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Dedukti is a logical framework based on the λΠ-calculus modulo rewriting, which extends the λΠ-
calculus with rewrite rules. In this paper, we show how to translate the proofs of a family of HOL
proof assistants to Dedukti. The translation preserves binding, typing, and reduction. We imple-
mented this translation in an automated tool and used it to successfully translate the OpenTheory
standard library.

1 Introduction

Dedukti is a logical framework for defining logics and expressing proofs in those logics [8]. Following
the LF legacy [17], it is based on the λΠ-calculus modulo rewriting, which extends the λΠ-calculus
with rewrite rules. Cousineau and Dowek [11] showed that functional pure type systems (PTS), a large
class of calculi that are at the basis of many proof systems, can be embedded in the λΠ-calculus modulo
rewriting in a way that is complete and that preserves reductions (i.e. program evaluation). This led to
propose Dedukti as a universal proof framework.

In this paper, we focus on translating the proofs of HOL to Dedukti. HOL refers to a family of
theorem provers built on a common logical system known as higher-order logic or simple type theory
[10]. It includes systems such as HOL Light, HOL4, and ProofPower-HOL. These systems are fairly
popular and a large number of important mathematical results have been formalized in them [15, 16, 29].

Universal proof checking

Using Dedukti as a logical framework serves two goals. First, in the short term, it serves as an alter-
native, independent proof checker, providing an additional layer of confidence over each system. The
second, longer term goal, is interoperability. Proof systems are becoming increasingly important, both
in the formalization of mathematics and in software engineering. However, they are usually developed
separately, with very little interoperability in mind. As a result, it is currently very difficult to reuse a
proof from one system in another one. Embedding these different systems in a single unified framework
is the first step to bring them closer together, and opens the way for theory management systems [18, 27]
to combine their proofs in order to construct and verify larger theories.

The λΠ-calculus as a logical framework

The λΠ-calculus, also known as LF, is a typed λ -calculus with dependent types. Through the Curry–
Howard correspondence, it can express a wide variety of logics [17]. Several formalizations of HOL in
LF have been proposed [2, 28, 26].

http://creativecommons.org
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2 Translating HOL to Dedukti

The main concept behind this correspondence is the “propositions as types” principle. Typically,
we define a context declaring the types, terms, and judgments of the original logic, in such a way that
provability in the logic corresponds to type inhabitation in the context. For HOL, the signature would be:

type : Type
bool : type
arrow : type→ type→ type

term : type→ Type
lam : (termα → termβ )→ term(arrow α β )
app : term(arrow α β )→ termα → termβ

proof : termbool
rule_1 : . . .
rule_2 : . . .

For each proposition φ of the logic, we assign a type ‖φ‖ in the λΠ-calculus. The provability of the
proposition φ corresponds to the inhabitation of the type ‖φ‖. Similarly, we translate proofs as terms
inhabiting those types, and the correctness of the proof corresponds to the well-typedness of the term.

However, because the λΠ-calculus does not have polymorphism, we cannot translate propositions
directly as types, as doing so would prevent us from quantifying over propositions for example. Instead,
for each proposition φ , we have two translations: one translation |φ | as a term, and another ‖φ‖ =
proof |φ | as a type. This correspondence has been successfully used to embed logics in the LF framework
[17, 14], implemented in Twelf [25].

The λΠ-calculus vs. the λΠ-calculus modulo rewriting

An important limitation of LF is that these encodings do not preserve reduction (i.e. program evaluation),
and therefore it does not preserve equivalence: if M ≡β M′ then |M| 6≡β |M′|. For example, the term
(λx : α.x)x is encoded as app(lam(λx : termα.x)) x which is not equivalent to x. This is problematic
not only because it makes the representation larger and hence less efficient but also because conversion
proofs may be very long.

