
Department of Computer Science
University College London

University of London

Model Checking Multi-Agent Systems

Franco Raimondi
f.raimondi@cs.ucl.ac.uk

Submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy
at the University of London

June 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1673959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I, Franco Raimondi, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the thesis.

ii

Abstract

A multi-agent system (MAS) is usually understood as a system composed of interacting

autonomous agents. In this sense, MAS have been employed successfully as a modelling

paradigm in a number of scenarios, especially in Computer Science. However, the process

of modelling complex and heterogeneous systems is intrinsically prone to errors: for this

reason, computer scientists are typically concerned with the issue of verifying that a system

actually behaves as it is supposed to, especially when a system is complex.

Techniques have been developed to perform this task: testing is the most common tech-

nique, but in many circumstances a formal proof of correctness is needed. Techniques

for formal verification include theorem proving and model checking. Model checking

techniques, in particular, have been successfully employed in the formal verification of

distributed systems, including hardware components, communication protocols, security

protocols.

In contrast to traditional distributed systems, formal verification techniques for MAS are

still in their infancy, due to the more complex nature of agents, their autonomy, and

the richer language used in the specification of properties. This thesis aims at making

a contribution in the formal verification of properties of MAS via model checking. In

particular, the following points are addressed:

• Theoretical results about model checking methodologies for MAS, obtained by

extending traditional methodologies based on Ordered Binary Decision Diagrams

(obdds) for temporal logics to multi-modal logics for time, knowledge, correct be-

haviour, and strategies of agents. Complexity results for model checking these logics

(and their symbolic representations).

• Development of a software tool (mcmas) that permits the specification and verifica-

tion of MAS described in the formalism of interpreted systems.

• Examples of application of mcmas to various MAS scenarios (communication,

anonymity, games, hardware diagnosability), including experimental results, and

comparison with other tools available.

iii

To my wife

iv

Acknowledgements

I would like to thank first of all my supervisor Alessio Lomuscio, for his support, for his

help, for his patience, and for his suggestions on all aspects of academic life, from writing

papers to parking bicycles and scooters in all the different colleges we have been through.

A big thank you to the people who have been involved in my PhD career as second

supervisors: Marek Sergot from Imperial College (where I started my PhD), David Clark

and Tom Maibaum from King’s College (where I passed my transfer Viva), and David

Rosenblum from UCL (where I will submit this thesis).

Special thanks to Charles Pecheur who invited me to NASA Ames in California for three

sunny months of model checking, and to Bozena Wozna for her precious comments and

for preparing so many Italian coffees in our office.

I am very grateful to (in random order): Wojciech Penczek, Wojciech Jamroga, Mike

Wooldridge, Ron van der Meyden for their comments and suggestions.

I have been extremely lucky to meet here in London Paul, Kelly, Roshan, Jungwon, and

all the group of the 7th floor of CS@UCL: thank you!

Paolo, thank you for continuously winning against me at Connect 4 and Tic-Tac-Toe: you

showed me the meaning of a strategy. Claudio, thank you for letting me try the strategies

with you.

Thank you to all the people who, in some way, helped me in London: Olli, Mari, Fabien,

Leo, Dylan, Fabio, Sandra, Laura, Davide.

Thank you to all my family, for supporting all my choices.

No, I didn’t forget you: thank you Anastasia for being so patient with me; now we can go

on holiday.

This thesis was partially supported by EPSRC CASE grant CNA04/04

v

Contents

1 Preliminaries 1

1.1 Introduction . 1

1.1.1 What is a multi-agent system? . 1

1.1.2 Definition of the problem: verification of MAS 4

1.1.3 Applications . 5

1.1.4 Structure of this thesis . 7

2 Background literature 9

2.1 Modal logics and multi-agent systems . 9

2.1.1 Syntax and axiomatic systems . 9

2.1.2 Kripke semantics . 11

2.1.3 Completeness and correspondence results 12

2.1.4 Extended Kripke semantics . 12

2.1.4.1 The temporal logic CTL 13

2.1.4.2 Other temporal logics . 15

2.1.4.3 ATL . 17

2.1.5 Many-dimensional modal logics . 19

2.1.5.1 Combining logics . 20

2.1.6 Complexity . 20

vi

2.1.6.1 The complexity of modal logics 24

2.1.7 MAS theories . 24

2.1.7.1 Interpreted systems . 28

2.1.7.2 Deontic interpreted systems 31

2.1.7.3 Reasoning about actions in interpreted systems 32

2.1.7.4 Why interpreted systems? 36

2.2 Model checking . 37

2.2.1 Problem definition . 37

2.2.2 Model checking techniques . 38

2.2.2.1 Fix-point characterisation of CTL 38

2.2.2.2 Ordered Binary Decision Diagrams 40

2.2.2.3 SAT-based translations . 44

2.2.2.4 Automata-based techniques 45

2.2.3 Model checking tools . 48

2.2.3.1 SPIN . 48

2.2.3.2 MOCHA . 49

2.2.3.3 SMV and NuSMV . 50

2.2.4 Review of other temporal model checkers 52

2.2.5 Complexity results for model checking 54

2.3 Model checking multi-agent systems: state of the art 58

2.3.1 Theoretical investigations . 58

2.3.2 Model checking tools for multi-agent systems 61

3 Model checking multi-agent systems using OBDDs 66

3.1 Problem definition . 66

3.2 Explicit verification using NuSMV and Akka 67

vii

3.3 Symbolic model checking of interpreted systems using OBDDs 69

3.3.1 Boolean encoding of deontic interpreted systems 69

3.3.2 Model checking temporal properties 71

3.3.3 Model checking epistemic properties 73

3.3.4 Model checking correct behaviour . 76

3.3.5 Model checking strategies . 77

3.3.6 Discussion . 78

4 The complexity of model checking multi-agent systems 80

4.1 The complexity of “explicit” model checking 80

4.2 The complexity of model checking compact representations 81

4.3 Discussion . 88

5 MCMAS 90

5.1 Overview . 90

5.2 The language ISPL . 93

5.2.1 General structure of an ISPL program 93

5.2.2 Formal syntax of ISPL . 94

5.3 Implementation details . 100

5.4 Usage . 101

6 Applications 103

6.1 The bit transmission problem (with faults) 103

6.2 The protocol of the dining cryptographers 107

6.2.1 A different encoding . 111

6.3 Strategic games . 112

6.3.1 A simple card game . 112

viii

6.3.2 RoadRunner and Coyote . 114

6.3.3 Nim . 117

6.4 Diagnosability and other specification patterns 118

6.4.1 Verification of recoverability . 120

6.5 Experimental results . 121

6.5.1 The bit transmission problem . 122

6.5.2 The protocol of the dining cryptographers 122

6.5.3 Strategic games . 123

6.5.4 Diagnosability . 124

6.5.5 Discussion . 125

7 Conclusion 128

7.1 Contribution . 128

7.2 Benefits and comparisons . 129

7.3 Future work . 130

References 132

ix

List of Figures

1.1 Definition of agent. 1

1.2 Structure of the thesis. 8

2.1 A Kripke model and corresponding computations. 15

2.2 Complexity classes. 23

2.3 A simple card game for ATEL. 33

2.4 The labelling algorithm. 39

2.5 The support procedure mcEX(ϕ,M). 39

2.6 The support procedure mcEG(ϕ,M). 39

2.7 The support procedure mcEU(ϕ1, ϕ2,M). 40

2.8 obdd example for f = x1 ∧ (x2 ∨ x3). 41

2.9 Automaton example. 46

2.10 Automaton for the formula Fp. 47

2.11 The automata-based model checking algorithm for LTL. 47

2.12 Structure of a PROMELA program. 49

2.13 Structure of SPIN. 50

2.14 Excerpts from a ReactiveModule program. 51

2.15 An SMV program for a 3 bit counter (from [Cimatti et al., 2002]). 52

2.16 A NuSMV session. 53

x

2.17 Structure of the MCK input language [Gammie and van der Meyden, 2004]. 64

3.1 Akka screen-shot. 68

3.2 The labelling algorithm for the temporal fragment of CTLK. 73

3.3 The support procedure mcCTLK,EX(ϕ,DIS). 73

3.4 The support procedure mcCTLK,K(ϕ, i,DIS). 75

3.5 The support procedure mcCTLK,E(ϕ,Γ,DIS). 75

3.6 The support procedure mcCTLK,D(ϕ,Γ,DIS). 75

3.7 The support procedure mcCTLK,C(ϕ,Γ,DIS). 76

3.8 The support procedure mcCTLK,O(ϕ, i,DIS). 76

3.9 The support procedure mcCTLK,KH(ϕ, i,Γ,DIS). 77

3.10 The support procedure mcCTLK,〈〈·〉〉X (ϕ,Γ,DIS). 77

3.11 Model checking procedure for Γ-uniform deontic interpreted systems. 78

3.12 The labelling algorithm for CTLKD−AD,A. 79

4.1 Input tape for the Turing machine T . 83

4.2 The main loop for the Turing machine T . 83

4.3 The machine TEX . 85

4.4 The machine TEU . 86

4.5 The machine TEG. 86

4.6 The machine TK . 87

5.1 High level description of mcmas. 91

5.2 ISPL reserved keywords. 95

5.3 A simple ISPL code. 99

5.4 Simple example of Cudd usage. 101

5.5 Excerpts from mcmas output. 102

xi

6.1 The bit transmission problem. 104

6.2 ISPL code for the bit transmission problem (excerpts). 108

6.3 ISPL code for the card game. 115

6.4 Diagram for RoadRunner and Coyote. 116

6.5 A circuit for diagnosability. 120

xii

List of Tables

2.1 Some common names for axioms. 10

2.2 Some common names for logics. 10

2.3 Classes of frames. 12

2.4 Some complexity classes and their definitions. 23

2.5 Interaction conditions and corresponding axioms for BDI logics. 26

2.6 Example of Boolean encoding. 42

2.7 The complexity of model checking for some temporal logics. 55

2.8 Program complexity of model checking for some temporal logics 56

2.9 The complexity of model checking concurrent programs. 56

2.10 Complexity of model checking for some perfect recall semantics. 60

6.1 Transition conditions for S. 105

6.2 Transition conditions for R. 106

6.3 Transition conditions for C2. 110

6.4 Transition conditions for P . 113

6.5 Space requirements for the bit transmission problem. 122

6.6 Running time for the bit transmission problem. 122

6.7 Space requirements for the dining cryptographers. 123

6.8 Running time for the protocol of the dining cryptographers. 123

xiii

6.9 Space requirements for strategic games. 124

6.10 Running time for strategic games. 124

6.11 Average verification results for diagnosability. 124

6.12 Experimental results for mcmas and VerICS. 127

xiv

Chapter 1

Preliminaries

1.1 Introduction

1.1.1 What is a multi-agent system?

Agent.

• A person who provides a particular service (Oxford Concise Dictionary).

• - noun: a noun denoting a person or thing that performs the action of a
verb (Oxford Concise Dictionary).

• A computer program that performs various actions continuously and au-
tonomously on behalf of an individual or an organisation (Encyclopaedia
Britannica).

• One who is authorised to act for or in the place of another, with delegated
authority (Merriam-Webster Dictionary). Examples: estate agent, secret
agent.

• In biology, (infectious) agents: a kind of virus (Encyclopaedia Britannica).

• In The Matrix, the term Agent is used for sentient programs that battle
the humans fighting for freedom
(from http://en.wikipedia.org/wiki/Agent, September 2005).

Figure 1.1: Definition of agent from various sources.

As can be seen from Figure 1.1, there is little agreement on the actual meaning of the

word agent. Thus, what is an agent? In this thesis, agents are investigated in the realm

of computer science. It has been observed by many computer scientists that, albeit a

1

Chapter 1 1.1 Introduction

definition able to gather general consensus is probably lacking even in this single discipline,

typically the term agent denotes an entity enjoying some form of autonomy and other

characteristics. Wooldridge and Jennings [Wooldridge and Jennings, 1995] identify the

following properties of an agent:

• Autonomy : an agent is capable of operating without external intervention.

• Social ability : an agent is capable of interacting with other agents and/or with its

environment.

• Reactivity : an agent is capable of responding to external changes.

• Pro-activity : an agent is capable of behaving accordingly to its goals.

Other stronger abilities are considered in [Wooldridge and Jennings, 1995]. In particular,

rationality (defined as the ability of an agent to act consistently with its goals) is often

assumed when reasoning about agents.

Examples of the use of agents in computer science include agents for automatic informa-

tion retrieval from the Internet, for e-commerce, for electronic auctions, and the infamous

Microsoft Office Assistant (which disappeared from standard installations as from Mi-

crosoft Office 2000). But agents are not limited to the software domain: the two NASA

rovers Spirit and Opportunity [S. W. Squyres et al., 2004a, S. W. Squyres et al., 2004b]

have been exploring Mars’s surface for more than two years. The two rovers operate on

different regions of the planet and must be able to act autonomously: indeed, communi-

cation between Earth and Mars takes at least 20 seconds, it is not always available due to

the rotation of both planets, and it is very limited in bandwidth (12 Kbit). Thus, rovers

are “instructed” at the beginning of each sol1 to perform a certain number of “tasks”

such as “move 5m towards that rock – operate the rock abrasion tool – operate the X-ray

spectrometer”. These tasks are executed autonomously, the results are returned to Earth

for processing and new instructions are uploaded.

RoboCup [Kitano, 1998] is another example of “hardware” agents: RoboCup, now in its

ninth edition, is a competition for teams of robotic agents playing football. Research in

this subject introduced a number of innovations for autonomy, real-time reasoning, and

collaborations of agents.

The reason for such a widespread use of the concept of agent in computer science is

probably our natural attitude of ascribing certain mental qualities to complex systems,

as noted by McCarthy in his seminal paper [McCarthy, 1979]. Indeed, as systems (both

hardware and software) have grown in recent years, so did the application of the agent

paradigm in a variety of different areas.

1A sol is a Martian day.

2

Chapter 1 1.1 Introduction

Similarly to molecular chemistry, agents are often investigated in “isolation”, as atoms

are modelled as single entities. Typically, however, agents (and atoms) interact to form

more complex structures. NASA’s Remote Agent (RA, [Muscettola et al., 1998]) is an

example of a multi-agent system [Wooldridge, 2002] for space exploration. RA is a complex

architecture, composed by a network of “small” agents, whose main component is an

autonomous planner and scheduler, designed to operate spacecrafts with minimal human

assistance. RA flew the experimental space craft DS1 between 17th and 21st of May 1999.

In this thesis the term multi-agent system (MAS) will denote a set of agents operating in

some environment [Wooldridge, 2002]. In some formalisms, including the one employed in

this thesis and the formalism of Fagin et al. [Fagin et al., 1995], the environment itself may

be modelled as an agent, thus allowing for a uniform description of a system of agents.

Multi-agent systems are employed in the description of complex scenarios, which can be

abstracted successfully by ascribing high level qualities to each agent in the system, and

by assuming that agents communicate and interact (possibly, in a rational way) with the

other agents. As noted above, Remote Agent [Muscettola et al., 1998] is an example of a

multi-agent system; many other research areas employ multi-agent systems, for instance

specification of communication and security protocols, distributed planning [Cox et al.,

2005], hardware diagnosability and recoverability, strategic games, etc. Some examples

from these domains are analysed in detail in this thesis.

The last fifteen years have seen a growing number of publications and conferences address-

ing issues related to agents and multi agent systems. How should an agent be formalised?

How should a system of agents be formalised? How should one reason about typical

agents’ stances, such as agents’ “knowledge”, beliefs, desires, etc.? How should one ex-

press properties of a single agent, and of a system of agents? This thesis takes a logic-based

approach for formalising agents; in particular, intentional attitudes of agents, in the sense

of [Dennett, 1987], are represented by means of modal operators and are interpreted us-

ing the standard Kripke semantics. Details of this approach and further discussion are

presented below.

For the purposes of this thesis, only computationally grounded [Wooldridge, 2000a] theories

for MAS will be considered. The notion of computationally grounded (logical) theory

of agency has been introduced in [Wooldridge, 2000a, Wooldridge and Lomuscio, 2000]:

intuitively, a logical theory for multi-agent systems is computationally grounded if the class

of (Kripke) models in which modalities are interpreted corresponds to the set of possible

computations of the multi-agent systems, meaning that modalities can be interpreted

directly on the set of possible computations.

It will be clear soon that computationally grounded theories of agency are essential for the

formal verification of multi-agent systems.

3

Chapter 1 1.1 Introduction

1.1.2 Definition of the problem: verification of MAS

Imagine a situation in which ESA (the European Space Agency) has sent a

rover to Venus for scientific exploration. The first day of scientific exploration

proceeds smoothly and at the end of the first (Venusian) day the rover is ready

to start its stand-by procedure for the night. At sunset, a controller is in

charge of sending a “switch-off” message to all the scientific instruments, and

of moving to a “stand-by” state, waiting for the sun to rise. The stand-by

state is entered when no more power is required by the on-board instruments.

At sunrise, as soon as the intensity of light is sufficient, the controller resumes

power and sends messages to resume scientific activity. Unfortunately, the

controller was designed for switching off scientific instruments only, and the

panoramic camera was not included as a “scientific” instrument. Thus, at

sunset the controller senses that an instrument (the camera) is still alive, it

does not move to a waiting state and, consequently, the next day it does not

send any message: the scientific instruments remain off. Scientific equipment

includes the antenna for communication with Earth: the system is deadlocked

and the mission fails on day two.

As technology allows for systems to grow bigger, verification, intended as the process

of verifying that a system satisfies its design requirements, has to play a central role

in any development process to avoid unwanted behaviours. Verification is even more

crucial in multi-agent systems, which are intrinsically more complex than “traditional”

distributed systems: by definition, MAS are employed to capture high level properties

of large, autonomous systems. Moreover, agents in MAS are often highly autonomous

and out of direct human control, as in the Venus rover scenario above. Hence, in such

scenarios, in-depth verification can save time and money, and improve security.

Historically, verification has played a prominent role in computer science, and particularly

in software engineering and hardware design, for nearly three decades; for instance, the

idea of formal verification via model checking (defined below) appears already in [Clarke

and Emerson, 1981] and in [Quielle and Sifakis, 1981]).

Verification encompasses a number of different techniques. Testing is the most common

verification technique. Verification is performed by running a number of test cases and

by checking that the required properties hold in all tested runs. Many techniques are

available for testing [Beizer, 1990], for instance top-down testing, thread testing, syntax-

testing, etc. One of the main problems of testing is to devise a sensible set of test cases:

in the example of the Venus rover, testing might not find the deadlock, unless test cases

included a multi-day test.

This thesis will not be concerned with the problem of testing multi-agent systems; instead,

the problem of formal verification for multi-agent systems will be investigated. Formal

4

Chapter 1 1.1 Introduction

verification is a class of logic-based techniques, which include theorem proving and model

checking. In particular, model checking is an automatic technique that has been proven

effective in a number of instances (details of this are introduced in Section 2.2).

The aim of this research work is to apply model checking techniques to multi-agent systems;

more in detail, the objectives of this thesis are:

• To investigate model checking techniques for the verification of multi-

agent systems: this task comprises the development of algorithms for model check-

ing, and the analysis of the complexity of the problem of model checking for MAS.

• To develop a model checker for MAS: this task consists in the development of

a software tool for model checking multi-agent systems.

• To apply the tool for the verification of typical MAS examples: in this

task, examples from the multi-agents systems literature are verified with the tool

developed in the previous task.

Correspondingly, the outcomes of this research work presented in this thesis are:

• Theoretical results about model checking MAS (algorithms and complexity results).

• mcmas (Model Checking for Multi-Agent Systems), a tool for the verification of

multi-agent systems.

• Experimental results obtained by running mcmas on a set of examples.

These outcomes are presented according to the structure presented in Section 1.1.4.

1.1.3 Applications

Automatic tools for model checking have been employed successfully in the formal verifi-

cation of various scenarios. Originally, the aim of model checking was the verification of

hardware circuits [Burch et al., 1992, McMillan, 1993]; indeed, even today, this remains

one of the most common applications of model checking in industry [Biere et al., 1999b]).

Applications of “traditional” model checking for temporal logics, however, comprise the

verification of other scenarios, including:

• Communication and security protocols: the model checker SPIN [Holzmann, 1997] is

a model checker specifically designed for the verification of protocols. Model checking

of security protocols has been investigated by many authors, starting from the mid

90’s [Marrero et al., 1997]; more references are provided in Section 2.3.

5

Chapter 1 1.1 Introduction

• Software: traditionally, software programs have been verified using testing tech-

niques. In recent years various suggestions have been put forward for the automatic

verification of software. Java PathFinder [Brat et al., 2000], a tool for the automatic

verification of Java programs using model checking, is an example of these efforts.

• Diagnosability: diagnosability is the ability of some component in a system to diag-

nose the state of some other component. For instance, the ability of a controller in

a plant to detect faults is an example of diagnosability. In critical applications it is

essential that controllers are always able to diagnose the state of certain components.

It has been shown [Cimatti et al., 2003] that diagnosability can be verified by means

of model checking.

In general, model checking enables the formal verification of a variety of specification

patterns [Dwyer et al., 1998] in distributed systems. Traditionally, these patterns are

expressed using temporal logic formulae; for instance, liveness and safety are two well

known examples of temporal patterns. Many other patterns are investigated in [Dwyer

et al., 1998], which allow for a formal representation of a number of requirements.

This thesis investigates model checking for multi-agent systems: applying model checking

techniques to logic-based MAS formalisms introduces a number of benefits with respect

to “traditional” model checking, and allows for new applications. Benefits and new appli-

cations include:

1. Direct verification (i.e., without translation into existing model checkers). The

need for MAS verification grows in parallel with the use of the multi-agent paradigm

for modelling scenarios. Nevertheless, translating complex systems formalised as a

MAS into a formalism suitable for the “traditional” model checkers that are available

may not be straightforward, and it is prone to errors. Model checking MAS, instead,

allows for the direct verification of typical MAS scenarios.

2. Richer expressivity. Some requirements are more naturally expressed using in-

tentional stances, such as knowledge. For instance, in communication protocols it

is natural to reason about “knowledge” of certain messages. In this sense, model

checking MAS allows for the verification of requirements that may not be expressed

easily as temporal patterns.

3. Improved efficiency. Model checking MAS can improve the efficiency of verifica-

tion even for traditional model checking. This is the case, for instance, with diag-

nosability. Section 6.4 introduces a non-temporal characterisation of diagnosability

using agents that can reduce the size of the model being verified.

Chapter 6 motivates in further details the points above by exploring various MAS exam-

ples.

6

Chapter 1 1.1 Introduction

1.1.4 Structure of this thesis

This work presents theoretical results about model checking multi-agent systems, the

implementation of a model checker for MAS, and applications of the model checker to

various examples. The overall structure of the thesis is depicted in Figure 1.2. Specifically:

• Chapter 1 provides a motivational introduction.

• Chapter 2 summarises some background material on modal logics, multi-agent sys-

tem theories, and model checking. This material enables the introduction of some

technical details in Section 2.3, which contains a literature review of model checking

in multi-agent systems.

• Chapter 3 presents an OBDD-based methodology for model checking multi-agent

systems described in the formalism of interpreted systems. Model checking algo-

rithms are presented for the verification of various modalities.

• Chapter 4 presents complexity results about model checking multi-agent systems,

both for “explicit” model checking and for “symbolic” model checking.

• Chapter 5 describes the language ISPL (Interpreted Systems Programming Lan-

guage, a language for describing multi-agent systems and their requirements), and

introduces the implementation of the model checker mcmas (Model Checking for

Multi-Agent Systems).

• Chapter 6 analyses various applications of mcmas to communication and security

protocols, to strategic games, and to diagnosability and recoverability. Experimental

results are presented and, where possible, they are compared to other model checkers.

Chapter 7 assesses the results obtained, presents open issues and sketches possible exten-

sions of this work.

7

Chapter 1 1.1 Introduction

ApplicationsMCMAS
Checking MAS

Complexity of ModelModel Checking MAS
with OBDDs

Conclusion

CORE RESULTS

Chapter 1

Introduction
Modal Logic and MAS Model Checking

Literature Review

Chapter 2

Chapter 3 Chapter 4 Chapter 5 Chapter 6

Chapter 7

Figure 1.2: Structure of the thesis.

Publication note: All the results presented in this thesis are the outcome of the author’s

own research, except where explicitly stated. The majority of the results have also been

published in the proceedings of various international conferences and workshops.

In particular, part of Section 2.1.7.3 appears in [Raimondi and Lomuscio, 2005c, Lomuscio

and Raimondi, 2006c].

The material in Chapter 3 appeared, in a shorter version, in [Raimondi and Lomuscio,

2004c, Raimondi and Lomuscio, 2004b, Raimondi and Lomuscio, 2005c, Raimondi and

Lomuscio, 2005a, Lomuscio and Raimondi, 2006b].

The complexity results appearing in Chapter 4 have been presented in [Raimondi and

Lomuscio, 2005b, Lomuscio and Raimondi, 2006a].

The basic implementation of mcmas has been presented in [Raimondi and Lomuscio,

2004d]; extensions of mcmas appear in [Raimondi and Lomuscio, 2004a, Raimondi and

Lomuscio, 2005c, Raimondi and Lomuscio, 2005a, Lomuscio and Raimondi, 2006b]. Chap-

ter 5 presents this material in a uniform way.

The examples and experimental results appearing in Chapter 6 have been presented in

[Raimondi and Lomuscio, 2004c, Raimondi and Lomuscio, 2004b, Raimondi and Lomuscio,

2005a, Raimondi et al., 2005]. The examples of diagnosability in Section 6.4 have been

investigated initially by Charles Pecheur and Franco Raimondi at NASA Ames Research

Center.

8

Chapter 2

Background literature

2.1 Modal logics and multi-agent systems

The model checking techniques presented in Chapter 3 rely on the logic-based character-

isation of multi-agent systems. This section introduces the relevant background of modal

logic that shall be used in the remainder of the thesis. The material presented below sum-

marises standard results appearing in [Chellas, 1980, Goldblatt, 1992, Blackburn et al.,

2001, Gabbay et al., 2003].

Following the modal logic introduction, this section introduces complexity theory, sum-

marises various logic-based MAS theories, and it presents the formalism of interpreted

systems [Fagin et al., 1995].

2.1.1 Syntax and axiomatic systems

Let P be a countable set of atomic formulae, usually denoted by p, q, The language

L of propositional modal logic is defined by the set of well-formed formulae ϕ ∈ L:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 2ϕ.

Other operators are introduced in a standard way. In particular, 3ϕ = ¬2¬ϕ, ϕ ∧ ψ =

¬(¬ϕ ∨ ¬ψ), ⊥ = p ∧ ¬p, ⊤ = ¬⊥, and p =⇒ q = ¬(p ∧ ¬q). Possible readings of the

formula 2ϕ are “It is necessarily true that ϕ”, “It will always be true that ϕ”, “It ought

to be that ϕ”, “It is known that ϕ”. In the following sections other symbols may be used

for the modal operator 2, including K (to be read “it is known that”) and O (to be read

“it ought to be that”).

A schema is a set of formulae all having the same syntactic form. For example, the schema

9

Chapter 2 2.1 Modal logics and multi-agent systems

D: 2A =⇒ 3A

T: 2A =⇒ A

4: 2A =⇒ 22A

5: ¬2A =⇒ 2¬2A

Table 2.1: Some common names for axioms.

Name Axioms

S4 KT4

S5 KT5

Table 2.2: Some common names for logics.

2A =⇒ A is the set of formulae:

{2B =⇒ B : B ∈ L}.

A logic is a set L ⊆ L such that

• L includes all tautologies of propositional logic.

• L is closed under Modus Ponens, i.e., if A,A =⇒ B ∈ L, then B ∈ L.

Members of L are called theorems and it is usually written L ⊢ ϕ when ϕ ∈ L.

A logic is normal if:

• it contains the schema

K : 2(A =⇒ B) =⇒ (2A =⇒ 2B);

• it is closed under necessitation, i.e.,

if L ⊢ A, then L ⊢ 2A.

The smallest normal logic is denoted1 by K. Following standard conventions, KX1 . . .Xn

denotes the smallest normal logic containing the schemata X1 . . . Xn; these schemata are

also called the axioms of the logic. Table 2.1 lists the names of some common axioms.

Table 2.2 lists the names of some common logics.

Notice that a logic L is identified by a set of axioms and by a set of inference rules. For

instance, the logic K is identified by the axiom 2(A =⇒ B) =⇒ (2A =⇒ 2B), by all

propositional tautologies, and by the rules modus ponens and necessitation.

1Notice that the same symbol is used to denote a schema and a logic. It should be clear from the
context which is the intended meaning.

10

Chapter 2 2.1 Modal logics and multi-agent systems

Such a set of axioms together with the set of rules, is usually denoted with the name of

Hilbert-style inference system, or with the name of axiomatic system. In this sense, L ⊢ ϕ

is usually read as “ϕ is derivable from the axioms of L”, i.e., ϕ can be derived from the

axioms using appropriate inference rules of the logic L.

2.1.2 Kripke semantics

Formulae of propositional logic are interpreted by assigning a value true (⊤) or false (⊥) to

atomic formulae (also denoted with the term Boolean variables), by means of an evaluation

function V : P → {⊤,⊥}. In contrast, the interpretation of modal formulae requires more

complex structures, known as Kripke models2.

Given a set of Boolean variables P , a (Kripke) model is a tuple M = (W,R, V), where W

is a set of possible worlds, R ⊆W ×W is a binary relation (the accessibility relation), and

V : W → 2P is an evaluation function assigning sets of Boolean variables to possible worlds

(intuitively, this is the set of variables true at a possible world). Notice that, equivalently,

V could be defined as a relation V ⊆W × P .

It is usually written M,w |= ϕ when a modal formula ϕ is true (or holds, or it is satisfied)

at world w in a model M . |= is defined inductively as follows:

M,w |= p iff p ∈ V (w);

M,w |= ¬ϕ iff M,w 6|= ϕ;

M,w |= (ϕ ∨ ψ) iff M,w |= ϕ or M,w |= ψ;

M,w |= 2ϕ iff for all w′ ∈W , wRw′ implies M,w′ |= ϕ.

Intuitively, 2ϕ is true at a world w in a model M if ϕ is true at all worlds w′ that are

accessible via R from w.

A formula ϕ is true in a model M , denoted by M |= ϕ, if M,w |= ϕ for all w ∈W (some

authors say that, in this case, ϕ is valid in M).

A frame F is a pair F = (W,R), where W is a set of worlds and R ⊆W ×W is a binary

relation. Thus, a model can be seen as a pair M = (F, V), where V is an evaluation

function as above; in this case, the model M is said to be based on F . A formula is valid

in a frame F , denoted with F |= ϕ, if M |= ϕ for all possible models M based on F .

2In fact, other semantics are possible for modal formulae. In this thesis, the semantics for temporal and
strategy operators is introduced in Section 2.1.4, and the semantics of interpreted systems is introduced in
Section 2.1.7.1. Other semantics are possible, e.g., modal algebras [Gabbay et al., 2003].

11

Chapter 2 2.1 Modal logics and multi-agent systems

Logic Class of frames

K All frames

KD Serial frames

KT Reflexive frames

S4 = KT4 Transitive and reflexive frames

S5 = KT5 Transitive, reflexive and symmetric frames

Table 2.3: Classes of frames.

2.1.3 Completeness and correspondence results

Let C be a class of frames, for instance the class of all frames with a finite number of

worlds, or the class of all frames in which the accessibility relation is serial (see below).

A formula ϕ is valid in a class of frames C, denoted with C |= ϕ, if F |= ϕ for all frames

F ∈ C.

A logic L (in the sense of Section 2.1.1) is sound with respect to a class of frames C if, for

every formula ϕ, L ⊢ ϕ implies C |= ϕ. A logic L is complete with respect to a class of

frames C if C |= ϕ implies L ⊢ ϕ. A logic L is determined by C if L is sound and complete

with respect to C. Equivalently, it is also said that a logic L corresponds to a class of

frames C.

Kripke semantics are particularly attractive because many modal logics correspond to

simple classes of frames, defined by imposing particular requirements to the accessibility

relation R. A relation R ⊆W ×W is

• Reflexive if, for all w ∈W , wRw.

• Symmetric if, for all w,w′ ∈W , wRw′ implies w′Rw.

• Transitive if, for all w,w′, w′′ ∈W , wRw′ and w′Rw′′ imply wRw′′.

• Serial if, for all w ∈W , there exists w′ ∈W such that wRw′.

A relation R is an equivalence relation if it is reflexive, symmetric, and transitive. A frame

is reflexive (resp.: symmetric, transitive, serial) if its accessibility relation is reflexive (resp.:

symmetric, transitive, serial). Some well-known correspondence results are presented in

Table 2.3 (more details and formal proofs can be found in [Chellas, 1980, Goldblatt, 1992]).

2.1.4 Extended Kripke semantics

The interpretation of the 2 operator is not necessarily limited to the evaluation of a

single-step accessibility relation. This is the case, for example, with modal operators to

12

Chapter 2 2.1 Modal logics and multi-agent systems

reason about time, and with modal operators to reason about strategies. This section

introduces various semantics for these operators, and analyses their correspondence with

Kripke semantics.

2.1.4.1 The temporal logic CTL

Given a countable set P of atomic formulae, the language LCTL of Computational Tree

Logic (CTL, [Clarke and Emerson, 1981, Emerson, 1990]) is defined by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E[ϕUϕ].

In this definition, p ∈ P is an atomic formula; EXϕ is read “there exists a path such

that at the next state ϕ holds”; EGϕ is read “there exists a path such that ϕ holds

globally along the path”; E[ϕUψ] is read “there exists a path such that ϕ holds until ψ

holds”. Notice that CTL operators are composed of a pair of symbols: the first symbol is

a quantifier over paths (E), while the second symbol expresses some constraint over paths.

