Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

A Comparative Study of Coq and HOL

Vincent Zammit

Computing Laboratory, University of Kent, Canterbury, Kent, UK

Abstract. This paper illustrates the differences between the style of
theory mechanisation of Coq and of HOL. This comparative study is
based on the mechanisation of fragments of the theory of computation
in these systems. Examples from these implementations are given to sup-
port some of the arguments discussed in this paper. The mechanisms for
specifying definitions and for theorem proving are discussed separately,
building in parallel two pictures of the different approaches of mechani-
sation given by these systems.

1 Introduction

This paper compares the different theorem proving approaches of the HOL [10]
and Coq [5] proof assistants. This comparison is based on a case study involving
the mechanisation of parts of the theory of computation in the two systems.
This paper does not illustrate these mechanisations but rather discusses the
differences between the two systems and backs up certain points by examples
taken from the case studies.

One motivation of this work is that many users of theorem provers lack the
perspective of knowing more than one such system, mainly due to the amount
of time needed to master any such system. Having a single text which builds up
pictures of two different systems in parallel allows users of one system to grasp
better how the different approach of the other system affects the way theories
are mechanised. As a result, knowing the main differences beforehand facilitates
the process of learning the other system, and gives a better perspective of the
system the user is familiar with.

The case studies are illustrated separately in [26] and in [27]. The mecha-
nisation in HOL is based on the Unlimited Register Machine (URM) model of
computation [7], and the main result of the formalisation is a proof that partial
recursive functions are URM computable. The mechanisation in Coq is based
on a model of computation similar to the partial recursive function model and
includes a constructive proof of the S theorem. Both implementations are in
the order of 10,000 lines of code. HOL90 version 7 and Coq version 5.10 were
used for the mechanisations.

The two systems are introduced in the next section where a brief overview
of each of them is given. Since we are considering the differences between how
actual mechanisations of theories are performed in practice, this comparative
study treats the mechanisms for definitions (section 3) and theorem proving
(section 4) separately. Other considerations are then discussed in section 5 and
the last section gives some concluding remarks.


https://core.ac.uk/display/63312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

It is noted in this comparative study that the strongest point of the Coq
system is the power of the logic it is based on. The HOL logic is much more
simple but users can rely on a greater flexibility offered by the metalanguage.
As a result HOL theorem proving is much more implementation oriented, while
in Coq unnecessary implementation is avoided and discouraged by having a
specification and proof language which bridges the user from the metalanguage.
These points are built gradually in the following sections and are discussed in
the conclusion.

2 An Overview of Coq and HOL

Both systems are based on the LCF [9] style of theorem proving, where all logical
inferences are performed by a simple core engine. A metalanguage is provided so
that users can extend the system by implementing program modules applying
the operations of the core engine. The systems differ from each other however
by implementing quite different logics and through the flexibility by which users
are allowed to extend the system.

2.1 Coq

The Coq system is an implementation in CAML of the Calculus of Inductive
Constructions (CIC) [4], a variant of type theory related to Martin-Lo6f’s In-
tuitionistic Type Theory [14, 18] and Girard’s polymorphic A-calculus F,, [8].
Terms in CIC are typed and types are also terms. Such a type theory can be
treated as a logic through the Curry-Howard isomorphism (see [25, 18] for intro-
ductions of the Curry-Howard isomorphism) where propositions are expressed
as types. For instance, a conjunction A A B is represented by a product type
A x B, and an implication A = B is represented by a function type A — B.
Also, a term of type 7 can be seen as a proof of the proposition represented by
7, and thus theorems in the logic are nonempty types. For example, the function

curry = Mf Az \y. f(z,y)

which has type ((A x B) = C) - A — B — C is a proof of the theorem ((A A
B) = C) = (A = B = (). Objects which have the same normal form according
to Bdi-conversion are called convertible, and are treated as the same term by the
logic. d-conversion involves the substitution of a constant by its defining term and
t-conversion is automation of inductive definitions. The CIC implemented in Coq
differs from that of LEGO [22] by having two sorts of universes, an impredicative
universe for sets in which functions are computable, and a predicative universe for
types and propositions in which functions (predicates) need not be computable
(decidable).