By extending the λΠ-calculus with rewrite rules such as

term(arrow α β ) ; termα → termβ ,

we can identify the type term(arrow α β ) with the type termα → termβ and thus define a translation
that is lighter and that preserves reductions. The encoding of the terms becomes more compact, as
we represent λ -abstractions by λ -abstractions, applications by applications, etc. For example, the term
(λx : α.x)x is encoded as (λx : termα.x) x. Such an encoding is impossible in LF for higher-order
theories such as system F, HOL, or the calculus of constructions.

Moreover, our translation is modular enough so that we can extend the notion of reduction to the
proofs of HOL and recover the pure type system nature of HOL [5]. This might be beneficial for several
reasons:

1. It gives a reduction semantics for the proofs of HOL.

2. It allows compressing the proofs further by replacing conversion proofs with reflexivity.

3. Several other proof systems (Coq, Agda, etc.) are based on pure type systems, so expressing HOL
as a PTS fits in the large scale of interoperability.
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HOL and OpenTheory

The theorem provers of the HOL family (HOL Light, HOL4, ProofPower-HOL, etc.) are built on a
common logical formalism known as higher-order logic, and have fairly similar core implementations.

A recurrent issue when trying to retrieve proofs from these systems is that they do not keep a trace of
their proofs [18, 20, 24]. Following the LCF architecture, they represent their theorems using an abstract
datatype and thus guarantee their safety without the need to remember their proofs. This approach
reduces memory consumption but hinders their ability to share proofs.

Fortunately, several proposals have already been made to solve this problem [18, 24]. Among them is
the OpenTheory project. It defines a standard format called the article format for recording and sharing
HOL theorems. An article file contains a sequence of elementary commands to reconstruct proofs.
Importing a theorem requires only a mechanical execution of the commands.

The format is limited to the HOL family, and cannot be used to communicate the proofs of Coq
for example. However, it is an excellent starting point for our translation. Choosing OpenTheory as a
front-end has several advantages:

• We cover all the systems of the HOL family that can export their proofs to OpenTheory with a
single implementation. As of today, this includes HOL Light, HOL4, and ProofPower-HOL.1

• The implementation of a theorem prover can change, so the existence of this standard, documented
proof format is extremely helpful, if not necessary.

• The OpenTheory project also defines a large common standard theory library, covering the devel-
opment of common datatypes and mathematical theories such as lists and natural numbers. This
substantial body of theories was used as a benchmark for our implementation.

Related work

Several formalizations of HOL in LF have been proposed [2, 26, 28]. To our knowledge, they lack an
actual implementation of the translation. Other translations have been proposed to automatically extract
the proofs of HOL to other systems such as Isabelle/HOL [19, 24], Nuprl [23], or Coq [20]. With
the exception of the implementation of Kalyszyk and Krauss [19], these tools suffer from scalability
problems. Our translation is lightweight enough to be scalable and provides promising results. The
implementation of Kalyszyk and Krauss is the first efficient and scalable translation of HOL Light proofs,
but its target is Isabelle/HOL, a system that, unlike Dedukti, is foundationally very close to HOL Light.

ProofCert [9] is another project like Dedukti that aims at providing a universal framework for check-
ing proofs. Unlike Dedukti, it is based on sequent calculus. It can handle linear, intuitionistic, and classi-
cal logics. To our knowledge, there are no automated translations of systems like HOL to ProofCert that
have been implemented yet.

A project complementary to ours is Coqine [7], which proposes a translation of the calculus of induc-
tive constructions (CIC), the formalism behind Coq, to Dedukti. The translation has been implemented
in an automated tool that translates the proofs compiled by Coq to Dedukti. It can handle most of the
features of Coq, and has been used to translate a part of its standard library.

1Isabelle/HOL can currently read from but not write to OpenTheory.
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Contributions

We define a translation of the types, terms and proofs of HOL to Dedukti. We use the rewriting tech-
niques of Cousineau and Dowek [11] to obtain a shallow embedding that is lightweight and modular.
We implemented this translation in an automated tool called Holide, which automatically translates the
proofs of HOL written in the OpenTheory format to Dedukti. We used it to successfully translate the
OpenTheory standard library.

