the CIC in Coq includesrules for coinductive types, support for coinductive and corecursive de�nitionsand reasoning by coinduction is also provided.The HOL system provides a number of packages for de�ning inductive re-lations, which include Melham's original package [16, 2], support for mutuallyinductive de�nitions [23] and the more recent implementation due to Harrison[12]. Besides providing a mechanism for specifying de�nitions these packages in-clude ML functions for reasoning about them and for automating them. It is



argued (for instance in [11]) that inductive de�nitions can be introduced earlierin the HOL system and a number of frequently used relations in existing theo-ries (such as the inequalities on natural numbers) can be rede�ned inductively sothat users can for instance apply the principle of rule induction on them, muchin the same fashion that it is done by Coq users.4 Theorem ProvingThis section illustrates the di�erent proof strategies by which users of the Coqand HOL systems perform the actual theorem proving.4.1 Forward ProvingForward theorem proving is performed in HOL by applying ML functions whichreturn theorems. This is done in Coq by constructing terms whose type corre-sponds to theorems. However since HOL users have direct access to the meta-language, one can implement more elaborate inference rules for forward theoremproving than simple constructions of terms in Coq. In general, theorem provingin Coq is done in a backwards manner by applying tactics.4.2 Backward ProvingBoth theorem provers support interactive tactic based goal directed reasoning.Basically the required theorem is stated as a goal and the user applies tacticswhich break the goal into simpler subgoals until they can be proved directly.Tactics also provide a justi�cation for the simpli�cation of a goal into subgoals,which derives the goal as a theorem from derivations of the subgoals. A goalusually consists of the statement which is required to be proved together with anumber of assumptions which a proof of the goal can use.Backward proving is supported in HOL through an implementation of a goal-stack data structure which provides a number of operations (including specifyinggoals, applying tactics, moving around subgoals, etc. ) as ML functions. Tacticsand tacticals2 are also ML functions and users can implement new tactics duringtheory development. On the other hand, Coq tactics and tacticals are providedas constructs of the Gallina language, and so are the operations on the internalgoalstack. As a result, implementing a new tactic in Coq involves the non-trivialtask of extending the Gallina language and in general Coq users tend to im-plement less tactics during theory development than HOL users do. Moreover,HOL users can also implement tactics `on the 
y' by combining di�erent tactics,tacticals, and ML functions in general. For instance, the HOL tactic2 Tacticals are operations on tactics which produce tactics, for example, the tacticalthen, implemented in both HOL and Coq takes two tactics t1 and t2 and returns atactic which when applied to a goal, it �rst applies t1 and then applies t2 on all theresulting subgoals.



REPEAT (STRIP_GOAL_THEN(fn t => if is_disj (concl t)then DISJ_CASES_TAC telse RULE_ASSUM_TAC (REWRITE_RULE [GSYM t])));when applied to a goal of the form8x11; : : : ; x1n1 :t1 ) : : :) 8xm1; : : : ; x1nm :tm ) cspecialises all the quanti�ed variables xij and strips the terms ti from the goal;if ti is a disjunction then the goal is broken down into two, each one havingone of the term's disjuncts as an assumption. For each term ti which is not adisjunction, the tactic rewrites all the assumptions with GSYM ti which is theresult of substituting all the subterms in ti representing some equality x = ywith their symmetry y = x. Such a tactic is impossible to construct in Coqwithin a Gallina theorem proving session.We also remark that HOL tactics are much more elaborate and numerousthan Coq ones. One reason for this arises from the di�erent nature of the Calculusof Inductive Constructions and the HOL logic. Since theorems in Coq are essen-tially types, tactics correspond to the di�erent ways terms can be constructedand broken down (the introduction and elimination rules of the constructs). Onthe other hand, tactics in HOL have to be implemented using the much less pow-erful (and less general) primitive inference rules. Moreover, the powerful notionof convertible terms of CIC makes inference rules such as rewriting with the def-initions and beta conversion unnecessary in Coq. However, tactics for unfoldingde�nitions and changing a goal or assumption to a convertible one are also pro-vided, both because it facilitates theorem proving and also because higher orderuni�cation is undecidable and user intervention may sometimes be essential.The considerable di�erence between the number (and nature) of tactics inHOL and in Coq and the availability of a speci�cation and proof language makesCoq an easier system to learn. New HOL users are faced with hundreds of in-ference rules and tactics to learn, and possibly a new programming language tomaster in order to be used e�ectively as a metalanguage. New Coq users need tolearn how to use about �fty language constructs and most theory developmentcan be done without the need of extending Gallina.Finally we note that assumptions in Coq are named while in HOL they arenot. This a�ects the way user of the systems use assumptions during the con-struction of a proof. Basically Coq users select the assumptions they need bytheir name while HOL users apply tactics which try to use all the assumptions.Nevertheless, HOL users can implement tactics which select a subset of, or aparticular element from, the list of assumptions through �ltering functions andother techniques discussed in [1]. However we stress that selecting an assumptionsimply by its name is de�nitely more straightforward than any such techniques.During the implementation of [26] the need of writing several �ltering func-tions was sometimes tedious and overwhelming. Tactics which make use of allthe assumptions can however be quite powerful and may save several repeti-tive proof steps. One can for instance consider the power of ASM_REWRITE_TAC