Due to the Curry-Howard isomorphism, theorem proving corresponds to the
construction of well typed terms and the core inference engine of Coq is basi-
cally a type checking algorithm of CIC terms. Terms whose type is a theorem
are usually called proof objects and are stored in Coq theories. The Coq system



provides the specification and proof language Gallina in which users perform
the actual interactive theorem proving. Gallina constructs include commands
for specifying definitions and for tactic based theorem proving (section 4 dis-
cusses this in more detail), and Coq users can extend the Gallina language by
implementing new contructs in CAML. The files which Gallina accepts during
theorem proving are usually called scripts (or proof scripts).

2.2 HOL

The HOL system implements (in Standard ML of New Jersey for the case of
HOL90) a classical higher order logic based on Church’s simple theory of types
[3] extended with polymorphic types and inference rules for definitions. Thus,
HOL terms are typed, where types represent nonempty sets and can be either
type constants, type variables (which make the type theory polymorphic), func-
tion types (which make the logic higher order) or the application of some type
operator to a number of types'. Terms are either constants, variables, lambda
abstractions or applications; sequents consist of a finite set of terms (the as-
sumptions) and one term (the conclusion), and theorems are sequents which are
proved by one of a number of primitive inference rules.

Theorems in the HOL system are represented by an abstract datatype (with
name thm) having as constructors a small number of functions corresponding to
the logic’s primitive inference rules. The implementation of this datatype is the
core inference engine of HOL, and the type checking mechanism of ML ensures
that objects of type thm are constructed only by using the type’s constructors.
Theorem proving in HOL involves the implementation of programs in the met-
alanguage which yield terms of type thm. All support for specifying definitions,
constructing types and terms (which can be done by quotation in which a system
function parses expressions written in a readable syntax into HOL representa-
tion), and theorem proving is provided through ML functions which are visible
to HOL users. Thus, users can extend the system by implementing new ML
functions representing higher level inference rules, decision procedures, proof
strategies, definition mechanisms, etc. .

3 Definitions

A definition can be considered as a name given to a term or type by which it
can be referred to in a theory. For example the definition

computable n f =go; dp. computes p n f

introduces the new object computable in the current theory and makes the two
expressions computable n f and Jp. computes p n f for any term f, in some
sense interchangeable. In a mechanisation (or formalisation) of a theory, giv-
ing definitions is a mechanism by which mathematical concepts are formalised

! A function type a — (3 can be considered as the application of the operator — on
the types a and (3, and type constants as type operators with arity 0.



by specifying them as being equivalent to expressions containing only already
defined terms. The above example illustrates how the concept of a computable
n-ary function can be formalised. A concept can also be formalised through
the declaration of axioms and both systems allow users to introduce axioms in
theories. However, an axiomatic theory can be inconsistent while the definition
mechanisms of Coq and HOL guarantee that purely definitional theories are
always consistent.

The definition mechanism in Coq introduces new constant names in an envi-
ronment and allows these terms to be convertible with their defining terms. This
applies to both simple abbreviations (d-conversion) and inductive definitions (¢-
conversion). Since proofs and theorems are first class objects in CIC, the name
of a theorem is actually a constant definition given to its proof term. In fact,
although the specification language Gallina gives different constructs for defin-
ing terms and for theorem proving, one can, for instance, use tactics to define
terms and the definition mechanism to prove theorems. The system differentiates
between definitions and theorems by labeling the former objects as transparent
and the latter as opaque. Transparent objects are convertible with their defining
terms while opaque objects are not. Gallina commands for labeling objects as
opaque or transparent are also provided.

The HOL logic treats type and constant definitions differently, and the core
system provides one primitive inference rule for type definitions and two for
constant definitions. Other inference rules are given for deriving theorems. The
function of the HOL primitive rules for definitions is illustrated below, where the
differences between the definition mechanism in HOL and in Coq are discussed.

3.1 Type Definitions

The HOL system has one primitive rule for type definitions, which introduces a
new type expression a as a nonempty subset of an existing type o, given a term
P: o — bool which denotes its characteristic predicate. However, in practice,
the user introduces new types through the type definition package [15] which
specifies ML style polymorphic recursive types as well as automatically deriving
a number of theorems specifying certain properties about the type (such as the
fact that the type constructors are injective).

Such types are specified in Coq by inductively defined sets and types, and
the corresponding theorems derived by HOL’s type definition package are either
returned as theorems by the definition mechanism of Gallina or follow from the
elimination and introduction rules of the set or type.