Also, notice that EU is a binary operator, sometimes written as EU(ϕ,ψ).

Traditionally, the syntax of CTL includes the following operators as well:

EFϕ,AXϕ,AGϕ,A[ϕUψ], AFϕ. These are read, respectively: “there exists a path such

that ϕ holds at some future point”; “for all paths, in the next state ϕ holds”; “for all

paths, ϕ holds globally”; “for all paths, ϕ holds until ψ holds”; “for all paths, ϕ holds

at some point in the future”. These additional CTL operators can be used to ease the

specification process of various requirements but they are in fact definable in terms of the

(minimal) set of CTL operators EX,EG,EU (see below).

The semantics of CTL is given in terms of transition systems: a transition system T =

(S,Rt, V) is a tuple in which S is a set of states, Rt ⊆ S×S is a transition relation, and V :

S → 2P is an evaluation function. The transition relation Rt models temporal transitions

between states: given two states s and s′ of S, sRts
′ means that s′ is an immediate

successor of s. It is usually assumed that every state has a successor, i.e., the transition

relation Rt is serial3. A path π in T is an infinite sequence of states π = (s0, s1, . . .) such

that siRtsi+1 for all i ≥ 0; the i-th state in the path is denoted by π(i). CTL formulae

are interpreted at a state s in a transition system T as follows:

3In this thesis, all transition systems are assumed to be serial; non-serial transition systems are analysed
in [Pucella, 2005].

13

Chapter 2 2.1 Modal logics and multi-agent systems

T, s |= p iff p ∈ V (s);

T, s |= ¬ϕ iff T, s 6|= ϕ;

T, s |= ϕ1 ∨ ϕ2 iff T, s |= ϕ1 or T, s |= ϕ2;

T, s |= EXϕ iff there exists a path π such that π(0) = s and T, π(1) |= ϕ;

T, s |= EGϕ iff there exists a path π such that π(0) = s and T, π(i) |= ϕ

for all i ≥ 0;

T, s |= E[ϕUψ] iff there exists a path π and a k ≥ 0 such that π(0) = s and

T, π(k) |= ψ and T, π(i) |= ϕ for all 0 ≤ i < k.

T |= ϕ denotes that the formula ϕ holds in all states s ∈ S (notice that some authors

include a set of initial states I ⊆ S in the definition of a transition system, and they write

T |= ϕ if T, s |= ϕ for all states s ∈ I).

Given the semantics above, the following equivalences hold for CTL [Huth and Ryan,

2004]:

EFϕ ≡ E[⊤Uϕ];

AXϕ ≡ ¬EX¬ϕ;

AGϕ ≡ ¬EF¬ϕ;

A[ϕUψ] ≡ ¬(E[¬ψU(¬ϕ ∧ ¬ψ)] ∨EG¬ψ);

AFϕ ≡ A[⊤Uϕ] ≡ ¬EG¬ϕ.

These equivalences show that all the CTL operators can be expressed using EX,EG, and

EU only.

It is worth noticing that a transition system is a Kripke model. The difference between

CTL semantics and traditional Kripke semantics lies in how the Kripke model is used:

in Kripke semantics, formulae are interpreted directly on the model, while CTL formulae

are interpreted on the possible computations arising from the model. Figure 2.1 shows a

transition system without evaluation function (or, equivalently, a Kripke frame) on the

left-hand side, and the initial branching structure of the corresponding computations on

the right-hand side.

It is possible to provide an axiomatic system for CTL and, using non-standard techniques,

it is possible to prove that CTL is sound and complete with respect to the class of serial

frames (this result was established in [Emerson and Halpern, 1985]). A detailed discussion

of this matter is beyond the scope of this thesis; more details can be found in [Emerson

and Halpern, 1985, Goldblatt, 1992].

14

Chapter 2 2.1 Modal logics and multi-agent systems

s0 s1 s2

s0

s1

s1
s2

s1 s2 s1

s1 s2
s1 s1 s2

Figure 2.1: A Kripke model (left) and corresponding computations (right).

2.1.4.2 Other temporal logics

This thesis is concerned mainly with branching time structures à la CTL, but other tem-

poral semantics are sometimes referenced. This section summarises briefly the temporal

logics LTL, and µ-calculus.

LTL: In contrast to CTL, Linear Temporal Logic (LTL, [Pnueli, 1981]) is a logic to reason

about linear sequences of states. The language LLTL of LTL is defined in terms of a set

of atomic propositions P , as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUψ | Gϕ.

Traditionally, the unary operator F is included in the syntax, even if it can be derived

from G:

Fϕ ≡ ¬G¬ϕ.

LTL formulae are interpreted in a transition system T = (S,Rt, V, I), where S, Rt, and V

are defined as in CTL, and I ⊆ S is a set of initial states. Similarly to CTL, a path π is

an infinite sequence of states π = (s0, s1, . . .) such that siRtsi+1 for all i ≥ 0. The “tail”

of a path starting from a state si is denoted by πi, i.e., πi = (si, si+1, . . .). Satisfaction

of a formula ϕ with respect to a path π in a transition system T is defined inductively as

follows:

15

Chapter 2 2.1 Modal logics and multi-agent systems

T, π |= p iff p ∈ V (π(0));

T, π |= ¬ϕ iff T, π 6|= ϕ;

T, π |= ϕ1 ∨ ϕ2 iff T, π |= ϕ1 or T, π |= ϕ2;

T, π |= Xϕ iff T, π1 |= ϕ;

T, π |= (ϕUψ) iff there exists a k such that πk |= ψ and πi |= ϕ for all 0 ≤ i < k;

T, π |= Gϕ iff πk |= ϕ for all k ≥ 0.

It is written T |= ϕ when a formula ϕ holds in all paths starting from an initial state.

µ-calculus: propositional µ-calculus [Kozen, 1983] is a modal logic extended with opera-

tors for least and greatest fix-points of formulae. Given a set P of atomic formulae and a

set V of variables, µ-calculus formulae are defined as follows4:

ϕ ::= p | v | ¬p | ϕ ∨ ϕ | 2ϕ | 3ϕ | µy.ϕ(y) | νy.ϕ(y).

In the definition above, p ∈ P is an atomic formula, v ∈ V is a variable, the unary operators

2 and 3 are the standard modal operators, µ and ν are the least and greatest fix-point

operators. The expression µy.ϕ(y) denotes the least fix-point of ϕ(y), where y is a free

variable appearing in ϕ.

Formulae of µ-calculus are interpreted in a transition system T = (S,R, V, V al), where

V : P → 2S is an evaluation function which assigns sets of states to atomic formulae, and

V al : V → 2S is an evaluation function from variables to sets of states. Given a transition

system T and a µ-calculus formula ϕ, the set of states in which ϕ holds, denoted by [[ϕ]],

is defined inductively as follows5:

[[p]] = V (p);

[[v]] = V al(v);

[[¬p]] = S\V (p);

[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]];

[[2ϕ]] = {s ∈ S : for all s′ ∈ S such that sRs′, s′ ∈ [[ϕ]]};

[[3ϕ]] = {s ∈ S : there exists s′ ∈ S such that sRs′ and s′ ∈ [[ϕ]]};

[[µy.ϕ(y)]] =
⋂
{Q ⊆ S : [[ϕ]]V al[y←Q] ⊆ Q};

[[νy.ϕ(y)]] =
⋃
{Q ⊆ S : Q ⊆ [[ϕ]]V al[y←Q]}.

In the definition above, V al[y ← Q] is an evaluation function such that V al[y ← Q](y) =

Q, and V al[y ← Q](z) = V al(z) if z 6= y.

Propositional µ-calculus strictly subsumes CTL, in the sense that all CTL formulae

can be recasted in terms of fix-points operations and any CTL model corresponds to a

model for µ-calculus. In Section 2.2, the model checking algorithm for CTL relies on the

4For technical reasons, in this syntax negation is allowed only for atomic proposition. This restriction
does not affect expressivity; more details can be found in [Kozen, 1983].

5Notice that [[·]] depends on T , and thus it should be written [[·]]T . The subscript will be omitted when
the transition system is clear from the context.

16

Chapter 2 2.1 Modal logics and multi-agent systems

characterisation of CTL operators in terms of fix-point.

2.1.4.3 ATL

Alternating-time Temporal Logic (ATL) is a logic introduced in [Alur et al., 1997, Alur

et al., 2002] to reason about strategies in multi-player games. Given a set of atomic

formulae P , the language LATL of ATL is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈Γ〉〉Xϕ | 〈〈Γ〉〉Gϕ | 〈〈Γ〉〉[ϕUψ].

In the previous expression, Γ is a group of players. The formula 〈〈Γ〉〉Xϕ is read as “group

Γ can enforce a next state in which ϕ holds” or, equivalently, “group Γ has a strategy

to enforce Γ in the next state”. Similarly, 〈〈Γ〉〉Gϕ is read as “group Γ has a strategy to

enforce a sequence of states in which ϕ holds globally”, and 〈〈Γ〉〉[ϕUψ] is read as “group

Γ can enforce a sequence of states in which ψ eventually holds, and ϕ holds until then”.

As in the case of CTL, the operator F can be used as an abbreviation for 〈〈Γ〉〉[⊤Uϕ].

ATL formulae are interpreted in concurrent game structures. A concurrent game structure

is a tuple C = (k, S, δ, d, V), where:

• k is a natural number, the number of players.

• S is a set of states6.

• δ is a transition function (see below).

• d : {1, . . . , k}×S → IN is a function assigning a natural number to a player number

and a state. Intuitively, this is the number of moves available to a player in a given

state.

• V : S → 2P is an evaluation function from states to sets of propositions.

Three kinds of concurrent game structures are identified in [Alur et al., 2002], based on

the properties of the transition function δ.

• In turn-based synchronous game structure “only a single player has a choice

of moves” at every time step [Alur et al., 2002]. Formally, for every state s ∈ S,

d(i, s) = 1 for all players but one. In this case, the function δ : S× IN → S assigns a

“next” state to a “current” state and a natural number, which represents the move

chosen by the moving player.

6This set is required to be finite in [Alur et al., 2002].

17

Chapter 2 2.1 Modal logics and multi-agent systems

• In Moore synchronous game structures all players evolve simultaneously. The

state space S is the Cartesian product of “local” state spaces S1, . . . , Sk, one for

each player, i.e., S = S1 × . . . Sk. A transition function δi : S × IN → Si, i =

{1, . . . , k} is defined for every player, assigning a “local” state to a state and to a move

identifier for player i. The “global” transition function is defined by δ(s, i1, . . . , ik) =

(δ1(q, i1), . . . , δk(q, ik)). In the previous expression, the natural numbers ij , (j ∈

{1, . . . , k}) are the identifier of the moves chosen by each player in a given state,

such that ij < dj(s) for all j ∈ {1, . . . , k} and s ∈ S.

• In turn-based asynchronous games structures, a scheduler selects a player to

perform a move, and the evolution proceeds similarly to turn-based synchronous

systems. The scheduler is modelled using one of the players, usually player k. This

thesis is not concerned with turn-based asynchronous systems: more details about

this approach can be found in [Alur et al., 2002].

A strategy for an agent i is a function fi assigning a natural number to a non-empty

sequence of states λ ∈ S+, with the constraint that if s is the last state of λ, then

fi(λ) ≤ d(i, s). Intuitively, a strategy determines the moves of a player at any given state,

based on the player’s history. By following a strategy fi a player may enforce a certain

set of computations. Given a state s ∈ S, a set Γ ⊆ {1, . . . , k} of players, and a set of

strategies FΓ = {fi : i ∈ Γ}, the set out(s, FΓ) is the set of computations that players in Γ

can enforce. Based on these definitions, the semantics for ATL is defined in [Alur et al.,

2002] as follows:

C, s |= p iff p ∈ V (s);

C, s |= ¬ϕ iff s 6|= ϕ;

C, s |= ϕ1 ∨ ϕ2 iff C, s |= ϕ1 or C, s |= ϕ2;

C, s |= 〈〈Γ〉〉Xϕ iff there exists a set of strategies FΓ such that, for all computations

π ∈ out(s, FΓ) it is the case that C, π(1) |= ϕ;

C, s |= 〈〈Γ〉〉Gϕ iff there exists a set of strategies FΓ such that, for all computations

π ∈ out(s, FΓ) and for all j ≥ 0, it is the case that C, π(j) |= ϕ;

C, s |= 〈〈Γ〉〉[ϕUψ] iff there exists a set of strategies FΓ such that, for all computations

π ∈ out(s, FΓ) there exists a j ≥ 0 such that C, π(j) |= ψ and,

for all 0 ≤ k < j, it is the case that C, π(k) |= ϕ.

Notice that it is possible to see ATL as an extension of the logic CTL (see [Alur et al.,

2002] for details). Also, see [Goranko and Jamroga, 2004] for various comparisons on

semantics for ATL.

18

Chapter 2 2.1 Modal logics and multi-agent systems

2.1.5 Many-dimensional modal logics

The logics described in Section 2.1.2 include a single modal operator 2, which may be used

to reason about a single stance of a single agent. Richer formalisms are needed when rea-

soning about multi-agent systems: this section describes many-dimensional modal logics,

which may provide a formal account of a system of agents and their stances, as illustrated

in Section 2.1.7.

Formally, given a natural number n ∈ IN , the language Ln of n-dimensional modal logic

is defined over a set of atomic propositions P by the following rule:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 21ϕ | . . . | 2nϕ.

Similarly to the mono-modal case, other operators are introduced in the standard way; in

particular, 3iϕ = ¬2i¬ϕ.

The axiomatic characterisation of n-dimensional modal logic is analogous to the mono-

modal one. An n-dimensional normal modal logic L is a set L ⊆ Ln such that:

• L includes all tautologies of propositional logic.

• L is closed under Modus Ponens, i.e., if A,A =⇒ B ∈ L, then B ∈ L.

• L contains the n schemata

Ki : 2i(A =⇒ B) =⇒ (2iA =⇒ 2iB) (i ∈ {1, . . . , n}).

• L is closed under necessitation, i.e.,

if L ⊢ A, then, for all i, L ⊢ 2iA.

The smallest n-dimensional normal logic is denoted by Kn.

Kripke models can provide a semantics for n-dimensional modal logic, too: a Kripke

model for an n-dimensional modal logic is a tuple M = (W,R1, . . . , Rn, V), where

W is a set of possible worlds, Ri ⊆ W × W (i ∈ {1, . . . , n}) are n accessibil-

ity relations, and V : W → 2P is an evaluation function. Given a Kripke model

M , a world w, and a formula ϕ, satisfaction in a given state is defined as follows:
M,w |= p iff w ∈ V (p);

M,w |= ¬ϕ iff M,w 6|= ϕ;

M,w |= (ϕ ∨ ψ) iff M,w |= ϕ or M,w |= ψ;

M,w |= 2iϕ iff for all w′ ∈W , wRiw
′ implies M,w′ |= ϕ.

A frame for an n-modal logic is a tuple F = (W,R1, . . . , Rn). All the remaining conventions

are analogous to the mono-modal case.

19

Chapter 2 2.1 Modal logics and multi-agent systems

2.1.5.1 Combining logics

Multi-modal logics can be constructed by combining “smaller” logics in various ways:

see [Gabbay et al., 2003] and references therein for the numerous techniques available.

For the purposes of this thesis, only the fusion (or independent join) of two logics is

summarised below.

The fusion of two logics is denoted by L1⊗L2. Given two logics L1 and L2, their languages

L1 and L2, and their corresponding axiomatic systems H1 and H2, the logic L1 ⊗ L2 is

the smallest logic with the following characteristics:

• The language LL1⊗L2
is the union of LL1

and LL2
(it is assumed that LL1

and LL2

have disjoint sets of modal operators).

• The logic L1 ⊗ L2 is axiomatised by the set of axioms H1 ∪ H2. Notice that this

implies that no “interaction” axiom is required, i.e., there is no axiom involving

mixed modalities.

If L1 and L2 are interpreted in Kripke frames F1 = (W,R1
1, . . . , R

1
n) and F2 =

(W,R2
1, . . . , R

2
m) the semantics for L1 ⊗ L2 can be defined in the Kripke frame F =

(W,R1
1, . . . , R

1
n, R

2
1, . . . , R

2
m) obtained by the “fusion” of the two frames F1 and F2.

Fusions of logics are particularly important because the operation of fusion preserves

various property of the original logics. For instance, soundness and completeness are

preserved, as well as decidability. In the case of multi-agent systems the operation of fusion

allows to extend, in certain circumstances, to a system of agents the results obtained for

a single agent.

An example of a logic obtained by fusion is the n-dimensional normal logic Kn, which

is the fusion of n copies of the logic K, i.e., Kn = K ⊗ · · · ⊗ K. Another example of

fusion is the logic CTLK, which is the fusion of the logic CTL with the logic S5 [Fagin

et al., 1995, Penczek and Lomuscio, 2003]: typically, the modal operator of S5 formalises

epistemic concepts. Thus, CTLK is a logic used to reason about knowledge and time.

Other examples of fusions are provided in Section 2.1.7.

2.1.6 Complexity

This section fixes the notation to reason about the complexity of decision problems and it

is based on material from [Papadimitriou, 1994]. A decision problem is a problem which

requires an answer of the form “yes” or “no”. The reachability problem is an example

of a decision problem; given a graph G = (V,E) (where V is a set of vertices and E is a

20

Chapter 2 2.1 Modal logics and multi-agent systems

set of edges), and two vertices v1, v2 ∈ V , reachability is the problem of establishing

whether or not there is a path from v1 to v2
7.

Turing machines offer a uniform framework to reason about the complexity of the algo-

rithms employed in decision problems. A Turing machine operates on a string of symbols

(the tape) by moving a cursor on the string and by reading/writing/overwriting symbols

on the tape at the cursor position. Formally, a Turing machine is a tuple M = (S,Σ, δ, s),

where:

• S is a finite set of states;

• Σ is a finite set of symbols, disjoint from S, called the alphabet of M . The set

Σ includes the special symbols ⊔ and �, denoting a blank symbol and the “first”

symbol;

• δ : S × Σ → (S ∪ {yes,no,h} × Σ × {←,→,−} is a transition function. The states

{yes,no,h} are special halting states of M , and the symbols {←,→,−} denote cursor

directions. The function δ is the program of the machine;

• s ∈ S is the initial state of M .

If, given an input string x ∈ (Σ\⊔)∗, a machine M halts in any of the halting states

{yes,no}, then it is said that the machine has halted. If a machine halts in a “yes” state,

then it is said that the machine accepts the input x and, by convention, it is written

M(x) = yes. If a machine halts in a “no” state, then it is said that the machine rejects

the input x and it is written M(x) = no. If the machine halts in the “h” state, the output

M(x) of M is defined to be the string on the tape at the moment of halting. If a machine

does not halt on input x it is written M(x) =ր.

A language L ⊆ Σ∗ is decided by a Turing machine M if, for all strings x ∈ L, M(x) = yes

and, for all strings y 6∈ L, M(x) = no. If a language L is decided by some Turing machine,

then L is said to be recursive.

A language L ⊆ Σ∗ is accepted by a Turing machine M if, for all strings x ∈ L, M(x) = yes

(notice that M is not required to halt when x 6∈ L). If a language L is accepted by some

Turing machine, then L is said to be recursively enumerable.

Turing machines can be generalised to multi-string Turing machines: a k-string Turing

machine (where k ≥ 1 is an integer) is a tuple M = (S,Σ, δ, s), where S and Σ are as

above, and the transition function δ takes into account the k strings of M . Formally,

7Notice that, in some classical examples, a problem is not presented as a decision problem. This is
the case, for instance, with the “travelling salesman problem” (tsp). Such problems, however, can be
presented in a decisional form. As an example, the decisional version of tsp is obtained by providing a
bound B on the length of the tour of the salesman, and by asking whether or not there exists a tour of
length B at most.

21

Chapter 2 2.1 Modal logics and multi-agent systems

δ : S×Σk → (S∪{yes,no,h}× (Σ×{←,→,−})k . Intuitively, δ prescribes the next symbol

and the next movement of the cursor for each string. At the start of each run all strings

start with the symbol �, and the first string contains the input. The output of a k-string

Turing machine is stored in the last string. A configuration of a k-string Turing machine

is a (2k + 1) tuple (s, σ1, σ
′
1, . . . , σk, σ

′
k), defined as for single tape Turing machines.

The time required to halt by a (multi-string) Turing machine M on input x is defined as

the number of steps from the initial state to the halting state. If M(x) =ր, then the

time is +∞. A machine M operates in time f(n) where f(n) is a function f : IN → IN if,

for any string x ∈ Σ∗, the time required by M on input x is at most f(|x|). A language

L belongs to the complexity class TIME(f(n)) if L is decided by a multi-string Turing

machine operating in time f(n). Thus, a time complexity class is the set of languages that

can be decided within a certain time bound.

A k-string Turing machine with input and output is a standard k-string Turing machine

with the restriction that the first string (the input string) is a read-only string, and the

last string (the output string) is a write-only string. Given a k-string Turing machine M

with input and output, suppose that M halts in the configuration (s, σ1, σ
′
1, . . . , σk, σ

′
k)

on input x. The space required by M on input x is defined as
k−1∑

i=2
|σiσ

′
i|, i.e., the space

required is the sum of the lengths of all the strings excluding the input and the output

string.

A language L belongs to the complexity class SPACE(f(n)) if L is decided by a k-string

Turing machine with input and output operating in space f(n).

A non-deterministic Turing machine is a tuple M = (S,Σ,∆, s), where S,Σ and s are as

in standard Turing machines, and ∆ is a transition relation: ∆ ⊆ S×Σ×(S∪{yes,no,h}×

Σ× {←,→,−}. Notice that, for each configuration, there may be more than one possible

“next” configuration. Non-deterministic Turing machines can be generalised to multi-

string non-deterministic Turing machines, using a method similar to that for standard

Turing machines.

Non-deterministic Turing machines differ from deterministic machines with respect to the

definition of complexity classes. A non-deterministic Turing machine M is said to decide

language L if, given x ∈ L, M(x) = yes for some possible computation of M . Notice that

M is not required to accept x in all possible computations.

A non-deterministic Turing machine M decides a language L in time f(n) if (i) M decides

L and (ii) M does not have computation paths longer than f(n) (where n is the size of the

input). The set of languages decided by a non-deterministic Turing machine within time

f(n) is denoted by NTIME(f(n)). The complexity class NSPACE(f(n)) is defined analo-

gously to SPACE(f(n)). Table 2.4 lists the definition of some commonly used complexity

classes and their names.

22

Chapter 2 2.1 Modal logics and multi-agent systems

Name Definition

L
⋃

SPACE(log(n))

NL
⋃

NSPACE(log(n))

P
⋃

TIME(nk)

NP
⋃

NTIME(nk)

PSPACE
⋃

SPACE(nk)

NPSPACE
⋃

NSPACE(nk)

EXP
⋃

TIME(2n
k

)

Table 2.4: Some complexity classes and their definitions.

EXP

PSPACE

NP

P

L

NL

Figure 2.2: Complexity classes (from [Papadimitriou, 1994].)

A problem P1 is reducible to a problem P2 if there exists a transformation T from strings

to strings, converting any input x for P1 to an input for P2, denoted by T (x) and such that

P1(x) = P2(T (x)). It is required that the transformation T is computable by a Turing

machine belonging to the complexity class L8. If a problem P1 is reducible to a problem

P2, then P2 is said to be as hard as P1. Given a complexity class C and a problem

P ∈ C9, P is said to be C-complete if any problem P ′ ∈ C can be reduced to P . It is

possible to establish a hierarchy for complexity classes, comparing both time and space

classes. Figure 2.2 from [Papadimitriou, 1994] depicts graphically the following sequence

of inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

It is known that L is a proper subset of PSPACE, and that P is a proper subset of EXP.

However, it is an open question which of the remaining inclusions is proper.

Given a language L, the complement of L is the language L̄ = Σ∗\L. Given a complexity

class C, the complement of C, denoted by co-C, is the set of languages defined by co-

C = {L̄ : L ∈ C}. Notice that, for any deterministic complexity class C, co-C =

8This implies that the machine computing T operates in polynomial time – see below.
9Notice that Turing machines can be seen as algorithms to solve problems. Thus, a problem P is in a

complexity class C if the Turing machine implementing an algorithm for P is in C.

23

Chapter 2 2.1 Modal logics and multi-agent systems

C. Important results about complexity classes are summarised in the following theorems

from [Papadimitriou, 1994]. These theorems will be employed in Section 4.2 to prove

complexity bounds for the complexity of model checking multi-agent systems.

Theorem 2.1.1. (Savitch’s Theorem, [Papadimitriou, 1994], p.149) The problem

of reachability belongs to the complexity class SPACE(log2(n)).

Theorem 2.1.2. ([Papadimitriou, 1994], p.150) The following inclusion holds:

NSPACE(f(n)) ⊆ SPACE(f2(n)).

As a corollary, notice that NPSPACE = PSPACE.

Theorem 2.1.3. ([Papadimitriou, 1994], p.153) The following equivalence holds:

NSPACE(f(n)) = co−NSPACE(f(n)).

2.1.6.1 The complexity of modal logics

The machinery presented above may be used in the definition of the complexity of a logic.

Traditionally, the complexity of a logic is defined as the complexity of the satisfiability

problem for that logic. Given a formula ϕ, satisfiability is the problem of establishing

whether or not there exists a model M and a world w of M such that M,w |= ϕ. Notice

that a complexity result for this problem gives an immediate result for the problem of

validity of a formula ϕ, as it is defined in Section 2.1.1: indeed, a formula ϕ is valid iff ¬ϕ

is not satisfiable.

The following theorems summarise complexity results for various logics:

Theorem 2.1.4. ([Blackburn et al., 2001]) Every normal modal logic extending S4.3

has an NP-complete satisfiability problem. Every normal logic between K and S4.3 has a

PSPACE-hard satisfiability problem10.

Theorem 2.1.5. ([Emerson and Halpern, 1985, Sistla and Clarke, 1985]) The

satisfiability problem for CTL is EXP-complete. The satisfiability problem for LTL is

PSPACE-complete.

Theorem 2.1.6. ([van Drimmelen, 2003])The satisfiability problem for ATL is EXP-

complete.

2.1.7 MAS theories

Many different formalisms are available for reasoning about multi-agent systems using

logics; detailed reviews can be found in [Wooldridge and Jennings, 1995, Hoek and

Wooldridge, 2003b]. This section provides a brief introduction to some formalisms, while

10
S4.3 is the logic obtained by adding the axiom 2(2p =⇒ q) ∨ 2(2q =⇒ p) to the logic S4.

24

Chapter 2 2.1 Modal logics and multi-agent systems

Section 2.1.7.1 introduces the details of the framework of interpreted systems [Fagin et al.,

1995].

Cohen and Levesque’s intention logic: The key assumption of Cohen and Levesque

is that intelligent agents must achieve a rational balance between beliefs, goals, and in-

tentions ([Cohen and Levesque, 1990], p.214). To this end, they introduce a first order

multi-modal logic with four primary operators: BEL, GOAL, HAPPENS and DONE

([Cohen and Levesque, 1990], p.222). The semantics of BEL and GOAL is the usual

Kripke semantics; the accessibility relation for BEL is Euclidean, transitive and serial; the

accessibility relation for GOAL is serial. Moreover, the GOAL relation is a subset of the

BEL relation. Worlds in the formalism are an infinite sequence of events.

Besides the temporal operators HAPPENS and DONE, there are other constructs similar

to dynamic logic [Harel, 1984], such as “;” to denote a sequence of events and “?” to

denote a test action.

The standard temporal operators 2 (“always”) and 3 (“at some time”) are defined as

abbreviations:

3ϕ = ∃x(HAPPENS x;ϕ?); 2ϕ = ¬3¬ϕ.

Other constructs are derived from the basic operators; the most important is persistent

goal11:

(P-GOAL i p) = (GOAL i (LATER p)) ∧

(BEL i ¬p) ∧

[BEFORE((BEL i p) ∨ (BEL i 2¬p))

¬(GOAL i (LATER p))];

which means that an agent i has p as a persistent goal if: i has a goal that p becomes true

at some point in the future, and i believes that p is currently false, and i drops his goal

only if i believes that the goal has been satisfied, or i believes that the goal will never be

satisfied.

Intentions to act are defined as follows12:

(INTEND i α) = (P-GOAL i

[DONE i (BEL i (HAPPENS α))?;α]).

Notice that an agent drops an intention of doing an action only if the agent believes that

the action has been performed, or the agent believes that the action cannot be performed.

11The definition of LATER and BEFORE is straightforward and can be found in the original paper.
12A similar definition for “intending that something becomes true” can be found in [Cohen and Levesque,

1990].

25

Chapter 2 2.1 Modal logics and multi-agent systems

Condition Axiom

B ⊆sup D ⊆sup I (INTEND i E(ϕ)) =⇒ (DES i E(ϕ))(BEL i E(ϕ))
B ⊆sub D ⊆sub I (INTEND i A(ϕ)) =⇒ (DES i A(ϕ))(BEL i A(ϕ))
B ⊆ D ⊆ I (INTEND i ϕ) =⇒ (DES i ϕ)(BEL i ϕ)
B ∩ D 6= ∅ (BEL i ϕ) =⇒ ¬(DES i ¬ϕ)
D ∩ I 6= ∅ (DES i ϕ) =⇒ ¬(INTEND i ¬ϕ)
B ∩ I 6= ∅ (BEL i ϕ) =⇒ ¬(INTEND i ¬ϕ)

Table 2.5: Interaction conditions and corresponding axioms for BDI logics.

Rao and Georgeff’s BDI logic: (This presentation follows the lines of [Hoek and

Wooldridge, 2003b]). Rao and Georgeff propose a family of BDI logics (BDI stands for

Beliefs, Desires, Intentions) based on the branching time temporal logic CTL. Their logics

include the modal operators BEL, DES and INTEND for expressing beliefs, desires and

intentions. Beliefs correspond to information that an agent has about the world. Desires

correspond to states of affairs that an agent would like to achieve. Intentions correspond

to desires that an agent is committed to achieve.

The semantics of BDI modalities is based on the standard Kripke semantics. However,

each world is itself a Kripke structure for CTL logic. Hence, a world is a structure

w =< T,R > where T is a non-empty set of time points and R is a branching time

relation on T . A situation is a pair < w, t > composed of a world and a time point. The

accessibility relations B,D,I for BEL, DES and INTEND are defined on situations. The

logics proposed by Rao and Georgeff differ on the the interactions between modalities.

Interaction between relations correspond to axioms in the logic. For example, if D ⊆ I,

then for every agent i, INTEND i ϕ =⇒ DES i ϕ.

But worlds are themselves structures, so one can also reason about interactions on the

structure of worlds. If w and w′ are worlds, w ⊑ w′ means that w has the same structure

as w′, but fewer paths. Consider now two accessibility relation R and R′. R is a structural

subset of R′, denoted by R ⊆sub R
′, if for every R-accessible world w, there is an R′-

accessible world w′ such that w ⊑ w′. Similarly, R is a structural superset of R′, denoted

by R ⊆sup R
′, if w′ ⊑ w.

Various BDI logical systems can be obtained from the interactions between relations.

Examples are reported in Table 2.5.

Benerecetti, Giunchiglia and Serafini’s MATL: Multi-Agent Temporal

Logic [Benerecetti et al., 1998] is the composition of the temporal logic CTL and

the logic HML (Hierarchical Meta-Logic) to represent beliefs, desires and intentions.

HML is defined as follows. Let I be a set of agents, and O = {B,D, I} be a set of symbols,

one for each attitude. Let OI∗ = (O × I)∗, i.e., each α ∈ OI∗ is a string representing a

possible nesting of attitudes. Each α ∈ OI∗ is called a view, including the empty string

26

Chapter 2 2.1 Modal logics and multi-agent systems

ǫ representing the view of an “external observer”. An agent “is a tree rooted in the view

that the external observer has of it” (notice that the view that an agent has of another

agent can be different from the agent itself). A logical language Lα is associated to each

view α. Each language is used to express what is true in the representation corresponding

to α. It is imposed that Oiϕ is a formula of Lα iff ϕ is a formula of LOiα.

The semantics of {Lα}α∈OI∗ is given by means of the concept of tree. A tree is a subset

of the set of possible interpretations of a language Lα, denoted by Mα. Namely, each

interpretation is denoted by tα ∈ Mα, and a tree is a set {tα}α∈OI∗ . A compatibility

relation T is a set of trees. A tree satisfies a formula at a view iff the formula is satisfied

by all the elements that the tree associates to the view.

A Hierarchical Meta-Structure (HM Structure) is a set of trees T on Lα, closed under

containment, such that there is a t ∈ T with tǫ 6= ∅; if tα satisfies Oiϕ, then tOiα satisfies

ϕ, and if for all t′ ∈ T , t′α ∈ tα implies that tαOi
satisfies ϕ , then tα satisfies Oiϕ.

MATL structures (i.e., models) are a particular kind of HM structures: each language

Lα is a CTL language. This allows for the interpretation of formulae of a language that

includes BDI and temporal (CTL) operators.

Wooldridge’s LORA: LORA [Wooldridge, 2000b] can be viewed as an extension of the

temporal logic CTL. LORA has four main components: a classical first-order component,

a BDI component, a temporal component and an action component (in a dynamic logic

style).

The BDI component is similar to the Rao and Georgeff’s formalism presented above.

The state of an agent is defined by its beliefs, desires and intentions, whose semantics is

given via standard Kripke semantics, and worlds are themselves branching time structures.

LORA also contains terms to reason about groups of agents.