Outline

The rest of this paper is organized as follows. Section 2 presents Dedukti and the λΠ-calculus modulo
rewriting. Section 3 presents HOL and the logical system behind it. Section 4 defines the translation of
HOL to Dedukti. In Section 5, we show that the translation is correct. Section 6 discusses the details of
our implementation and the results obtained by translating the OpenTheory standard library. Section 7
discusses some additional applications of rewriting. Finally, Section 8 summarizes and considers future
work.

2 Dedukti

Dedukti is essentially a type checker for the λΠ-calculus modulo rewriting [8], which extends the λΠ-
calculus with rewrite rules. We choose a presentation based on pure type systems [5], which makes no
syntactic distinction between terms, usually denoted by M or N, and types, usually denoted by A or B.

We assume countably infinite sets of variables and constants. There are two sorts, Type and Kind.
The sort Type is the type of types and the sort Kind is the type of Type. We write λx : A.M for abstractions
and M N for applications. The type of functions is written Πx : A.B, or A→ B when x does not appear
free in B. Application is left-associative while the arrow→ is right-associative. Terms are considered up
to α-equivalence. Contexts contain the types of variables while signatures contain the types of constants
and their rewrite rules. Each rewrite rule is accompanied by a context Γ to ensure it is well-typed.

Definition 2.1. The syntax of the λΠ-calculus modulo rewriting is:

variables x,y
constants c
sorts s ::= Type | Kind
terms M,N,A,B ::= x | c | s |Πx : A.B | λx : A.M |M N
contexts Γ,∆ ::= · | Γ,x : A
signatures Σ ::= · | Σ,c : A | Σ, [Γ] M ; N

If R is a set of rewrite rules, we write −→R for the induced reduction relation, −→+
R for its transitive

closure, −→∗R for its reflexive transitive closure, and ≡R for its reflexive symmetric transitive closure.
Given a signature Σ, we write βΣ for the union of the β rule with the rewrite rules of Σ.

The typing judgments Σ | Γ `M : A are accompanied by context formation judgments Σ | Γ context
and signature formation judgments Σ signature. We write Γ `M : A and Γ context instead of Σ | Γ `M : A
and Σ | Γ context when the signature is not ambiguous. The rules are presented in Figure 1.

Example 2.2. Let Σ be the signature containing

α : Type,c : α, f : α → Type
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Γ context (x : A) ∈ Γ

Γ ` x : A
VAR

Γ context (c : A) ∈ Σ

Γ ` c : A
CONST

Γ context

Γ ` Type : Kind
TYPE

Γ ` A : Type Γ,x : A ` B : s

Γ `Πx : A.B : s
PROD

Γ ` A : Type Γ,x : A `M : B

Γ ` λx : A.M : Πx : A.B
ABS

Γ `M : Πx : A.B Γ ` N : A

Γ `M N : [N/x]B
APP

Γ `M : A Γ ` B : Type A≡βΣ B

Γ `M : B
CONV

Σ signature

· context
EMPTYCTX

Γ ` A : Type x 6∈ Γ

Γ,x : A context
VARCTX

· signature
EMPTYSIG

Σ | · ` A : s c 6∈ Σ

Σ,c : A signature
CONSTSIG

Σ | Γ `M : A Σ | Γ ` N : A

Σ, [Γ] M ; N signature
REWRITESIG

Figure 1: Typing rules of the λΠ-calculus

and the rewrite rule
[·] f c ; Πy : α. f y→ f y .

The term λx : f c. xcx is well-typed in Σ and has the type f c→ f c. Notice that this term would not be
well-typed without the rewrite rule, even if we replace all occurences of f c by Πy : α. f y→ f y.

Dedukti imposes some additional restrictions on the rewrite rules to keep type-checking decidable.
In particular, the left side of a rewrite rule must belong to the higher-order pattern fragment [21, 22] and
the free variables of the right side must appear on the left side. Moreover, the reduction relation −→βΣ

should be confluent and strongly normalizing. This property is not verified by the system and it is up to
the user to ensure that it is indeed the case. We discuss this in Section 5.