The obvious advantage of having types as terms in CIC over HOL’s simple
type theory is a much more expressive type system which allows quantification
over types and dependent types. A dependent type is a type which depends on
the value of some particular term. The ‘classical’ examples of dependent types
include Nat(n), the type of the natural numbers less than n, and vector(A4,n),
the type of vectors (or lists) having n elements of type A. This type is defined
inductively in [27]:



vector A =4 Vnil: (vector A 0)
| Vcomns: (n: nat) - A — (vector A n)
— (vector A (S n)).

and by defining the type for relations
Rel =4 AA,B:Set. A -+ B — Prop.

the type of n-ary partial functions over the natural numbers can be defined to
be single valued relations between vector nat n and nat:

one_valued =4, AA,B:Set, R:Rel A B. Va:A, b1,b2:B.
(R a bl) - (R a b2) — (b1 = b2).

pfunc arity =4, mk_pfunc
{ reln : (Rel (vector nat arity) nat);
One_valued: (one_valued (vector nat arity) nat reln)}.

pfuncs =4, Pfuncs: (n: nat) — (pfunc n) — pfuncs.

The type pfunc is a record where the field reln is a relation between vectors
and natural numbers, and the field One_valued is a theorem stating that reln is
single valued. It can be seen that this is a dependent record as the type of the
second field depends on the value of the first field. The type pfunc can be seen
in some sense as a subtype of reln, as objects of type pfunc are the objects of
type reln which are proved to satisfy the property given by One_valued.

With this type system one can define the notion that a program computes a
function by

Vn:nat, p:prog, f:(pfunc n). computes p n f
=gef Vv:(vector nat n), z:nat. exec pv =z & relnn f v

which is more compact and elegant than an equivalent HOL definition, since the
information stored in types has to be specified as terms:

Vn:num, p:prog, f:pfunc. computes p n f =4, one_valued n f A
Vv:num list. length v = n =
Vr:num. exec p v ¢ < apply f v

A mechanism which translates objects in a dependent type theory into HOL
objects is illustrated in [13] and an extension of the HOL logic to cover quantifi-
cation over types is proposed in [17].

3.2 Constant Definitions

Here we list the different mechanism by which constant definitions can be spec-
ified in Coq and in HOL.



Simple Definitions In HOL given a closed term x: 7, a new constant c:
7 can be introduced in the current theory by the primitive rule of constant
definition which also yields the theorem F ¢ = 2. Thus, while in the Calculus of
Constructions constants are convertible with their defining terms, in HOL the
interchangeability of ¢ and « is justified by the above theorem, which needs to be
used whenever ¢ and x have to be substituted for each other in other theorems.

Specifications The second primitive rule which introduces constants in HOL
theories is called the rule of constant specification. It introduces a constant
c: T obeying some property P(c), if its existence can be shown by a theorem
F 3z.P(x). The theorem + P(c) is returned by the rule. Note that only the
existence of some x is required, rather than the existence of a unique z, and
nothing else can be inferred about ¢, apart from P(c¢) (and anything which can
be inferred from P(c)). There is no such rule in the Calculus of Constructions
although any constructive proof of 3z:7.P(z) is actually a pair (w: T, p: P(w))
containing a term of type 7 and a proof stating that this term satisfies P. The
HOL manual [10] introduces a primitive inference rule for type specification as
well but there is no implementation of this rule yet.

Recursive Definitions The definition of primitive recursive functions over a
recursive type is justified in HOL by a theorem stating the principle of primitive
recursion which can be automatically derived by the type definition package. A
library for defining well-founded recursive functions, which in general requires
user intervention for proving that a relation is well-formed, is also included in
the HOL system [24]. In Coq, primitive recursive functions are defined by a
fixpoint operator. The syntax of actually defining such functions implicitly in
the Coq is very crude. However, a mechanism which allows function definitions
in an ML like systax with pattern matching is provided in the Gallina language
as a macro for specifying case expressions. This mechanism can also be used on
the definition of functions over dependent types.

Inductive Definitions The CIC includes rules for inductive definitions and are
thus inbuilt in Coq. The Gallina specification language provides constructs for
introducing (possibly mutually) inductive definitions as well as tactics for rea-
soning about them. Inductive definitions can be used for introducing inductive
types and sets as recursive datatypes (as seen in section 3) and also for induc-
tively defined relations. Since the implementation of the CIC in Coq includes
rules for coinductive types, support for coinductive and corecursive definitions
and reasoning by coinduction is also provided.