The semantics of LORA is defined by means of models. A model for LORA is a structure

M =< T,R,W,D,Act,Agt,B,D,I, C,Φ >

where T is the set of all time points, R ⊆ T ×T is a branching time relation over T , W is a

set of worlds over T (see above); D =< DAg,DAc,DGr,DU > is a domain, Act : R→ DAc

associates an action with every relation in R, Agt : DAc → DAgt associates an agent

with every action, B,D,I are the accessibility relations, C is an interpretation function

for constants and Φ is an interpretation function for predicates. In the definition of D,

DAg = {1, . . . , n} is a set of agents, DAc = {α,α′, . . . } is a set of actions, DGr is a set of

non-empty subsets of DAg, i.e., groups of agents, DU is a set of other individuals. LORA

models provide the semantics for state and path formulae. Details of LORA’s syntax and

the interpretation of LORA’s formulae can be found in [Wooldridge, 2000b].

27

Chapter 2 2.1 Modal logics and multi-agent systems

2.1.7.1 Interpreted systems

The formalism of interpreted systems was introduced in [Fagin et al., 1995] to model a

system of agents and to reason about the agents’ epistemic and temporal properties. In

this formalism, each agent is modelled using a set of local states, a set of actions, a protocol,

and an evolution function.

• The set of local states for an agent i is denoted by the symbol Li. Elements of Li
capture the “private” information of an agent and, at any given time, local states

represent the state in which an agent is (e.g. ready and busy may be elements of

Li). Contrary to [Fagin et al., 1995], it is assumed that the set Li is finite (this is

required by the model checking algorithms).

• The set of actions for an agent i is denoted by the symbol Acti. Elements of Acti
represent the possible actions that an agent is allowed to perform. Differently from

local states, actions are “public”. Similarly to local states, here the set Acti is

assumed to be finite.

• The protocol for an agent i is denoted by the symbol Pi. The protocol is a “rule”

establishing which actions may be performed in each local state. The protocol Pi is

modelled by a function Pi : Li → 2Acti , assigning a set of actions to a local state.

Intuitively, this set corresponds to the actions that are enabled in a given local state.

Notice that this definition may enable more than one action to be performed for a

given local state. When more than one action is enabled, it is assumed that an agent

selects non-deterministically which action to perform.

• The evolution function for agent i is denoted by the symbol ti (notice: [Fagin et al.,

1995] define a single evolution function t for all the agents, see discussion below).

The evolution function determines how local states “evolve”, based on the agent’s

local state, on other agents’ actions, and on the local state of a special agent used

to model the environment (see below). The evolution function is modelled by a

function ti : Li × LE × Act1 × · · · × Actn × ActE → Li, where n is the number of

agents in the system.

A special agent E is used to model the environment in which the agents operate. Sim-

ilarly to the other agents, E is modelled using a set of local states LE, a set of actions

ActE , a protocol PE , and an evolution function tE. As noticed above, local states for

E are “public”: all the remaining agents may “peek” at LE to determine their temporal

evolution.

For all agents including the environment, the sets Li andActi are assumed to be non-empty,

and the number n ∈ IN of agents is assumed to be finite. For convenience, the symbol Act

denotes the Cartesian product of the agents’ actions, i.e., Act = Act1× · · ·×Actn×ActE .

28

Chapter 2 2.1 Modal logics and multi-agent systems

An element α ∈ Act is a tuple of actions (one for each agent) and is referred to as a

joint action. The Cartesian product of the agents’ local states is denoted by S, i.e.,

S = Li × · · · × Ln × LE. An element g ∈ S is called a global state; given a global state

g, the symbol li(g) denotes the local state of agent i in the global state g. It is assumed

that, in every state, agents evolve simultaneously (notice that this requirement is similar

to the definition of Moore synchronous game structures given in Section 2.1.4.3).

The definition of a single evolution function t : S×Act→ S presented in [Fagin et al., 1995]

differs slightly from the definition of n + 1 evolution functions presented here. The two

definitions are, in fact, equivalent: t(g, a) = g′ iff, for all i ∈ {1, . . . , n}, ti(li(g), a) = li(g
′)

and tE(lE(g), a) = lE(g′) (the decomposition from a single t to n + 1 “local” transition

functions is guaranteed to be possible by the assumptions on t). As it will be clear

in Section 5.2, the definition of an evolution function for each agent helps to keep the

description of the system compact.

Given a set of initial global states I ⊆ S, the protocols and the evolution functions generate

a set of reachable global states G ⊆ S, obtained by all the possible runs of the system.

A set of atomic propositions P and an evaluation relation V ⊆ P × S are introduced

to complete the description of an interpreted system. Formally, given a set of n agents

{1, . . . , n}, an interpreted system is a tuple:

IS =
〈

(Li, Acti, Pi, ti)i∈{1,...,n} , (LE , ActE , PE , tE) , I, V
〉

.

It has been shown in [Fagin et al., 1995] that interpreted systems can provide a semantics

to reason about time and epistemic properties, by means the following language:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E[ϕUψ] | Kiϕ | EΓϕ | CΓϕ | DΓϕ.

In this grammar, p ∈ P is an atomic proposition, and the operators EX,EG, and EU are

the standard CTL operators; the remaining CTL operators EF,AX,AG,AU,AF can be

derived in the standard way presented above. The formula Kiϕ (i ∈ {1, . . . , n}) is read as

“agent i knows ϕ”. The symbol Γ denotes a group of agents. The formula EΓϕ is read as

“everybody in group Γ knows ϕ”; the formula CΓϕ is read as “ϕ is common knowledge in

group Γ” (intuitively, common knowledge of ϕ in a group of agents denotes the fact that

everyone knows ϕ, and everyone knows that everybody else knows ϕ); the formula DΓϕ

is read as “ϕ is distributed knowledge in group Γ” (intuitively, distributed knowledge in a

group of agents is the knowledge obtained by “sharing” all agents’ knowledge).

Given an interpreted system IS , it is possible to associate a Kripke model MIS =

(W,Rt,∼1, . . . ,∼n, V) to IS ; the model MIS can be used to interpret formulae of the

grammar above. The model MIS is obtained as follows:

• The set of possible worlds W is the set G of reachable global states (this is to

29

Chapter 2 2.1 Modal logics and multi-agent systems

avoid the epistemic accessibility of states which cannot reached using the temporal

relation).

• The temporal relation Rt ⊆ W ×W relating two worlds (i.e., two global states) is

defined by the temporal transition ti. Two worlds w and w′ are such that wRtw
′ iff

there exists a joint action a ∈ Act such that t(g, a) = g′, where t is the transition

relation of IS obtained by the composition of the functions ti, i ∈ {1, . . . , n} and tE .

• The epistemic accessibility relations ∼i⊆W ×W are defined by imposing the equal-

ity of the local components of the global states. Two worlds w,w′ ∈ W are such

that w ∼i w
′ iff li(w) = li(w

′) (i.e., two worlds w and w′ are related via the epis-

temic relation ∼i when the local states of agent i in global states w and w′ are the

same [Fagin et al., 1995]).

• The evaluation relation V ⊆ AP ×W is the evaluation relation of IS .

Similarly to the definitions of Section 2.1.4, let π = (w0, w1, . . .) be an infinite sequence of

worlds such that, for all i, wiRtwi+1, and let π(i) denote the i-th world in the sequence (the

temporal relation is assumed to be serial and thus all computation paths are infinite). Let

REΓ ⊆W ×W denote the relation obtained by taking the union of the epistemic relations

for the agents in Γ, i.e., REΓ =
⋃

i∈Γ
∼i. Let RDΓ denote the intersection of the epistemic

relations for the agents in Γ, i.e., RDΓ =
⋂

i∈Γ
∼i. Let RCΓ denote the transitive closure of REΓ .

It is written MIS , w |= ϕ when a formula ϕ is true at a world w in the Kripke model MIS ,

associated with an interpreted system IS . Satisfaction is defined inductively as follows:

MIS , w |= p iff (p,w) ∈ V ,

MIS , w |= ¬ϕ iff MIS , w 6|= ϕ,

MIS , w |= ϕ1 ∨ ϕ2 iff MIS , w |= ϕ1 or MIS , w |= ϕ2,

MIS , w |= EXϕ iff there exists a path π such that π(0) = w,

and MIS , π(1) |= ϕ,

MIS , w |= EGϕ iff there exists a path π such that π(0) = w,

and MIS , π(i) |= ϕ for all i ≥ 0,

MIS , w |= E[ϕUψ] iff there exists a path π such that π(0) = w, and there exists

k ≥ 0 such that MIS , π(k) |= ψ, and MIS , π(j) |= ϕ

for all 0 ≤ j < k,

MIS , w |= Kiϕ iff for all w′ ∈W , w ∼i w
′ implies MIS , w

′ |= ϕ,

MIS , w |= EΓϕ iff for all w′ ∈W , wREΓw
′ implies MIS , w

′ |= ϕ,

MIS , w |= CΓϕ iff for all w′ ∈W , wRCΓw
′ implies MIS , w

′ |= ϕ,

MIS , w |= DΓϕ iff for all w′ ∈W , wRDΓ w
′ implies MIS , w

′ |= ϕ.

Similarly to standard Kripke models, a formula ϕ is true in a model, written MIS |= ϕ, if

MIS , w |= ϕ for all w ∈W .

30

Chapter 2 2.1 Modal logics and multi-agent systems

A formula ϕ is true in an interpreted system IS , denoted by IS |= ϕ, iff it is true in the

associated Kripke model ([Fagin et al., 1995], p. 111). In the remainder of this thesis,

CTLK will denote the logic including the temporal operators of CTL and the epistemic

operators Ki, while CTLKD,C will denote the logic CTLK with distributed and common

knowledge. The complexity of the satisfiability problem for CTLK and for CTLKD,C

has been investigated in [Meyden and Wong, 2003], where it has been proven to be EXP-

complete for both logics.

2.1.7.2 Deontic interpreted systems

Interpreted systems have been extended in [Lomuscio and Sergot, 2003] to include the

notion of correct behaviour. This is done by partitioning the set of local states Li into

two sets: a non-empty set Gi of allowed (or correct, or “green”) states, and a set Ri of

disallowed (or faulty, or “red”) states, such that Li = Gi ∪Ri, and Gi ∩ Ri = ∅. Given a

set of agents {1, . . . , n} and a set of atomic propositions P , a deontic interpreted system13

is a tuple

DIS =
〈

(Gi, Ri, Acti, Pi, ti)i∈{1,...,n} , (GE , RE , ActE , PE , tE) , I, V
〉

.

Two new logical operators are introduced in [Lomuscio and Sergot, 2003]:

• The operator Oiϕ expresses the fact that, under all the correct alternatives for agent

i, ϕ holds.

• The operator K̂Γ
i , where Γ ⊆ {1, . . . , n} is a group of agents, expresses the knowledge

that agent i has on the assumption that all agents in Γ are functioning correctly.

With slight abuse of notation, it is usually written K̂j
i when Γ is a singleton Γ = {j}.

Though temporal operators are not considered in [Lomuscio and Sergot, 2003], they can

be included in the syntax of formulae evaluated in deontic interpreted systems [Raimondi

and Lomuscio, 2004a]. The syntax is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E[ϕUψ] | Kiϕ | EΓϕ | CΓϕ | DΓϕ

Oiϕ | K̂
Γ
i ϕ.

Formulae are interpreted in deontic interpreted systems DIS by associating a Kripke

model MDIS = (W,Rt,∼1, . . . ,∼n, R
O
1 , . . . , R

O
n , V) to DIS . The definition of the re-

lations ROi ⊆ W × W (i ∈ {1, . . . , n}) is based on the set Gi for agent i: two

13Notice that the term “deontic” is used in [Lomuscio and Sergot, 2003] without any reference to obli-

gations of agents, but with the aim of reasoning exclusively about correct functioning behaviour.

31

Chapter 2 2.1 Modal logics and multi-agent systems

worlds w,w′ ∈ W are such that wROi w
′ iff li(w

′) ∈ Gi (notice that ROi does

not depend on the world w appearing on the left hand side of the relation). The

definition of all the remaining symbols is analogous to the definitions presented in

Section 2.1.7.1, as well as the definition of the semantics for formulae, except for:
MDIS , w |= Oiϕ iff for all w′ ∈W , wROi w

′ implies MDIS , w
′ |= ϕ;

MDIS , w |= K̂Γ
i ϕ iff for all w′ ∈W and for all j ∈ Γ, w ∼i w

′ and wROj w
′

implies MDIS , w
′ |= ϕ.

Similarly to Section 2.1.7.1, a formula ϕ is true in a deontic interpreted system DIS iff it

is true in the associated Kripke model. In the remainder of this thesis, the logic which

includes temporal, epistemic, and correct behaviour operators is denoted by CTLKDD,C .

2.1.7.3 Reasoning about actions in interpreted systems

The idea of reasoning about knowledge and actions goes back to [Moore, 1990], and it

has been investigated actively in recent years. Actions are treated explicitly in interpreted

systems, but the logic languages introduced in [Fagin et al., 1995] do not include operators

to reason about actions, neither in a dynamic logic style [Harel, 1984], nor à la ATL. This

section presents a possible approach to the analysis of actions and strategies in interpreted

systems.

A framework to reason about knowledge and actions in multi-agent systems has been

investigated in [Hoek and Wooldridge, 2003a], where the logic ATEL (Alternating-time

Temporal Epistemic Logic) is introduced. The language of ATEL is the fusion of the lan-

guages of ATL and CTLKD,C ; ATEL formulae are interpreted in alternating epistemic

transition systems (ATES). An ATES is a tuple

(Π,Σ, Q,∼1, . . . ,∼n, π, δ)

such that:

• Π is a set of atomic propositions;

• Σ = {1, . . . , n} is a set of agents;

• Q is a finite set of states;

• ∼i⊆ Q×Q (i ∈ {1, . . . , n}) are epistemic accessibility relations (one for each agent);

• π : Q→ 2Π is an evaluation function;

• δ : Q× Σ→ 22Q

is an evolution function.

The definition of satisfiability for ATEL is obtained by taking the union of the rules for

ATL with the standard rules for epistemic operators.

32

Chapter 2 2.1 Modal logics and multi-agent systems

<A,K> <A,Q> <K,A> <K,Q> <Q,A> <Q,K>

<−,−>

Win Lose Win Lose Win Lose Win Lose Win Lose Win Lose

Keep Change

Change

Keep

Change
Keep

Keep

Change

Keep

Change

Change

Keep

Figure 2.3: A simple card game for ATEL.

Intuitively, ATES provide a “coarser grain” semantics than interpreted systems (i.e., ATES

can be embedded [Goranko and Jamroga, 2004] in interpreted systems): thus, ATEL

formulae may be evaluated in interpreted systems, and ATEL can be seen as the fusion of

the two logics ATL and CTLKD,C , without interaction axioms between knowledge and

strategic operators. However, it has been argued [Jamroga, 2004a, Jonker, 2003, Jamroga,

2004b, Jamroga and van der Hoek, 2004] that the interpretation of ATL operators in

ATEL might not correspond entirely to the original spirit of ATL [Alur et al., 2002]. The

following example from [Jonker, 2003, Jamroga, 2004b] illustrates this. An agent (the

player) plays a simple card game against another agent (the environment). There are just

three cards in the deck: Ace (“A”), King (“K)”, and Queen (“Q”). “A” wins over “K”,

“K” wins over “Q”, and “Q” wins over “A”. In the initial state no cards are distributed.

In the first step, the environment gives a card to the player and takes a card for itself. In

the second step, the player can either keep its card, or change it. The game is depicted in

Figure 2.3.

The formula 〈〈player〉〉F (win), expressing that the player has a strategy to reach a state

in which win holds, is true in the initial state of this model. Indeed, the player may guess

an action to bring about a winning state, but it is clearly not the case that the player can

always enforce a win: the player cannot distinguish between the “global” states <A,K> and

<A,Q>, and thus cannot always choose the right action (either to keep or to change). As

originally remarked in [Moore, 1990], some form of dependence must be taken in account

for actions and knowledge. However, it has been shown in [Agotnes, 2005] that there is

no interaction axiom that can be added to ATEL to express with ATL operators what

an agent can enforce.

Various solutions have been put forward to express ATL operators in a semantics based

on MAS [Jonker, 2003, Jamroga, 2004b, Jamroga and van der Hoek, 2004]. Instead of ex-

ploring new logics, this thesis employs the language of ATEL extended with operators for

correct behaviour, and presents three classes of interpreted systems in which formulae this

language can be interpreted14. This logic will be denoted by CTLKD−AD,C ; formally,

14This approach is similar to the one proposed in [Fagin et al., 1995] for the interpretation of the same

33

Chapter 2 2.1 Modal logics and multi-agent systems

the language of CTLKD−AD,C is defined by:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E[ϕUψ] | Kiϕ | EΓϕ | CΓϕ | DΓϕ

Oiϕ | K̂
Γ
i ϕ | 〈〈Γ〉〉Xϕ | 〈〈Γ〉〉Gϕ | 〈〈Γ〉〉[ϕUψ].

In this language, it is assumed that Γ is a set of agents, and the derived temporal operators

F and A are obtained in the standard way15.

CTLKD−AD,C formulae are evaluated in a deontic interpreted system

DIS =
〈

(Gi, Ri, Acti, Pi, ti)i∈{1,...,n} , (GE , RE , ActE , PE , tE) , I, V
〉

by associating an “enriched” model MeDIS to DIS . In particular,

MeDIS = (W,Rt,∼1, . . . ,∼n, R
O
1 , . . . , R

O
n , t, V).

The “enriched” model MeDIS differs from the model MDIS presented in Section 2.1.7.2 in

that the evolution function t : G× Act→ G is carried over from DIS to MeDIS . Indeed,

the evolution function t is employed in the evaluation of ATL operators, as follows. Let

Σ = {1, . . . , n} denote the set of agents and let preΓ(ϕ) be the set of states defined by

preΓ(ϕ) = {w ∈W |∃a ∈ ActΓ s.t. ∀a′ ∈ ActΣ\Γ all temporal transitions labelled with the

< a, a′ > lead to a state w′ s.t. MeDIS , w
′ |= ϕ.

MeDIS , w |= 〈〈Γ〉〉Xϕ iff w ∈ preΓ(ϕ)

MeDIS , w |= 〈〈Γ〉〉Gϕ iff MeDIS , w |= ϕ and for all paths π from w and,

for all states wi, wi+1 of π, MeDIS , wi+1 |= phi and wi ∈ preΓ(ϕ)

MeDIS , w |= 〈〈Γ〉〉[ϕUψ] iff for all temporal paths π starting from w, the agents in

Γ may perform joint actions along the paths s.t. eventually

ψ will hold and ϕ holds along the paths until then.

Notice that the semantics presented above corresponds to the memoryless, imperfect in-

formation semantics of ATL, because actions for agent i depend on the current local state

only via the protocol Pi. A “partial” memory semantics could be defined in this formalism

by adding a vector to the local states of an agent, containing the list of previously visited

knowledge operator in various classes on interpreted systems (synchronous, asynchronous, perfect recall,
etc.).

15Notice that CTL operators may, in fact, be derived from ATL operators. Here the two classes of
operators are kept separated, to underline the difference between temporal reasoning with CTL, and
strategic reasoning with ATL.

15A joint action a for a group of agents Γ is a tuple belonging to the set ActΓ, where ActΓ is the Cartesian
product ActΓ =

Q

i∈Γ

ai. Given two joint actions a ∈ ActΓ and a′ ∈ ActΣ\Γ, < a, a′ >∈ Act is the joint

action obtained by the concatenation of a and a′ (with the appropriate reordering of terms, if needed).
15A joint action a for a group of agents Γ is a tuple belonging to the set ActΓ, where ActΓ is the Cartesian

product ActΓ =
Q

i∈Γ

ai. Given two joint actions a ∈ ActΓ and a′ ∈ ActΣ\Γ, < a, a′ >∈ Act is the joint

action obtained by the concatenation of a and a′ (with the appropriate reordering of terms, if needed).

34

Chapter 2 2.1 Modal logics and multi-agent systems

local states. This option is denoted by the term bounded recall.

This thesis distinguishes three classes of deontic interpreted systems to interpret

CTLKD−AD,C formulae:

1. Non-deterministic deontic interpreted systems: this is the most general class

of interpreted systems, defined in Section 2.1.7.2. In this class, ATL operators ex-

press what agents may bring about, maybe by guessing moves, and not what agents

may enforce. Nevertheless, such interpretation may be useful in certain circum-

stances.

2. Deterministic deontic interpreted systems: the general definition of deontic

interpreted systems enables agents to run non-deterministic protocols, i.e., the same

agent may non-deterministically perform different actions in the same local state.

To avoid random actions, it is possible to focus on the subclass of deontic inter-

preted systems, whose protocols are deterministic, i.e., protocols in which only one

action is associated to a given local state: Pi : Li → Acti. A deontic interpreted

system is said to be deterministic iff the protocol of each agent is deterministic (a

deterministic protocol associates a unique action to each local state). Notice that, in

deterministic interpreted systems, agents perform the same action in epistemically

equivalent states.

3. Γ-uniform deontic interpreted systems: in many circumstances the class of

deterministic interpreted systems is too restrictive to be used in the specification of

MAS scenarios. In these circumstances it is useful to reason about non-deterministic

interpreted systems that are at least consistent in their selection of actions in a given

local state. For instance, in the example of Figure 2.3, it is reasonable to assume

that, if the player decides to keep its card in state <A,K>, then it should do so

in state <A,Q> as well. By extending the concepts of [Jonker, 2003, Jamroga and

van der Hoek, 2004], an agent is defined to be uniform if the agent performs the

same action in epistemically equivalent global states. A group of agents Γ ⊆ Σ is

uniform if every agent in the group is uniform. A deontic interpreted system is Γ-

uniform if all agents in Γ are uniform, whereas agents in Σ\Γ and the environment

may choose their actions freely, according to their protocol. A Γ-uniform deontic

interpreted system DISΓ is said to be compatible with a given non-deterministic

deontic interpreted system DIS if:

• The group of agents Γ is uniform in DISΓ;

• The protocols for agents in Γ of DISΓ are a restriction of the protocols of DIS

(in the sense that only one action is enabled in DISΓ, and the action is one of

the enabled actions in DIS);

• All the remaining parameters remain the same.

35

Chapter 2 2.1 Modal logics and multi-agent systems

Notice that, for a given non-deterministic deontic interpreted system, there may

be several Γ-uniform deontic interpreted systems compatible with it, but at most
∏

i∈Γ
|Acti|

|Li|. The set of Γ-uniform deontic interpreted systems compatible with a

given deontic interpreted system DIS is denoted by {DIS}Γ. A formula ϕ is true

in the class of Γ-uniform deontic interpreted systems compatible with a given DIS ,

and it is written DIS |=Γ ϕ, if ϕ is true in at least one of the models associated

with the deontic interpreted systems in {DIS}Γ. Application examples of Γ-uniform

deontic interpreted systems are presented in Section 6.3.

2.1.7.4 Why interpreted systems?

Interpreted systems and their extensions to reason about time, knowledge, correct be-

haviour, and actions à la ATL) offer a suitable formalism for modelling multi-agent sys-

tems. This thesis builds on this formalism for various reasons:

• Interpreted systems are computationally grounded [Wooldridge, 2000a]: the seman-

tics of interpreted systems maps directly to runs of a system, and vice-versa. In-

deed, the description of a scenario in terms of runs of interpreted systems (using local

states, protocols, etc.) immediately provides a logic model to evaluate formulae (i.e.,

specifications).

• Differently from other formalisms, epistemic properties are not ascribed to agents

by means of sets of propositions; instead, epistemic properties are based on the

equivalence of local states.

• The concept of “local states” offers a flexible abstraction for the agents. Local states

can be “singletons”, corresponding to a very high level description of the agents.

But local states are allowed to have a more complex structure: for instance, local

states could be arrays of variables, or a combination of singletons and arrays, thereby

allowing for a “fine grained” description of agents.

• Interpreted systems are easily extensible: the original work of [Fagin et al., 1995]

includes temporal and epistemic operators only, but in the previous sections it has

been shown that various extensions are possible to include other modalities.

Some issues remain open when formalising MAS using interpreted systems, e.g., the lack of

modalities to reason about typical agents’ stances such as desires and intentions. Neverthe-

less, as shown in the examples of Chapter 6, interpreted systems are a useful abstraction,

as “frictionless” is in Physics.

36

Chapter 2 2.2 Model checking

2.2 Model checking

2.2.1 Problem definition

Model checking is the problem of establishing whether or not a given formula ϕ is true

in a given model M . Notice that, unlike the problem of satisfiability of a formula, model

checking has two input parameters: the formula ϕ and the model M .

Historically, techniques to perform model checking have received little attention in modal

logic. Apart from the definition of satisfiability in a model (denoted in the previous

Section by M |= ϕ), no references to model checking techniques appear in [Chellas, 1980,

Goldblatt, 1992, Hughes and Cresswell, 1996, Blackburn et al., 2001, Gabbay et al., 2003].

Nevertheless, model checking techniques are prominent in the area of formal verification.

Using model checking, the problem of verifying that a generic system S complies with

a given specification P is reduced to the problem of verifying that a logical formula ϕP
(representing the specification P) is satisfied in a model MS (representing the generic

system S). No particular requirements are usually imposed on S, even though, in most

cases, S is required to be finite. Traditionally, systems have been represented by means of

temporal models, i.e., LTL, CTL, or CTL∗ models, and specifications have been encoded

using the language of one of these logics. Indeed, the expressivity of temporal logics is

suitable for the description of many requirements. A pattern system for temporal logics

has been investigated in [Dwyer et al., 1998], where a pattern is defined as the “description

of a commonly occurring requirement”; for instance, safety and liveness are two commonly

recurring specification patterns, but many others can be defined (see [Dwyer et al., 2006]

for an ongoing project collecting temporal specification patterns).

The expressivity of temporal logics, combined with the possibility of abstracting generic

systems by means of logical models of temporal logics, has lead to the development of

tools and techniques for the verification of many scenarios, from hardware circuits, to

communication protocols, and software (see [Clarke et al., 1999] and references therein).

The process of representing a generic system S with a (temporal) model MS , however,

suffers from the so called state explosion problem: the number of states in the model MS

grows exponentially with the number of variables, or parallel components, constituting

the system S. For instance, modelling explicitly a simple piece of software containing

20 variables of type byte, would require a model with 25620 ≈ 1.5 · 1048 states. Thus,

one of the main challenges of model checking is the development of efficient techniques to

tackle the state explosion problem. The next sections present various solutions from the

literature.

37

Chapter 2 2.2 Model checking

2.2.2 Model checking techniques

2.2.2.1 Fix-point characterisation of CTL and the labelling algorithm

This section introduces the labelling algorithm for model checking CTL. This algorithm

is based on the fix-point characterisation of some CTL operators.

LetQ be a set; an operator τ : 2Q → 2Q is said to be monotonic if, given two setsX,Y ⊆ Q,

X ⊆ Y implies τ(X) ⊆ τ(Y). It is possible to prove [Tarski, 1955] that a monotonic

operator τ has a greatest and a least fix-point; these are denoted by νZ.τ(Z) and µZ.τ(Z),

respectively. Let τ i(X) be defined by τ0(X) = X, and τ i+1(X) = τ(τ i(X)). If Q is finite

and τ is monotonic, then there exist integer numbers n,m such that νZ.τ(Z) = ∩iτ
n(Q)

and µZ.τ(Z) = ∪iτ
n(∅).

The monotonicity properties above are used in conjunction with the following equivalences

[Huth and Ryan, 2004] for the purpose of CTL model checking:

EGϕ ≡ ϕ ∧ EXEGϕ; (2.1)

E[ϕUψ] ≡ ψ ∨ (ϕ ∧ EXE[ϕUψ]). (2.2)

Let ϕ be a CTL formula, let M = (S,R, V) be a CTL model, and let [[ϕ]]M ⊆ S denote

the set of states of M in which ϕ holds16. The equivalences above imply the following:

[[EGϕ]] ≡ [[ϕ]] ∩ [[EXEGϕ]]; (2.3)

[[E[ϕUψ]]] ≡ [[ψ]] ∪ ([[ϕ]] ∩ [[EXE[ϕUψ]]]). (2.4)

Following [Huth and Ryan, 2004], let pre∃(X) denote a procedure that, given a set X ⊆ S,

computes the set of states Y ⊆ S from which a transition is enabled to a state in X, i.e.:

Y = pre∃(X) = {s ∈ S|∃s′.(s′ ∈ X and sRs′)}.

Using this procedure, it is possible to rewrite equations 2.3 and 2.4 as follows:

[[EGϕ]] ≡ [[ϕ]] ∩ pre∃([[EGϕ]]); (2.5)

[[E[ϕUψ]]] ≡ [[ψ]] ∪ ([[ϕ]] ∩ pre∃([[E[ϕUψ]]])). (2.6)

Let τEG,ϕ : 2S → 2S be the operator defined by τEG(X) = [[ϕ]]∩pre∃(X), and let τEU,ϕ,ψ :

2S → 2S be defined by τEU,ϕ,ψ(X) = [[ψ]] ∪ ([[ϕ]] ∩ pre∃(X)). Equations 2.5 and 2.6

imply that [[EGϕ]] is the fix-point of the operator τEG,ϕ, while [[E[ϕUψ]]] is the fix-point

of τEU,ϕ,ψ. It is possible to prove that the operators τEG,ϕ and τEU,ϕ,ψ are monotonic,

16The subscript M will be omitted when it is clear from the context.

38

Chapter 2 2.2 Model checking

mc(ϕ,M) {
ϕ is an atomic formula: return V (ϕ);
ϕ is ¬ϕ1: return S \ mc(ϕ1,M);
ϕ is ϕ1 ∨ ϕ2: return mc(ϕ1,M)∪ mc(ϕ2,M);
ϕ is EXϕ1: return mcEX(ϕ1,M);
ϕ is EGϕ1: return mcEG(ϕ1,M);
ϕ is E[ϕ1Uϕ2]: return mcEU(ϕ1, ϕ2,M);
}

Figure 2.4: The labelling algorithm, from [Huth and Ryan, 2004].

mcEX(ϕ,M) {
X = mc(ϕ,M);
Y = pre∃(X);
return Y ;
}

Figure 2.5: The support procedure mcEX(ϕ,M), from [Huth and Ryan, 2004].

and that [[EGϕ]] is the greatest fix-point of τEG,ϕ, while [[E[ϕUψ]]] is the least fix-point

of τEU,ϕ,ψ [Clarke et al., 1999, Huth and Ryan, 2004]. Thus, there exist finite natural

numbers n and m such that [[EGϕ]] = τnEG,ϕ(S) and [[E[ϕUψ]]] = τmEU,ϕ,ψ(∅).

The characterisation of the operators EG and EU using fix-points permits the definition

of algorithm for model checking CTL formulae, denoted with mc. The algorithm mc takes

a formula ϕ and a CTL model M as input, and operates by labelling with the string ϕ all

the states of M in which ϕ holds; equivalently, it can be said that the algorithm mc(ϕ,M)

computes the set [[ϕ]].

mcEG(ϕ,M) {
X = mc(ϕ,M);
Y = S;
Z = ∅;
while (Z! = Y) {
Z = Y ;
Y = X ∩ pre∃(Y);
}
return Y ;
}

Figure 2.6: The support procedure mcEG(ϕ,M), from [Huth and Ryan, 2004].

39

Chapter 2 2.2 Model checking

mcEU(ϕ1, ϕ2,M) {
X = mc(ϕ1,M);
Y = mc(ϕ2,M);
Z = ∅;
W = S;
while (Z! = W) {
W = Z;
Z = Y ∪ (X ∩ pre∃(Z));
}
return Z;
}

Figure 2.7: The support procedure mcEU(ϕ1, ϕ2,M), from [Huth and Ryan, 2004].

Figure 2.4 presents the labelling algorithm to compute [[ϕ]], from [Huth and Ryan, 2004].

The additional procedures mcEX(ϕ1,M), mcEG(ϕ1,M), and mcEU(ϕ1, ϕ2,M) imple-

menting the fix-point characterisation presented above are presented in Figures 2.5–2.7.

2.2.2.2 Ordered Binary Decision Diagrams and symbolic model checking

This section introduces Ordered Binary Decision Diagrams (obdds), and presents how the

problem of model checking a CTL formula in a model M can be reduced to the problem

of comparing two obdds.

A Boolean variable x is a variable whose value is either 0 or 1. A Boolean function of

n Boolean variables is a function f : {0, 1}n → {0, 1}. Boolean formulae can be seen as

Boolean functions. For instance, the Boolean formula x1 ∧ (x2 ∨ x3) can be seen as the

Boolean function f(x1, x2, x3) = x1 ∧ (x2 ∨ x3).

A rooted, directed graph G can be associated to every Boolean function f(x1, . . . , xn)

by imposing an ordering on the variables x1, . . . , xn, and by reducing the graph (in the

sense explained below) [Bryant, 1986]. The graph G is called the Ordered Binary Decision

Diagrams of f . For instance, the reduced graph associated with the Boolean function

f(x1, x2, x3) = x1 ∧ (x2 ∨ x3) is depicted in Figure 2.8 (b), by “simplifying” the graph

depicted in Figure 2.8 (a). Formally, a graph is reduced by iteratively eliminating the

vertices which are the root of two isomorphic subgraphs, and by merging isomorphic

subgraphs. A graph is said to be reduced if it contains no isomorphic subgraphs and no

vertices v and v′ such that the sub-graphs rooted at v and v′ are isomorphic. Notice that

every vertex, except the final leaves, has two children. In the remainder, it is assumed

that the left child of a vertex corresponds to the choice of the value 0 (i.e., false) for the

variable preceding it, while the right child correspond to the choice of the value 1 (i.e.,

40

Chapter 2 2.2 Model checking

10

x3

x2

x1

000 0 0 1 1 1

x1

x2 x2

x3 x3 x3 x3

(a) (b)

Figure 2.8: obdd example for f = x1 ∧ (x2 ∨ x3).

true). Thus, the leftmost path of Figure 2.8 (a) corresponds to an assignment of 0 to all

variables and, consequently, to the value 0 to the expression f(x1, x2, x3) = x1 ∧ (x2 ∨x3).

