320 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    Non-transitive linear temporal logic and logical knowledge operations

    Get PDF
    © 2015 The Author, 2015. Published by Oxford University Press. All rights reserved.We study a linear temporal logic LTLNT with non-transitive time (with NEXT and UNTIL) and possible interpretations for logical knowledge operations in this approach. We assume time to be non-transitive, linear and discrete, it is a major innovative part of our article. Motivation for our approach that time might be non-transitive and comments on possible interpretations of logical knowledge operations are given. The main result of Section 5 is a solution of the decidability problem for LTLNT, we find and describe in details the decision algorithm. In Section 6 we introduce non-transitive linear temporal logic LTLNT(m) with uniform bound (m) for non-transitivity. We compare it with standard linear temporal logic LTL and the logic LTLNT - where non-transitivity has no upper bound - and show that LTLNT may be approximated by logics LTLNT(m). Concluding part of the article contains a list of open interesting problems

    Coordination of Multirobot Systems Under Temporal Constraints

    Full text link
    Multirobot systems have great potential to change our lives by increasing efficiency or decreasing costs in many applications, ranging from warehouse logistics to construction. They can also replace humans in dangerous scenarios, for example in a nuclear disaster cleanup mission. However, teleoperating robots in these scenarios would severely limit their capabilities due to communication and reaction delays. Furthermore, ensuring that the overall behavior of the system is safe and correct for a large number of robots is challenging without a principled solution approach. Ideally, multirobot systems should be able to plan and execute autonomously. Moreover, these systems should be robust to certain external factors, such as failing robots and synchronization errors and be able to scale to large numbers, as the effectiveness of particular tasks might depend directly on these criteria. This thesis introduces methods to achieve safe and correct autonomous behavior for multirobot systems. Firstly, we introduce a novel logic family, called counting logics, to describe the high-level behavior of multirobot systems. Counting logics capture constraints that arise naturally in many applications where the identity of the robot is not important for the task to be completed. We further introduce a notion of robust satisfaction to analyze the effects of synchronization errors on the overall behavior and provide complexity analysis for a fragment of this logic. Secondly, we propose an optimization-based algorithm to generate a collection of robot paths to satisfy the specifications given in counting logics. We assume that the robots are perfectly synchronized and use a mixed-integer linear programming formulation to take advantage of the recent advances in this field. We show that this approach is complete under the perfect synchronization assumption. Furthermore, we propose alternative encodings that render more efficient solutions under certain conditions. We also provide numerical results that showcase the scalability of our approach, showing that it scales to hundreds of robots. Thirdly, we relax the perfect synchronization assumption and show how to generate paths that are robust to bounded synchronization errors, without requiring run-time communication. However, the complexity of such an approach is shown to depend on the error bound, which might be limiting. To overcome this issue, we propose a hierarchical method whose complexity does not depend on this bound. We show that, under mild conditions, solutions generated by the hierarchical method can be executed safely, even if such a bound is not known. Finally, we propose a distributed algorithm to execute multirobot paths while avoiding collisions and deadlocks that might occur due to synchronization errors. We recast this problem as a conflict resolution problem and characterize conditions under which existing solutions to the well-known drinking philosophers problem can be used to design control policies that prevents collisions and deadlocks. We further provide improvements to this naive approach to increase the amount of concurrency in the system. We demonstrate the effectiveness of our approach by comparing it to the naive approach and to the state-of-the-art.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162921/1/ysahin_1.pd

    Model checking multi-agent systems

    Get PDF
    A multi-agent system (MAS) is usually understood as a system composed of interacting autonomous agents. In this sense, MAS have been employed successfully as a modelling paradigm in a number of scenarios, especially in Computer Science. However, the process of modelling complex and heterogeneous systems is intrinsically prone to errors: for this reason, computer scientists are typically concerned with the issue of verifying that a system actually behaves as it is supposed to, especially when a system is complex. Techniques have been developed to perform this task: testing is the most common technique, but in many circumstances a formal proof of correctness is needed. Techniques for formal verification include theorem proving and model checking. Model checking techniques, in particular, have been successfully employed in the formal verification of distributed systems, including hardware components, communication protocols, security protocols. In contrast to traditional distributed systems, formal verification techniques for MAS are still in their infancy, due to the more complex nature of agents, their autonomy, and the richer language used in the specification of properties. This thesis aims at making a contribution in the formal verification of properties of MAS via model checking. In particular, the following points are addressed: • Theoretical results about model checking methodologies for MAS, obtained by extending traditional methodologies based on Ordered Binary Decision Diagrams (OBDDS) for temporal logics to multi-modal logics for time, knowledge, correct behaviour, and strategies of agents. Complexity results for model checking these logics (and their symbolic representations). • Development of a software tool (MCMAS) that permits the specification and verification of MAS described in the formalism of interpreted systems. • Examples of application of MCMAS to various MAS scenarios (communication, anonymity, games, hardware diagnosability), including experimental results, and comparison with other tools available

    28th International Symposium on Temporal Representation and Reasoning (TIME 2021)

    Get PDF
    The 28th International Symposium on Temporal Representation and Reasoning (TIME 2021) was planned to take place in Klagenfurt, Austria, but had to move to an online conference due to the insecurities and restrictions caused by the pandemic. Since its frst edition in 1994, TIME Symposium is quite unique in the panorama of the scientifc conferences as its main goal is to bring together researchers from distinct research areas involving the management and representation of temporal data as well as the reasoning about temporal aspects of information. Moreover, TIME Symposium aims to bridge theoretical and applied research, as well as to serve as an interdisciplinary forum for exchange among researchers from the areas of artifcial intelligence, database management, logic and verifcation, and beyond

    Qualitative Process Analysis : Theoretical Requirements and Practical Implementation in Naval Domain

    Get PDF
    Understanding complex behaviours is an essential component of everyday life, integrated into daily routines as well as specialised research. To handle the increasing amount of data available from (logistic) dynamic scenarios, analysis of the behaviour of agents in a given environment is becoming more automated and thus requires reliable new analytical methods. This thesis seeks to improve analysis of observed data in dynamic scenarios by developing a new model for transforming sparse behavioural observations into realistic explanations of agent behaviours, with the goal of testing that model in a real-world maritime navigation scenario

    Multi-agent non-linear temporal logic with embodied agent describing uncertainty

    Get PDF
    © Springer International Publishing Switzerland 2014 We study multi-agent non-linear temporal Logic TEm , Int Knwith embodied agent. Our approach models interaction of the agents and various aspects for computation of uncertainty in multi-agent environment. We construct algorithms for verification satisfiability and truth statements in the logic TEm , Int Kn. Found computational algorithms are based at refutability of rules in reduced form at special finite frames of effectively bounded size. We show that our chosen framework is rather flexible and it allows to express various approaches to uncertainty and formalizing meaning of the embodied agent

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 12224 and 12225 constitutes the refereed proceedings of the 32st International Conference on Computer Aided Verification, CAV 2020, held in Los Angeles, CA, USA, in July 2020.* The 43 full papers presented together with 18 tool papers and 4 case studies, were carefully reviewed and selected from 240 submissions. The papers were organized in the following topical sections: Part I: AI verification; blockchain and Security; Concurrency; hardware verification and decision procedures; and hybrid and dynamic systems. Part II: model checking; software verification; stochastic systems; and synthesis. *The conference was held virtually due to the COVID-19 pandemic
    • …
    corecore