in HOL which repetitively rewrites with all the assumptions, a number of the-orems supplied by the user and a list of basic pre-proved theorems (such as` 8A. > _ A = >.)4.3 AutomationThe HOL system is equipped with more decision procedures and automationtools than Coq. HOL (HOL90 version 9:1�) includes automation for rewriting(by a simple rewriting engine, an implementation of Knuth-Benedix completion,and a contextual rewriter), a tautology checker, semidecision procedures for �rstorder reasoning (a tableaux prover with equality, and a model elimination basedprover), a decision procedure for Presburger arithmetic and for real algebra,as well as an implementation of Nelson and Oppen's technique for combiningdecision procedures. Since most proofs in [26] are of a highly technical nature,the use of such decision procedures saved a lot of time and thinking about trivialproofs. The Coq system (version 6:1) provides tactics for tautology checking,decision procedures for intuitionistic direct predicate calculus, for Presburgerarithmetic, and for a number of problems concerning Abelian rings. The Gallinalanguage contains also a user de�nable hint list, where tactics can be includedinto the list and goals can then be automatically solved by the application ofone or more of these tactics.4.4 Reasoning with Equality and EquivalenceHOL's notion of equality is extremely powerful and since equivalence of propo-sitions is de�ned as equality on boolean values, the same properties enjoyed byequality hold also for equivalence. Equality is introduced in HOL by a primitiverule, REFL, which returns the theorem ` t = t for any term t; and the primitiverule of substitution allows any subterms of a theorem to be substituted by theirequals. The rule of extensionality (which can be derived in HOL) yields the equal-ity of any two functions which give the same results when applied to the samevalues. (More formally, the rule of extensionality is 8x:f(x) = g(x) ` f = g.) Asa result, equivalent predicates can be substituted for each other and assumptionscan be substituted with the truth value >. Hence, theorem proving in HOL canrely a lot on rewriting, for example, statements like a ^ b) a _ c can be easilyproved by the tactic:REPEAT STRIP_TAC THENASM_REWRITE_TAC []The importance of equality in HOL theorem proving is emphasized by a classof inference rules called conversions which are specialised for deriving equalities.Basically, a conversion is an ML function which takes a term, t1, and proves thatit is equal to some other term t2 deriving t1 = t2.3 Conversions can be used for3 Note that the term t2 is constructed by the conversion and not given by the user.The use of a particular conversion is actually the transformation of the term t1 intosome term t2 justi�ed by the theorem ` t1 = t2.



instance to simplify a term based by rewriting with a particular de�nition, or totransform a term based on some calculation such as natural number arithmetic orreduction into conjunctive normal form. In general, conversions form the buildingblocks of more powerful automation tools.Equality in CIC is introduced by the inductive de�nitionEq A =def refl_equal: 8a:A. (eq A x x)and results like symmetry, transitivity and congruence can then be derived.However functions are intensional and equivalence of propositions is di�erentfrom their equality. Basically, two propositions, a and b, can be proved to beequivalent in Coq by constructing a term with type (a ! b; b ! a) and littlesupport is given for taking advantage of the symmetric nature of bi-implication.The need for a more powerful support of equality is reduced by having thenotion of convertible terms. However, here we remark on the inability of con-structing a term t : T1 directly, where t has type T2 which is not convertiblewith T1 and it can be proved that T1 and T2 are equal. For example, givensome term v: (vector nat (n +m)), then one cannot specify v as having typevector nat (m+ n) even though (n +m) and (m + n) are equal. This problemis encountered in [27] and for this particular example it is solved by de�ning afunction Change_arity, such that, given a vector v: (vector A n) and a prooft of (n = m), then Change_arity n m t A v has type (vector A m):Change_arity=def �n;m:nat, t:(n = m), A: Set, v: (vector A n).eq_rec nat n (vector A) v m t).and it is proved that:8n:nat, t:(n = n), A:Set, v:(vector A n).Change_arity n n t A v = vThis theorem is proved using the eq_rec_eq axiom.Now, if plus_sym represents the theorem 8n;m:n+m = m+n, and the termv has type vector nat (n+m) thenChange_arity (n + m) (m + n) (plus_sym n m) nat vhas type vector nat (m+ n).5 MiscellaneousThis section lists some other considerations of the di�erences between the ap-proaches of Coq and HOL to the mechanisation of theories.