It is shown in [Bryant, 1986] that, given a fixed ordering of the Boolean variables x1, . . . , xn,

the reduced graph of any Boolean function f : {0, 1}n → {0, 1} is unique (i.e., obdds are

a canonical representation for Boolean functions).

Boolean operators can be applied to Boolean functions; for instance the disjunc-

tion operator ∨ can be applied to two Boolean functions f1 and f2 to obtain a

third Boolean function f3 = f1 ∨ f2. Boolean functions can be composed, too:

given two Boolean functions f and g, the composition of f and g is defined by

fxi=g = f(x1, . . . , xi−1, g(x1, . . . , xn), xi+1, . . . , xn). These operators are denoted with

apply(f, g,<operator>), and with compose((f, g, xi).

The operation of Boolean quantification is particularly important for the purposes

of model checking. Formally, given a Boolean function f(x1, . . . , xn), the operation

∃xi.f(x1, . . . , xn) is defined as the application of the disjunction operator to the com-

position of f with a constant function, i.e., ∃xi.f(x1, . . . , xn) = fxi=0(x1, . . . , xn) ∨

fxi=1(x1, . . . , xn). The definition of Boolean quantification can be extended to the quan-

tification over a set of variables x̄ = (x1, . . . , xn) (see [Clarke et al., 1999] for more details).

Boolean quantification of a Boolean function f can be implemented for the obdd represent-

ing f ; the complexity of this operation, together with the complexity of other operations

on obdds, is presented in Section 2.2.5.

Ordered binary decision diagrams have been particularly successful in Computer Science

because they offer, on average, a much more compact representation of Boolean functions

41

Chapter 2 2.2 Model checking

State Boolean vector Boolean formula

s1 (1, 1) x1 ∧ x2

s2 (1, 0) x1 ∧ ¬x2

s3 (0, 1) ¬x1 ∧ x2

Table 2.6: Boolean encoding for the states of S = {s1, s2, s3} (N = ⌈log2(3)⌉ = 2).

with respect to other canonical forms, e.g. conjunctive/disjunctive normal forms. The

application of obdds techniques to model checking for CTL has been investigated from the

beginning of the 1990s by various authors, [Burch et al., 1992, McMillan, 1993]. Intuitively,

given a CTL formula ϕ and a CTL model M = (S,R, V), the idea of model checking

using obdds is to associate an obdd to the formula ϕ, and an obdd to the set of states

S. By comparing the two obdds it is possible to establish whether or not M |= ϕ17. The

details of this technique are presented below.

Encoding sets of states. The key idea of model checking using obdds is to represent

states (and set of states) as Boolean formulae which, in turn, can be encoded as obdds.

Let S be the set of states of a CTL model M = (S,R, V) (notice: it is assumed that the

set of states of M is finite), and let N = ⌈log2|S|⌉. Each element s ∈ S is associated with

a vector of Boolean variables x̄ = (x1, . . . , xN), i.e., each element of s is associated with a

tuple of {0, 1}N . Each tuple x̄ = (x1, . . . , xN) is then identified with a Boolean formula,

represented by a conjunction of literals, i.e., a conjunction of variables or their negation18.

It is assumed that the value 0 in a tuple corresponds to a negation. An example of Boolean

encoding for the set S = {s1, s2, s3} is given in Table 2.6.

Sets of states are encoded by taking the disjunction of the Boolean formulae encoding the

single states. For instance, the set of states {s1, s3} from the example in Figure 2.6 is

encoded by the Boolean formula f = (x1 ∧ x2) ∨ (¬x1 ∧ x2).

Encoding the transition relation. Given a model M = (S,R, V), and given an encod-

ing of the set of states S using N Boolean variables (x1, . . . , xN), the transition relation

R ⊆ S × S may be encoded as a Boolean function. To this end, a new set of “primed”

variables (x′1, . . . , x
′
N) is introduced to encode the relation between two states s, s′ ∈ S. In

particular, if sRs′ holds, then s is encoded using the non-primed variables, s′ is encoded

using the primed variables, and the transition step sRs′ is expressed as a Boolean formula

by taking the conjunction of the encoding for s and s′. The whole relation R ⊆ S × S is

17This technique is traditionally identified with the term symbolic model checking. More precisely,
[McMillan, 1993] defines symbolic model checking as a technique that “avoids building a state graph by
using Boolean formulas to represent sets and relations”. Some authors [Schnoebelen, 2003] use the term
“symbolic model checking” in a more general sense to denote any technique in which the model is not
given “explicitly”, but by means of some “compact” representation (Boolean functions being one possible
choice). To avoid confusion, this thesis employs the term “symbolic model checking” in the stricter sense,
to denote model checking techniques based on Boolean functions.

18By slight abuse of notation, the same symbols xi(i ∈ {1, . . . , N}) are used to denote Boolean variables
in a vector, and atomic propositions in logical formulae.

42

Chapter 2 2.2 Model checking

encoded as a Boolean formula by taking the disjunction of all the transition steps.

As an example, let R = {(s1, s2), (s2, s3), (s3, s1)} be a transition relation for the states of

the example in Figure 2.6. This transition relation is encoded by the following Boolean

formula fR:

fR(x1, x2, x
′
1, x
′
2) = [(x1∧x2)∧(x′1∧¬x

′
2)]∨[(x1∧¬x2)∧(¬x′1∧x

′
2)]∨[(¬x1∧x2)∧(x′1∧x

′
2)].

The labelling algorithm and Boolean formulae. The algorithm presented in Fig-

ure 2.4 returns the set of states satisfying a formula ϕ in a given model M = (S,R, V). The

algorithm operates recursively on the structure of ϕ and builds the set of states [[ϕ]] using

the following operations on sets: union, intersection, complementation, existential quan-

tification. When sets of states are encoded using Boolean formulae, all these operations

on sets may be translated into operations on Boolean formulae:

• the union of two sets corresponds to the disjunction of the Boolean formulae encoding

the two sets;

• the intersection of two sets corresponds to the conjunction of the Boolean formulae

encoding the two sets;

• the complementation of a set P with respect to a given set Q (i.e., P\Q) is the

conjunction of the Boolean formula encoding Q with the negation of the Boolean

formula encoding P ;

• the existential quantification of an element x in a set P is the (quantified) Boolean

formula ∃v̄x.fP , where v̄x are the Boolean variables required to encode x, and fP is

the Boolean formula encoding P .

In the basic case (i.e., when ϕ is an atomic proposition) the algorithm returns a set of

states: by encoding this set of states as a Boolean formula, the algorithm of Figure 2.4

can operate entirely on the Boolean representation of a model M = (S,R, V) to return a

Boolean formula encoding the set of states [[ϕ]].

The labelling algorithm and model checking using obdds. All the Boolean formulae

mentioned in the previous step can be represented using obdds. Thus, the algorithm of

Figure 2.4 provides a methodology to build the obdd corresponding to the set of states [[ϕ]]

in which a formula ϕ holds for a given model M . The problem of model checking is reduced

in this way to the problem of comparing the obdds for [[ϕ]] and for M . As obdds offer a

canonical representation for Boolean formulae, this last step is limited to the verification

that the two obdds are equal. The proof of the correctness of this approach can be found

in [Clarke et al., 1999, Huth and Ryan, 2004].

43

Chapter 2 2.2 Model checking

Notes

• The process of translating the problem of model checking into the comparison of two

obdds may seem to increase the complexity of model checking. However, as it will

become clear in Section 2.2.3, the models are not built explicitly in model checking

tools; instead, the obdds representing the various parameters in the models are

obtained incrementally from a dedicated programming language, thereby permitting

the verification of models whose size would be intractable.

• The problem of verifying that a formula ϕ holds in a given model M is defined by

some authors with the term global model checking, as opposed to the problem of

local model checking, which is the problem of establishing whether or not a formula

is true at a given state in a given model. The algorithm presented in Figure 2.4 can

be employed for local model checking as well: indeed, it is sufficient to check that

the state in which a formula ϕ has to be verified is included in the set [[ϕ]].

• As mentioned in Section 2.1.4, in certain cases a CTL model includes a set of

initial states: M = (S,R, V, I). The evolution of the system is described by the

transition function R, and it may happen that not all states of S are reachable.

In this case, formulae need to be evaluated in the set of reachable states only, and

complementation must be limited to the set of reachable states. Reachable states

can be encoded as an obdd (Section 3.3 explores this issue in more detail).

2.2.2.3 SAT-based translations

Other techniques exist to perform model checking for temporal logics. This section intro-

duces techniques that reduce the problem of model checking to a problem of satisfiability

for a Boolean formula (SAT). Efficient procedures for Boolean satisfiability have been in-

vestigated and implemented since the 1960s; thus the reduction of the problem of model

checking to a Boolean satisfiability problem may benefit from the advances in this area.

Bounded model checking for LTL. The idea of reducing the problem of model checking

for LTL to a satisfiability problem was introduced in [Biere et al., 1999a], and it is based

on the concept of bounded semantics for LTL models. Intuitively, given an LTL model

M = (S,R, V, I), an LTL formula ϕ and a (finite) integer k, the expression M |=k ϕ

is read as “formula ϕ holds in M along a path of length k (starting from the set of

initial states)”. It can be proven that M |= ϕ iff there exists a finite integer k such that

M |=k ϕ. The problem M |=k ϕ is reduced to propositional satisfiability, as follows.

A propositional formula [M,ϕ]k is built such that [M,ϕ]k is satisfiable iff ϕ holds along

some path π of length k starting from the set of initial states. To construct [M,ϕ]k , a

propositional formula [M]k if defined first to enforce valid paths of length k. Then, the

LTL formula ϕ is translated into a propositional formula [ϕ]k, and [M,ϕ]k is obtained as

44

Chapter 2 2.2 Model checking

the conjunction of [M]k and [ϕ]k: [M,ϕ]k = [M]k ∧ [ϕ]k. The Boolean formula [M,ϕ]k is

satisfiable iff M |=k ϕ. A detailed presentation of this approach can be found in [Biere

et al., 1999a, Clarke et al., 1999].

Bounded model checking for CTL. A bounded semantics for the universal fragment

of CTL was introduced in [Penczek et al., 2002]. The universal fragment of CTL, denoted

with ACTL, restricts negation to atomic formulae only, and permits universally quantified

temporal operators only. Given a CTL model M = (S,R, V, I) and an ACTL formula

ϕ, bounded model checking for CTL is similar, in spirit, to bounded model checking for

LTL, in that a Boolean formula [M,ϕ]k is built as a conjunction of two Boolean formulae

[M]k and [ϕ]k. The technical machinery involved in ACTL model checking, however, is

substantially different from LTL due to the branching structure of CTL models (notice

that the bounded semantics for ACTL depends on a set of initial states).

Unbounded model checking. It has been shown [Biere et al., 1999a] that bounded

model checking techniques can identify false formulae in a much quicker way than obdd-

based techniques, when counter-examples can be found for small values of the bound k.

When such value is high, or when formulae are true in a model, however, there is a sig-

nificant decrease in the performance of SAT-based techniques. A possible solution for

this issue has been presented in [McMillan, 2002], introducing unbounded model checking.

Intuitively, unbounded model checking techniques are based on algorithms similar to the

algorithm presented in Figure 2.4: Boolean formulae representing sets of states are com-

puted but, instead of representing Boolean formulae using obdds and comparing obdds,

the problem of model checking is translated into a satisfiability problem for Boolean for-

mulae (typically represented in conjunctive normal form). Model checkers implementing

unbounded model checking are currently being developed, but no experimental results are

available yet.

2.2.2.4 Automata-based techniques

A different approach for model checking the logic LTL was proposed in the 1980s by [Vardi

and Wolper, 1986] using automata. An automaton is a tuple A = (Σ, Q,Q0, δ, F) where:

• Σ is a finite alphabet;

• Q is a finite set of states, and Q0 ⊆ Q is a set of initial states;

• δ ⊆ Q× Σ×Q is a transition relation;

• F ⊆ Q is a set of final (or accepting) states.

An automaton can be represented as a graph; for instance, Figure 2.9 depicts the automa-

ton characterised by Σ = {a, b}, Q = {0, 1}, Q0 = {0} (this is indicated with an incoming

45

Chapter 2 2.2 Model checking

10

a

b

a

a

Figure 2.9: Automaton example.

arrow in the graph), F = {0} (this is indicated with a double circle in the graph), and

δ = {(0, a, 0), (0, b, 1), (1, a, 1), (1, a, 0)}.

Let σ ∈ Σ∗ be a string; an automaton A accepts σ iff there exists a sequence of states of

(q0, q1, . . . , q|σ|) ∈ Q
∗ such that q0 ∈ Q

0, q|σ| ∈ F , and for all states in the sequence there

exist transitions (qi, α, qi+1) ∈ δ such that α is the i-th symbol in σ (such sequences are

usually called runs of A). The set of strings accepted by A is called the language accepted

by A and it is denoted with L(A). For instance, the language accepted by the automaton

in Figure 2.9 includes the strings λ (the empty string), aaaba, aabaaaba, etc.

Automata over infinite words accept strings of infinite length from Σω; their definition is

similar to the definition of automata over finite words presented above, the only difference

being the acceptance condition. Different kind of acceptance conditions can be defined,

and these correspond to different kind of automata. Büchi automata are defined as follows.

Let σ ∈ Σω be an infinite string, and let i(σ) be the set of states appearing infinitely often

in a run of A accepting the string σ. Given a set F of accepting states, a Büchi automaton

A = (Σ, Q,Q0, δ, F) accepts σ iff i(σ) ∩ F 6= ∅ (i.e., at least an accepting state from F

appears infinitely often in the run). Notice that, in automata over infinite words, Q and

Σ are finite sets.

Model checking and automata (From [Clarke et al., 1999]). A model M = (S,R, V, I)

for the logic LTL can be translated into an automaton AM = (Σ, Q,Q0, δ, F) as follows:

• Σ = 2AP , where AP is a set of the atomic propositions appearing in V ;

• Q = S ∪ {ι}, where ι is a special state of the automaton;

• Q0 = I ∪ {ι};

• F = S ∪ {ι}, i.e., all the states are accepting;

46

Chapter 2 2.2 Model checking

¬p

p

True

Figure 2.10: Automaton for the formula Fp.

mc(ϕ,M) {
Build the automaton AM ;

Build the automaton accepting ¯L(Aϕ);

Build the automaton accepting L(AM) ∩ ¯L(Aϕ);
Check emptiness of this latter automaton;
Return YES if the automaton is empty;
}

Figure 2.11: The automata-based model checking algorithm for LTL.

• (s, α, s′) ∈ δ iff (s, s′) ∈ R and α = V (s′). Moreover, (ι, α, s) ∈ δ iff α = V (s′) and

s ∈ I.

Notice that the permitted executions of the automaton AM correspond to the possible

runs in M .

Given a LTL formula ϕ, an automaton Aϕ can be associated to ϕ such that L(Aϕ) includes

all the “allowed behaviours” of the system. The details of the construction of Aϕ for a

generic formula ϕ are beyond the scope of this summary and can be found, for instance,

in [Clarke et al., 1999]. As an example, the automaton corresponding to the LTL formula

Fp is represented in Figure 2.10.

Given an LTL model M and a formula ϕ of the same logic, M |= ϕ iff L(AM) ⊆ L(Aϕ),

i.e., iff the language accepted by the automaton representing the model M is included

in the language “allowed” by the automaton representing the formula ϕ. The inclusion

condition can be rewritten in an equivalent way as L(AM) ∩ ¯L(Aϕ) = ∅, where ¯L(Aϕ) is

the complement of the language L(Aϕ) with respect to the set Σω. There exist construc-

tive procedures (see [Clarke et al., 1999] and references therein) to build the automata

corresponding to the complement of a Büchi automaton and to the intersection of two

Büchi automata. These procedures allow for the definition of a model checking algorithm

based on automata; its high-level description is provided in Figure 2.11.

47

Chapter 2 2.2 Model checking

Various optimisation techniques can be employed to improve the efficiency of the algorithm

of Figure 2.11. For instance, on-the-fly model checking is an optimisation technique which

avoids building the automaton AM in the first step of the algorithm. Instead, using

this technique the automaton for ¯L(Aϕ) is constructed first, and then the automaton

accepting L(AM) ∩ ¯L(Aϕ) is constructed iteratively by adding states of M when needed.

This technique sometimes permits to find counter-examples of false formulae in an efficient

way.

2.2.3 Model checking tools

The techniques presented in Section 2.2.2 have been implemented in a number of soft-

ware tools, from the early 1990s. This section briefly summarises three mature tools and

their programming and specification languages; other tools exist, and they are briefly

summarised in Section 2.3. The tools reviewed below have been chosen because of their

robustness, of their wide circulation and availability, and because of their relevance with

material presented in later chapters.

2.2.3.1 SPIN

The model checker SPIN (Simple Promela INterpreter) is one of the most mature model

checkers available: it was introduced in the 1980s at Bell Labs, it has been available

to the general public since 1991, and it has been continually developed since then. A

general introduction to the tool can be found in [Holzmann, 1997], while the theoretical

foundations and a detailed user manual are presented in the book [Holzmann, 2003]. The

main characteristics of SPIN are:

• It is a model checker for the temporal logic LTL.

• It is mainly aimed at verification of protocols and software. SPIN’s programming

language PROMELA (PROcess MEta LAnguage) reflects this intended use (see

below).

• It implements an automata-based algorithm for model checking and various optimi-

sation strategies, including on-the-fly model checking and partial order reduction19.

• It provides a graphical user interface (Xspin) to the model checker and to an inter-

active simulator.

19This technique is based on the observation that execution traces arising from different orderings of
interleaved concurrent processes are sometimes equivalent for the evaluation of a formula ϕ.

48

Chapter 2 2.2 Model checking

mtype = { . . . };
chan = { . . . };
<type> = { . . . };

proctype SampleProcess1(<args>) {
. . .

}

proctype SampleProcess1(<args>) {
. . .

}

init {
main body

}

Figure 2.12: Structure of a PROMELA program.

The structure of a PROMELA program is represented in Figure 2.12. A program includes

a declaration section for message types (mtype), for channel types (chan), and for global

variables of various types (indicated collectively with the string <type> in the figure).

Various processes may be defined in a PROMELA program using the keyword proctype;

each process is defined by a name and by a list of accepted arguments. The behaviour

of each process is defined in its body (not shown in the figure), and each process may

include a list of local variables. Processes communicate using global variables and channels.

Processes are initially created in the init section of the program, they execute concurrently,

and they can be created by other processes.

The Xspin graphical interface acts as a “control centre” for the components of SPIN archi-

tecture (depicted in Figure 2.13). The user needs to provide a PROMELA program and

an LTL formula ϕ; the LTL formula is then translated by the tool into an appropriate

automaton. SPIN can be used as a simulator (to perform either random or interactive

simulations), or as a model checker. In the latter case, a C program implementing the

automata-based algorithm presented above is constructed and compiled, producing a bi-

nary executable that provides an answer to the model checking question.

2.2.3.2 MOCHA

MOCHA [Alur et al., 1998] is a model checker for the logic ATL presented in Sec-

tion 2.1.4.3. Two versions of MOCHA are available: cMocha and jMocha, but only the for-

mer allows for model checking ATL formulae (the latter being more simulation-oriented).

49

Chapter 2 2.2 Model checking

LTL formula ϕPROMELA code

Verifier

InteractiveRandom

Simulator

C code

TRUE FALSE

LTL translator

Figure 2.13: Structure of SPIN.

Model checking is performed in MOCHA by extending the labelling algorithm presented in

Figure 2.4 for CTL to ATL formulae: indeed, it has been shown in [Alur et al., 1998, Alur

et al., 2002] that ATL operators can be characterised using fix-points. Therefore, the

techniques presented in Section 2.2.2.2 for the verification of CTL using obdds can be

extended to the verification of ATL formulae. The details of this approach can be found

in [Alur et al., 1998].

Systems are specified in MOCHA by using the dedicated language ReactiveModules.

Each specification consists of one or more modules; each module is characterised by a

set of input variables (called external variables), by a set of output variables (called in-

terface variables), and by a set of local variables. In each module, the initial value and

the evolution of variables is controlled by a set of constructs called atoms. Instances of

modules are created at end of the file, and they are composed in parallel. Excerpts from a

ReactiveModules program are reported in Figure 2.14; the full syntax of the language

is available from [Alur et al., 2006].

MOCHA provides a graphical user interface to input programs written in ReactiveMod-

ule, and ATL formulae. Interactive simulations and model checking may be performed

either using the interface, or using command line instructions.

2.2.3.3 SMV and NuSMV

SMV (Symbolic Model Verifier, [McMillan, 1992]) and NuSMV [Cimatti et al., 2002] are

two of the most widely cited model checkers. The SMV system was developed at the

beginning of the 1990s to implement the obdd-based symbolic model checking techniques

50

Chapter 2 2.2 Model checking

module SampleModule1

private v1: bool
external v2: bool
interface v3: bool
atom controls v1 reads v1 awaits v3
init [. . .]
update [. . .]

endatom
[. . .]

endmodule

module SampleModule2

[. . .]
endmodule

Main := [. . .] (SampleModule1 || SampleModule2) [. . .]

Figure 2.14: Excerpts from a ReactiveModule program.

for CTL presented in Section 2.2.2.2 using obdds.

NuSMV is a re-implementation of the SMV system; the tool is implemented in C language

and it is available freely under an “open” license. NuSMV implements symbolic model

checking techniques for CTL and bounded model checking techniques for LTL. NuSMV

can operate either in “batch” mode or interactively using a text shell; in this case, sim-

ulations can be performed. NuSMV accepts parameters to optimise the size of obdds

by means of various heuristic functions. obdds are manipulated using the CUDD library

[Somenzi, 2005].

The input languages of SMV and NuSMV present minor differences. They both allow for

a compact description of systems using modules, which may be composed to describe the

evolution of states. The NuSMV program for a 3 bit counter is presented in Figure 2.15,

as an example to introduce the syntax of the language. A NuSMV module is identified by

a string (counter cell in the figure), it may accept input parameters (carry in), and it

may include “local” variables (value). The initial value of the module and the evolution

of the variables are defined in the section appearing under the ASSIGN keyword, using

the constructs init and next. In particular, next(value) is read as “the next value of

the variable value is obtained by taking the disjunction of the current value of it with the

value of the variable carry in, modulo 2”. The keyword DEFINE is used to introduce

a “derived” variable, i.e., a variable which is not part of the state space, but whose value

may be derived from other variables. The behaviour of the system is described in the

(mandatory) module main. In the example, three instances of the module counter cell

are created, imposing the constraints that carry out of counter i is equal to carry in of

51

Chapter 2 2.2 Model checking

MODULE counter cell(carry in)

VAR value: boolean;

ASSIGN
init(value) := 0 ;

next(value) := (value + carry in) mod 2;

DEFINE
carry out := value & carry in;

MODULE main

VAR
bit0 := counter cell(1);

bit1 := counter cell(bit0.carry out);

bit2 := counter cell(bit1.carry out);

Figure 2.15: An SMV program for a 3 bit counter (from [Cimatti et al., 2002]).

counter i+ 1.

A possible execution of NuSMV in interactive mode to verify the 3 bit counter presented

above is shown in Figure 2.16. In this example, NuSMV is run interactively with the

option -int, and the file counter.smv is processed. At the command line of NuSMV

(identified by the prompt NuSMV >), the command go launches a number of preliminary

operations on the input file, including parsing the input text file and generating the obdds

for the temporal relation. The command check_spec -p "AX(bit0.value=0)" launches

the obdd-based verification of the CTL formula AX(bit0.value=0). As the formula is

false, NuSMV outputs a counter-example.

2.2.4 Review of other temporal model checkers

Other tools are available to perform model checking and simulations. These tools include:

• Model checkers for the verification of software.

– Blast (Berkley Lazy Abstraction Software verification Tool, [Henzinger et al.,

2003]) is a model checker for the verification of C programs. It implements

automata-based verification techniques with various optimisations for the veri-

fication of reachability properties.

– cbmc is a model checker for ANSI-C programs implementing bounded model

checking techniques [Clarke et al., 2004a]. Binary versions of the tool are avail-

able from [Clarke et al., 2006].

52

Chapter 2 2.2 Model checking

$./NuSMV -int counter.smv

NuSMV > go

NuSMV > check_spec -p "AX(bit0.value=0)"

-- specification AX bit0.value = 0 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

bit0.value = 0

bit1.value = 0

bit2.value = 0

bit0.carry_out = 0

bit1.carry_out = 0

bit2.carry_out = 0

-> State: 1.2 <-

bit0.value = 1

bit0.carry_out = 1

NuSMV >

Figure 2.16: A NuSMV session.

53

Chapter 2 2.2 Model checking

– Java PathFinder (JPF) [Brat et al., 2000] is a model checker for Java bytecode

programs, developed since 1999 at NASA Ames Research Center. JPF operates

on the explicit representation of the state space using a number of optimisation

techniques to detect deadlocks and unhandled exceptions.

• Model checkers for real-time systems. Real-time systems are systems extended

with clocks to reason about the flow of time between events [Alur and Dill, 1994].

Typically, properties of real-time systems are given in TCTL, an extension of the

logic CTL including time constraints in logical formulae. For instance, the TCTL

formula AF≤5(ready) is read as “in all future paths, the proposition ready will be-

come true in less than 5 time units”. More details about TCTL and model checking

techniques for real-time systems can be found in [Alur and Dill, 1994, Penczek et al.,

2004, Woźna and Zbrzezny, 2005] and in the presentations of the numerous tools

available for real-time verification. These tools include Uppaal [Bengtsson et al.,

1998, Pettersson and Larsen., 2000], Kronos [Yovine, 1997, Daws et al., 1995],

Rabbit [Beyer et al., 2003], and VerICS [Nabialek et al., 2004].

• Other model checkers. Other general-purpose model checkers for temporal logic

include:

– the model checker VIS (Verification Interacting with Synthesis) [Brayton et al.,

1996], which is presented as “a system for formal verification, synthesis, and

simulation of finite state systems”. VIS supports the verification of CTL and

simulation using bounded model checking and obdd-based techniques.

– the model checker SAL (Symbolic Analysis Laboratory) [Moura et al., 2004] is

developed by SRI International [Moura et al., 2006]. SAL implements obdd-

based and bounded model checking techniques.

2.2.5 Complexity results for model checking

Traditionally, given a formula ϕ and a model M = (S,R, V), the complexity of temporal

logics model checking is expressed as a function of the size of the model |M | and of the

size of the formula ϕ, where |M | is defined as the sum of the number of states in S and

the number of elements in R, while |ϕ| is defined as the number of symbols appearing in

ϕ.

CTL. The algorithm presented in Figure 2.4 provides an upper bound for the complexity

of CTL model checking. Indeed, the algorithm always terminates after at most |M | · |ϕ|

steps, and thus model checking for CTL is in P [Clarke et al., 1986]. A proof for the

P-hardness of CTL model checking is presented in [Schnoebelen, 2003], which allows to

conclude that the problem of model checking for CTL is P-complete.

54

Chapter 2 2.2 Model checking

Logic Complexity

CTL [Clarke et al., 1986, Schnoebelen, 2003] P-complete
LTL [Sistla and Clarke, 1985] PSPACE-complete

CTL* [Clarke et al., 1986, Sistla and Clarke, 1985] PSPACE-complete
µ-calculus [Kupferman et al., 2000] ∈ NP ∩ co-NP

Table 2.7: The complexity of model checking for some temporal logics.

LTL. The complexity of LTL model checking was investigated in [Sistla and Clarke,

1985]. Given a formula ϕ and a model M , the problem of model checking for LTL is

reduced to the satisfiability problem for an LTL formula. Intuitively, an LTL formula

ϕM is constructed in polynomial time to encode the valid runs of M , and it is shown

that M |= ϕ iff ϕM =⇒ ϕ is a valid LTL formula. Therefore, Theorem 2.1.5 provides

a PSPACE upper bound for LTL model checking. A corresponding lower bound is

presented in [Sistla and Clarke, 1985], which allows to conclude that the problem of model

checking for LTL is PSPACE-complete.

The complexity of model checking for CTL, for LTL, and for other temporal logics is

presented in Table 2.7.

The results presented above, however, do not apply to the verification of programs written

in one of the languages presented in the previous section (i.e., PROMELA, Reactive-

Modules, and SMV). In these practical instances, states and relations of temporal models

are not listed explicitly. Instead, a compact description is usually given. Thus, the com-

plexity of model checking needs to be investigated in terms of the size of the formula and

of the size of the program representing the model.

Among others, concurrent programs [Kupferman et al., 2000] offer a suitable framework

to investigate the complexity of model checking when compact representations are used,

because various languages can be reduced to concurrent programs. Formally, a program is

a tuple D = 〈AP,AC,S,∆, s0, L〉, where AP is a set of atomic propositions, AC is a set of

actions, S is a set of states, ∆ : S ×AC → S is a transition function, s0 is an initial state,

and L : S → 2AP is a valuation function. Given n programs Di = 〈APi, ACi, Si,∆i, s
0
i , Li〉

(i ∈ {1, . . . , n}), a concurrent program DC = 〈APC , ACC , SC ,∆C , s
0
C , LC〉 is defined as

the parallel composition of the n programs Di, as follows:

• APC = ∪1≤i≤nAPi;

• ACC = ∪1≤i≤nACi;

• SC =
∏

1≤i≤n Si;

• (s, a, s′) ∈ ∆C iff

– ∀i.1 ≤ i ≤ n, if a ∈ ACi, then (s[i], a, s′[i]) ∈ ∆i, where s[i] is the i-th compo-

55

Chapter 2 2.2 Model checking

nent of a state s ∈ S.

– if a 6∈ ACi, then s[i] = s′[i];

• LC(s) = ∪iLi(s[i]).

(in the remainder, the subscript C is dropped when this is clear from the context).

CTL formulae can be interpreted in a (concurrent) program D by using the standard

Kripke semantics for CTL formulae in a model M = (S,R, V). For this, define the set

of states S of M to be set of states S of D, the temporal relation R to be ∆, and the

evaluation function V to be L (more details can be found in [Kupferman et al., 2000]).

By slight abuse of notation, the term “Kripke models” is used occasionally below when

referring to the programs Di and to D.

The program complexity of model checking is defined as the complexity of model check-

ing for a given, fixed formula. Program complexity results for some temporal logics are

presented in Table 2.8.

Logic Program complexity

CTL NLOGSPACE-complete
CTL∗ NLOGSPACE-complete

µ-calculus P-complete

Table 2.8: Program complexity of model checking for some temporal logics, from
[Kupferman et al., 2000].

By analysing the program complexity of model checking concurrent programs, the authors

of [Kupferman et al., 2000] obtain complexity results for various temporal logics. Their

results are based on the definition of various kind of automata, extending the concepts

presented in Section 2.2.2.4. Table 2.9 presents their main results.

Logic Program complexity Overall complexity

CTL PSPACE-complete PSPACE-complete
CTL∗ PSPACE-complete PSPACE-complete

µ-calculus EXP-complete EXP

Table 2.9: Program complexity and complexity of model checking for some temporal logics
using concurrent programs [Kupferman et al., 2000].

The complexity of model checking tools and techniques. The results presented

above provide a lower bound for the problem of model checking temporal models specified

using PROMELA, ReactiveModules, and SMV. Indeed, a generic concurrent program

D can be encoded using any of the languages above. For instance, an SMV module can be

associated to each program Di appearing in D, and a similar approach can be employed

for PROMELA and ReactiveModules. Upper bound results for model checking some

programming languages for multi-agent systems are provided in Section 6.5.5, page 125.

56

Chapter 2 2.2 Model checking

Also, the worst case complexity of model checking tools can be analysed.

• SPIN implements the automata-based techniques presented in Section 2.2.2.4; their

complexity is linear in the size of the model [Clarke et al., 1986]. However, the

size of the model is exponential in the number of processes used in the PROMELA

specification. Thus, although many optimisation techniques have been implemented

in SPIN, in the worst case the complexity of model checking a PROMELA program

using SPIN requires exponential time.

• SMV and MOCHA use (an extension of) the labelling algorithm presented in Fig-

ure 2.4, whose complexity is linear in the size of the model. As above, however, the

model has a size exponential in the number of modules employed in the program-

ming language. On average, obdd-based techniques may reduce the space required

by the labelling algorithm (and, thus, the time required to perform model checking),

but it was shown [Bryant, 1991] that for certain problems obdds have an exponen-

tial size, irrespective of the chosen ordering of the variables. Some operations on

obdds, such as reduction to canonical form and composition, require time linear

in the size of the obdds; Boolean quantification, instead, may require exponential

time. These results imply that in the worst case obdd-based model checking may

require a double-exponential time.

• NuSMV implements SAT-based techniques for LTL, as presented in Section 2.2.2.3.

It has been shown in [Clarke et al., 2004b] that the Boolean formulae generated

using SAT-based techniques may have a number of variables which is exponential in

the size of the input program. Algorithms for Boolean satisfiability may require, in

the worst case, an exponential time; thus, SAT-based techniques for model checking

are, in the worst case, doubly exponential in the size of the input.

57

Chapter 2 2.3 Model checking multi-agent systems: state of the art

2.3 Model checking multi-agent systems: state of the art

This section analyses the literature concerned with model checking for multi-agent systems.