The HOL system provides a number of packages for defining inductive re-
lations, which include Melham’s original package [16, 2], support for mutually
inductive definitions [23] and the more recent implementation due to Harrison
[12]. Besides providing a mechanism for specifying definitions these packages in-
clude ML functions for reasoning about them and for automating them. It is



argued (for instance in [11]) that inductive definitions can be introduced earlier
in the HOL system and a number of frequently used relations in existing theo-
ries (such as the inequalities on natural numbers) can be redefined inductively so
that users can for instance apply the principle of rule induction on them, much
in the same fashion that it is done by Coq users.

4 Theorem Proving

This section illustrates the different proof strategies by which users of the Coq
and HOL systems perform the actual theorem proving.

4.1 Forward Proving

Forward theorem proving is performed in HOL by applying ML functions which
return theorems. This is done in Coq by constructing terms whose type corre-
sponds to theorems. However since HOL users have direct access to the meta-
language, one can implement more elaborate inference rules for forward theorem
proving than simple constructions of terms in Coq. In general, theorem proving
in Coq is done in a backwards manner by applying tactics.

4.2 Backward Proving

Both theorem provers support interactive tactic based goal directed reasoning.
Basically the required theorem is stated as a goal and the user applies tactics
which break the goal into simpler subgoals until they can be proved directly.
Tactics also provide a justification for the simplification of a goal into subgoals,
which derives the goal as a theorem from derivations of the subgoals. A goal
usually consists of the statement which is required to be proved together with a
number of assumptions which a proof of the goal can use.

Backward proving is supported in HOL through an implementation of a goal-
stack data structure which provides a number of operations (including specifying
goals, applying tactics, moving around subgoals, etc.) as ML functions. Tactics
and tacticals? are also ML functions and users can implement new tactics during
theory development. On the other hand, Coq tactics and tacticals are provided
as constructs of the Gallina language, and so are the operations on the internal
goalstack. As a result, implementing a new tactic in Coq involves the non-trivial
task of extending the Gallina language and in general Coq users tend to im-
plement less tactics during theory development than HOL users do. Moreover,
HOL users can also implement tactics ‘on the fly’ by combining different tactics,
tacticals, and ML functions in general. For instance, the HOL tactic

2 Tacticals are operations on tactics which produce tactics, for example, the tactical
then, implemented in both HOL and Coq takes two tactics ¢; and t2 and returns a
tactic which when applied to a goal, it first applies ¢; and then applies ¢2 on all the
resulting subgoals.



REPEAT (STRIP_GOAL_THEN
(fn t => if is_disj (concl t)
then DISJ_CASES_TAC t
else RULE_ASSUM_TAC (REWRITE_RULE [GSYM t])));

when applied to a goal of the form
lel,...,azlnl.tl E N mel;---;wlnm-tm = C

specialises all the quantified variables z;; and strips the terms ¢; from the goal;
if ¢; is a disjunction then the goal is broken down into two, each one having
one of the term’s disjuncts as an assumption. For each term ¢; which is not a
disjunction, the tactic rewrites all the assumptions with GSYM ¢; which is the
result of substituting all the subterms in ¢; representing some equality z = y
with their symmetry y = x. Such a tactic is impossible to construct in Coq
within a Gallina theorem proving session.

We also remark that HOL tactics are much more elaborate and numerous
than Coq ones. One reason for this arises from the different nature of the Calculus
of Inductive Constructions and the HOL logic. Since theorems in Coq are essen-
tially types, tactics correspond to the different ways terms can be constructed
and broken down (the introduction and elimination rules of the constructs). On
the other hand, tactics in HOL have to be implemented using the much less pow-
erful (and less general) primitive inference rules. Moreover, the powerful notion
of convertible terms of CIC makes inference rules such as rewriting with the def-
initions and beta conversion unnecessary in Coq. However, tactics for unfolding
definitions and changing a goal or assumption to a convertible one are also pro-
vided, both because it facilitates theorem proving and also because higher order
unification is undecidable and user intervention may sometimes be essential.