5.1 Classical and Constructive reasoningHOL's logic is classical, and the axiom of the excluded middle is introduced inthe HOL theory which de�nes boolean values. One can ask however whether anysupport can be given to users who may want to use HOL and still reason con-structively. The CIC is essentially constructive in which the law of the excludedmiddle cannot be derived and all Coq functions have to be computable. However,one can still reason classically to some extent in Coq by loading a classical theorywhich speci�es the law of the excluded middle as an axiom, although it shouldbe stressed that this does not give Coq the full powers of classical reasoning.Since all functions in Coq are computable, n-ary partial functions in [27] arespeci�ed as single valued relations (see section 3.1) rather than as Coq func-tions, so that functions which are not computable can still be speci�ed in themechanisation. On the other hand, functions in HOL need not be computable(since the logic is not constructive and because of the rule of constant speci�-cation and Hilbert's operator �), and n-ary partial functions in [26] are de�nedas HOL functions mapping lists of natural numbers to possibly unde�ned nat-ural numbers. The type of possibly unde�ned numbers is de�ned as the type ofnatural numbers together with an unde�ned value. The advantage of the formal-isation of partial functions in HOL is that a function application can be directlysubstituted by its value.5.2 The Use of Proof ObjectsThe Coq system stores proof terms in its theory �les and uses for these termsinclude:1. Program extraction: Given some program speci�cation S, a constructiveproof that there is some program satisfying it contains an instance of aprogram for which S holds, hence one can obtain a certi�ed program from aproof of its speci�cation. This facility is supported by the Coq system whichprovides a package which extracts an ML program from a proof term, as wellas providing support for proving the speci�cation of functions written in anML syntax [20, 19, 21].2. Extracting proof texts written in a natural language: A proof term of type �can be seen as an account of the proof steps involved in deriving the theorem� , and Coq provides tools for extracting a proof written in a natural languagefrom proof objects [6].3. Independent proof checking: Proof terms can be checked by an independentproof checker to gain more con�dence in their correctness. Moreover, suchproof terms can be easier to translate into proof accounts of another theoremprover than an actual proof script or an ML program (as HOL proof scriptsactually are). The HOL system is truth based rather than proof based andit does not store proofs in its theories.



5.3 The Sectioning MechanismThe Gallina speci�cation language allows Coq proof scripts to be structuredinto sections, and one can make de�nitions and prove theorems which are local toa particular section. The need of local de�nitions and results is often encounteredduring theory development, where for instance, the de�nition of some particularconcept can facilitate the proof of a number of results but does not contributemuch to the overall formalization of the theory. This point is also discussed in [26]where the following example is given. During the proof of the theorem statingthat primitive recursive functions are URM computable, a program P , say, whichcomputes some particular function is de�ned. This program can be broken downinto three subroutines: P1, P2 and P3. A number of lemmas concerning thesesubroutines are derived and used in the proof of the required theorem. Howeverthe de�nitions of P1, P2 and P3 as well as any results concerning them are usedonly during the proof of one important theorem, and the lack of structure inHOL theories resulted in having to represent them as local variables within themetalangauge.6 ConclusionsThe two case studies, and especially more extensive mechanisations of di�erentmathematical theories, show that both HOL and Coq are robust systems andpractical in mechanising simple mathematical results. The strongest point ofHOL is the 
exibility given to the users by means of the metalanguage; while Coqtheorem proving relies on the power of the Calculus of Inductive Constructions.Here, we give some concluding remarks on these features.6.1 The Flexibility of the MetalanguageBy allowing a theorem proving session to be given within a general purpose met-alanguage, HOL o�ers a higher degree of 
exibility than Coq. As a result, HOLusers implement a larger number of new inference rules during theory develop-ment than Coq users. For example, the mechanisation of the theory of compu-tation in HOL includes several conversions for animating the de�nitions, simpleand more elaborate tactics which avoid repetitive inferences and most backwardproofs include tactics implemented `on the 
y'. The syntax of Gallina can beextended, say with (metalanguage) predicates on terms so that one can �lter asublist of assumptions to be used by some tactic, but then one asks whether aspeci�cation language as powerful as the metalanguage is required to implementthe required �ltering functions during theorem proving. Having a speci�cationlanguage surely has its advantages: the system is easier to learn by new users, andproof scripts are in general easier to follow; also, theorem proving support toolslike a debugger or a graphical user interface are probably easier to develop fora speci�cation language with a limited syntax rather than for a general purposeprogramming language. However, the power of a Turing complete metalanguageis not to be underestimated, for it can be used for instance to derive theoremsthrough the manipulation of proof terms.