Differently from other PhD theses, this section has been placed after the introduction of

theoretical preliminaries, syntax, and notation. This choice is motivated by the technical

content of the review.

Different approaches have been proposed for the problem of verification in multi-agent sys-

tems using model checking. This section summarises a selection from the recent literature,

including both theoretical results and presentations of tools.

2.3.1 Theoretical investigations

1. A model checking procedure for multi-agent systems is presented in [Benerecetti

et al., 1998]. Here agents are modelled using MultiAgent Temporal Logic (MATL).

MATL is the fusion of the temporal logic CTL and the logic HML (Hierarchical MetaLogic)

to represent beliefs, desires and intentions. HML is defined as follows. Let I be a set of agent,

and O = {B,D, I} be a set of symbols, representing the attitudes Belief, Desire, Intention.

Let OI∗ = (O × I)∗: an element α ∈ OI∗ is a sequence of attitude-agent pairs, and it

represents a possible nesting of attitudes. Each α ∈ OI∗ is called a view, including the empty

string ǫ representing the view of an “external observer”. An agent “is a tree rooted in the

view that the external observer has of it” (notice that the view that an agent has of another

agent can be different from the agent itself). A logical language Lα is associated to each

view α. Each language is used to express what is true in the representation corresponding

to α. It is imposed that Oiϕ is a formula of Lα iff ϕ is a formula of LOiα. The semantics

of {Lα}α∈OI∗ is given by means of “trees”. A tree is a subset Mα of the set of possible

interpretation of a language Lα. Namely, each interpretation is denoted with tα ∈Mα, and

a tree is a set {tα}α∈OI∗ . A compatibility relation T is a set of trees. A tree satisfies a

formula at a view iff the formula is satisfied by all the elements that the tree associates to

the view. A Hierarchical MetaStructure (HM Structure) is a set of trees T on Lα closed

under containment such that there is a t ∈ T with tǫ 6= ∅, if tα satisfies Oiϕ, then tOiα

satisfies ϕ, and if for all t′ ∈ T , t′α ∈ tα implies that tαOi
satisfies ϕ , then tα satisfies Oiϕ.

MATL structures (i.e., models) are a particular kind of HM structures: each language Lα is

a CTL language. This allows for the interpretation of formulae of a language that includes

BDI and temporal (CTL) operators.

The model checking algorithm for MATL is essentially an extension of the labelling

algorithm for CTL taking into account the appropriate data structures for the ma-

nipulation of MATL views.

2. A methodology to model check knowledge and time is presented in [Hoek and

Wooldridge, 2002]. This paper presents the logic CKLn, obtained from the fu-

58

Chapter 2 2.3 Model checking multi-agent systems: state of the art

sion of LTL with S5n to reason about knowledge, with the addition of an operator

to reason about common knowledge in a group of agents. Formulae of CKLn are

evaluated over the runs of a multi-agent system, expressed in the formalism pre-

sented in Section 2.1.7.1 but without explicit references to actions and protocols.

The methodology introduced in [Hoek and Wooldridge, 2002] relies on the concept

of local propositions. Given an interpreted system IS , let R denote the set of runs

of IS ; let v,w be two integer numbers, representing the time (i.e., the number of

steps) elapsed from an initial state; a pair (r, v), where r ∈ R is a possible run,

is called a point (notice that points have been denoted with the term global states

in Section 2.1.7.1). A formula ϕ of CKLn is said to be propositional if it involves

no modal operators. A propositional formula ϕ is local to Agent i iff, for all points

(r, v), (r′, w), if (r, v) ∼i (r′, w), then IS , (r, v) |= ϕ iff IS , (r′, w) |= ϕ. [Hoek and

Wooldridge, 2002] show that, using local propositions, the problem of CKLn model

checking can be reduced to the problem of LTL model checking. The key idea is

to reduce CKLn formulae involving the knowledge operator to a pure temporal for-

mula. For instance, the formula Kiϕ is translated into the formula G(ψ =⇒ ϕ),

where ψ is an appropriate propositional formula local to agent i. A concrete scenario

(the bit transmission problem, see Section 6.1) is verified in [Hoek and Wooldridge,

2002] using the programming language Promela and the model checker SPIN.

The main limitation of this approach is that the local propositions needed for the

translation from CKLn to LTL cannot be computed automatically, and must be

provided by the user.

3. The problem of model checking knowledge and time is also explored in [Meyden and

Shilov, 1999]. The paper considers the class of interpreted systems with perfect recall.

Intuitively, in a system with perfect recall each agent keeps a complete record of all

the (local) states he passes through. Formally, using the notion of points defined

above, in interpreted systems with perfect recall the local state of an agent i at the

point (r, v), denoted with ri(v), is a tuple ri(v) = (ri(0), . . . , ri(v)). Additionally,

the concept of synchronous systems is often associated with that of perfect recall: an

interpreted system is said to be synchronous if, for every agent i, if (r, v) ∼ (r′, w),

then v = w. [Meyden and Shilov, 1999] analyse the problem of model checking the

logic CKLn and some of its restrictions in synchronous and asynchronous interpreted

systems with perfect recall. Let LX,U,K1,...,Kn,C denote the full language of CKLn.

Similarly, let LX,K1,...,Kn,C be the restriction of the previous language without the

“Until” operator, let LK1,...,Kn,C be the restriction without temporal operators, and

let LX,U,K1,...,Kn denote the restriction without the operator for common knowledge.

The model checking technique presented in [Meyden and Shilov, 1999] extends the

automata-based model checking technique for LTL by employing a family of Büchi

automata, which permits the verification of the epistemic operators. Complexity

results for model checking various perfect recall semantics are obtained by analysing

the automata-based technique; results are presented in Table 2.10.

59

Chapter 2 2.3 Model checking multi-agent systems: state of the art

Language Complexity

LK1,...,Kn,C , synchronous PSPACE-hard
LK1,...,Kn,C , asynchronous undecidable
LX,K1,...,Kn,C , synchronous PSPACE-complete
LX,U,K1,...,Kn, synchronous non-elementary
LX,U,K1,...,Kn,C , synchronous undecidable

Table 2.10: Complexity of model checking for some perfect recall semantics.

4. The ideas presented in the previous item have been extended further in [van der

Meyden and Su, 2004], where an obdd-based algorithm for the verification of syn-

chronous interpreted systems with perfect recall is introduced. Their algorithm

accepts the class of formulae of CKLn whose structure is Xk(Kip) (where p is an

atomic proposition and Xk denotes a concatenation of k temporal operators X of

LTL). It is shown that the problem of model checking this class of formulae in syn-

chronous interpreted systems can be reduced to the verification of the equivalence of

Boolean formulae. Similarly to obdd-based model checking for CTL, all the oper-

ations employed in the computation of the Boolean formulae can be carried out on

their representation using obdds. This methodology is applied to the verification

of the protocol of the dining cryptographers (see Section 6.2). Experimental results

are presented for this example (see below the tool MCK for further progress along

these lines). The main issue with this approach is its limitation to a restricted class

of formulae and to a restricted subclass of interpreted systems (synchronous with

perfect recall). Nevertheless, this technique may be more efficient than others when

a scenario may be suitably formalised using synchronous interpreted systems with

perfect recall. See Section 6.5 for further details and for a discussion about this

example.

5. Bounded model checking techniques for CTL [Penczek et al., 2002] have been ex-

tended to the universal fragment of CTLK in [Penczek and Lomuscio, 2003]. In this

work, universal CTLK formulae are evaluated in interpreted systems, as presented

in Section 2.1.7.1. To this end, a bounded semantics for CTLK is defined using

k-models. Intuitively, a k-model is a structure obtained by taking all the possible

runs of length k in a given interpreted system. Let Mk
IS

be the k model associated

to a given interpreted system IS , and let MIS be the standard model associated to

IS . It is proven in [Penczek and Lomuscio, 2003] that for every CTLK formula ϕ,

MIS |= ϕ iff Mk
IS
|= ϕ for some k ≤ |M |. When ϕ is a formula of the universal

fragment of CTLK, the problem of verifying whether or not Mk
IS
|= ϕ can be re-

duced to the problem of verifying the satisfiability of a Boolean formula [Mϕ]k∧ [ϕ]k
(similarly to bounded model checking for LTL and CTL, the Boolean formula is

the conjunction of two Boolean formulae representing, respectively, the Boolean en-

coding of Mk
IS

and of ϕ). Further works along this line include [Woźna et al., 2004]

extending the technique to the verification of correct behaviour, and [Woźna et al.,

60

Chapter 2 2.3 Model checking multi-agent systems: state of the art

2005] which introduces a technique for the verification of knowledge in real-time

systems. These approaches have been implemented in VerICS, a model checker for

multi-agent systems (see below).

6. [Otterloo et al., 2003] and [Jamroga, 2004b] present model checking techniques for

epistemic extensions of ATL. Their approach is similar, in spirit, to [Hoek and

Wooldridge, 2002] in reducing the problem of model checking for an “extended” logic

to a less expressive logic for which model checking tools and techniques exists. In

particular, [Otterloo et al., 2003] introduce Turn-Based Epistemic Systems (TBES),

an extension of Turn-Based Systems [Alur et al., 2002, Hoek and Wooldridge, 2003a]

to evaluate formulae of the logic ATEL (see Section 2.1.7.3). It is shown that the

problem of model checking an ATEL formula ϕ in a TBES T can be reduced to the

problem of verifying an ATL formula ψ in a Turn-Based system S, and a method-

ology is provided to compute the reduction. This technique provides a methodology

that enables the application of the MOCHA model checker (see Section 2.2.3.2) to

the verification of ATEL.

The reduction technique presented in [Jamroga, 2004b] differs from the previous one

in that it allows for the verification of the full language of ATEL, including the

“Until” operator, and operators for group epistemic properties. As in the previous

case, the problem of model checking an ATEL formula is reduced to the verification

of an ATL one. However, no implementation or examples are provided.

The main limitation of both approaches is the need of manual intervention in the

reduction process from ATEL to ATL. While the reductions seem feasible for small

examples, handling large scale examples manually may be impractical.

2.3.2 Model checking tools for multi-agent systems

1. A language for the specification of multi-agent systems, called MABLE, is proposed

in [Wooldridge et al., 2002]. MABLE combines agents’ distinctive notions (such

as beliefs, desires, etc.) with traditional-style programming constructs. A MABLE

program consists of a number of agents, each characterised by a unique identifier and

by a “program body” describing the agent’s behaviour. Standard constructs such

as loops and if-then-else sequences can be used in the program body of an agent.

In addition, the body of a MABLE agent may include constructs to describe the

behaviour of an agent when the agent is “unsure” about the truth value of some

logical expression; this is achieved by using constructs of the form if ϕ then P1

else P2 unsure P3. MABLE agents are allowed to perform actions resulting in

modification of the environment in which they live: this ability is captured by the

MABLE instruction do α, where α is an element of the set of actions available to

the agent (including actions for communication with other agents). The evolution

of MABLE agents is defined by the parallel composition of programs appearing in

61

Chapter 2 2.3 Model checking multi-agent systems: state of the art

the body of each agent.

Each MABLE program may include a number of claims to encode the required

properties to be verified; claims are expressed using a subset of the syntax of LORA

(see Section 2.1.7). Verification of MABLE programs is performed using the model

checker SPIN: the MABLE compiler generates PROMELA code for SPIN by as-

sociating a process (see Section 2.2.3) to each agent. LORA claims appearing in

the MABLE code are reduced to LTL claims using a technique similar to the one

presented in [Hoek and Wooldridge, 2002] using local propositions. To evaluate

these “reduced” formulae, the PROMELA code is annotated with propositions cor-

responding to agents’ attitudes (beliefs, desires, etc.). Similarly to [Benerecetti et al.,

1998], desires, and intentions are treated as nested data structures in the MABLE

framework.

2. The approach of [Bordini et al., 2003b, Bordini et al., 2003a] is similar, in spirit, to

the one presented in the previous point. Indeed, the problem of model checking a

language for multi-agent systems is reduced to the verification of an LTL formula

in a PROMELA model using SPIN. The language AgentSpeak(F) was introduced in

[Bordini et al., 2003b] as a restriction of the language AgentSpeak(L); the latter is a

language used to formalise a multi-agent system expressed using Rao and Georgeff’s

BDI logic (see Section 2.1.7). AgentSpeak(F) is the restriction of AgentSpeak(L) to

finite state systems, with further constraints on first order quantifications and other

technical requirements. The main difference between MABLE and AgentSpeak(F)

is that AgentSpeak(F) is a logic programming language (à la Prolog), while MABLE

is an imperative programming language (à la C); we refer to [Bordini et al., 2003b]

for further details.

The translation from AgentSpeak(F) and BDI specifications (using Rao and

Georgeff’s BDI logic) to a PROMELA program and an LTL specification is per-

formed automatically by a translator called CASP (Checking AgentSpeak Programs,

[Bordini et al., 2003a]). As in the case of MABLE, BDI modalities are evaluated

using nested data structures.

3. MCK (Model Checking Knowledge) is a software tool developed by Ron van der

Meyden et al. [Gammie and van der Meyden, 2004] implementing the model checking

techniques presented in [Meyden and Shilov, 1999, van der Meyden and Su, 2004] (see

above). MCK differs from the two tools listed above in that it is “self-contained”,

i.e., it does not reduce the problem of model checking for multi-agent systems to

a temporal-only problem to take advantage of existing model checkers. Instead,

MCK uses obdds to represent models symbolically, and permits the verification of

CTL and LTL formulae extended with epistemic operators for single agents and for

groups of agents. MCK makes use of an input language to describe the environment

in which agents interact, observation functions for the agents to define which part of

62

Chapter 2 2.3 Model checking multi-agent systems: state of the art

the environment each agent can observe20, the agents’ behaviour using actions, the

set of initial states, fairness constraints, and formulae to be checked. The structure of

the input language of MCK is summarised in Figure 2.17: shared variables describing

the environment are declared first; the initial state of the system is described by a

Boolean expression involving environment variables. Agents are declared using an

identifier followed by the name of a protocol (see below) and by a list of variables of

the environment that the agent is allowed to “observe”. The protocols of the agents

are defined after the declaration of the transitions for the variables of the environment

and an optional CTL formula encoding fairness conditions. Each protocol defines

the actions taken by each agent (e.g., writing some value in a shared variable). The

syntax of the formulae to be checked depends on the <specification-type> chosen:

using appropriate keywords it is possible to verify formulae under the assumption

that:

(a) The local state of an agent is defined by the observable environment variables

only;

(b) The local state of an agent is defined by the observable environment variables

and by the value of the clock (this corresponds to a synchronous interpreted

systems);

(c) The local state of an agent is defined by the observable environment variables,

by the value of the clock, and by all the past observations (this corresponds to

a synchronous interpreted system with perfect recall).

In the first case, either the full syntax of CTLK, or LTL extended with epistemic

operators can be verified. In the second case, only formulae involving the “Next”

operator (both for CTL and for LTL) and the knowledge of a single agent can

be verified. In the third case, only the LTL “Next” operator and the knowledge

of a single agent can be verified. MCK is written in Haskell and the available

package includes an implementation of the protocol of the dining cryptographers

(see Section 6.2).

4. VerICS [Nabialek et al., 2004] is a software tool for the verification of multi-agent

systems. VerICS accepts various input formalisms, including a subset of the Estelle

language (an ISO standard for the description of communicating processes), networks

of timed automata, and timed Petri nets. Interpreted systems can be encoded using

a network of un-timed automata by associating an automaton the each agent, and

formulae of CTLKDD,C can be interpreted in networks of automata. Thus, VerICS

can be employed in the verification of interpreted systems.

VerICS implements three different model checking techniques: bounded model check-

ing, un-bounded model checking, and on-the-fly model checking using abstract mod-

20In this formalism the observation function plays a role similar to the local states of interpreted systems
(see Section 2.1.7.1).

63

Chapter 2 2.3 Model checking multi-agent systems: state of the art

– Type declarations
type TypeName1 = { . . . }
. . .

– Shared variables
varname1 : TypeName1

init cond = [Boolean expression with variables above]

– Agent declarations
agent AgentName1 ”protocol1” (. . . env variables . . .)
. . .

agent AgentNameN ”protocolN” (. . . env variables . . .)

– Transitions
transitions
begin
. . .

end

fairness = [CTL formula]

– Formulae to be verified
<specification-type> = temporal-epistemic formula

– Protocol declarations
protocol ”protocol1” (. . . env variables . . .)
begin
. . .

end
. . .

protocol ”protocolN” (. . . env variables . . .)
begin
. . .

end

Figure 2.17: Structure of the MCK input language [Gammie and van der Meyden, 2004].

64

Chapter 2 2.3 Model checking multi-agent systems: state of the art

els (abstract models are obtained from the original model by combining into equiv-

alence classes the set of states of the original model). These techniques are imple-

mented as separate modules for VerICS and offer different model checking capabili-

ties. The bounded model checking module permits the verification of the universal

fragment of the logic CTLKDD,C ; the un-bounded model checking module permits

the verification of the full language of CTLKDD,C ; the on-the-fly module permits

the verification of reachability properties (but it cannot be used in the verification

of epistemic modalities).

More details on VerICS and its applications to multi-agent systems can be found in

the paper [Kacprzak et al., 2006]; Section 6.5 presents further details of VerICS and

a comparison with mcmas.

65

Chapter 3

Model checking multi-agent

systems using OBDDs

This chapter presents possible solutions to the problem of model checking multi-agent

systems represented in the formalism of interpreted systems. Section 3.1 defines the prob-

lem of model checking deontic interpreted systems, while Section 3.2 presents a possible

solution using existing tools. A self-contained solution to the model checking problem is

presented in Section 3.3, where algorithms are provided for the verification of formulae

in interpreted systems and a translation is defined to enable the use of obdds in the

verification process.

3.1 Problem definition

As defined in Section 2.1.7.1, an interpreted system is a tuple:

IS =
〈

(Li, Acti, Pi, ti)i∈{1,...,A} , (LE, ActE , PE , tE) , I, V
〉

where A is the number of agents in the system. Each agent i is characterised by a set of

local states (Li), a set of actions (Acti), a protocol (Pi : Li → 2Acti), and an evolution

function (ti : Li × LE × Act → Li, where Act = Act1 × Actn × ActE). The agent E

is a special agent (the environment) whose local states are “public” (this is reflected by

the agents’ evolution functions). As described in Chapter 6, agent E may be used to

capture special requirements of the environment with and in which agents interact. The

presence of E is not strictly necessary to formalise all the examples: in the remainder of

this thesis, the environment will be treated as a standard agent, the subscript E will be

dropped and, by convention, the number of agents will be denoted by n (which may or

may not include E. Notice that, when an agent is present, each evolution function ti also

66

Chapter 3 3.2 Explicit verification using NuSMV and Akka

depends on LE: this scenario should be clear from the context). The Cartesian product

of the local states of the agents is denoted by S =
n

×
i=1

Li; elements of S are tuples of local

states, called global states. Given g ∈ S, li(g) denotes the i-th component of g, i.e., the

local state of agent i in global state g. In the definition of IS above, the set I ⊆ S is the

set of initial global states. Starting from the set of initial states, the protocols and the

evolution functions define a set of states that are reachable, denoted by G. Given a set

of atomic propositions AP , the evaluation relation V ⊆ S ×AP completes the definition

of an interpreted system1. As presented in Section 2.1.7.2, interpreted systems can be

extended to deontic interpreted systems by partitioning the set of local states Li into two

sets: a non-empty set Gi of allowed states, and a set Ri of disallowed states, such that

Li = Gi ∪Ri, and Gi ∩Ri = ∅.

Formulae of CTLKD−A{D,C} can be interpreted in a deontic interpreted system DIS

by associating a Kripke model MDIS to DIS (see Sections 2.1.7.1, 2.1.7.2, and 2.1.7.3).

Given a deontic interpreted system DIS and a CTLKD−A{D,C} formula ϕ, the aim of

this chapter is to define effective procedures to establish whether or not

DIS |= ϕ.

3.2 Explicit verification using NuSMV and Akka

A possible solution to the model checking problem for interpreted system may be provided

using existing tools. In particular, NuSMV can be used in conjunction with a model

verifier (see below) to perform verification. Given an interpreted system IS , verification

using these tools is performed as follows:

• An SMV program is defined, consisting of a single main module. A variable is

introduced for each set of local states and for each set of actions; for instance, if L1 =

{l11, l
2
1, l

3
1}, the SMV variable L1 is defined such that L1 : {l1-1, l1-2,l1-3}; (and

similarly for actions). The SMV construct next is used to synchronise the value of the

variables encoding actions with the value of the variables for local states, following

the protocols Pi. For instance, let P1 be a protocol such that P1(l
1
1) = {a1

1, a
2
1} and

P1(l
2
1) = {a3

1}. The corresponding SMV code is as follows:

next(Act1) = case

L1 = l1-1 : {a1-1,a1-2};

L1 = l1-2 : {a1-3};

1For the purposes of this thesis, the evaluation relation V needs to be defined for the set of reachable
states only, i.e., V ⊆ G × AP .

67

Chapter 3 3.2 Explicit verification using NuSMV and Akka

l1−1,l2−1

l1−2,l2−2

l1−1,l2−2

l1−2,l2−1

> [type your formula]

Figure 3.1: Akka screen-shot.

esac;

In this way actions performed in a given local state are mapped in the “next” SMV

state (this approach is usually denoted by the term “post-projection”). The evolution

functions ti are translated into appropriate SMV next constructs.

• The SMV code described in the previous point is used to compute the set of reachable

states and actions. The source code of NuSMV can be modified to print explicitly

this set in the form of a list of tuples (see [Lomuscio et al., 2003] for details), and

this list can be parsed to obtain the list of reachable global states. A possible output

is represented below:

...

l1-1,l2-1,l3-1

l1-1,l2-2,l3-1

l1-2,l2-2,l3-2

...

• Akka [Hendrik, 2006] is a Kripke model editor that supports the verification of

multi-modal formulae in the edited models. A simple Akka screen-shot is depicted

in Figure 3.1. The list of reachable states, appropriately parsed, is fed into Akka,

where epistemic-only formulae can be verified.

68

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

Examples whose size is limited to a few dozens of reachable states can be checked using

this methodology. For instance, the bit transmission problem with a faulty receiver has 32

reachable states (see Section 6.1) and it is verified in [Lomuscio et al., 2003]. In general, the

methodology is particularly useful for small examples and for didactic purposes, because

it is very quick to implement, the state space is clearly visible, and counterexamples for

false formulae can be understood graphically.

The main limitation of this approach is the restriction of the verification to either

epistemic-only formulae using Akka, or to temporal-only formulae using NuSMV. Ad-

ditionally, the methodology requires manual intervention in the definition of the SMV

code, and it is not fully symbolic: the set of reachable states is dealt with explicitly by

Akka. Therefore, this methodology may suffer from scalability issues in large examples.

3.3 Symbolic model checking of interpreted systems using

OBDDs

This section presents a self-contained methodology for the verification of temporal, epis-

temic, correctness, and strategic modalities in deontic interpreted systems using obdds.

First, a deontic interpreted system is encoded using Boolean variables and Boolean for-

mulae; then, a verification algorithm that can operate on this representation is built pro-

gressively for model checking temporal, epistemic, and correct behaviour operators, and

operators for strategies.

3.3.1 Boolean encoding of deontic interpreted systems

Let DIS be a deontic interpreted system for a set of n agents {1, . . . , n} (this set may

include a special agent modelling the environment, see Section 3.1):

DIS =
〈

(Gi, Ri, Acti, Pi, ti)i∈{1,...,n} , I, V 〉

Let Li = Gi ∪ Ri denote the set of local states for agent i, let S =
n

×
i=1

Li, and let AP be

a set of atomic propositions. In the remainder of this section the relation V ⊆ S ×AP is

represented by means of a function V : AP → 2S .

The number of Boolean variables required to encode the set of local states Li for agent i

is denoted by nv(i), and it is computed by taking the logarithm of the number of local

states in Li, that is nv(i) = ⌈log2|Li|⌉. Thus, a global state g can be associated with a

vector of Boolean variables (x1, . . . , xN), where N =
n∑

i=1
nv(i):

69

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

g → (x1, . . . , xnv(1)
︸ ︷︷ ︸

variables for L1

, . . . , xj, . . . , xj+nv(k)
︸ ︷︷ ︸

variables for Lk

, . . . , xN)

(where j =
∑

i<k

nv(i)).

The number of Boolean variables required to encode the set of actions Acti for agent i is

denoted by na(i), and it is computed by na(i) = ⌈log2|Acti|⌉. Similarly to global states,

a joint action α ∈ Act =
n

×
i=1

Acti can be univocally identified by a vector of Boolean

variables (a1, . . . , aM), where M =
n∑

i=1
na(i).

In turn, every Boolean vector can be identified with a Boolean formula represented

by a conjunction of literals, i.e., a conjunction of Boolean variables or their nega-

tion. For instance, the Boolean vector (1, 0, 0, 1) is identified with the Boolean formula

f(x1, x2, x3, x4) = x1 ∧ ¬x2 ∧ ¬x3 ∧ x4. Given a set of global states Q = {g1, . . . , gk},

the set Q can be univocally identified with a Boolean formula fQ: the formula fQ

is obtained by taking the disjunction of the Boolean formulae encoding each state

gi ∈ Q. For instance, if Q = {g1, g2}, g1 → (1, 0, 0, 1), and g2 → (1, 1, 0, 0), then

fQ = (x1 ∧ ¬x2 ∧ ¬x3 ∧ x4) ∨ (x1 ∧ x2 ∧ ¬x3 ∧ ¬x4). A similar technique can be ap-

plied to sets of joint actions, which can be expressed as disjunction of Boolean formulae.

The encoding of local states, global states, and actions by means of Boolean formulae

permits the definition of Boolean formulae encoding agents’ protocols. As defined in

Section 2.1.7.1, a protocol Pi for agent i is a function Pi : Li → 2Acti . Let bf(Q) be

a function that, given a set Q of states or actions (either global or local), returns the

appropriate Boolean function encoding the set. The Boolean formula fPi
encoding the

protocol for agent i is defined by:

fPi
=

∨

li∈Li

bf({li}) ∧

⊕

a∈Pi(li)

bf({a})

 .

Intuitively, this formula restricts for each local state (encoded by bf({li}) the set of actions

that can be performed by agent i. The formula
⊕

a∈Pi(li)

bf({a}) is used to capture the

requirement that a single action has to be performed in a given local state when |P (li)| > 1

for some li ∈ Li. Formally,
⊕

a∈Pi(li)

bf({a}) imposes that only one of the Boolean formulae

encoding the actions a ∈ Pi(li) is true. If |Pi(li)| = 2, this is expressed using the exclusive-

or (x-or) of two Boolean formulae. For |Pi(li)| > 2, the formula is a generalisation of the

x-or operator. A “joint” protocol is obtained by taking the conjunction of the Boolean

70

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

formula encoding the agents’ protocols:

fP (x1, . . . , xN , a1, . . . , aM) =

n∧

i=1

fPi

The evolution functions ti : Li × LE ×Act→ Li are translated into Boolean functions by

introducing a new set of “primed” Boolean variables (x′1, . . . , x
′
N) to encode the successor

of a state (either local or global). A generic pair ti(lp, aq) = lr (with lp, lr ∈ Li and

aq ∈ Acti) is translated into the Boolean function bf({lp}) ∧ bf({aq}) ∧ bf
′({lr}), and

the Boolean formula fti corresponding to ti is obtained by taking the disjunction of all

the possible such pairs2. The Boolean formula ft corresponding to the global evolution

function t defined in Section 2.1.7.1, is defined as:

ft(x1, . . . , xN , a1, . . . , am, x
′
1, . . . , x

′
N) =

n∧

i=1

fti .

(where the arguments of ti are the appropriate Boolean variables to encode Li, as defined

above).

The set I of initial global states can be translated into the Boolean function fI , defined

as the disjunction of the Boolean formulae encoding the global states in I, i.e.:

fI(x1, . . . , xN) =
∨

g∈I

bf({g}).

In the following sections the evaluation function V : AP → 2AS is associated with a

function fV : AP → B(x1, . . . , xN) from atomic proposition to the set B(x1, . . . , xN) of

Boolean functions over the Boolean variables (x1, . . . , xN). Formally, given an atomic

proposition p ∈ AP , fV (p) is the Boolean function encoding the set of global states in

which the atomic proposition p holds.

The Boolean functions fPi
, fP , fti , ft, fI , and the function fV are used in the next

subsections to compute the set of global states in which a CTLKD−AD,C formula ϕ

holds, denoted by [[ϕ]].

3.3.2 Model checking temporal properties

The aim of this section is to present a procedure to compute the set of states (represented

as a Boolean function) of a deontic interpreted system DIS in which a temporal-only

2Notice that this approach would require an explicit listing of all the possible local states and actions.
In the implementation of the algorithm this issue is avoided by introducing a form of default values for ti;
see Chapter 5.

71

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

formula ϕ holds. To this end, a temporal transition relation Rt ⊆ S × S is defined to

encode that a joint action a ∈ Act exists such that two global states are related via the

the evolution function t; formally,

Rt(g, g
′) iff

(
∃a ∈ Act such that t(g, a) = g′

)
.

The temporal relation Rt can be translated into a Boolean function

fRt(x1, . . . , xN , x
′
1, . . . , x

′
N) by quantifying over the Boolean variables encoding joint

actions. Using a standard technique, Boolean quantification is translated into a

propositional formula:

fRt(x1, . . . , xN , x
′
1, . . . , x

′
N) =

∨

ā∈{0,1}M

ft(x1, . . . , xN , a1, . . . , aM , x
′
1, . . . , x

′
N) (3.1)

(where ā is a vector of Boolean variables of the form (a1, . . . , aM)).

The set of global states S, the temporal relation Rt, and the evaluation function V con-

stitute a model M = (S,Rt, V) for the logic CTL3. Therefore, the labelling algorithm

presented in Section 2.2.2.1 can be applied to the computation of the set of states [[ϕ]] ⊆ S

in which a formula ϕ holds. The labelling algorithm mcCTLK to compute [[ϕ]] is reported

in Figure 3.2. The main differences between this algorithm and the one in Figure 2.4 are:

• The set of states computed by mcCTLK(ϕ,DIS) is a set of global states. Differently

from states in a CTL model, global states have a further level of detail, being tuples

of local states.

• The temporal transition relation Rt is defined in terms of agents’ actions, protocols,

and transition relations. The Boolean quantification over actions in Equation 3.1

hides the underlying structure of the deontic interpreted systems when reasoning

about temporal operators only.

Similarly to Section 2.2.2.1, let pre∃ denote a procedure that, given a set of global states

X ⊆ S, computes the set of global states Y ⊆ S from which a transition is enabled to a

global state in X, i.e.:

Y = pre∃(X) = {g ∈ S|∃g′.(g′ ∈ X and gRtg
′)}.

The procedure pre∃ is used in the algorithm of Figure 3.3 dealing with the operator EX.

The remaining procedures mcCTLK,EG and mcCTLK,EU are defined analogously to the

procedures presented in Figures 2.6 and 2.7.

As noted in Section 2.2.2.2 and thanks to Equation 3.1, all the operations on sets of

3In a CTL model the temporal transition relation Rt is usually required to be serial. This requirement
reduces to a requirement of seriality for the evolution function t in DIS .

72

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

mcCTLK(ϕ,DIS) {
ϕ is an atomic formula: return V (ϕ);
ϕ is ¬ϕ1: return S \ mcCTLK(ϕ1,DIS);
ϕ is ϕ1 ∨ ϕ2: return mcCTLK(ϕ1,DIS)∪ mcCTLK(ϕ2,DIS);
ϕ is EXϕ1: return mcCTLK,EX(ϕ1,DIS);
ϕ is EGϕ1: return mcCTLK,EG(ϕ1,DIS);
ϕ is E[ϕ1Uϕ2]: return mcCTLK,EU(ϕ1, ϕ2,DIS);
}

Figure 3.2: The labelling algorithm for the temporal fragment of CTLK.

mcCTLK,EX(ϕ,DIS) {
X = mcCTLK(ϕ,DIS);
Y = pre∃(X);
return Y ;
}

Figure 3.3: The support procedure mcCTLK,EX(ϕ,DIS).

global states appearing in the algorithm of Figure 3.2 may be translated into operations

on Boolean formulae. Thus, for a given deontic interpreted system DIS and for a given

temporal-only formula ϕ, the algorithm mcCTLK(ϕ,DIS) computes the Boolean formula

encoding the set of global states in which ϕ holds. Similarly to the standard obdd-

based model checking for CTL, the Boolean formulae resulting from this algorithm can

be manipulated using obdds; details of the implementation of this algorithm using obdds

(and its extensions presented below) are presented in Chapter 5.

3.3.3 Model checking epistemic properties

This section presents model checking procedures for the epistemic operators of

CTLKD−AD,C . Given a deontic interpreted system DIS , let Γ ⊆ {1, . . . , n} denote

a group of agents. As defined in Section 2.1.7.1, the set of epistemic operators is com-

posed by an operator Ki to reason about the epistemic states of a single agent, by an

operator EΓ to express what everybody in a group Γ knows, by an operator DΓ to rea-

son about the distributed knowledge in a group Γ, and by an operator CΓ representing

common knowledge. Epistemic operators are evaluated in a deontic interpreted system

by employing the appropriate accessibility relation. In particular, the operators Ki are

evaluated using the epistemic accessibility relations ∼i⊆ S ×S defined by the equivalence

of local states for agent i, while the operators EΓ, DΓ, and CΓ are evaluated using the

accessibility relations REΓ , RDΓ , and RCΓ , respectively. Accessibility relations for group

73

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

modalities are defined as follows:

REΓ =
⋃

i∈Γ
∼i;

RDΓ =
⋂

i∈Γ
∼i;

RCΓ =
(
REΓ

)∗
.