3 HOL

There are many different formulations for higher-order logic. The intuitionistic formulation is based on
implication and universal quantification as primitive connectives, but the current systems generally use
a formulation called Q0 [1] based on equality as a primitive connective. We take as reference the logical
system used by OpenTheory [18], which we will now briefly present.

The terms of the logic are terms of the simply typed λ -calculus, with a base type bool representing
the type of propositions and a type ind of individuals. The terms can contain constant symbols such as
(=), the symbol for equality, or select, the symbol of choice. The logic supports a restricted form of
polymorphism, known as ML-style polymorphism, by allowing type variables, such as α or β , to appear
in types. For example, the type of (=) is α → α → bool.
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`M = M
REFL M

Γ `M = N

Γ ` λx : A.M = λx : A.N
ABSTHM x

Γ ` F = G ∆ `M = N

Γ∪∆ ` F M = GN
APPTHM

` (λx : A.M)x = M
BETA x M

{φ} ` φ
ASSUME

Γ ` φ = ψ ∆ ` φ

Γ∪∆ ` ψ
EQMP

Γ ` φ ∆ ` ψ

(Γ−{ψ})∪ (∆−{φ}) ` φ = ψ
DEDUCTANTISYM

Γ ` φ

Γ[σ ] ` φ [σ ]
SUBST σ

Figure 2: Derivation rules of HOL

Types can be parameterized through type operators of the form p(A1, . . . ,An). For example, list is a
type operator of arity 1, and list(bool) is the type of lists of booleans. Type variables and type operators
are enough to describe all the types of HOL, because bool can be seen as a type operator of arity 0, and
the arrow→ as a type operator of arity 2. Hence the type of (=α) is in fact→ (α,→ (α,bool())). We
still write A→ B instead of→(A,B) for arrow types, p instead of p() for type operators of arity 0, and
M = N instead of (=)M N when it is more convenient.
Definition 3.1. The syntax of HOL is:

type variables α,β
type operators p
types A,B ::= α | p(A1, . . . ,An)
term variables x,y
term constants c
terms M,N ::= x | λx : A.M |M N | c

The propositions of the logic are the terms of type bool and the predicates are the terms of type
A→ bool. We use letters such as φ or ψ to denote propositions. The contexts, denoted by Γ or ∆, are sets
of propositions, and the judgments of the logic are of the form Γ ` φ . The derivation rules are presented
in Figure 2.
Example 3.2. Here is a derivation of the transitivity of equality: if Γ ` x = y and ∆ ` y = z, then
Γ∪∆ ` x = z.

` ((=)x) = ((=)x)
REFL

∆ ` y = z

∆ ` (x = y) = (x = z)
APPTHM

Γ ` x = y

Γ∪∆ ` x = z
EQMP

HOL supports mechanisms for defining new types and constants in a conservative way. We will not
consider them here. In addition to the core derivation rules, three axioms are assumed:

• η-equality, which states that λx : A. M x = M,

• the axiom of choice, with a predeclared symbol of choice called select,

• the axiom of infinity, which states that the type ind is infinite.
It is important to note that from η-convertibility and the axiom of choice, we can derive the excluded
middle [6], making HOL a classical logic.



A. Assaf and G. Burel 7

4 Translation

In this section we show how to translate HOL to Dedukti. We define a signature Σ containing primitive
declarations and definitions, and a translation function assigning, to every construct of the logic, a term
that is well-typed in the signature Σ.

HOL Types

To translate the simple types of HOL, we declare a new Dedukti type called type and three constructors
bool, ind and arrow.

type : Type
bool : type
ind : type
arrow : type→ type→ type

One should not confuse type, which is the type of Dedukti terms that represent HOL types, with Type,
which is the type of Dedukti types. The translation of a HOL type as a Dedukti term is defined inductively
on the structure of the type.

Definition 4.1 (Translation of a HOL type as a Dedukti term). For any HOL type A, we define |A|, the
translation of A as a term, to be

|α| = α

|bool| = bool
|ind| = ind
|A→ B| = arrow |A| |B| .