The considerable difference between the number (and nature) of tactics in
HOL and in Coq and the availability of a specification and proof language makes
Coq an easier system to learn. New HOL users are faced with hundreds of in-
ference rules and tactics to learn, and possibly a new programming language to
master in order to be used effectively as a metalanguage. New Coq users need to
learn how to use about fifty language constructs and most theory development
can be done without the need of extending Gallina.

Finally we note that assumptions in Coq are named while in HOL they are
not. This affects the way user of the systems use assumptions during the con-
struction of a proof. Basically Coq users select the assumptions they need by
their name while HOL users apply tactics which try to use all the assumptions.
Nevertheless, HOL users can implement tactics which select a subset of, or a
particular element from, the list of assumptions through filtering functions and
other techniques discussed in [1]. However we stress that selecting an assumption
simply by its name is definitely more straightforward than any such techniques.
During the implementation of [26] the need of writing several filtering func-
tions was sometimes tedious and overwhelming. Tactics which make use of all
the assumptions can however be quite powerful and may save several repeti-
tive proof steps. One can for instance consider the power of ASM_REWRITE_TAC



in HOL which repetitively rewrites with all the assumptions, a number of the-
orems supplied by the user and a list of basic pre-proved theorems (such as
FVYA. TV A=T)

4.3 Automation

The HOL system is equipped with more decision procedures and automation
tools than Coq. HOL (HOL90 version 9.1«) includes automation for rewriting
(by a simple rewriting engine, an implementation of Knuth-Benedix completion,
and a contextual rewriter), a tautology checker, semidecision procedures for first
order reasoning (a tableaux prover with equality, and a model elimination based
prover), a decision procedure for Presburger arithmetic and for real algebra,
as well as an implementation of Nelson and Oppen’s technique for combining
decision procedures. Since most proofs in [26] are of a highly technical nature,
the use of such decision procedures saved a lot of time and thinking about trivial
proofs. The Coq system (version 6.1) provides tactics for tautology checking,
decision procedures for intuitionistic direct predicate calculus, for Presburger
arithmetic, and for a number of problems concerning Abelian rings. The Gallina
language contains also a user definable hint list, where tactics can be included
into the list and goals can then be automatically solved by the application of
one or more of these tactics.

4.4 Reasoning with Equality and Equivalence

HOL’s notion of equality is extremely powerful and since equivalence of propo-
sitions is defined as equality on boolean values, the same properties enjoyed by
equality hold also for equivalence. Equality is introduced in HOL by a primitive
rule, REFL, which returns the theorem + ¢ = ¢ for any term ¢; and the primitive
rule of substitution allows any subterms of a theorem to be substituted by their
equals. The rule of extensionality (which can be derived in HOL) yields the equal-
ity of any two functions which give the same results when applied to the same
values. (More formally, the rule of extensionality is V. f(z) = g(z) F f = g.) As
a result, equivalent predicates can be substituted for each other and assumptions
can be substituted with the truth value T. Hence, theorem proving in HOL can
rely a lot on rewriting, for example, statements like a A b = a V ¢ can be easily
proved by the tactic:

REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []

The importance of equality in HOL theorem proving is emphasized by a class
of inference rules called conversions which are specialised for deriving equalities.
Basically, a conversion is an ML function which takes a term, ¢;, and proves that
it is equal to some other term ¢, deriving ¢; = ¢,.> Conversions can be used for

% Note that the term o is constructed by the conversion and not given by the user.
The use of a particular conversion is actually the transformation of the term ¢; into
some term t» justified by the theorem F ¢; = ¢».



instance to simplify a term based by rewriting with a particular definition, or to
transform a term based on some calculation such as natural number arithmetic or
reduction into conjunctive normal form. In general, conversions form the building
blocks of more powerful automation tools.

Equality in CIC is introduced by the inductive definition

Eq A =4 refl_equal: Va:A. (eq A z )

and results like symmetry, transitivity and congruence can then be derived.
However functions are intensional and equivalence of propositions is different
from their equality. Basically, two propositions, a and b, can be proved to be
equivalent in Coq by constructing a term with type (a — b,b — a) and little
support is given for taking advantage of the symmetric nature of bi-implication.
The need for a more powerful support of equality is reduced by having the
notion of convertible terms. However, here we remark on the inability of con-
structing a term ¢: 77 directly, where ¢ has type 7> which is not convertible
with 77 and it can be proved that 7} and 7T, are equal. For example, given
some term v: (vector nat (n+m)), then one cannot specify v as having type
vector nat (m + n) even though (n + m) and (m + n) are equal. This problem
is encountered in [27] and for this particular example it is solved by defining a
function Change_arity, such that, given a vector v: (vector A n) and a proof
t of (n =m), then Change_arity n m t A v has type (vector A m):