6.2 The Power of the Calculus of Inductive ConstructionsThe restrictions due to the speci�cation language are relieved by the power ofCIC. The fact that theorems are proved by simply constructing and breakingdown terms makes the implementation of tactics specialised for particular logicconstructs unnecessary and the powerful notion of convertibility replaces theimplementation of conversions for every de�nition. No new tactics or inferencerules are implemented in the mechanisation of the theory of computation inCoq, both because the inference power of the simple constructs of Gallina isenough for most reasoning, and also because the non-trivial task of actuallyimplementing a new elaborate tactic in Coq discourages the development ofsimple tactics which are used only to substitute a number of inferences. Thepower of CIC is also emphasised by its highly expressive type system whichallows quanti�cation over types and dependent types and thus gives a morenatural formalisation of mathematical concepts than a simple type theory. Wehave seen however, how the stronger notion of equality and equivalence in HOLsimpli�es most formalisations.The primitive inference rules of HOL are too simple and are rarely used inpractice, most reasoning is performed by higher level inferences. The simplicityof the primitive rules gives a straightforward implementation of the core in-ference engine, on whose correctness the soundness of the HOL system relies.Although CIC is more complex than the HOL logic, it is sound and due to theCurry-Howard isomorphism theorems in CIC can be checked by a type checkingalgorithm, on whose correctness the soundness of the Coq system relies. Thus,one can have a very powerful logic whose theorems can still be checked by asimple algorithm.The feasibility of actually doing so may however be questioned. Proof termsmay become very large, and ���-convertibility may become infeasible for largeobjects. These factors do not yield any signi�cant problems for the mechanisationof the results in [27] but may make Coq unsuitable for large scale `real-world'theorem proving required by the industry.7 AcknowledgementsI would like to thank my supervisor, Simon Thompson, for his support andencouragement as well as the anonymous referees for their comments and sug-gestions on an earlier draft of this paper.References1. P. E. Black and P. J. Windley. Automatically synthesized term denotation pred-icates: A proof aid. In E. T. Schubert, P. J. Windley, and J. Alves-Foss, editors,Proceedings of the 8th International Workshop on Higher Order Logic TheoremProving and Its Applications, volume 971 of Lecture Notes in Computer Science,pages 46{57, Aspen Grove, UT, USA, September 1995. Springer-Verlag.