More generally, if we have an n-ary HOL type operator p, we declare a constant p of type type→ . . .→ type︸ ︷︷ ︸
n

→

type, and we translate an instance p(A1, . . . ,An) of this type operator to the term p |A1| · · · |An|.

HOL Terms

We declare a new dependent type called term indexed by a type, and we identify the terms of type
term(arrow AB) with the functions of type termA→ termB by adding a rewrite rule. We also declare a
constant eq for HOL equality and a constant select for the choice operator.

term : type→ Type
eq : Πα : type. term(arrow α (arrow α bool))
select : Πα : type. term(arrow (arrow α bool) α)

[α : type,β : type] term(arrow α β ) ; termα → termβ

The symbol term can be seen as a decoding function that assigns a Dedukti type to every HOL type. The
translation of a term M of type A will then be a term of type term |A|.

Definition 4.2 (Translation of a HOL type as a Dedukti type). For any HOL type A, we define

‖A‖= term |A| .
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Definition 4.3 (Translation of a HOL term as a Dedukti term). For any HOL term M, we define |M|, the
translation of M as a term to be

|x| = x
|M N| = |M| |N|
|λx : A.M| = λx : ‖A‖ . |M|
|(=A)| = eq |A|
|selectA| = select |A| .

More generally, for every HOL constant c of type A, if α1, . . . ,αn are the free type variables that appear
in A, we declare a new constant c of type

Πα1 : type. . . .Παn : type. ‖A‖

and we translate an instance cA1,...,An of this constant by the term c |A1| · · · |An|.
Example 4.4. The term (λx : α.x)x is translated to

|(λx : α.x)x| = (λx : termα.x)x

which is convertible to x.

HOL Proofs

We declare a new type proof, to express the proof judgments of HOL. It is a dependent type, indexed by
the proposition φ that it is proving.

proof : termbool→ Type

Definition 4.5 (Translation of HOL propositions as Dedukti types). For any HOL proposition φ (i.e. a
HOL term of type bool), we define

‖φ‖= proof |φ | .
For any HOL context Γ = φ1, . . . ,φn, we define

‖Γ‖= hφ1 : ‖φ1‖ , . . . ,hφn : ‖φn‖

where hφ1 , . . . ,hφn are fresh variables.
We now take care of the derivation rules of HOL (Figure 2). In the following, we write Πx,y : A.B

as a shortcut for Πx : A.Πy : A.B.

Equality proofs

We declare Refl, FunExt, and AppThm:

Refl : Πα : type.Πx : termα. proof (eqα xx)
FunExt : Πα,β : type.Π f ,g : term(arrow α β ) .

(Πx : termα. proof (eqβ ( f x) (gx)))→ proof (eq(arrow α β ) f g)
AppThm : Πα,β : type.Π f ,g : term(arrow α β ) .Πx,y : termα.

proof (eq(arrow α β ) f g)→ proof (eqα xy)→ proof (eqβ ( f x) (gy))

The constant FunExt corresponds to functional extensionality, which states that if two functions f and g
of type A→ B are equal on all values x of type A, then f and g are equal. We can use it to translate both
the ABSTHM rule and the η axiom. Finally, since our encoding is shallow, β -equality can be proved by
reflexivity.
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Definition 4.6. The rules REFL, ABSTHM, APPTHM, and BETA are translated to∣∣∣∣∣`M = M
REFL

∣∣∣∣∣= Refl |A| |M| (where A is the type of M)

∣∣∣∣∣ D

Γ ` λx : A.M = λx : A.N
ABSTHM

∣∣∣∣∣= FunExt |A| |B| |λx : A.M| |λx : A.N| (λx : |A| . |D |)

∣∣∣∣∣ D1 D2

Γ∪∆ ` F M = GN
APPTHM

∣∣∣∣∣= AppThm |A| |B| |F | |G| |M| |N| |D1| |D2|∣∣∣∣∣(λx : A.M)x = M
BETA

∣∣∣∣∣= Refl |B| |M| (where B is the type of M) .