Change_arity
=def An,m:nat, t:(n=m), A: Set, v: (vector A n).
eq_rec nat n (vector A) v m t).

and it is proved that:

Vn:nat, t:(n=n), A:Set, v:(vector A n).
Change_arityn nt A v =v

This theorem is proved using the eq_rec_eq axiom.
Now, if plus_sym represents the theorem Vn,m.n+m = m+n, and the term
v has type vector nat (n+ m) then

Change_arity (n + m) (m + n) (plus_sym n m) nat v

has type vector nat (m + n).

5 Miscellaneous

This section lists some other considerations of the differences between the ap-
proaches of Coq and HOL to the mechanisation of theories.



5.1 Classical and Constructive reasoning

HOL’s logic is classical, and the axiom of the excluded middle is introduced in
the HOL theory which defines boolean values. One can ask however whether any
support can be given to users who may want to use HOL and still reason con-
structively. The CIC is essentially constructive in which the law of the excluded
middle cannot be derived and all Coq functions have to be computable. However,
one can still reason classically to some extent in Coq by loading a classical theory
which specifies the law of the excluded middle as an axiom, although it should
be stressed that this does not give Coq the full powers of classical reasoning.

Since all functions in Coq are computable, n-ary partial functions in [27] are
specified as single valued relations (see section 3.1) rather than as Coq func-
tions, so that functions which are not computable can still be specified in the
mechanisation. On the other hand, functions in HOL need not be computable
(since the logic is not constructive and because of the rule of constant specifi-
cation and Hilbert’s operator €), and n-ary partial functions in [26] are defined
as HOL functions mapping lists of natural numbers to possibly undefined nat-
ural numbers. The type of possibly undefined numbers is defined as the type of
natural numbers together with an undefined value. The advantage of the formal-
isation of partial functions in HOL is that a function application can be directly
substituted by its value.

5.2 The Use of Proof Objects

The Coq system stores proof terms in its theory files and uses for these terms
include:

1. Program extraction: Given some program specification S, a constructive
proof that there is some program satisfying it contains an instance of a
program for which S holds, hence one can obtain a certified program from a
proof of its specification. This facility is supported by the Coq system which
provides a package which extracts an ML program from a proof term, as well
as providing support for proving the specification of functions written in an
ML syntax [20, 19, 21].

2. Extracting proof texts written in a natural language: A proof term of type 7
can be seen as an account of the proof steps involved in deriving the theorem
7, and Coq provides tools for extracting a proof written in a natural language
from proof objects [6].

3. Independent proof checking: Proof terms can be checked by an independent
proof checker to gain more confidence in their correctness. Moreover, such
proof terms can be easier to translate into proof accounts of another theorem
prover than an actual proof script or an ML program (as HOL proof scripts
actually are). The HOL system is truth based rather than proof based and
it does not store proofs in its theories.



5.3 The Sectioning Mechanism

The Gallina specification language allows Coq proof scripts to be structured
into sections, and one can make definitions and prove theorems which are local to
a particular section. The need of local definitions and results is often encountered
during theory development, where for instance, the definition of some particular
concept can facilitate the proof of a number of results but does not contribute
much to the overall formalization of the theory. This point is also discussed in [26]
where the following example is given. During the proof of the theorem stating
that primitive recursive functions are URM computable, a program P, say, which
computes some particular function is defined. This program can be broken down
into three subroutines: Py, P> and P;. A number of lemmas concerning these
subroutines are derived and used in the proof of the required theorem. However
the definitions of P, P, and P; as well as any results concerning them are used
only during the proof of one important theorem, and the lack of structure in
HOL theories resulted in having to represent them as local variables within the
metalangauge.

6 Conclusions

The two case studies, and especially more extensive mechanisations of different
mathematical theories, show that both HOL and Coq are robust systems and
practical in mechanising simple mathematical results. The strongest point of
HOL is the flexibility given to the users by means of the metalanguage; while Coq
theorem proving relies on the power of the Calculus of Inductive Constructions.
Here, we give some concluding remarks on these features.