2. Juanito Camilleri and Tom Melham. Reasoning with inductively de�ned relationsin the HOL theorem prover. Technical Report 265, University of Cambridge Com-puter Laboratory, August 1992.3. Alonzo Church. A formulation of a simple theory of types. Journal of SymbolicLogic, 5:56{68, 1940.4. Thierry Coquand and G�erard Huet. The calculus of constructions. Rapport deRecherche 530, INRIA, Rocquencourt, France, May 1986.5. C. Cornes et al. The Coq Proof Assistant Reference Manual, Version 5.10. Rap-port technique RT-0177, INRIA, 1995.6. Yann Coscoy, Gilles Kahn, and Laurent Th�ery. Extracting text from proofs. Rap-port de Recherche 2459, INRIA, Sophia-Antipolis Cedex, France, January 1995.7. N.J. Cutland. Computability: An introduction to recursive function theory. Cam-bridge University Press, 1980.8. J.-Y. Girard. Interpr�etation fonctionelle et �elimination des coupures dansl'arith�etique d'ordre sup�erieur. PhD thesis, Universit�e Paris VII, 1972.9. Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. EdinburghLCF: A Mechanised Logic of Computation, volume 78 of Lecture Notes in Com-puter Science. Springer-Verlag, 1979.10. M.J.C. Gordon and T.F. Melham. Introduction to HOL: a theorem proving envi-ronment for higher order logic. Cambridge University Press, 1993.11. John Harrison. HOL done right. Unpublished Draft, August 1995.12. John Harrison. Inductive de�nitions: Automation and application. In E. T. Schu-bert, P. J. Windley, and J. Alves-Foss, editors, Proceedings of the 8th InternationalWorkshop on Higher Order Logic Theorem Proving and Its Applications, volume971 of Lecture Notes in Computer Science, pages 200{213, Aspen Grove, UT, USA,September 1995. Springer-Verlag.13. Bart Jacobs and Tom Melham. Translating dependent type theory into higherorder logic. In TLCA '93 International Conference on Typed Lambda Calculi andApplications, Utrecht, 16{18 March 1993, volume 664 of Lecture Notes in ComputerScience, pages 209{229. Springer-Verlag, 1993.14. Per Martin-L�of. Intuitionistic Type Theory. Bibioplois, Napoli, 1984. Notes ofGiovanni Sambin on a series of lectues given in Padova.15. T.F. Melham. Using recursive types to reason about hardware and higher orderlogic. In G.J. Milne, editor, International Workshop on Higher Order Logic Theo-rem Proving and its Applications, pages 27{50, Glasgow, Scotland, July 1988. IFIPWG 10.2, North-Holland.16. T.F. Melham. A package for inductive relation de�nitions in HOL. In M. Archer,J.J. Joyce, K.N. Levitt, and P.J. Windley, editors, International Workshop onHigher Order Logic Theorem Proving and its Applications, pages 350{357, Davis,California, August 1991. IEEE Computer Society, ACM SIGDA, IEEE ComputerSociety Press.17. T.F. Melham. The HOL logic extended with quanti�cation over type variables.In L.J.M. Claesen and M.J.C. Gordon, editors, International Workshop on HigherOrder Logic Theorem Proving and its Applications, pages 3{18, Leuven, Belgium,September 1992. IFIP TC10/WG10.2, North-Holland. IFIP Transactions.18. Bengt Nordstr�om, Kent Petersson, and Jan M. Smith. Programming in Martin-L�oftype theory: an introduction. Clarendon, 1990.19. C. Parent. Developing certi�ed programs in the system Coq - the Program tactic.In H. Barendregt and T. Nipkow, editors, International Workshop on Types for



Proofs and Programs, volume 806 of Lecture Notes in Computer Science, pages291{312. Springer-Verlag, May 1993.20. C. Paulin-Mohring. Extracting F!'s programs from proofs in the Calculus ofConstructions. In Association for Computing Machinery, editor, Sixteenth An-nual ACM Symposium on Principles of Programming Languages, Austin, January1989.21. C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq.Journal of Symbolic Computation, 15(5-6):607{640, ?? 1993.22. Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculusof Constructions. PhD thesis, University of Edinburgh, 1994.23. R. E. O. Roxas. A HOL package for reasoning about relations de�ned by mu-tual induction. In J. J. Joyce and C.-J. H. Seger, editors, Proceedings of the 6thInternational Workshop on Higher Order Logic Theorem Proving and its Applica-tions (HUG'93), volume 780 of Lecture Notes in Computer Science, pages 129{140,Vancouver, B.C., Canada, August 1993. Springer-Verlag, 1994.24. K. Slind. Function de�nition in higher-order logic. In J. von Wright, J. Grundy,and J. Harrison, editors, Proceedings of the 9th International Conference on Theo-rem Proving in Higher Order Logics (TPHOLs'96), volume 1125 of Lecture Notesin Computer Science, pages 381{397, Turku, Finland, August 1996. Springer.25. Simon Thompson. Type Theory and Functional Programming. Addison-Wesley,1991.26. Vincent Zammit. A mechanisation of computability theory in HOL. In Proceedingsof the 9th International Conference on Theorem Proving in Higher Order Logics,volume 1125 of Lecture Notes in Computer Science, pages 431{446, Turku, Finland,August 1996. Springer-Verlag.27. Vincent Zammit. A proof of the Smn theorem in Coq. Technical Report 9-97, TheComputing Laboratory, The University of Kent at Canterbury, 1997.



This article was typeset using the LATEX macro package with the LLNCS2E class.