Boolean proofs

We declare the constants PropExt and EqMp:

PropExt : Πp,q : termbool.
(proof q→ proof p)→ (proof q→ proof p)→ proof (eqbool pq)

EqMp : Πp,q : termbool. proof (eqbool pq)→ proof p→ proof q

The constant PropExt corresponds to propositional extensionality and, together with EqMp, states that
equality on booleans in HOL behaves like the connective “if and only if ”.
Definition 4.7. The rules ASSUME, DEDUCTANTISYM, and EQMP are translated to∣∣∣∣∣{φ} ` φ

ASSUME

∣∣∣∣∣= hφ (where hφ is a fresh variable)

∣∣∣∣∣ D1 D2

(Γ−{ψ})∪ (∆−{φ}) ` φ = ψ
DEDUCTANTISYM

∣∣∣∣∣=
PropExt |φ | |ψ|

(
λhψ : ‖ψ‖ . |D1|

) (
λhφ : ‖φ‖ . |D2|

)
∣∣∣∣∣D1 D2

Γ∪∆ ` ψ
EQMP

∣∣∣∣∣= EqMp |φ | |ψ| |D1| |D2| .

Substitution proofs

The HOL rule SUBST derives Γ[σ ] ` φ [σ ] from Γ ` φ . In OpenTheory, the substitution can substitute
for both term and type variables but type variables are instantiated first. For the sake of clarity, we split
this rule in two steps: one for term substitution of the form σ = M1/x1, . . . ,Mn/xn, and one for type
substitution of the form θ = A1/α1, . . . ,Am/αm. In Dedukti, we have to rely on β -reduction to express
substitution. We can correctly translate a parallel substitution M[M1/x1, . . . ,Mn/xn] as

(λx1 : B1. . . .λxn : Bn.M)M1 . . . Mn

where Bi is the type of Mi.



10 Translating HOL to Dedukti

Definition 4.8. The rule SUBST is translated to∣∣∣∣∣ D

Γ[θ ] ` φ [θ ]
TYPESUBST

∣∣∣∣∣= (λα1 : type. . . .λαm : type. |D |) |A1| . . . |Am|

∣∣∣∣∣ D

Γ[σ ] ` φ [σ ]
TERMSUBST

∣∣∣∣∣= (λx1 : ‖B1‖ . . . .λxn : ‖Bn‖ . |D |) |M1| . . . |Mn|

5 Correctness

The correctness of the translation is expressed by two properties: completeness and soundness. The first
states that all the generated terms have the correct type. For example, the translation of a term of type A
has type ‖A‖ while the translation of a proof of φ has type ‖φ‖. The second states that if a proof term is
well-typed in Dedukti, then the proof is correct in the original logic. These two properties ensure that we
can use Dedukti as an independent proof checker: we can use it to re-verify the proofs of OpenTheory,
and moreover we can be sure that, if a proof is accepted by Dedukti, then it is also valid in OpenTheory.

Completeness

Let Σ be the signature of HOL containing the declarations and rewrite rules of the previous sections.
Lemma 5.1. For any HOL type A,

Σ | α1 : type, . . . ,αn : type ` |A| : type

where α1, . . . ,αn are the free type variables appearing in A.
Lemma 5.2. For any HOL term M of type A,

Σ | α1 : type, . . . ,αn : type,x1 : ‖A1‖ , . . .xn : ‖An‖ ` |M| : ‖A‖

where α1, . . . ,αn are the free type variables and x1 : A1, . . . ,xn : An are the free term variables appearing
in M.
Theorem 5.3. For any HOL proof D of Γ ` φ ,

Σ | α1 : type, . . . ,αn : type,x1 : ‖A1‖ , . . .xn : ‖An‖ ,‖Γ‖ ` |D | : ‖φ‖

where α1, . . . ,αn are the free type variables and x1 : A1, . . . ,xn : An are the free term variables appearing
in D .

Proof. By induction on the structure of D .