(i.e., RCΓ is the transitive closure of REΓ).

The evaluation of epistemic operators has to be restricted to the set of reachable states.

Otherwise, an epistemic formula of the form Kiϕ may result false at a global state g of a

deontic interpreted system DIS because a non-reachable global state g′ may be accessible

from g via the epistemic relation ∼i, with DIS , g′ 6|= ϕ. Therefore, the set G of reachable

global states needs to be computed before evaluating epistemic operators. The set G is

obtained by iterating the following operator τ : S → S:

τ(Q) = I ∪Q ∪
{
g ∈ S|

(
∃g′.

((
g′Rtg

)
∧

(
g′ ∈ Q

)))}
. (3.2)

Intuitively, τ(Q) includes the set of initial states I, the set Q itself, and the set of global

states that are reachable from Q in a single time step. As the set of global states S

is finite, and the operator τ is monotonic, τ admits a (least) fix-point, which can be

computed by iterating τ(∅). Notice that all the set operations appearing in Equation 3.2

can be encoded using appropriate Boolean operations on the Boolean formulae encoding

sets of global states. Therefore, Equation 3.2 provides a constructive way to compute a

Boolean formula fG encoding the set of reachable global states.

The set of reachable states G is used to compute the set of states in which a formula of

the form Kiϕ holds, as presented in the procedure of Figure 3.4. This procedure first

computes the set of states in which the negation of the formula ϕ holds, and then builds

the pre-image of this set with respect to the epistemic accessibility relation ∼i
4. The set

of states satisfying Kiϕ is finally computed by taking the complement with respect to G

of the set obtained in the last step.

The procedures mcCTLK,E,Γ and mcCTLK,D,Γ for formulae of the form EΓϕ and DΓϕ are

presented in Figures 3.5 and 3.6.

The procedure for common knowledge is based on the characterisation of common knowl-

edge in terms of fix-point. Indeed, the equivalence [Fagin et al., 1995]:

CΓϕ⇔ EΓ(ϕ ∧ CΓϕ)

4The use of the existential quantifier is motivated by its efficient implementation using obdds.

74

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

mcCTLK,K(ϕ, i,DIS) {
X = mcCTLK(¬ϕ,DIS);
Y = {g ∈ G | ∃g′ ∈ X s.t. g ∼i g

′}
return ¬Y ∩G;
}

Figure 3.4: The support procedure mcCTLK,K(ϕ, i,DIS).

mcCTLK,E(ϕ,Γ,DIS) {
X = mcCTLK(¬ϕ,DIS);
Y = {g ∈ G | ∃g′ ∈ X s.t. RE

Γ
(g, g′)}

return ¬Y ∩G;
}

Figure 3.5: The support procedure mcCTLK,E(ϕ,Γ,DIS).

mcCTLK,D(ϕ,Γ,DIS) {
X = mcCTLK(¬ϕ,DIS);
Y = {g ∈ G | ∃g′ ∈ X s.t. RD

Γ
(g, g′)}

return ¬Y ∩G;
}

Figure 3.6: The support procedure mcCTLK,D(ϕ,Γ,DIS).

75

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

mcCTLKC(ϕ,Γ,DIS) {
X = mcCTLK(ϕ,DIS);
Y = G;
while (X != Y) {

X = Y;
Y = {g ∈ G|∃g′ ∈ G s.t. g′ ∈mcCTLK(ϕ,DIS) and g′ ∈ X and REΓ (g, g′)}
}
return Y;
}

Figure 3.7: The support procedure mcCTLK,C(ϕ,Γ,DIS).

mcCTLK,O(ϕ, i,DIS) {
X = mcCTLK(¬ϕ,DIS);
Y = {g ∈ G | ∃g′ ∈ X s.t. gRO

i g
′}

return ¬Y ∩G;
}

Figure 3.8: The support procedure mcCTLK,O(ϕ, i,DIS).

implies that [[CΓϕ]] is the fix-point of the (monotonic) operator τC : S → S defined by

τC(Q) = [[EΓ(ϕ ∧ (Q))]]. Hence, [[CΓϕ]] can be obtained by iterating τC(G).

Similarly to Section 3.3.2, all the operations on sets appearing in the procedures of Fig-

ures 3.4–3.7 can be performed on the Boolean representation of sets of global states which,

in turn, can be manipulated using obdds.

3.3.4 Model checking correct behaviour

This section introduces model checking procedures for formulae of the form Oiϕ and K̂Γ
i ϕ

expressing, respectively, that ϕ holds when agent i is functioning correctly, and that agent

i knows ϕ under the assumption that agents in Γ are operating correctly. As defined in

Section 2.1.7.2, the relation ROi ⊆ S × S is defined by ROi (g, g′) iff li(g
′) ∈ Gi, i.e., iff the

local state of agent i in global state g′ is an element of the set of “green” states for agent

i. The procedure mcCTLK,O for formulae of the form Oiϕ has the same structure of the

procedure for mcCTLK,K and it is reported in Figure 3.8.

The procedure for formulae of the form K̂Γ
i ϕ is presented in Figure 3.9. The procedure

operates similarly to the procedure mcCTLK,K , but the computation of the set Y is per-

formed by taking the intersection of the relation RKi with all the relations ROj such that

j ∈ Γ (in the actual implementation, the universal quantification is translated into the

conjunction of the Boolean formulae encoding the accessibility relations ROi).

76

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

mcCTLK,KH(ϕ, i,Γ,DIS) {
X = mcCTLK(¬ϕ,DIS);
Y = {g ∈ G | ∃g′ ∈ X s.t. RK

i (g, g′) and RO
j (g, g′) for all j ∈ Γ}

return ¬Y ∩G;
}

Figure 3.9: The support procedure mcCTLK,KH(ϕ, i,Γ,DIS).

mcCTLK〈〈·〉〉X(ϕ,Γ,DIS) {
Y = {g ∈ G|(∃a ∈ ActΓ, g′ ∈ G) s.t. (∀b ∈ Act{1,...,n}\Γ).[Rt(g, g

′) and t(g, (a ∪ b), g′)
and g′ ∈mcCTLK(ϕ,DIS) and (a ∪ b) is consistent with the protocols in g]}

return Y ;
}

Figure 3.10: The support procedure mcCTLK,〈〈·〉〉X (ϕ,Γ,DIS).

Similarly to the procedures in the previous Sections, the procedures mcCTLK,O and

mcCTLK,KH can operate on the Boolean representation of sets of states.

3.3.5 Model checking strategies

Actions appear in the Boolean encoding of a deontic interpreted system through the def-

inition of the Boolean variables (a1, . . . , aM). These variables are used in the Boolean

encoding of the protocols fPi
and in the Boolean encoding of the evolution functions

ti. A procedure to verify ATL-style operators in non-deterministic interpreted systems

(see Section 2.1.7.3) is obtained by quantifying over the Boolean variables for actions.

Let Γ be a group of agents, let ActΓ denote the set of joint actions of agents in Γ, i.e.,

ActΓ =×
i∈Γ

Acti. Let a ∈ ActΓ and let b ∈ Act{1,...,n}\Γ: a ∪ b denotes the joint action α

in Act whose local components belong to either a or b, with the appropriate reordering of

components. Figure 3.10 presents the procedure for verifying formulae of the form 〈〈Γ〉〉Xϕ

using this notation.

Intuitively, the set [[〈〈Γ〉〉Xϕ]] is computed by including all the reachable states from which

a joint action in ActΓ exists, such that ϕ holds in a global state reachable from g, no

matter what actions are performed by the agents in {1, . . . , n}\Γ.

The remaining ATL-style operators 〈〈Γ〉〉G and 〈〈Γ〉〉U are verified using the appropriate

modification of the procedures in Figures 2.6 and 2.7, similarly to the verification proce-

dures employed in [Alur et al., 2002] and implemented in the model checker MOCHA (see

Section 2.2.3.2).

As noted in Section 2.1.7.3 and in Figure 2.3, the interpretation of ATL in a non-

77

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

mc-unif(DIS ,Γ, ϕ) {
Compute the set {DIS}Γ
for each (X ∈ {DIS}Γ) {

if (mcCTLK(ϕ,X) == G) return true;
}
return false;
}

Figure 3.11: Model checking procedure for Γ-uniform deontic interpreted systems.

deterministic deontic interpreted system may not correspond to the original spirit of ATL

in concurrent game structures. Indeed, the procedure presented above verifies what agents

in a group Γ may bring about, perhaps by guessing moves when in epistemically equivalent

states. While this is appropriate in certain circumstances, in other cases it is necessary to

express what agents can enforce (see the examples in Chapter 6 and the example in Fig-

ure 2.3). Γ-uniform interpreted systems, defined on page 35, provide a semantics closer to

the original meaning of ATL operators. Given a set of agents Γ ⊆ {1, . . . , n}, let {DIS}Γ
be the set of Γ-uniform deontic interpreted systems compatible with DIS . The set {DIS}Γ
can be computed by taking all the possible restrictions of the protocols for agents in Γ; as

noted in Section 2.1.7.3, there are at most
∏

i∈Γ
|Acti|

|Li| such protocols, and thus {DIS}Γ

contains at most
∏

i∈Γ
|Acti|

|Li| elements. Figure 3.11 presents a procedure to verify whether

or not DIS |=Γ ϕ. The procedure mc-unif(DIS ,Γ, ϕ) implements the idea presented in

Section 2.1.7.3: a formula ϕ is true in a class of Γ-uniform deontic interpreted systems iff

it is true in at least one Γ-uniform interpreted system compatible with DIS . Notice that

the mc-unif makes calls to the procedure mcCTLK passing a deontic interpreted system

X ∈ {DIS}Γ as a parameter.

As in the case of the previous procedures, all the operations appearing in the verification

of ATL-style operators in deontic interpreted systems (both non-deterministic and Γ-

uniform) can be expressed as operations on the Boolean representation of the parameters

which, in turn, can be expressed as obdds.

3.3.6 Discussion

The procedures appearing in Figures 3.2–3.10 can be combined in the algorithm

mcCTLK presented in Figure 3.12, which constitutes an algorithm for the verification

of CTLKD−AD,C formulae in deontic interpreted systems. Optionally, the algorithm

mcCTLK can be called by the procedure presented in Figure 3.11, thereby enabling the

verification of the full language of CTLKD−AD,C in Γ-uniform interpreted systems.

This algorithm includes a number of Boolean parameters (such as the encodings for actions,

78

Chapter 3 3.3 Symbolic model checking of interpreted systems using OBDDs

mcCTLK(ϕ,DIS) {
ϕ is an atomic formula: return V (ϕ);
ϕ is ¬ϕ1: return S \ mcCTLK(ϕ1,DIS);
ϕ is ϕ1 ∨ ϕ2: return mcCTLK(ϕ1,DIS)∪ mcCTLK(ϕ2,DIS);
ϕ is EXϕ1: return mcCTLK,EX(ϕ1,DIS);
ϕ is EGϕ1: return mcCTLK,EG(ϕ1,DIS);
ϕ is E[ϕ1Uϕ2]: return mcCTLK,EU(ϕ1, ϕ2,DIS);
ϕ is Kiϕ: return mcCTLK,K(ϕ, i,DIS)
ϕ is EΓϕ: return mcCTLK,E(ϕ,Γ,DIS)
ϕ is DΓϕ: return mcCTLK,D(ϕ,Γ,DIS)
ϕ is CΓϕ: return mcCTLK,C(ϕ,Γ,DIS)
ϕ is Oiϕ: return mcCTLK,O(ϕ, i,DIS)

ϕ is K̂Γ
i ϕ: return mcCTLK,KH(ϕ, i,Γ,DIS)

ϕ is 〈〈Γ〉〉Xϕ: return mcCTLK,〈〈Γ〉〉X (ϕ,Γ,DIS)

ϕ is 〈〈Γ〉〉Gϕ: return mcCTLK,〈〈Γ〉〉G(ϕ,Γ,DIS)

ϕ is 〈〈Γ〉〉[ϕ1Uϕ2]: return mcCTLK,〈〈Γ〉〉U (ϕ1, ϕ2,Γ,DIS)

}

Figure 3.12: The labelling algorithm for CTLKD−AD,A.

protocols, epistemic and correct behaviour relations) that are not present in the traditional

model checking algorithm for CTL. Moreover, the temporal relation Rt is not provided

explicitly, but it must be derived from other parameters, and the set of reachable states

G needs to be computed before performing the verification of formulae.

Correctness of the algorithm: The correctness of the model checking procedures for

temporal-only operators derives from the correctness of the procedures employed in the

verification of standard CTL models. To prove the correctness of the epistemic operators,

notice that the operator τ appearing in Equation 3.2 is monotonic, which guarantees

the existence of a fix-point G corresponding to the set of reachable states (this set is, by

definition, the set of states reachable from the set of initial states via temporal transitions).

The procedures in Figures 3.4–3.9 have the same structure than the temporal operator AX,

and they employ the set G defined above. A similar argument applies to the procedures

for ATL operators, which have the same structure used in MOCHA, but limited to the

set of reachable global states.

The complexity of this procedure is analysed in the next chapter.

79

Chapter 4

The complexity of model checking

multi-agent systems

This chapter presents complexity results for the problem of model checking multi-agent

systems. Section 4.1 deals with the problem of model checking a CTLKD−AD,C formula

in a model given “explicitly”. Section 4.2 investigates the complexity of model checking

in models whose representation is given in a “compact” way. Theoretical preliminaries for

the analysis of complexity were presented in Section 2.1.6, while results for temporal-only

model checking appear in Section 2.2.5.

4.1 The complexity of “explicit” model checking

Given a model M = (W,Rt,∼1, . . . ,∼n, R
O
1 , . . . , R

O
n , t, V) and a formula ϕ of the logic

CTLKD−AD,C , the aim of this section is to investigate the complexity of establishing

whether or not M |= ϕ, as a function of |M | and |ϕ|, under the assumption that states and

relations are listed explicitly. The following theorem provides a upper bound for model

checking a particular class of logics:

Theorem 4.1.1. (From [Fagin et al., 1995], p.63) Consider a Kripke model

M = (W,R1, . . . , Rn, V) for a logic interpreted using Kripke semantics (e.g. S5n, Kn,

etc., see Section 2.1.2) and a formula ϕ of the same logic. There is an algorithm that,

given a model M and a formula ϕ, determines in time O(|M |×|ϕ|) whether or not M |= ϕ.

The time complexity for model checking fusion of logics (see Section 2.1.5.1) can be derived

using the following theorem:

Theorem 4.1.2. (From [Franceschet et al., 2004]) Let M = (W,R1, R2, V) be a model

for the fusion of two logics L1 and L2, and ϕ a formula of L1 ⊗ L2. The complexity of

80

Chapter 4 4.2 The complexity of model checking compact representations

model checking a formula ϕ of L1 ⊗ L2:

O(m1 +m2 + n · n) +
2∑

i=1

((O(k) +O(n)) · CLi
(mi, n, k))

where mi = |Ri|, n = |W |, k = |ϕ|, and CLi
is the complexity of model checking for logic

Li, as a function of mi, n and k.

A P-time algorithm for model checking common knowledge in interpreted systems is pro-

vided in [Meyden, 1998], while it is shown in [Alur et al., 2002] that model checking ATL

formulae is a P-complete problem.

The logic CTLKD−AD,C is the fusion of logics to reason about time (CTL), knowledge

and common knowledge and distributed knowledge (S5n), strategies (ATL), and of a

logic to reason about correct behaviour (using a “deontic” dimension). This observation,

together with Theorems 4.1.1 and 4.1.2, and with the complexity result for CTL appearing

in Table 2.7, implies the following:

Lemma 4.1.1. Model checking for the logic CTLKD−AD,C is a P-complete problem.

Proof. The problem is P-easy: each component of CTLKD−AD,C admits a polynomial

model checking algorithm, therefore the model checking problem for the fusion of these

logics is polynomial by Theorem 4.1.2. The problem is P-hard: model checking the

temporal fragment of CTLKD−AD,C is a P-complete problem.

4.2 The complexity of model checking compact representa-

tions

As noted in Section 2.2.5, in many applications models are not described explicitly by

listing states and relations. Instead, a compact representation is given; for instance one of

the languages presented in Section 2.2.3 may be used to describe temporal models. Under

this perspective, deontic interpreted systems can be seen as a compact representations

for CTLKD−AD,C models. Indeed, the size of the model MDIS associated to a given

deontic interpreted system DIS can be exponentially larger than DIS itself. For instance,

if DIS is composed of three agents, each of which is characterised by two local states, the

number of states of MDIS is 23.

The aim of this section is to investigate the complexity of model checking a CTLK formula

ϕ in a given deontic interpreted system DIS :

DIS =
〈

(Gi, Ri, Acti, Pi, ti)i∈{1,...,n} , I, V
〉

81

Chapter 4 4.2 The complexity of model checking compact representations

in terms of |ϕ| and |DIS |. This section shows that model checking CTLK formulae in

concurrent programs (see Section 2.2.5) is a PSPACE-complete problem. This provides

a result for the complexity of model checking deontic interpreted systems, as these can be

reduced to concurrent programs (see below).

A concurrent program D = 〈AP,AC,S,∆, s0, L〉 is obtained by the parallel composition

of n programs Di = 〈APi, ACi, Si,∆i, s
0
i , Li〉 (see page 55). Formulae of CTLK are inter-

preted in a concurrent program D in a standard way: temporal operators are interpreted

using the transition relation ∆, and epistemic operators are interpreted using epistemic

accessibility relations defined by the equivalence of the “local”components si ∈ Si of the

“global” states s ∈ S, as in Section 2.1.7.1.

The following results will be used in the proof of Theorem 4.2.1, presented below.

Lemma 4.2.1 states that, a formula EGϕ is true at a state s in a CTL model M iff

ϕ is true on a sequence of states of length |M | starting from s. Lemma 4.2.2 states that

E[ϕUψ] is true at a state s in a CTL model M iff there is a state s′ on a path starting

from s at a distance not greater than |M | from s, in which s′ |= ψ, and such that ϕ holds

in all states from s to s′.

Lemma 4.2.1. Given a Kripke model M = (S,R, V) for CTL, a state s ∈ S, and a

formula ϕ, M,s |= EGϕ iff there exists a sequence of states π starting from s of length

|π| ≥ |M | s.t. M,π(i) |= ϕ for all 0 ≤ i ≤ |M |.

Proof. If M,s |= EGϕ, then there exists a path π from s such that, for all i ≥ 0, M,π(i) |=

ϕ; as the relation R is serial, this path is infinite (so, obviously, |π| ≥ |M |).

Conversely, if there is a path π from s of length |π| ≥ |M |, then such a path must necessarily

include a backward loop. As M,π(i) |= ϕ for all i in this loop, it suffices to consider the

(infinite) trace generated by this loop to obtain a (semantic) witness for M,s |= EGϕ.

Lemma 4.2.2. Given a Kripke model M = (S,R, V, I) for CTL, a state s ∈ S, and two

formulae ϕ and ψ, M,s |= E[ϕUψ] iff there exists a sequence of states π starting from s

s.t. M,π(i) |= ψ for some i ≤ |M |, and M,π(j) |= ϕ for all 0 ≤ j < i.

Proof. If M,s |= E[ϕUψ], by the definition of the until operator, there must exist a state

s′ in which ψ holds, and ϕ holds in every state from s to s′. Moreover, the state s′ cannot

be at a “distance” greater than |M | from s. The other direction is a sufficient condition

for M,s |= E[ϕUψ].

Theorem 4.2.1. Model checking CTLK specifications in concurrent programs is a

PSPACE-complete problem.

Proof. Proof idea: given a formula ϕ of CTLK and n programs Di defining a concurrent

programD, a deterministic, polynomially-space bounded Turing machine T is defined that

82

Chapter 4 4.2 The complexity of model checking compact representations

ϕ.∆1 ∆2 ∆nSnS2S1

D1 D2 Dn

Figure 4.1: Input tape for the Turing machine T .

main {
state = (1, 1, . . . , 1);
repeat
if reachable(state) then

if satisfiable(¬ϕ,state) then
return yes;

else
move to next state;

end if
else

move to next state;
end if;

until last state;
return no;
}

Figure 4.2: The main loop for the Turing machine T .

halts in an accepting state iff ¬ϕ is satisfiable in D (i.e., iff there exists a state s ∈ S s.t.

D, s |= ¬ϕ). Based on this, it is possible to conclude that the problem of model check-

ing is in co-PSPACE. As deterministic complexity classes are closed under complement

(Theorem 2.1.3), this implies that the problem is PSPACE-complete (the lower bound

being given by the complexity of model checking CTL in concurrent programs).

Proof details: T is a multi-string Turing machine whose inputs are the n programs Di

and the formula ϕ. T operates “inductively” on the structure of the formula ϕ (see

also [Cheng, 1995] for similar approaches), by calling other machines (“sub-machines”)

dealing with a particular logical operator only. The input of T includes the states of the

program Si (1 ≤ i ≤ n), the transition relations, the evaluation functions and all the

other input parameters of each Di. This information can be stored on a single input

tape, separated by appropriate delimiters, together with the formula ϕ. The input tape is

depicted informally in Figure 4.1.

T returns yes iff there exists a state s ∈ S such that D, s |= ¬ϕ. The machine T iterates

over the set of states s ∈ S and checks whether ¬ϕ holds in one of these or not. If a state

is found such that D, s |= ¬ϕ, then the machine halts in a yes state; if the machine loops

over all the states without finding a state satisfying ¬ϕ, then T halts in a no state. A

high-level description of the main loop of the machine is given in Figure 4.2:

83

Chapter 4 4.2 The complexity of model checking compact representations

In the program above, state is a tuple of n values (s1, . . . , sn), such that, for all i, si ∈ Si.

Notice that, since n is finite, and since |S| is finite, states can be numbered; for instance,

the state (1, 1, . . . , 1) is the state obtained by taking the first element from S1 in D1,

the first element from S2 in D2, and so on, following the order depicted in Figure 4.1.

The procedure reachable(state) verifies that s is reachable from the initial state. The

algorithm of Theorem 2.1.1 can be used here, but notice that a polynomial amount of

space is needed to store state (as it is the product of states of Di); the algorithm uses

the transition relations ∆i encoded in the input tape to verify whether two states are

connected or not.

The procedure satisfiable(ϕ,state) returns yes if the formula is satisfiable at state, and

it returns no otherwise. The procedure satisfiable operates recursively on the structure

of the formula by calling one of the machines described below. Each machine accepts a

state s and a formula, and returns either no (the formula is false at s) or yes (the formula

is true at s). Notice that each machine can call any of the other machines. The following

is a description of the formula-specific machines that may be called by satisfiable:

• The machine Tp for atomic formulae simply checks whether or not state is in

L(state), where the evaluation L is obtained from the evaluations for each pro-

gram in the input string; if the proposition is true at state, then Tp returns yes,

otherwise it returns no.

• The machine T¬ for formulae of the form ψ = ¬ϕ calls the appropriate machine for

ϕ and returns the opposite.

• The machine T∨ for the disjunction ψ = ψ′ ∨ψ′′ first calls the machine for ψ′. If the

result is yes, it outputs yes, otherwise it returns the output of the machine for ψ′′.

• The machine TEX for formulae of the form ψ = EX(ϕ) implements the program of

Figure 4.3. The machine TEX accepts a formula ϕ and a state as input; similarly to

the main loop, the machine iterates over the set of states using the variable state2.

For each state, the machine checks whether state2 is reachable from the input

state; if this is the case, then TEX checks whether or not ϕ is satisfied at state2.

If TEX finds such a state, then it halts in a yes state; otherwise, if no state can be

found, TEX terminates in a no state. Notice that this machine uses a polynomial

amount of space (the space required to store state2).

• The machine TEU for formulae of the form E[ϕUψ] implements the program of

Figure 4.4. The machine TEU accepts two formulae and a state. The machine

operates by iterating over the set of states using the counter state2, similarly to

the previous machines. In each loop, the machine checks whether ψ holds in state2

and whether state and state2 are the same state. If this is the case, then the

machine halts in a yes state. Otherwise, the machine checks whether or not there

84

Chapter 4 4.2 The complexity of model checking compact representations

TEX(ϕ,state) {
state2 = (1, 1, . . . , 1);
repeat
if reachable(state,state2) then

if satisfiable(ϕ,state2) then
return yes;

else
move to next state2;

end if
else

move to next state2;
end if;

until last state2;
return no;
}

Figure 4.3: The machine TEX .

is a sequence of states from state to state2 such that ϕ holds along the sequence.

This check is performed by the procedure path(state,state2,ϕ,N), which returns

yes if there is such a path, of length at most 2N . By Lemma 4.2.2, it is sufficient

to take N to be the logarithm of the size of the model which, in turn, can be

approximated by log(Max{|Si|}
n) ≤ n · |{Di}i∈{1,...,n}|, where |{Di}i∈{1,...,n}| is the

sum of the sizes of the programs, i.e., |{Di}i∈{1,...,n}| =
∑

i∈{1,...,n}

|Di| (notice that

this value can be computed only once, at the beginning of the run). A recursive

algorithm to solve path is presented in [Papadimitriou, 1994]; this algorithm employs

at most space proportional to N , and it can be extended by adding a simple check

for the satisfiability of ϕ. As there can be at most |ϕ| checks, PATH uses at most

O(n · |{Di}i∈{1,...,n}| · |ϕ|) space (i.e., it operates in PSPACE).

• The machine TEG for formulae of the form EG(ϕ) is defined by taking the determin-

istic version of the non-deterministic Turing machine NTEG depicted in Figure 4.5.

Based on Lemma 4.2.1, this machine guesses a sequence of states of length greater

than |{Di}i∈{1,...,n}| (as above, this value can be computed at the beginning of the

run by evaluating the size of the input) in which ϕ holds. If (and when) such a

sequence is found, the machine returns yes (notice that this machine uses a polyno-

mial amount of space and always halts). By Theorem 2.1.2, it is possible to build a

deterministic machine TEG in PSPACE that returns yes iff there exists a sequence

of states of length greater than |{Di}i∈{1,...,n}| in which ϕ holds.

• The machine TK for formulae of the form ψ = Ki(ϕ) is depicted in Figure 4.6. The

machine TK accepts a formula ϕ, an index i, and a state as input; similarly to TEX ,

the machine iterates over the set of states using the variable state2. For each state,

85

Chapter 4 4.2 The complexity of model checking compact representations

TEU(ϕ,ψ,state) {
state2 = (1, 1, . . . , 1);
repeat

if satisfiable(ψ,state2) then
if (state == state2) return yes;
else

if (path(state,state2,ϕ,N)) then
return yes;

else
move to next state2;

end if;
end if;

else
move to next state2;

end if
until last state2;
return no;
}

Figure 4.4: The machine TEU .

NTEG(ϕ,state) {
state2 = state;
counter = 0;
repeat

guess a state2;
if (state is connected with state2) then
if (satisfiable(ϕ,state2) then
counter = counter + 1;

else
return no;

end if
else
return no;

end if
until counter > |{Di}i∈{1,...,n}|
return yes;
}

Figure 4.5: The machine TEG.

86

Chapter 4 4.2 The complexity of model checking compact representations

TK(ϕ, i,state) {
state2 = (1, 1, . . . , 1);
repeat

if reachable-k(state,state2,i)
and reachable(state2) then

if satisfiable(¬ϕ,state2) then
return no;

else
move to next state2;

end if
else

move to next state2;
end if;

until last state2;
return yes;
}

Figure 4.6: The machine TK .

the machine checks whether state2 is reachable from the set of initial states with

the procedure reachable(state2), and checks whether state2 is reachable from

state by means of epistemic accessibility relation i. This last check is performed by

the procedure reachable-k, comparing the i-th component of state and state2; if

this is the case, then TK checks whether or not ¬ϕ is satisfied at state2. If TK finds

a state satisfying the conditions above, then it halts in a no state (because this state

violates the definition of satisfiability for Ki); otherwise, if no state can be found,

TK terminates in a yes state. Notice that this machine uses a polynomial amount

of space (i.e., the space required to store the value of the counter for state2).

Each of the machines above uses at most a polynomial amount of space, and there are at

most |ϕ| calls to these machines in each run of T . Thus, T uses a polynomial amount of

space.

The PSPACE complexity result obtained above can be applied with minor modifications

to the analysis of the complexity for model checking deontic interpreted systems (and to

other formalisms, such as network of automata, see [Lomuscio and Raimondi, 2006a]). A

deontic interpreted system can be reduced to a concurrent program: each agent can be

associated with a program Di = 〈APi, ACi, Si,∆i, s
0
i , Li〉, where ACi is the set of actions

for agent i, Si is the set of local states for agent i, and the evolution function ∆i is

the temporal evolution function ti for the agent. In the formalism of deontic interpreted

87

Chapter 4 4.3 Discussion

systems an agent’s evolution function may depend on other agents’ actions. The definition

of ∆i can be modified to take in account this requirement. Similarly, the definition of the

“global” evolution function t in a deontic interpreted system depends on all agents’ actions.

The definition of a concurrent program can be modified as follows:

• AP = ∪1≤i≤nAPi;

• AC =
∏

1≤i≤nACi;

• S =
∏

1≤i≤n Si;

• (s, a, s′) ∈ ∆ iff ∀1 ≤ i ≤ n, (s[i], a, s′[i]) ∈ ∆i;

• L(s) = ∪iLi(s[i]).

Notice that, instead of taking the union, AC is now the Cartesian product of the agents’

actions ACi, and the transition function ∆ is modified accordingly; this modification only

impacts the procedure reachable, but it does not affect complexity results. Thus, given

a deontic interpreted system and a CTLK formula ϕ, it is possible to obtain a concurrent

program D of size equal to the original description using deontic interpreted systems, so

that the Turing machine T defined above can be employed to perform model checking of ϕ.

By noting that each concurrent program can be reduced to a deontic interpreted system

as well, it is possible to conclude that the problem of model checking CTLK formulae in

deontic interpreted systems is a PSPACE-complete problem.

4.3 Discussion

The proof presented in the previous section differs from the proof of PSPACE-

completeness for model checking CTL specifications in concurrent programs developed

in [Kupferman et al., 2000] and presented in Section 2.2.5, in that it does not use results

from automata theory. In this sense, the proof of Theorem 4.2.1 provides an alternative

proof of the upper bounds for model checking CTL formulae in concurrent programs,

which can be easily extended to CTLK.

Recently, [Hoek et al., 2006] presented complexity results for model checking ATL formu-

lae when models are represented in a compact way, showing that this is an EXP-complete

problem.

It is worth noticing that the verification algorithms presented in Chapter 3 require, in the

worst case, space (and time) exponential in the size of the input to perform verification.

Indeed, it is known that certain problems [Bryant, 1991] require obdds of size exponential

in the number of variables. Nevertheless, experimental results show that the average time

88

Chapter 4 4.3 Discussion

and space requirements for these algorithms are well below the worst case scenario for

most of the examples (see Section 6.5).

A discussion on the complexity of model checking tools for multi-agent systems can be

found in Section 6.5.5.

89

Chapter 5

MCMAS

This chapter describes mcmas, a Model Checker for Multi-Agent Systems. mcmas is

developed in C/C++, and it should be considered a prototype model checker for multi-

agent systems to assess whether the algorithms presented in Chapter 3 may be applied

efficiently to large examples.

Section 5.1 presents an overview of the implementation. The syntax of the input language

of mcmas is given in Section 5.2, while Section 5.3 provides some implementation details.

Compilation instructions and examples of mcmas usage are presented in Section 5.4.

5.1 Overview

mcmas is a model checker for the verification of CTLKD−AD,C formulae in deontic in-

terpreted systems, with the possibility of performing verification on the class of Γ-uniform

deontic interpreted systems compatible with a given deontic interpreted systems. Deontic

interpreted systems are described in mcmas using the language ISPL (see Section 5.2).

mcmas is released under the terms of the GNU General Public License (GPL); the source

code, examples, and installation notes are available from [Raimondi and Lomuscio, 2006].

The structure of mcmas is depicted in Figure 5.1. The steps 1 to 14, inside the box, are

performed automatically upon invocation of the tool.

• In step 1 and 2, the input ISPL file is parsed using standard tools (Lex and Yacc),

which define the grammar of ISPL. The input file includes both the description of a

deontic interpreted system and a list of formulae to be verified. At this stage mcmas

builds an internal representation of the parameters appearing in the input file (such

as agents’ names, local states, actions, etc.) using data structures such as lists and

maps: these are manipulated using the C++ Standard Template Library (STL).

90

Chapter 5 5.1 Overview

Parse input;

Parse the formulae to check

if (Γ−uniform required) {

Compute the set of reachable states;

Build OBDDs for parameters;

for each compatible deontic interpreted system {

systems compatible with the ISPL input;
compute the set of deontic interpreted

Compute the set of states in which formula holds;

if (reachable states = [[φ]])

}

} else {

Build OBDDs for parameters

Compute the set of reachable states;

Compute the set of states in which formula holds;

if (reachable states = [[φ]])
}

return TRUE;

return TRUE;

return FALSE;14

13

12

11

10

9

8

7

6

5

4

3

1

2

(text file using ISPL syntax)
Deontic interpreted systems description

Figure 5.1: High level description of mcmas.

91

Chapter 5 5.1 Overview

• In step 3 mcmas checks whether the parameter to perform verification in Γ-uniform

interpreted systems was provided. If this is the case, mcmas proceeds to step 4;

otherwise, it proceeds to step 10. Notice: mcmas determines the set Γ for each

formula that has to be verified by taking all the agents appearing inside any ATL

operator. Other implementation choices are possible, for instance a list of “uniform”

agents could be provided and read from the command line.