6.1 The Flexibility of the Metalanguage

By allowing a theorem proving session to be given within a general purpose met-
alanguage, HOL offers a higher degree of flexibility than Coq. As a result, HOL
users implement a larger number of new inference rules during theory develop-
ment than Coq users. For example, the mechanisation of the theory of compu-
tation in HOL includes several conversions for animating the definitions, simple
and more elaborate tactics which avoid repetitive inferences and most backward
proofs include tactics implemented ‘on the fly’. The syntax of Gallina can be
extended, say with (metalanguage) predicates on terms so that one can filter a
sublist of assumptions to be used by some tactic, but then one asks whether a
specification language as powerful as the metalanguage is required to implement
the required filtering functions during theorem proving. Having a specification
language surely has its advantages: the system is easier to learn by new users, and
proof scripts are in general easier to follow; also, theorem proving support tools
like a debugger or a graphical user interface are probably easier to develop for
a specification language with a limited syntax rather than for a general purpose
programming language. However, the power of a Turing complete metalanguage
is not to be underestimated, for it can be used for instance to derive theorems
through the manipulation of proof terms.



6.2 The Power of the Calculus of Inductive Constructions

The restrictions due to the specification language are relieved by the power of
CIC. The fact that theorems are proved by simply constructing and breaking
down terms makes the implementation of tactics specialised for particular logic
constructs unnecessary and the powerful notion of convertibility replaces the
implementation of conversions for every definition. No new tactics or inference
rules are implemented in the mechanisation of the theory of computation in
Coq, both because the inference power of the simple constructs of Gallina is
enough for most reasoning, and also because the non-trivial task of actually
implementing a new elaborate tactic in Coq discourages the development of
simple tactics which are used only to substitute a number of inferences. The
power of CIC is also emphasised by its highly expressive type system which
allows quantification over types and dependent types and thus gives a more
natural formalisation of mathematical concepts than a simple type theory. We
have seen however, how the stronger notion of equality and equivalence in HOL
simplifies most formalisations.

The primitive inference rules of HOL are too simple and are rarely used in
practice, most reasoning is performed by higher level inferences. The simplicity
of the primitive rules gives a straightforward implementation of the core in-
ference engine, on whose correctness the soundness of the HOL system relies.
Although CIC is more complex than the HOL logic, it is sound and due to the
Curry-Howard isomorphism theorems in CIC can be checked by a type checking
algorithm, on whose correctness the soundness of the Coq system relies. Thus,
one can have a very powerful logic whose theorems can still be checked by a
simple algorithm.

The feasibility of actually doing so may however be questioned. Proof terms
may become very large, and (di-convertibility may become infeasible for large
objects. These factors do not yield any significant problems for the mechanisation
of the results in [27] but may make Coq unsuitable for large scale ‘real-world’
theorem proving required by the industry.

7 Acknowledgements

I would like to thank my supervisor, Simon Thompson, for his support and
encouragement as well as the anonymous referees for their comments and sug-
gestions on an earlier draft of this paper.

References

1. P. E. Black and P. J. Windley. Automatically synthesized term denotation pred-
icates: A proof aid. In E. T. Schubert, P. J. Windley, and J. Alves-Foss, editors,
Proceedings of the 8th International Workshop on Higher Order Logic Theorem
Proving and Its Applications, volume 971 of Lecture Notes in Computer Science,
pages 4657, Aspen Grove, UT, USA, September 1995. Springer-Verlag.



10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

Juanito Camilleri and Tom Melham. Reasoning with inductively defined relations
in the HOL theorem prover. Technical Report 265, University of Cambridge Com-
puter Laboratory, August 1992.

Alonzo Church. A formulation of a simple theory of types. Journal of Symbolic
Logic, 5:56—68, 1940.

Thierry Coquand and Gérard Huet. The calculus of constructions. Rapport de
Recherche 530, INRIA, Rocquencourt, France, May 1986.

C. Cornes et al. The Coq Proof Assistant Reference Manual, Version 5.10. Rap-
port technique RT-0177, INRIA, 1995.

Yann Coscoy, Gilles Kahn, and Laurent Théry. Extracting text from proofs. Rap-
port de Recherche 2459, INRIA, Sophia-Antipolis Cedex, France, January 1995.
N.J. Cutland. Computability: An introduction to recursive function theory. Cam-
bridge University Press, 1980.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
Uarithétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh
LCF: A Mechanised Logic of Computation, volume 78 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1979.