Soundness

Proving the soundness of the embedding is less straightforward than proving completeness. In fact, it is
closely related to the confluence and normalization properties of the system. We state the results here
and refer the reader to the works of Assaf, Cousineau, and Dowek [3, 11, 12] for the complete proofs.2

Lemma 5.4. The reduction relation −→βΣ is confluent.
Lemma 5.5. The reduction relation −→βΣ is strongly normalizing.
Theorem 5.6. If Σ | ‖Γ‖ `M : ‖A‖ then M corresponds to a valid proof of Γ ` A in HOL.

2The terms soundness and completeness are interchanged in Cousineau and Dowek’s paper [11].
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Package Size (kB) Time (s)

OpenTheory Dedukti Translation Verification

unit 5 13 0.2 0.0
function 16 53 0.3 0.2
pair 38 121 0.8 0.5
bool 49 154 0.9 0.5
sum 84 296 2.1 1.1
option 93 320 2.2 1.2
relation 161 620 4.6 2.8
list 239 827 5.7 3.2
real 286 945 6.5 3.1
natural 343 1065 6.8 3.2
set 389 1462 10.2 5.8

Total 1702 5877 40.3 21.6

Table 1: Translation of the OpenTheory standard library

6 Implementation

We implemented our translation in an automated tool called Holide. It works as an OpenTheory virtual
machine that additionally keeps track of the corresponding proof terms for theorems. The program reads
a HOL proof written in the OpenTheory article format (.art) and outputs a Dedukti file (.dk) contain-
ing its translation. We can run Dedukti on the generated file to verify it. All generated files are linked
with a hand-written file hol.dk containing the signature Σ that we defined in Section 4. Our software is
available online at https://www.rocq.inria.fr/deducteam/Holide/.

HOL proofs are known to be very large [19, 20, 24], and we needed to implement sharing of proofs,
terms, and types in order to reduce them to a manageable size. OpenTheory already provides some form
of proof sharing but we found it easier to completely factorize the derivations into individual steps.

We used Holide to translate the OpenTheory standard library. The library is organized into logical
packages, each corresponding to a theory such as lists or natural numbers. We were able to verify all
of the generated files. The results are summarized in Table 1. We list the size of both the source files
and the files generated by the translation after compression using gzip. The reason we use the size of the
compressed files for comparison is because it provides a more reasonable measure that is less affected
by syntax formatting and whitespace. We also list the time it takes to translate and verify each package.
These tests were done on a 64-bit Intel Xeon(R) CPU @ 2.67GHz × 4 machine with 4 GB of RAM.

Overall, the size of the generated files is about 3 to 4 times larger than the source files. Given that
this is an encoding in a logical framework, an increase in the size is to be expected, and we find that
this factor is very reasonable. There are no similar translations to compare to except the one of Keller
and Werner [20]. The comparison is difficult because they work with a slightly different form of input,
but they produce several hundred megabytes of proofs. Similary, an increase in verification time is to
be expected compared to verifying OpenTheory directly, but our results are still very reasonable given
the nature of the translation. Our time is about 4 times larger than OpenTheory, which takes about 5
seconds to verify the standard library. It is in line with the scalable translation of Kalyszyk and Krauss
to Isabelle/HOL, which takes around 30 seconds [19]. In comparison, Keller and Werner’s translation
takes several hours, although we should note that our work greatly benefited from their experience.

https://www.rocq.inria.fr/deducteam/Holide/
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7 Extensions

In this section we show some additional advantages of having a translation which preserves reduction.

Compressing conversion proofs

One of the reasons why HOL proofs are so large is that conversion proofs have to traverse the terms
using the congruence rules ABSTHM and APPTHM. Since we now prove β -reduction using reflexivity,
large conversion proofs could be reduced to a single reflexivity step, therefore reducing the size of the
proofs.3

Example 7.1. The following proof of f (g((λx : A.x)x)) = f (g(x)),

` f = f
REFL f

` g = g
REFL g

` (λx : A.x)x = x
BETA

` g((λx : A.x)x) = gx
APPTHM

` f (g((λx : A.x)x)) = f (gx)

can be translated simply as ReflC( f (gx)), where A→ B is the type of g and B→C is the type of f .