• mcmas performs step 4 only if verification in Γ-uniform interpreted systems is re-

quired. In this case, the number of deontic interpreted systems compatible with the

ISPL input is computed. As described in Section 2.1.7.3, the number of elements

of {DIS}Γ is at most
∏

i∈Γ
|Acti|

|Li|. For instance, if the set of local states for an

agent x includes a local state lx and a local state l′x, such that Px(lx) = {ax, a
′
x}

and Px(l
′
x) = {ax, a

′
x} (i.e., two actions are allowed in each local state), then {DIS}Γ

contains at least four elements.

• In step 6 the obdds corresponding to the Boolean encodings are built for each of

the Γ-uniform interpreted systems compatible with the given ISPL input. First,

the number of Boolean variables needed to encode global states and joint actions is

computed; then, the obdds representing protocols, evolution functions, set of initial

states, etc., are built following the procedure of Section 3.3.1, starting from the

internal representation using data structures obtained in step 2. Step 5 employs the

Cudd C library [Somenzi, 2005] for the manipulation of obdds. Notice that only

one element of {DIS}Γ is analysed in each loop, and the loop may terminate if the

condition in step 9 holds.

• The Boolean representation (using an obdd) of the set G of reachable states is built

in step 7 by computing the fix-point of Equation 3.2.

• The set of states in which a formula holds is computed in step 8, for each formula

appearing in the input ISPL file. As above, these sets are computed as Boolean

formulae using the procedures appearing in Sections 3.3.2 – 3.3.5, and they are

manipulated using their encoding with obdds. In step 9, this obdd is compared to

the obdd encoding the set of reachable states. If the two obdds are equal the loop

terminates, as a single positive witness is enough to prove DIS |=Γ ϕ. Otherwise,

the for loop continues with another Γ-uniform interpreted system. If no Γ-uniform

can be found for a particular formula, mcmas returns FALSE (step 14).

• The steps from 10 to 13 are executed when verification in Γ-uniform interpreted

systems is not required. These steps are similar to steps from 6 to 9, the only

difference being the encoding of the parameters. In this case, agents are not required

to be uniform and all the protocols may be non-deterministic.

mcmas is run from the command line and it accepts various options, in addition to the

parameter to enable verification in Γ-uniform interpreted systems. The additional pa-

92

Chapter 5 5.2 The language ISPL

rameters include options to modify its verbosity, to inspect obdds statistics and memory

usage, to enable variable reordering; these can be used to determine the critical points in

the verification of large examples, and to fine tune the performance of the tool.

mcmas is written in C/C++ and it can be compiled on various platforms, including

PowerPC (Mac OS X 10.2 to 10.4), Mac Intel (Mac OS X 10.4), Intel (various Pentium

versions using Linux 2.4 and 2.6, and using Windows with Cygwin), and SPARC (SunOS

5.8 and 5.9). The source code has been compiled with gcc/g++ from version 2.95 till

version 3.4. The current version of mcmas is version 0.7.

5.2 The language ISPL

ISPL (Interpreted Systems Programming Language) is the input language of mcmas.

An ISPL program describes a deontic interpreted system following closely the formalism

presented in Sections 2.1.7.1 and 2.1.7.2.

5.2.1 General structure of an ISPL program

An ISPL program is composed of five sections:

1. Agents’ declarations. In this section of ISPL agents are defined using a sequence of

declarations, each of which has the following syntax:

Agent <agentID>

<agent_body>

end Agent

where <agentID> is a valid ISPL identifier (see below), and <agent_body> contains

the declaration of local states, actions, protocol, and evolution function for each

agent.

2. Evaluation function. In this section the evaluation function V : AP → 2G (see

Section 2.1.7.1) is defined as follows:

Evaluation

<proposition_declaration>

end Evaluation

<proposition_declaration> is a sequence of lines of the form

<proposition> if <condition_on_states>, where <proposition> is a valid

ISPL identifier and <condition_on_states> is a Boolean formula defining a set of

global states.

93

Chapter 5 5.2 The language ISPL

3. Initial states. In this section the set of initial states is defined by the syntax:

InitStates

<condition_on_states>

end InitStates

where, as above, <condition_on_states> is Boolean formula defining a set of global

states.

4. Groups declaration. In this sections the groups of agents used in the for-

mulae to be verified are declared between the keywords (see Section 5.2.2)

Groups <groups_declaration> end Groups.

5. List of formulae to verify. In this section, identified by the keywords

Formulae <formulae_list> end Formulae, CTLKD−AD,C formulae to be ver-

ified are listed. The propositional formulae and the groups appearing in these for-

mulae have to be declared, respectively, in items 2 and 4 above.

Comments may be included in ISPL programs using double dashes at the beginning of a

line, for instance:

-- This is a comment

5.2.2 Formal syntax of ISPL

The basic element of an ISPL program is an identifier. An identifier is any string starting

with a letter and followed by any number of letters, digits, or underscore sign. Formally,

ID :: [a-zA-Z][a-zA-Z0-9_]*

The reserved keywords of ISPL are listed in Figure 5.2.

As described in the previous Section, an ISPL program is composed of five sections:

<Agents_list> <Evaluation> <InitialStates> <Groups> <Formulae>

• <Agent_list> is a sequence of <Agent> declarations of the following form:

<Agent> :: "Agent" ID <Agent_body> "end Agent"

where

94

Chapter 5 5.2 The language ISPL

"Agent"

"Lstate" (local states)

"Lgreen" (green local states)

"Action"

"Protocol"

"Ev" (evolution function)

"Evaluation"

"InitStates"

"Groups"

"Formulae"

"end"

"if"

"and"

"or"

"->" (implication)

"AG" (temporal operator AG)

"EG" (temporal operator EG)

"AX" (temporal operator AX)

"EX" (temporal operator EX)

"X" (operator X for strategic modalities)

"F" (operator F for strategic modalities)

"G" (operator G for strategic modalities)

"AF" (temporal operator AG)

"EF" (temporal operator AG)

"A" (universal path quantifier)

"E" (existential path quantifier)

"U" (temporal operator Until)

"K" (epistemic operator)

"GK" (epistemic operator for everybody knows)

"GCK" (epistemic operator for common knowledge)

"O" (operator for correct behaviour)

"KH" (operator for epistemic+deontic modality)

"DK" (epistemic operator for distrib. knowledge)

Figure 5.2: ISPL reserved keywords.

95

Chapter 5 5.2 The language ISPL

<Agent_body> ::

"Lstate = {" ID "," ID ... "};"

"Lgreen = {" ID "," ID ... "};"

"Action = {" ID "," ID ... "};"

<Protocol>

<Evolution>

Protocols are defined as follows:

<Protocol> ::

"Protocol:"

ID ":" "{" ID "," ID... "};"

ID ":" "{" ID "," ID... "};"

...

"end Protocol"

The declaration of a protocol must include a line for each local state appearing in

Lstate. Each line of the protocol starts with an identifier for the local state and it

is followed by a list of identifiers for actions in curly braces.

The evolution function of an agent is defined as follows:

<Evolution> ::

"Ev:"

ID "if" <Bool_ev_cond> ";"

ID "if" <Bool_ev_cond> ";"

...

"end Ev"

where <Bool_ev_cond> is a Boolean condition on local states and actions, defined

by:

<Bool_ev_cond> ::

<Bool_ev_cond> "or" <Bool_ev_cond>

| <Bool_ev_cond> "and" <Bool_ev_cond>

| "not" <Bool_ev_cond>

| "Lstate = " ID

| "Action = " ID

| ID ".Lstate = " ID

| ID ".Action = " ID

Notice that the last two lines in the definition of <Bool_ev_cond> permit the refer-

ence to other agents’ local states and actions, using an ID (an agent’s name) followed

96

Chapter 5 5.2 The language ISPL

by a dot to disambiguate references (see Section 2.1.7.1 for a discussion on the evo-

lution functions). An evolution line of the form ID "if" <Bool_ev_cond> is read

as: the next local state is ID if <Bool_ev_cond> is true. It is assumed that, if none

of the <Bool_ev_cond> holds, then the agent does not change its local state. This

assumption is key to keep the description of examples compact, because only the

conditions causing a change need to be listed.

• The <Evaluation> section is defined as follows:

<Evaluation> ::

"Evaluation"

ID "if" <Eval_bool_cond> ";"

ID "if" <Eval_bool_cond> ";"

...

"end Evaluation"

Each line in the evaluation function defines a new atomic proposition of AP , identi-

fied by ID. <Eval_bool_cond> is a Boolean condition on the local states of agents,

defined by:

<Eval_bool_cond> ::

<Eval_bool_cond> "or" <Eval_bool_cond>

| <Eval_bool_cond> "and" <Eval_bool_cond>

| "not" <Eval_bool_cond>

| ID ".Lstate = " ID

• The section declaring initial states is defined as follows:

<InitialStates> ::

"InitStates"

<Eval_bool_cond>

"end InitStates"

where <Eval_bool_cond> is a Boolean condition on local states defined as above.

The set of global states for which <Eval_bool_cond> is true corresponds to the set

of initial states I.

• Groups of agents are declared in the section <Groups> as follows:

<Groups> ::

"Groups"

ID "=" "{" ID "," ID... "};"

ID "=" "{" ID "," ID... "};"

...

"end Groups"

97

Chapter 5 5.2 The language ISPL

Each line in the Groups section starts with an identifier (the group name), followed

by a list of agents’ names in curly braces, defining the members of the group.

• CTLKD−AD,C formulae to be verified are declared in the section <Formulae>,

defined by:

<Formulae> ::

"Formulae"

<formula> ";"

<formula> ";"

...

"end Formulae"

The syntax of formulae is as follows:

<formula> ::

<formula> "and" <formula>

| <formula> "or" <formula>

| <formula> "->" <formula>

| "not" <formula>

| "AG" <formula>

| "EG" <formula>

| "AX" <formula>

| "EX" <formula>

| "AF" <formula>

| "EF" <formula>

| "A[" <formula> "U" <formula> "]"

| "E[" <formula> "U" <formula> "]"

| "K(" ID "," <formula> ")"

| "GK(" ID "," <formula> ")"

| "GCK(" ID "," <formula> ")"

| "DK(" ID "," <formula> ")"

| "O(" ID "," <formula> ")"

| "KH(" ID "," ID "," <formula> ")"

| "<<" ID ">>X" <formula>

| "<<" ID ">>F" <formula>

| "<<" ID ">>G" <formula>

| "<<" ID ">>[" <formula> "U" <formula> "]"

| ID

A simple ISPL code with two agents to test ATL operators is depicted in Figure 5.3. More

examples are described in Chapter 6.

98

Chapter 5 5.2 The language ISPL

Agent agt1

Lstate = {l11,l12};

Lgreen = {l11,l12};

Action = {a11,a12};

Protocol:

l11: {a11,a12};

l12: {a12};

end Protocol

Ev:

l12 if (Lstate = l11) and ((Action=a12)

or (Action = a11 and agt2.Action = a21));

end Ev

end Agent

Agent agt2

Lstate = {l21,l22};

Lgreen = {l21,l22};

Action = {a21,a22};

Protocol:

l21: {a21,a22};

l22: {a22};

end Protocol

Ev:

l22 if (Lstate = l21) and (((Action=a21) and (agt1.Action=a11))

or ((Action=a22) and (agt1.Action=a11)));

end Ev

end Agent

Evaluation

win if ((agt1.Lstate=l12 and agt2.Lstate=l22) or

(agt1.Lstate=l11 and agt2.Lstate=l22));

init if (agt1.Lstate = l11 and agt2.Lstate = l21);

end Evaluation

InitStates

(agt1.Lstate = l11 and agt2.Lstate = l21);

end InitStates

Groups

g2 = {agt2};

g1 = {agt1};

g3 = {agt1,agt2};

end Groups

Formulae

init -> <g1>X(win);

init -> <g1>F(win);

init -> <g2> F(win);

end Formulae

Figure 5.3: A simple ISPL code.

99

Chapter 5 5.3 Implementation details

5.3 Implementation details

The source code of mcmas has been structured in separated “modules”, with a certain

number of shared parameters. The shared parameters include the internal representation

of the ISPL input, and the obdd variables and encodings for local states, actions, protocols,

etc. The source code of mcmas includes various subdirectories, each of which corresponds

to a specific module.

• Directory parser: this directory includes the Lex file nssis.l defining the tokens

of the grammar of ISPL, and the Yacc file nssis.y defining the formal parser for

ISPL. The parser includes C code to build the internal representation of ISPL code

as a tree, using the functions provided by the module pnode.

• Directory pnode: this directory includes C code and headers for the manipulation

of tree data structures (this module is required by Lex, which is not compatible

with C++ STL code). The building blocks of the parse tree are the nodes, defined

in pnode2.h. All the Boolean conditions, the evaluation function, the definition of

initial states, and the formulae to be verified are stored using pnode data structures.

• Directory bdd: this directory includes the C++ code and headers for the construction

and the manipulation of obdds. The definition of obdd’s variables and the construc-

tion of the obdds for all the parameters is managed by the function bddEncode()

in the file bdd.cc, which implements the procedures for Boolean encoding pre-

sented in Section 3.3.1. The verification of formulae is launched by the function

check_formula() in the file bdd.cc, implementing the algorithm of Figure 3.12.

In the case of verification for Γ-uniform interpreted systems, the same structure

presented above is repeated in the file bdduniform.cc.

obdds are manipulated in mcmas using the Cudd library [Somenzi, 2005]. This is

a C library offering a C++ interface to its functions. A simple example is reported

in Figure 5.4, showing how the overloading of the operators "+", "!", "*", "=",

and "==" permits a simple manipulation of Boolean functions.

• Directory examples: this directory contains various ISPL examples. Some of these

examples are described in detail in Chapter 6.

The root directory of the source tree of mcmas includes the file main.cc. This file contains

the function calls to parse input parameters, to perform setup operations at the beginning

of a run, and to perform cleaning operations upon completion of verification. The root

directory includes also a Makefile and installing instructions.

100

Chapter 5 5.4 Usage

int main(int argc, char* argv[]) {

Cudd bddmgr; // The OBDD manager

bddmgr = Cudd(0,0); // Initialisation of manager

BDD x = bddmgr.bddVar(); // Declaration of a variable

BDD y = bddmgr.bddVar();

BDD f = x + y; // A formula

BDD g = y + !x; // Another formula

if (f == g) { // Comparing two formulae

cout << "f is equal to g";

} else {

cout << "f is NOT equal to g";

}

}

Figure 5.4: Simple example of Cudd usage.

5.4 Usage

The compilation of mcmas requires the following software:

• GNU C/C++ compiler.

• Lex and Yacc (or equivalent tools, such as Flex and Bison).

• Cudd library, compiled with its C++ interface.

Given the above, mcmas usually compiles easily on most Linux platforms. The compilation

under Mac OS X and Windows requires the installation of development tools, which are

not part of standard distributions. Binary versions for these systems are available from

[Raimondi and Lomuscio, 2006].

mcmas is a command line tool, and it is run with the command mcmas from a system

prompt. mcmas needs at least one input parameter: the name of the ISPL file to parse.

Other input parameters may be provided. The following is an excerpt from the output of

the command mcmas -h:

Usage: mcmas [OPTIONS] FILE

Example: mcmas -v 3 -bdd_stats myfile.ispl

Options:

101

Chapter 5 5.4 Usage

$./mcmas examples/btp.ispl

mcmas v. 0.7

[...]

Encoding BDD parameters...Done.

Checking formulae...

Formula number 0 is TRUE in the model

Formula number 1 is TRUE in the model

done, 2 formulae successfully read and checked

Figure 5.5: Excerpts from mcmas output.

-v Number verbosity level (0 -- 5, default 0)

-pnode_info Print node manager info

-u Perform verification on uniform interpreted systems

-bdd_stats Print BDD statistics

-h This screen

It is possible to trace the verification steps by increasing mcmas verbosity. The option

-pnode_info prints statistics about the internal memory usage (i.e., the number of nodes

used). The option -bdd_stats launches a command of the Cudd library to print detailed

obdds statistics, such as number of nodes, number of reorderings, total memory used, etc.

The option -u is used to require verification in Γ-uniform interpreted systems. Figure 5.5

reports an excerpt of the output of mcmas when verifying two formulae with verbosity 0.

102

Chapter 6

Applications

This chapter presents some examples using the formalism of deontic interpreted systems,

their translation into ISPL code, and their verification using mcmas. These examples

belong to various domains: a communication and an anonymity protocol are presented,

respectively, in Sections 6.1 and 6.2. Section 6.3 presents examples of strategic reasoning in

multi-agent systems, while Section 6.4 introduces a characterisation of diagnosability using

epistemic notions. Experimental results for all the examples are reported in Section 6.5.

6.1 The bit transmission problem (with faults)

In the bit-transmission problem [Fagin et al., 1995] a sender S wants to communicate

the value of a bit to a receiver R, by using an unreliable communication channel (see

Figure 6.1). In this example, the channel may drop messages, but cannot tamper messages;

also, at any given time, the channel may transmit messages in one direction but not in

the other.

One protocol to achieve communication is as follows: S immediately starts sending the bit

to R, and continues to do so until it receives an acknowledgement from R. R does nothing

until it receives the bit; from then on, it sends messages acknowledging the receipt to S.

S stops sending the bit to R when it receives the first acknowledgement from R, and the

protocol terminates here.

This scenario is extended in [Lomuscio and Sergot, 2004] to deal with failures. There are

different kinds of faults that can be considered; here it is assumed that R may fail to

behave as intended. Two examples are discussed in this section following [Lomuscio and

Sergot, 2004]; in the first example, R may fail to send acknowledgements when it receives

a message. In the second, R may send acknowledgements even if it has not received any

103

Chapter 6 6.1 The bit transmission problem (with faults)

Communication channel

Sender Receiver(Environment)

Figure 6.1: The bit transmission problem.

message.

It is possible to represent the scenario described above by means of the formalism of

deontic interpreted systems, as presented in [Lomuscio and Sergot, 2004]. To this end, an

agent E representing the environment is introduced to model the unreliable communication

channel. The local states of the environment record the possible combinations of messages

that have been sent in a round, either by S or R. Hence, four possible local states are

taken for the environment:

LE = {(., .), (sendbit, .), (., sendack), (sendbit, sendack)},

where the first element in the tuple represents the action of S, the second element rep-

resents the action of R, and ‘.’ represents a configuration in which no message has been

sent by the corresponding agent.

The actions ActE for the environment correspond to the transmission of messages between

S and R on the unreliable communication channel. As mentioned above, it is assumed

that the communication channel can transmit messages in both directions simultaneously,

and that a message travelling in one direction can get through while a message travelling

in the opposite direction is lost. Thus, the set of actions ActE for the environment is taken

as:

ActE = {S−R, S→, ←R, −}.

The action “S−R” represents the action in which the channel transmits any message

successfully in both directions. The action “S→” represents a successful communication

from S to R but unsuccessful from R to S. The action “←R” represents a successful

communication from R to S but unsuccessful from S to R. Finally, the action “−”

represents the environment stopping messages in either direction. We assume the following

constant function for the protocol of the environment PE :

PE(lE) = ActE = {S−R, S→, ←R, −}, for all lE ∈ LE .

The evolution function for E records simply the actions of Sender and Receiver (details

104

Chapter 6 6.1 The bit transmission problem (with faults)

Final state Transition condition

(0, ack) (lS = 0 and ActR = sendack and ActE = S−R) or
(lS = 0 and ActR = sendack and ActE =←R)

(1, ack) (lS = 1 and ActR = sendack and ActE = S−R) or
(lS = 1 and ActR = sendack and ActE =←R)

Table 6.1: Transition conditions for S.

can be found in the code reported in Figure 6.2).

The sender S is modelled by taking the following set consisting of four possible local states:

LS = {0, 1, (0, ack), (1, ack)}.

They represent the value of the bit S is attempting to transmit, and whether or not S has

received an acknowledgement from R.

The set of actions ActS for S is taken as:

ActS = {sendbit(0), sendbit(1), λ}.

They represent the action of sending a bit of value 0, the action of sending a bit of value

1, and the null action. The protocol for S is defined as follows:

PS(0) = sendbit(0), PS(1) = sendbit(1),

PS((0, ack)) = PS((1, ack)) = λ.

Table 6.1 lists (in the right column) the conditions causing a transition for S to the local

state appearing in the left column.

Faulty Receiver – 1 : In this case it is assumed that R may fail to send acknowledgements

when it is supposed to. To this end, the following local states are introduced for R:

L′R = {0, 1, ǫ, (0, f), (1, f)}.

The state ǫ is used to record the fact that in the run R has not received any message from

S yet; 0 and 1 denote the value of the bit received. The local states (i, f) (i = {0, 1}) are

faulty states denoting that, at some point in the past, R received a bit but failed to send

an acknowledgement.

The set of actions for R is:

ActR = {sendack , λ}.

105

Chapter 6 6.1 The bit transmission problem (with faults)

The protocol for R is:

P ′R(ǫ) = λ, P ′R(0) = P ′R(1) = {sendack, λ},

P ′R((0, f)) = P ′R((1, f)) = {sendack, λ}.

(notice: for a correct functioning Receiver it should be P ′R(0) = P ′R(1) = {sendack}).

The transition conditions for R are listed in Table 6.2.

Final state Transition condition

0 (ActS = sendbit(0) and lR = ǫ and ActE = S−R) or
(ActS = sendbit(0) and lR = ǫ and ActE = S→)

1 (ActS = sendbit(1) and lR = ǫ and ActE = S−R) or
(ActS = sendbit(1) and lR = ǫ and ActE = S→)

(0, f) lR = 0 and ActR = ǫ

(1, f) lR = 1 and ActR = ǫ

Table 6.2: Transition conditions for R.

Faulty Receiver – 2 : In this second case it is assumed that R may send acknowledgements

without having received a bit first. This scenario is modelled with the following set of

local states L′′R for R:

L′′R = {0, 1, ǫ, (0, f), (1, f), (ǫ, f)}.

The meaning of the local states ǫ, 0, 1, (0, f) and (1, f) is as above; (ǫ, f) is a further faulty

state corresponding to the fact that, at some point in the past, R sent an acknowledgement

without having received a bit first. The set of actions is the same as in the previous

example. The protocol is defined as follows:

P ′′R(ǫ) = {sendack , λ},

P ′′R(0) = P ′′R(1) = {sendack},

P ′′R((0, f)) = P ′′R((1, f)) = P ′′R((ǫ, f)) = {sendack , λ}.

The evolution function is a simple extension of Table 6.2.

For both examples, the following set of atomic propositions is introduced:

AP = {bit = 0,bit = 1, recbit, recack}.

Correspondingly, the following evaluation function is defined:

V (bit = 0) = {g ∈ G | either lS(g) = 0 or lS(g) = (0, ack)};

V (bit = 1) = {g ∈ G | either lS(g) = 1 or lS(g) = (1, ack)};

V (recbit) = {g ∈ G | either lR(g) = 1, or lR(g) = 0;

or lR(g) = (0, f) or lR(g) = (1, f)};

V (recack) = {g ∈ G | lS(g) = (1, ack) or lS(g) = (0, ack)}.

106

Chapter 6 6.2 The protocol of the dining cryptographers

The parameters above describe two deontic interpreted systems, one for each faulty be-

haviour of R; in the following, these deontic interpreted systems are denoted by DISBTP1

and DISBTP2.

Given the set AP above, various properties of DISBTP1 and DISBTP2 can be evaluated.

For example, consider the following temporal and epistemic specifications:

recack =⇒ (KS

(
KR (bit = 0) ∨KR (bit = 1)

)
); (6.1)

recack =⇒ (K̂R
S

(
KR (bit = 0) ∨KR (bit = 1)

)
); (6.2)

¬EF (CS,R((bit = 0)) ∨ CS,R((bit = 1))). (6.3)

Formula 6.1 captures the fact that it is always true that, upon receipt of an acknowl-

edgement, S knows that R knows the value of the bit. Formula 6.2 expresses a similar

concept, but by using knowledge under the assumption of correct behaviour. By encoding

the examples in ISPL it is possible to verify in an automatic way that Formula 6.1 holds

in DISBTP1 but not in DISBTP2. This means that the faulty behaviour of R in DISBTP1

does not affect the key property of the system. On the contrary, Formula 6.2 holds in both

DISBTP1 and DISBTP2; hence, a particular form of knowledge is retained, irrespective of

the fault under consideration. Formula 6.3 expresses a general result about communica-

tion over a channel with a temporal delay: it is not possible to achieve common knowledge

of a message [Fagin et al., 1995].

The ISPL code corresponding to DISBTP1 is reported in Figure 6.2. The ISPL code

corresponding to DISBTP2 is available in the source tree of mcmas. Experimental results

for this example are discussed in Section 6.5.

6.2 The protocol of the dining cryptographers

The protocol of the dining cryptographers was introduced in [Chaum, 1988], and model

checking of its properties was discussed in [van der Meyden and Su, 2004] (see also Sec-

tion 2.3.1, page 60). The original wording from [Chaum, 1988] is as follows:

“Three cryptographers are sitting down to dinner at their favourite three-star restaurant.

Their waiter informs them that arrangements have been made with the maitre d’hotel for

the bill to be paid anonymously. One of the cryptographers might be paying for the dinner,

or it might have been NSA (U.S. National Security Agency). The three cryptographers

respect each other’s right to make an anonymous payment, but they wonder if NSA is

paying. They resolve their uncertainty fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and the cryptog-

rapher on his right, so that only the two of them can see the outcome. Each cryptographer

107

Chapter 6 6.2 The protocol of the dining cryptographers

Agent Sender

Lstate = {s0,s1,s0ack,s1ack};

Lgreen = {s0,s1,s0ack,s1ack};

Action = {sb0,sb1,nothing};

Protocol:

s0: {sb0};

s1: {sb1};

s0ack: {nothing};

s1ack: {nothing};

end Protocol

Ev:

s0ack if (((Lstate=s0) and (Receiver.Action=sendack) and

(Environment.Action=SR))

or ((Lstate=s0) and (Receiver.Action=sendack) and

(Environment.Action=R)));

s1ack if [... As above ...]

end Ev

end Agent

Agent Receiver

Lstate = {empty,r0,r1,r0f,r1f};

Lgreen = {empty,r0,r1};

Action = {nothing,sendack};

Protocol:

empty: {nothing};

r0: {sendack,nothing};

r1: {sendack,nothing};

r0f: {sendack,nothing};

r1f: {sendack,nothing};

end Protocol

Ev:

r0 if (((Sender.Action=sb0) and (Lstate=empty) and

(Environment.Action=SR)) or

((Sender.Action=sb0) and (Lstate=empty) and

(Environment.Action=S)));

r1 if [... as above ...]

r0f if ((Lstate = r0) and (Action=nothing));

r1f if ((Lstate = r1) and (Action=nothing));

end Ev

end Agent

Agent Environment

[... see text ...]

end Agent

Evaluation

recbit if ((Receiver.Lstate=r0) or (Receiver.Lstate=r1) or

(Receiver.Lstate=r0f) or (Receiver.Lstate=r1f));

recack if ((Sender.Lstate=s0ack) or (Sender.Lstate=s1ack));

bit0 if ((Sender.Lstate=s0) or (Sender.Lstate=s0ack));

bit1 if ((Sender.Lstate=s1) or (Sender.Lstate=s1ack));

end Evaluation

InitStates

((Sender.Lstate=s0) or (Sender.Lstate=s1)) and

(Receiver.Lstate=empty) and (Environment.Lstate=none);

end InitStates

Formulae

recack -> K(Sender,(K(Receiver,bit0) or K(Receiver,bit1)));

recack -> KH(Sender,Receiver,K(Receiver,bit0) or K(Receiver,bit1));end Formulae

Figure 6.2: ISPL code for the bit transmission problem (excerpts).

108

Chapter 6 6.2 The protocol of the dining cryptographers

then states aloud whether the two coins he can see – the one he flipped and the one his

left-hand neighbour flipped – fell on the same side or on different sides. If one of the

cryptographers is the payer, he states the opposite of what he sees. An odd number of

differences uttered at the table indicates that a cryptographer is paying; an even number

indicates that NSA is paying (assuming that the dinner was paid for only once). Yet if a

cryptographer is paying, neither of the other two learns anything from the utterances about

which cryptographer it is.”[Chaum, 1988]

This protocol is the basic building block for the definition of more complex infrastructures

enabling anonymous communication over public networks (see, for instance, [Goldschlag

et al., 1999]). Notice that similar versions of the protocol can be defined for any number

of cryptographers greater than three.

An instance of this example with three cryptographers is encoded in the formalism of

deontic interpreted systems by introducing three agents Ci (i = {1, 2, 3}) to model the

three cryptographers, and one agent E for the environment.

The environment is used to select non-deterministically the identity of the payer and

the results of the coin tosses. A local state for the environment is a string of the form

< c1c2c3p >, where ci ∈ {H,T}, (i = {1, 2, 3}) represents the result of the coin toss (Head

or Tail) for coin i, and p ∈ {1, . . . , 4} represents the payer (p = 4 means that the company

paid for the dinner). This makes a total of 32 elements in the set LE encoding the possible

local states for the environment. It is assumed that the environment can perform only one

action, the null action. Therefore, the protocol PE is simply mapping every local state to

the null action. Also, there is no evolution of the local states for the environment.

The local states of a cryptographer i (i = {1, 2, 3}) are modelled as a string < cipiui >

representing, respectively, whether the coins that a cryptographer can see are equal (ci =

E) or different (ci = D), whether the cryptographer is the payer (pi = Y) or not (pi =

N), and whether the number of “different” utterances reported is even (pi = E) or odd

(pi = O). Considering that all these parameters are not initialised at the beginning of the

run (ci = pi = ui = n), there are 27 possible combinations of these parameters, hence the

set LCi
encoding the local states of cryptographer i contains 27 possible local states. For

each cryptographer the following set of actions is introduced:

Acti = {nothing , sayequal , saydifferent}.

Actions are performed in compliance with the protocol stated above:

PCi
(< ENn >) = PCi

(< DY n >) = {sayequal};

PCi
(< EY n >) = PCi

(< DNn >) = {saydifferent}.

That is: the action of the cryptographer is sayequal if either (i) the cryptographer sees two

equal coins and did not pay for the dinner and no utterances have been made yet, or (ii)

109

Chapter 6 6.2 The protocol of the dining cryptographers

Final state Transition condition

< EY n > lC2
=< nnn > and (lE =< HHH2 > or lE =< THH2 > or

lE =< HTT2 > or lE =< HTT2 >)

< DY n > lC2
=< nnn > and (lE =< HTH2 > or lE =< TTH2 > or

lE =< HHT2 > or lE =< HHT2 >)

< ENn > lC2
=< nnn > and (lE =< HHH1 > or lE =< THH1 > or

lE =< HTT1 > or lE =< HTT1 > or
lE =< HHH3 > or lE =< THH3 > or
lE =< HTT3 > or lE =< HTT3 > or
lE =< HHH4 > or lE =< THH4 > or
lE =< HTT4 > or lE =< HTT4 >)

< DNn > lC2
=< nnn > and (lE =< HHT1 > or lE =< THT1 > or

lE =< HTH1 > or lE =< HTH1 > or
lE =< HHT3 > or lE =< THT3 > or
lE =< HTH3 > or lE =< HTH3 > or
lE =< HHT4 > or lE =< THT4 > or
lE =< HTH4 > or lE =< HTH4 >)

< EY O > lC2
=< EY n > and ((ActC1

= saydifferent and ActC3
= saydifferent) or

(ActC1
= sayequal and ActC3

= sayequal))

.

Table 6.3: Transition conditions for C2.

the cryptographer sees two different coins and did pay for the dinner and no utterances

have been made yet. The conditions for saydifferent are similar. In all the remaining cases

the protocol PCi
prescribes the action nothing .

The evolution function for a cryptographer Ci lists the conditions causing a change in the

local state of Ci. Table 6.3 lists some the transition conditions for cryptographer 2 (the

conditions counting the number of utterances are not listed explicitly). The conditions for

the remaining cryptographers are defined in a similar way.

As it is clear from Table 6.3, the manual encoding of the example may be cumbersome.

In this case, and in other examples presented below, it is more convenient to implement

a generator of ISPL code using a traditional programming language (such as C++). The

source code of mcmas includes a generator for this example which takes the number of

cryptographers as input, and produces as output the ISPL code corresponding to the

encoding presented above.

The following set AP of atomic propositions is defined to reason about the example with

three cryptographers:

AP = {paid1,paid2,paid3, even,odd}.

110

Chapter 6 6.2 The protocol of the dining cryptographers

Correspondingly, the following evaluation function is introduced:

V (paid1) = {g ∈ G | lC1
(g) =< ∗Y ∗ >};

V (paid2) = {g ∈ G | lC2
(g) =< ∗Y ∗ >};

V (paid3) = {g ∈ G | lC3
(g) =< ∗Y ∗ >};

V (even) = {g ∈ G | lCi
(g) =< ∗E > for every i};

V (odd) = {g ∈ G | lCi
(g) =< ∗O > for every i}.

< ∗Y ∗ > denotes a local state in which the value of pi is Y (i.e., the cryptographer paid

for dinner), while < ∗E > and < ∗O > denote local states in which the value of ui is either

E or O (i.e., either an even or an odd number of utterances have been made). Various

properties of this deontic interpreted system, denoted by DISDC3, are expressed using

AP . For instance:

DISDC3 |= (odd ∧ ¬paid1) =⇒ AX(KC1(paid2 ∨ paid3) ∧ ¬KC1(paid2) ∧ ¬KC1(paid3)).