M.J.C. Gordon and T.F. Melham. Introduction to HOL: a theorem proving envi-
ronment for higher order logic. Cambridge University Press, 1993.

John Harrison. HOL done right. Unpublished Draft, August 1995.

John Harrison. Inductive definitions: Automation and application. In E. T. Schu-
bert, P. J. Windley, and J. Alves-Foss, editors, Proceedings of the 8th International
Workshop on Higher Order Logic Theorem Proving and Its Applications, volume
971 of Lecture Notes in Computer Science, pages 200-213, Aspen Grove, UT, USA,
September 1995. Springer-Verlag.

Bart Jacobs and Tom Melham. Translating dependent type theory into higher
order logic. In TLCA 93 International Conference on Typed Lambda Calculi and
Applications, Utrecht, 16-18 March 1993, volume 664 of Lecture Notes in Computer
Science, pages 209—229. Springer-Verlag, 1993.

Per Martin-Lof. Intuitionistic Type Theory. Bibioplois, Napoli, 1984. Notes of
Giovanni Sambin on a series of lectues given in Padova.

T.F. Melham. Using recursive types to reason about hardware and higher order
logic. In G.J. Milne, editor, International Workshop on Higher Order Logic Theo-
rem Proving and its Applications, pages 27-50, Glasgow, Scotland, July 1988. IFIP
WG 10.2, North-Holland.

T.F. Melham. A package for inductive relation definitions in HOL. In M. Archer,
J.J. Joyce, K.N. Levitt, and P.J. Windley, editors, International Workshop on
Higher Order Logic Theorem Proving and its Applications, pages 350-357, Davis,
California, August 1991. IEEE Computer Society, ACM SIGDA, IEEE Computer
Society Press.

T.F. Melham. The HOL logic extended with quantification over type variables.
In L.J.M. Claesen and M.J.C. Gordon, editors, International Workshop on Higher
Order Logic Theorem Proving and its Applications, pages 3—-18, Leuven, Belgium,
September 1992. IFIP TC10/WG10.2, North-Holland. IFIP Transactions.

Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in Martin-Léf
type theory: an introduction. Clarendon, 1990.

C. Parent. Developing certified programs in the system Coq - the Program tactic.
In H. Barendregt and T. Nipkow, editors, International Workshop on Types for



20.

21.

22.

23.

24.

25.

26.

27.

Proofs and Programs, volume 806 of Lecture Notes in Computer Science, pages
291-312. Springer-Verlag, May 1993.

C. Paulin-Mohring. Extracting F,’s programs from proofs in the Calculus of
Constructions. In Association for Computing Machinery, editor, Sizteenth An-
nual ACM Symposium on Principles of Programming Languages, Austin, January
1989.

C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq.
Journal of Symbolic Computation, 15(5-6):607—-640, 77 1993.

Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus
of Constructions. PhD thesis, University of Edinburgh, 1994.

R. E. O. Roxas. A HOL package for reasoning about relations defined by mu-
tual induction. In J. J. Joyce and C.-J. H. Seger, editors, Proceedings of the 6th
International Workshop on Higher Order Logic Theorem Proving and its Applica-
tions (HUG’98), volume 780 of Lecture Notes in Computer Science, pages 129-140,
Vancouver, B.C., Canada, August 1993. Springer-Verlag, 1994.

K. Slind. Function definition in higher-order logic. In J. von Wright, J. Grundy,
and J. Harrison, editors, Proceedings of the 9th International Conference on Theo-
rem Proving in Higher Order Logics (TPHOLs’96), volume 1125 of Lecture Notes
in Computer Science, pages 381-397, Turku, Finland, August 1996. Springer.
Simon Thompson. Type Theory and Functional Programming. Addison-Wesley,
1991.

Vincent Zammit. A mechanisation of computability theory in HOL. In Proceedings
of the 9th International Conference on Theorem Proving in Higher Order Logics,
volume 1125 of Lecture Notes in Computer Science, pages 431-446, Turku, Finland,
August 1996. Springer-Verlag.

Vincent Zammit. A proof of the S} theorem in Coq. Technical Report 9-97, The
Computing Laboratory, The University of Kent at Canterbury, 1997.



This article was typeset using the ETEX macro package with the LLNCS2E class.