HOL as a pure type system

It turns out that HOL can be seen as a pure type system called λHOL with three sorts [5, 13]. This
formulation corresponds to intuitionistic higher-order logic. However, this structure is lost in the Q0
formulation used by the HOL systems. Our shallow embedding can be adapted to recover this structure,
and thus obtain a constructive and computational version of HOL.

Instead of equality, we declare implication and universal quantification as primitive connectives, and
we define what provability means through rewriting.

imp : term(arrow bool(arrow boolbool))
forall : Πα : type. term(arrow (arrow α bool) bool)

[p : termbool,q : termbool] proof (imp pq) ; proof p→ proof q
[α : type, p : term(arrow α bool)] proof (forall p) ; Πx : termα. proof (px)

However, this time we do not even need to declare constants like Refl and AppThm for the derivation
rules, because they are derivable. Here is a derivation of the introduction and elimination rules for
implication for example:

imp_intro : Πp,q : termbool. (proof p→ proof q)→ proof (imp pq)
= λ p,q : termbool.λh : (proof p→ proof q) .h

imp_elim : Πp,q : termbool. proof (imp pq)→ proof p→ proof q
= λ p,q : termbool.λh : proof (imp pq) .λx : proof p. hx

By translating the introduction rules as λ -abstractions, and the elimination rules as applications, we
recover the reduction of the proof terms, which corresponds to cut elimination in the original proofs.

3This also applies to conversions involving constant definitions, which we did not cover here but are also assumed as an
axiom in HOL.
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As for equality, it is also possible to define it in terms of these connectives. For example, we could
use the Leibniz definition of equality, which is the one used by Coq:

eq : Πα : type. term(arrow α (arrow α bool))
= λα : type.λx : termα.λy : termα.

forall(arrow α bool) (Πp : term(arrow α bool) . imp(px) (py))

We would still need to assume some axioms to prove all the rules of OpenTheory, namely FunExt and
PropExt [20], but at least this definition is closer to that of Coq. Since the λHOL PTS is a strict subset
of the calculus of inductive constructions, we can adapt our translation to inject HOL directly into an
embedding of Coq in Dedukti [7], or to combine HOL proofs with Coq proofs in Dedukti [4]. Further
research into ways to eliminate these axioms (and thus maintain the constructive aspect) when possible
is the subject of ongoing work.

8 Conclusion

We showed how to translate HOL to Dedukti by adapting techniques from Cousineau and Dowek [11] to
define an embedding that is sound, complete, and reduction preserving. Using our implementation, we
were able to translate the OpenTheory standard library and verify it in Dedukti.

Future work

The translation we have presented can be improved in several ways. The current implementation suffers
from a lack of linking: if a package makes use of a type, constant, or theorem defined in another package,
we do not have a reference to the original definition. This is due to a limitation of the OpenTheory
article format. In OpenTheory, this problem is resolved by adding a theory management layer, which
is responsible for composing and linking theories together [18]. It would be beneficial to integrate this
layer in our translation so that we can properly link the resulting files together.

While we used several optimizations including term sharing in our implementation, there is still room
for reducing the time and memory consumption of the translation and the size of the generated files. The
caching techniques of Kaliszyk and Krauss [19] could be used in this regard to handle larger libraries
and formalizations.

Finally, we can study how to combine the proofs obtained by this translation with the proofs obtained
from the translation of Coq [7]. That will require a careful examination of the compatibility of the two
embeddings. First, the types of the two theories must coincide, so that a natural number from HOL is the
same as a natural number from Coq for example. Second, we must make sure that the resulting theory
is consistent. For instance, we know that every type in HOL is inhabited, which is inconsistent with the
existence of empty types in Coq, so we will need to modify the translations to avoid this. A solution is to
parameterize each HOL type variable by a witness ensuring that it is non-empty. Our translation can be
adapted for this solution without much trouble. Some work has already been done in this direction [4].
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