This formula expresses the claim made at the beginning of this section: if the first cryp-

tographer did not pay for dinner and the number of “different” utterances is odd, then

the first cryptographer knows that either the second or the third cryptographer paid for

dinner; moreover, in this case, the first cryptographer does not know which of these two

is the payer. Analogously, it is possible to check that, if a cryptographer paid for dinner,

then there will be an odd number of “different” utterances, that is:

DISDC3 |= (paid1 ∨ paid2 ∨ paid3) =⇒ AF (odd).

Consider now the group Γ of the three cryptographers. An interesting property to check

is the following:

DISDC1 |= even =⇒ AX(CΓ(¬paid1 ∧ ¬paid2 ∧ ¬paid3)).

This formula expresses the fact that, in presence of an even number of “different” utter-

ances, it is common knowledge that none of the cryptographers paid for the dinner. Hence,

in this protocol common knowledge can be achieved anonymously. Experimental results

for this example are discussed in Section 6.5.

Similarly to the bit transmission problem, instances of the protocol where one or more

of the cryptographers do not behave correctly (i.e., they “cheat”) can be analysed. More

details can be found in [Kacprzak et al., 2006].

6.2.1 A different encoding

The encoding presented above is not the most efficient encoding of the protocol of the

dining cryptographers. For instance, the number of utterances (even or odd) is stored

111

Chapter 6 6.3 Strategic games

separately in each cryptographer, but this information is required only once; similarly,

the outcomes of coin tosses are stored in the environment, and each cryptographer has

repeated information about them (seeing two equal or different coins).

A different encoding is proposed in [Kacprzak et al., 2006], where an agent is associated to

each coin and an agent is introduced to “count” the utterances. Verification is performed

by taking the distributed knowledge in a group of agents: intuitively, each group contains

all the information needed by a cryptographer, as defined above. This encoding permits

an improvement of the performance of mcmas in the order of 30% on average (see the

experimental results appearing in [Kacprzak et al., 2006]).

Essentially, this is an automata-based approach translated into the ISPL language. A

discussion of the relationships between automata and agents is beyond the scope of this

thesis; more details about it and a comparison with other techniques to encode the protocol

of the dining cryptographers can be found in [Kacprzak et al., 2006] and in Section 6.5.

6.3 Strategic games

This section presents three examples of strategic reasoning in deontic interpreted systems.

The first two examples make use of uniform agents, because part of the information is

hidden. The third example in Section 6.3.3 is an example of a game with perfect informa-

tion, and it is shown that the encoding using deontic interpreted systems is as natural as

the standard game-theoretic approach.

6.3.1 A simple card game

The example depicted in Figure 2.3 and described in Section 2.1.7.3, page 33 (see also

[Jonker, 2003, Jamroga, 2004b]), is encoded in the formalism of deontic interpreted systems

by introducing two agents: one agent P encodes the player, and another agent encodes

the environment. Local states for P are defined as follows:

LP = {a1 , k1 , q1 , a2 , k2 , q2}

representing that P holds Ace, King on Queen, either in step 1 or in step 2 (i.e., after

changing the card). The actions for P are:

ActP = {keep, swap,none}

112

Chapter 6 6.3 Strategic games

Final state Transition condition

a2 (lP = a1 and Action = keep) or
(lP = k1 and Action = swapandlE = q) or
(lP = q1 and Action = swapandlE = k) or

k2 (lP = k1 and Action = keep) or
(lP = a1 and Action = swapandlE = q) or
(lP = q1 and Action = swapandlE = a) or

q2 (lP = q1 and Action = keep) or
(lP = k1 and Action = swapandlE = a) or
(lP = a1 and Action = swapandlE = k) or

Table 6.4: Transition conditions for P .

and they are performed in compliance with the following protocol:

PP (a1) = PP (k1) = PP (q1) = {keep, swap};

PP (a2) = PP (k2) = PP (q2) = {none}.

Intuitively, the protocol prescribes that P can either keep or change its card in the first

round, while in the next round no action is performed. The transition conditions for P

are listed in Table 6.4, and they translate formally the possible evolution of the system

depicted in Figure 2.3.

The environment is modelled with the following set of local states:

LE = {a, k , q}.

It is assumed that the environment does not perform actions, therefore ActE = {none}.

The protocol PE maps every state to this action, and there is no evolution of local states.

Only one proposition is introduced, expressing that the player wins the game:

AP = {pwin}

with the corresponding evaluation function:

V (pwin) = {g ∈ G | (lP (g) = a2 and lE(g) = k)

or (lP (g) = k2 and lE(g) = q)

or (lP (g) = q2 and lE(g) = a)}.

Let DISCards denote the deontic interpreted system described above. The ISPL code

corresponding to DISCards is depicted in Figure 6.3. As expected, it is possible to verify

that

DISCards |= init =⇒ 〈〈P 〉〉X(pwin)

113

Chapter 6 6.3 Strategic games

(where init is a proposition true in the set of initial states). However, in a {P}-uniform

deontic interpreted system, it is possible to verify that

DISCards 6|={P} init =⇒ 〈〈P 〉〉X(pwin).

This last check is performed by including the option -u in the command line of mcmas.

6.3.2 RoadRunner and Coyote

This example illustrates further the different meaning of ATL operators in Γ-uniform

deontic interpreted systems and in non-deterministic deontic interpreted systems.

RoadRunner is running in a hilly region of the desert; the main road splits in two small

lanes just before the entrance of two tunnels under a mountain. RoadRunner can pick

randomly either tunnel; the tunnels are identical and very narrow. Coyote knows Road-

Runner has to enter one of the two tunnels, and so he has bought a special tunnel-blocking

device from ACME Inc. to catch RoadRunner. The device may be placed in front of either

exit of the tunnel (see Figure 6.4).

The example is modelled as a deontic interpreted system DISRC by taking two agents,

an agent C for Coyote and an agent R for RoadRunner. The set of local states for

RoadRunner includes two local states:

LR = {left , right}

representing which tunnel RoadRunner is going to enter. The only action defined for R is

run, and the protocol assigns this action to every local state. Moreover, local states of R

do not change.

Coyote is modelled by means of three local states:

LC = {planning , catch , fail}.

The set of actions for Coyote is as follows:

ActC = {placeleft , placeright ,none}.

Actions are performed in compliance with the following protocol:

PC(planning) = {placeleft , placeright}

PC(catch) = PC(fail) = {none}.

The evolution function for Coyote prescribes that the next local state for C is catch if

114

Chapter 6 6.3 Strategic games

Agent env

Lstate = { a,k,q};

Lgreen = { a,k,q};

Action = { none,none2 };

Protocol:

a: {none};

k: {none};

q: {none};

end Protocol

Ev:

a if (Lstate = a);

end Ev

end Agent

Agent player

Lstate = {a1,k1,q1,a2,k2,q2};

Lgreen = {a1,k1,q1,a2,k2,q2};

Action = {keep,swap,none};

Protocol:

a1: {keep,swap};

k1: {keep,swap};

q1: {keep,swap};

a2: {none};

k2: {none};

q2: {none};

end Protocol

Ev:

a2 if ((Lstate = a1) and (Action=keep)) or

((Lstate = k1) and (Action=swap) and (env.Lstate=q)) or

((Lstate = q1) and (Action=swap) and (env.Lstate=k));

k2 if ((Lstate = k1) and (Action=keep)) or

((Lstate = a1) and (Action=swap) and (env.Lstate=q)) or

((Lstate = q1) and (Action=swap) and (env.Lstate=a));

q2 if ((Lstate = q1) and (Action=keep)) or

((Lstate = k1) and (Action=swap) and (env.Lstate=a)) or

((Lstate = a1) and (Action=swap) and (env.Lstate=k));

end Ev

end Agent

Evaluation

pwin if ((player.Lstate = a2) and (env.Lstate=k)) or

((player.Lstate = k2) and (env.Lstate=q)) or

((player.Lstate = q2) and (env.Lstate=a));

end Evaluation

InitStates

((player.Lstate=a1 and env.Lstate=k) or

(player.Lstate=a1 and env.Lstate=q) or

(player.Lstate=k1 and env.Lstate=q) or

(player.Lstate=k1 and env.Lstate=a) or

(player.Lstate=q1 and env.Lstate=a) or

(player.Lstate=q1 and env.Lstate=k)) and

(env.Action=none and

(player.Action=keep) or (player.Action=swap));

end InitStates

Groups

g1 = {player};

end Groups

Formulae

init -> <g1>X(pwin);

-- init is a proposition true in the set of initial states

end Formulae

Figure 6.3: ISPL code for the card game.
115

Chapter 6 6.3 Strategic games

RoadRunner

Right
TunnelTunnel

Left

Left exit Right exit

Figure 6.4: Diagram for RoadRunner and Coyote.

lC = planning and Coyote places the special device in front of the tunnel chosen by

RoadRunner; in the other case the local state changes to fail (notice: the evolution function

for C depends on the local state of R, which is treated in this example as the environment).

In the initial state, the local state of C is planning , and the local state of R is either left

or right . One proposition is introduced to reason about this example: AP = {catch},

with the corresponding evaluation function:

V (catch) = {g ∈ G | lC(g) = catch}.

By using mcmas Coyote discovers that:

DISRC |= init =⇒ 〈〈C〉〉X(catch)

i.e., it is the case that in the initial state Coyote has a strategy to catch RoadRunner

(where init is a proposition true in the set of initial states). In fact, any external observer

could verify that Coyote knows this very well:

DISRC |= KC(init =⇒ 〈〈C〉〉X(catch)).

Unfortunately, immediately after placing the ACME device in front of the tunnel, Coyote

realises that he was assuming a lucky guess on where to place the device. Indeed, under

the assumption Coyote is uniform, the formula turns to be false:

DISRC 6|={C} init =⇒ 〈〈C〉〉X(catch).

116

Chapter 6 6.3 Strategic games

From RoadRunner’s point of view, however, it is more useful and prudent to reason about

what the clumsy Coyote may bring about. Thus, RoadRunner should be more interested

in the verification of the non-deterministic deontic interpreted system to discover that

it is possible that Coyote catches him. In other words, to analyse the scenario from

RoadRunner’s point of view, it is possible to check:

DISRC |= KR(init =⇒ 〈〈C〉〉X(catch)).

6.3.3 Nim

Nim is a two player game where players in turns remove any number of objects from one

of a certain number of heaps. Typically, 3 heaps are present and the game starts with 3

objects in the first heap, 4 in the second, and 5 in the third. The player who takes the

last object wins. In a variation of this game, called Misère, the player who takes the last

object loses. This is a game with perfect information.

The example is modelled as a deontic interpreted system by introducing three agents: one

agent for each player and one agent for the environment, encoding the three heaps. The

set of local states for the environment includes all the possible combinations of objects in

the heaps (for the case of 3-4-5 heaps, there are 60 possible states). The environment does

not perform any action; the local states of the environment change only according to the

actions performed by each player.

The set of local states for the players includes a copy of the local states of the environment

(which the agents can observe), and their actions include all the possible moves that can

be performed, i.e., removing a number of objects from a heap (there are 60 such actions

in the case of 3-4-5 heaps), and a “waiting” action when the other player is moving. In a

given local state, the protocol for the agent permits all the actions which remove a number

of objects less or equal to the number of remaining objects in each heap. The evolution

function for the players either copies the local state of the environment, or it moves the

agent to a waiting state.

Two propositions are introduced, in addition to the proposition init which holds in the

set of initial states:

AP = {p1 removelast,p2 removelast}.

The evaluation function defines the proposition p1 removelast to be true when the first

player observes that all the heaps are empty (notice that the observation of an agent

follows the action of removing objects). The proposition p2 removelast is defined analo-

gously. Similarly to the example of the protocol of the dining cryptographers presented in

Section 6.2, the ISPL code representing the deontic interpreted system DISNim for Nim

117

Chapter 6 6.4 Diagnosability and other specification patterns

is generated using a C++ program, included in the source distribution of mcmas. The

model checker confirmed the known result that the first player can force a win both for

the Nim and the Misère scenario, by verifying the following formulae:

DISNim |= init =⇒ 〈〈player1〉〉[¬player2 removelast U player1 removelast]

DISNim |= init =⇒ 〈〈player1〉〉[¬player1 removelast U player2 removelast]

Experimental results for this example are reported in Section 6.5.

6.4 Diagnosability and other specification patterns

Diagnosability is defined as the feasibility of a diagnosis in a given system, based on the

observations of sensors and actuators of the system. A formal investigation of diagnos-

ability appears in [Sampath et al., 1995, Cimatti et al., 2003]. In particular, given a CTL

model M = (S,R, V, I), [Cimatti et al., 2003] define a diagnosis condition to be a pair of

non-empty sets of states c1, c2 ⊆ S of the system; a diagnosis condition is usually written

(c1⊥c2), where ⊥ is a separator for the two sets of states. Given a set of variables of the

system that can be observed by a diagnoser, a diagnosis condition (c1⊥c2) is diagnosable

iff there are no two execution traces π1 and π2 such that π1 leads to a state in c1 and π2

leads to a state in c2, with the additional constraint that the observable variables remain

the same for all the states in π1 and π2. For instance, fault detection is expressed in

terms of a diagnosis condition as (fault⊥¬fault): this means that there are no two traces

such that one trace leads to a faulty state and the other to a non-faulty state when the

observable variables remain the same.

It has been shown by [Cimatti et al., 2003] that a temporal-only model checker like NuSMV

can be used for the formal verification of diagnosability. The key idea is two build two

copies of the system, run them in parallel and constrain the observable variables of both

copies to remain equal using the tools provided by the model checker (e.g., using the INVAR

construct in NuSMV). For instance, a copy of the system may be encoded with a NuSMV

module called test, and the other copy may be encoded with a module called twin. If

the execution mode of the module is described by a private variable called mode, which

takes the value faulty when the module is in a faulty state, then fault detection can be

expressed by the formula:

AG(¬(test.mode = faulty ∧ twin.mode 6= faulty)).

A number of systems have been diagnosed using this technique [Cimatti et al., 2003].

The formal verification of diagnosability can benefit from a temporal-epistemic character-

118

Chapter 6 6.4 Diagnosability and other specification patterns

isation, and by treating the diagnoser and the system as agents. Indeed, diagnosability is

expressed naturally by ascribing a form of knowledge to a diagnoser: a diagnoser is able

to diagnose a diagnosis condition (c1⊥c2) iff the diagnoser always knows whether ¬c1 is

the case, or ¬c2 is the case. This can be expressed formally in the framework of deontic

interpreted systems: the system in which diagnosability needs to be verified may be mod-

elled by introducing a particular agent D (the diagnoser) that stores in its local states

the observable variables, and the original system may be modelled by another agent S,

“observed” by the diagnoser. In this way, diagnosability is expressed by the formula:

AG(KD(¬c1) ∨KD(¬c2)).

Notice that the knowledge operator forces the observable variables to remain unchanged;

also, this definition of diagnosability is based solely on one model, thereby reducing the

size of the problem to be verified if compared to temporal-only model checking.

The concept of distributed knowledge in a group permits a generalisation of the concept

of diagnosability. Let ∆ be a subset of the set of agents in a deontic interpreted system:

intuitively, ∆ is a set of a diagnosers, each of which is responsible for the monitoring of a

particular aspect of the system (e.g., a part of the observable outputs) while ignoring the

remainder. A diagnosis condition (c1⊥c2) is diagnosable by a group of agents iff

AG(D∆(¬c1) ∨D∆(¬c2))

The following example illustrates the verification of diagnosability in deontic interpreted

systems encoding an electrical circuit composed of a cascade of circuit breakers, a source,

and LEDs. This example is part of the test examples of the tool Livingstone, “a model-

based health monitoring system developed at NASA Ames Research Center” [Pecheur and

Simmons, 2000]1. The circuit is represented in Figure 6.5.

Each circuit breaker is allowed to be in one of the following states: on, off, tripped,

blown, ufault. on and off are “green” states. tripped is a resettable fault, blown

is a non recoverable fault, and ufault denotes an unknown fault. A Controller sends

(arbitrary) commands to the circuit breakers, and a Diagnoser reads the commands and

the outputs as defined in the Livingstone model.

Various assumptions can be made while modelling this example as a deontic interpreted

system DISCirc. Here the following are considered:

• Each circuit breaker is an agent; each led is an agent; the source is an agent.

• For each circuit breaker, it is assumed that a commander agent is allowed to send

1The formal encoding of this example has been carried out while the author was visiting Dr. Charles
Pecheur at NASA Ames Research Center, between July and September 2004.

119

Chapter 6 6.4 Diagnosability and other specification patterns

led1

source cb1

cb2

cb3

cb4

cb6

cb7

cb5

led4

led3

led2

Figure 6.5: A circuit for diagnosability.

random commands to the circuit breakers.

• Two diagnosers are introduced: the first can see the output of the source, the second

can see the LEDs.

The ISPL code for this example has been obtained by translating the Livingstone specifi-

cation into ISPL code, and it is available from the examples/ directory of mcmas.

As an example of diagnosability, it is possible to check that the diagnoser obtained by

considering the distributed knowledge of the two diagnosers is not able to detect faults

correctly, i.e.:

DISCirc 6|= AG(D∆(faulty) ∨D∆(¬faulty))

where faulty =
∨
fi is a proposition denoting that some component i of the circuit is

not working correctly (encoded by the proposition fi), and ∆ is the group composed by

the two diagnoser agents for the output and the LEDs. This is because, under the above

assumptions, the diagnoser is not able to distinguish between “correct” off states and

faulty states. The same result can be obtained by using the twin model of the circuit and

by verifying it using NuSMV. Experimental results for the two approaches are presented

in Section 6.5.

6.4.1 Verification of recoverability

The use of deontic interpreted systems enables the verification of other more complex

specification patterns, that are not expressible (or, at least, not in an easy way) using

temporal-only formulae. The aim of this section is to provide a formal description and an

example of properties such as “the diagnoser knows that, assuming correct behaviour of

the system, the system will recover from a given faulty state” (recoverability is the ability

120

Chapter 6 6.5 Experimental results

of a system to recover from some faulty state).

Instead of using the “deontic” accessibility relations ROi , correct behaviour can be char-

acterised in terms of local propositions [Lomuscio and Sergot, 2003, Anderson, 1958]. Let

gi ∈ AP be a proposition true in the green states of agent i (notice that these propositions

are part of Livingstone models and thus, in the examples from NASA Ames, no manual

intervention is required to encode these propositions). For any deontic interpreted system

DIS , the following equivalences hold:

DIS |= Oiϕ⇔ (gj =⇒ ϕ);

DIS |= K̂
j
i ϕ⇔ Ki(gj =⇒ ϕ).

Let f ∈ AP be a proposition denoting some faulty state, and let ϕ be a formula denoting

some desired states of affairs. Then, the ability of a diagnoser ∆ to diagnose recoverability

from f on a deontic interpreted system DIS , assuming “correct” functioning conditions

for the agents in Γ, can be expressed as:

DIS |= f =⇒ D∆(¬E[FΓ U (FΓ ∧ ¬ϕ)]).

In the previous expression, FΓ =
∧

i∈Γ

gi is a Boolean expression composed by the conjunc-

tion of the local proposition denoting correct behaviour for agents in Γ. Intuitively, the

“until” part of the formula states that there is no “correct” temporal path from “faulty”

states which will not reach a state in which ϕ holds. This fact, in turn, is distributed

knowledge between the diagnosers.

A concrete example of recoverability is expressible using the example presented in Fig-

ure 6.5 and its formal encoding presented in the previous Section. Let g cb be a formula

obtained by taking the conjunction of the local propositions expressing correct behaviour

for all the circuit breakers. Let led on be a proposition denoting the global states in

which LEDs are on. It is possible to verify automatically with mcmas that the following

formula does not hold in DISCirc:

DISCirc 6|= faulty =⇒ D∆(¬E[g cb U (g cb ∧ ¬led on)]).

Intuitively, the formula expresses that the diagnoser is not able to diagnose recoverability

because circuit breakers may be in unrecoverable faulty states, and the diagnoser cannot

distinguish them from recoverable faulty states.

6.5 Experimental results

This section presents the experimental results obtained in the verification of the examples

presented above using mcmas. Notice that, for all the examples, time results are not

121

Chapter 6 6.5 Experimental results

|M | obdds variables Memory (MBytes)

DISBTP1 ≈ 4 · 106 19 ≈ 4.5

DISBTP2 ≈ 4 · 106 19 ≈ 4.5

Table 6.5: Space requirements for the bit transmission problem.

Model construction Verification Total

0.045sec <0.001sec 0.045sec

Table 6.6: Running time (for one formula) for the bit transmission problem.

affected by the structure of the formula, nor by the number of formulae being verified.

This is caused by the fact that time required by the algorithm of Figure 3.12 is a fraction

(in the order of 0.1% – 0.5%) of the time required for the construction of the obdds

representing protocols, temporal relations, reachable states, etc. Therefore, it makes sense

to discuss simply the time required “for an example”: this is the time reported in the

tables below. All the tests have been performed using a 2.8GHz Intel Pentium IV, 1GB

of RAM, running Linux 2.6.8, with the exception of the diagnosability example.

6.5.1 The bit transmission problem

In this example there are 4 local states and 3 actions for S, 5 (or 6) local states and 2

actions for R, and 4 local states and 4 actions for E. In total, the size of the state space

is ≈ 2 · 103. The size of the model is defined here as the size of the state space with the

addition of the size of the relations. The size of the relations can be approximated with

the size of the state space to the power of two, hence |DISBTP1| ≈ |DISBTP2| ≈ 4 · 106

(notice that the sizes of both cases are very similar). Also, a measure of the size of the

model is given by the number of Boolean variables used to encode local states and actions.

Table 6.5 reports the space requirements for DISBTP1 and DISBTP2.

Average time results for the bit transmission problem (both examples) are reported in

Table 6.6. The verification time for one formula has been computed by evaluating the

time difference between two runs of the same ISPL code, but with a different number of

formulae. In the first run only one formula has been verified, while in the second run 20

formulae have been verified.

6.5.2 The protocol of the dining cryptographers

The protocol of the dining cryptographers is suitable for testing the scalability of mc-

mas, because the ISPL code corresponding to any number of cryptographers is generated

automatically by a C++ code taking the number of cryptographers as the only input

parameter (this generator is distributed with the source code of mcmas).

122

Chapter 6 6.5 Experimental results

N.Crypt. |M | obdds vars. obdds nodes Memory (MBytes)

3 ≈ 7 · 1013 46 ≈ 104 ≈ 4.4

4 ≈ 2 · 1018 62 ≈ 6 · 104 ≈ 5.2

5 ≈ 2 · 7.522 76 ≈ 8 · 104 ≈ 5.6

6 ≈ 1.2 · 1027 90 ≈ 1.6 · 105 ≈ 7.1

7 ≈ 2 · 1031 104 ≈ 1.7 · 105 ≈ 7.5

8 ≈ 1.3 · 1036 120 ≈ 1.2 · 107 ≈ 230

Table 6.7: Space requirements for the dining cryptographers.

N.Crypt. Model construction Verification Total

3 1.1sec <0.1sec 1.2sec

4 5.1 <0.1 5.2

5 18.7 <0.1 18.8

6 125.9 ≈0.1 126.0

7 649 ≈0.1 649

8 9643 ≈1 9644

Table 6.8: Running time (for one formula) for the protocol of the dining cryptographers.

Table 6.7 presents the memory requirements for the verification of scenarios from three

to eight cryptographers (the size of the model is defined as in the previous section). This

table shows the number of obdd nodes allocated to encode the parameters: notice that

this is typically a fraction of the size of the model. Such a difference shows that the

reduction in the state space obtained using obdds is significant in this example.

Average time requirements for the verification of one formula are reported in Table 6.8.

6.5.3 Strategic games

The ISPL code corresponding to DISRC and DISCards generates very small examples.

To evaluate the performance of the verification of ATL operators using mcmas, the Nim

example has been verified using 3-4-5 heaps (this example is denoted by DISNim345) and

with 5-5-5 heaps (this example is denoted by DISNim555). Space results for all the exam-

ples are reported in Table 6.9. Notice that the number of obdds variables required for

DISNim345 is similar to the number of variables for DISNim555: this is caused by the fact

that 60 local states are possible for the environment in the case of 3-4-5 heaps, and 125

local states in the case of 5-5-5 heaps. In the first case, 6 Boolean variables are required,

while in the second case 7 Boolean variables are required. Although the difference in the

number of variables is small between the two examples, the number of obdd nodes and

the Memory usage increase by a factor of ten. Thus, it seems that this example does not

scale up as well as the example of the dining cryptographers, probably because a “good”

reordering of variables cannot be found by the obdd library to reduce the number of

123

Chapter 6 6.5 Experimental results

Example obdds vars. obdds nodes Memory (MBytes)

DISCards 13 ≈ 400 4.1

DISRC 9 115 4.1

DISNim345 51 ≈ 7 · 104 ≈ 7.1

DISNim555 57 ≈ 8 · 105 ≈ 41

Table 6.9: Space requirements for strategic games.

Example Model construction Verification Total

DISCards 0.15 sec < 0.01sec 0.15sec

DISRC 0.19 < 0.01 0.19

DISNim345 18 < 0.2 18

DISNim555 248 ≈ 0.3 248

Table 6.10: Running time (for one formula) for strategic games.

nodes.

Time results for these examples are reported in Table 6.10. Notice the difference in time

between DISNim345 and DISNim555, for the same reasons presented above.

While the time results for non-deterministic and Γ-uniform deontic interpreted systems

are the same for the examples DISCards and DISRC , it is likely that for larger examples

the time requirements for verification in Γ-uniform deontic interpreted systems will be

larger. In this case, the verification time may depend on the structure of the formula

(false formulae requiring more time).

6.5.4 Diagnosability

The performance of mcmas to verify diagnosability has been investigated in comparison

with the performance of NuSMV. Space and time results for the verification of one formula

using either mcmas or NuSMV are reported in Table 6.11. The experimental results have

been obtained using a 3.0 GHz Intel Pentium IV, 2GBytes of RAM, running Linux 2.6.9,

available temporarily at NASA Ames.

The results in Table 6.11 refer to the verification of one formula for diagnosability. Sim-

ilarly to the other examples, verification of recoverability using mcmas requires a similar

amount of time and space.

Tool Time OBDDs vars

mcmas 2.39sec 90

NuSMV 10.47sec 235

Table 6.11: Average verification results for diagnosability.

124

Chapter 6 6.5 Experimental results

6.5.5 Discussion

The experimental results presented above show that the performance of mcmas remains,

on average, well below the worst case requirements.

• Space requirements. The size of a model generated from ISPL code is exponential

in the size of the code itself. For instance, consider the sizes of the models in

Table 6.7: these range from 1013 to 1036 by increasing (linearly) the number of

cryptographers. Structures of this size cannot be dealt with explicitly using the

hardware currently available (1000Gbytes = 1012 bytes is the size of the biggest hard

drive available at present). Nevertheless, the encoding of this example is reduced to

structures of size < 107 using mcmas and obdds, thereby enabling verification of

examples that cannot be verified using an explicit manipulation of the parameters

appearing in the algorithm of Figure 3.12. As mentioned in Section 4.3, it is known

that under certain circumstances the size of the obdds representing the Boolean

formulae may be exponential in the number of Boolean variables (thereby matching

the size of the “explicit” model). However, this appears not to be the case for any

of the examples verified with mcmas, in line with previous experiments.

• Time requirements. As mentioned in Section 2.2.5, page 57, the operation of

Boolean quantification on obdds may require time exponential in the number of

variables. The time required for the actual verification of formulae (after the con-

struction of the necessary parameters) shows that this is not the case for the examples

above. Indeed, verification requires a number of quantification operations when tem-

poral operators need to be verified, but the time required for verification is typically

a fraction of the time required for the construction of the parameters. By running

mcmas with increased verbosity it is possible to check that the time required for

the construction of the parameters is influenced by the search of a reordering of

variables that offers a compact representation of the obdds (this is known to be a

NP-complete problem). This appears to be the bottleneck for the verification of the

large examples presented above.

• Complexity considerations. The complexity of model checking an ISPL program

can be estimated by reducing it to a concurrent program (see Section 4.2), using

the simple mapping provided in [Raimondi and Lomuscio, 2005b]. Therefore, model

checking temporal-epistemic properties in ISPL programs is a PSPACE-complete

problem (notice that this is true also for VerICS programs). However, the actual

implementation of mcmas requires, in the worst case, an exponential time to perform

verification, because obdds are used. The same result applies to all the available

model checkers for multi-agent systems.

125

Chapter 6 6.5 Experimental results

While the aim of this thesis is not to build the most efficient model checker for multi-agent

systems, it still makes sense to compare the experimental results obtained using mcmas

with other model checkers. The comparison can be carried out on two levels:

1. Qualitative comparisons. The model checkers mentioned in Section 2.3 all have

different input languages. For instance, MCK defines local states of agents using

observation functions, and VerICS uses networks of automata to model multi-agent

systems. If a single example were to be encoded using these model checkers and

using mcmas the results would be, in fact, three different examples. For instance,

the protocol of the dining cryptographers can be encoded using any of the previous

model checkers. However, the size of the model generated using the input language

of MCK (which can be estimated using the number of Boolean variables required to

encode the parameters) would be much smaller than the model generated by mcmas

or VerICS, thanks to the possibility of using observation functions in MCK. There-

fore, for this particular example and for a given number of cryptographers, MCK

would verify always a smaller model. In other instances a network of communicat-

ing automata is more efficient than MCK (for instance, to model mutual exclusion

problems).

Under this perspective, MCK seems to be more suitable for examples where infor-

mation is shared among the agents, as it can be stored as part of the environment.

mcmas and VerICS, instead, seem to be more suitable for “autonomous” agents, with

a particular emphasis on coordination using shared actions in VerICS. Coordination

via shared actions may ease the description of examples in certain circumstances

(e.g., mutual exclusion), but it may not be suitable in others (e.g., when agents act

autonomously, for instance in the bit transmission problem).

2. Quantitative comparisons. Taking into account the above observations, a com-

parison of different model checkers has been presented in [Ditmarsch et al., 2005]

and in [Kacprzak et al., 2006]. The first paper compares MCK, mcmas, and the tool

DEMO for the verification of propositional dynamic epistemic logic2 on the verifi-

cation of a particular example: the Russian cards game. For this example, the tool

DEMO performs better than MCK and mcmas (which have comparable results),

because the input language of DEMO can encode this example in an efficient way.

VerICS and mcmas are compared in [Kacprzak et al., 2006]. The approach taken

in this work is different from other comparison attempts, in that a common rep-

resentation for an example is defined first, and then formulae are verified in the

common representation. In particular, the protocol of the dining cryptographers is

encoded using a network of automata in VerICS, while mcmas defines an agent for

every automaton defined in VerICS: this approach defines two models of identical

size. Various formulae are verified, including the following (where n is the number

2The tool is available from [Ditmarsch et al., 2006].

126

Chapter 6 6.5 Experimental results

N. crypt. mcmas time VerICS for 6.4 VerICS for 6.5

4 4sec ≈ 31000sec < 1sec
5 6 ≈ 106000 < 1sec
6 424 N/A < 1 sec
8 8101 N/A < 1 sec

100 N/A N/A 4sec
1000 N/A N/A 520

Table 6.12: Experimental results for mcmas and VerICS.

of cryptographers):

AG(even =⇒ K1(
∧

i∈{1,...,n}

¬paidi)); (6.4)

AG(¬paid1 =⇒ K1(
∨

i∈{2,...,n}

¬paidi)). (6.5)

The first formula expresses the true claim that, if there is an even number of ut-

terances, then the first cryptographer knows that none of the cryptographers paid

for the dinner. The second formula is false, and it expresses that if the first cryp-

tographer did not pay for the dinner, then he knows that some of the remaining

cryptographers paid for it. The time required for the verification of these formulae

is reported in Table 6.12. These results confirm that the verification time in mcmas

is not affected by the structure of the formula: Formula 6.4 and Formula 6.5 required

the same amount of time for verification, reported in the first column. On the con-

trary, verification times for VerICS are crucially dependent on the structure of the

formula being verified. The reason is the structure of the bounded model checking

algorithm implemented by VerICS: if a counter-example is found with a small value

of the bound (as in the case of 6.5) verification is extremely efficient and the tool can

check examples with up to 1000 cryptographers (last column). For true formulae,

however, maximal paths need to be encoded as Boolean formulae, and this operation

may be inefficient: this is confirmed by the time results for Formula 6.4.

These experimental results show that there is no “best” model checker, nor “best” tech-

nique. Instead, depending on the example being verified, a tool may be better than

another because of its input language and other features, and a verification technique may

be better than another due to the particular structure of the formulae being verified.

Given the comparisons above, the techniques and the tool presented in this thesis seem to

offer, on average, a satisfactory performance.

127

Chapter 7

Conclusion

7.1 Contribution

The goal of this thesis has been the development of techniques and tools for the formal

verification of multi-agent systems using model checking. The main contributions to this

area of research are summarised below:

• Theoretical contributions: traditional obdd-based methodologies for temporal-only

model checking have been extended to multi-modal logics for time, knowledge, cor-

rect behaviour, and strategies. To this end, the Boolean encoding of the parameters

required by the model checking algorithm has been redefined in terms of the for-

malism of deontic interpreted systems. Additionally, complexity results have been

presented for model checking these logics, and for model checking compact represen-

tations.

• Development of mcmas: this is a software tool developed in C/C++ for the au-

tomatic verification of deontic interpreted systems. The tool defines the language

ISPL for describing examples and it implements obdd-based procedures for efficient

verification.

• Application examples: various multi-agent systems scenarios have been encoded,

including communication and anonymity examples, hardware diagnosability, and

strategic reasoning. Experimental results have been presented confirming the effec-

tiveness of this approach.

128

Chapter 7 7.2 Benefits and comparisons

7.2 Benefits and comparisons

Traditional temporal-only specification patterns (in the sense of [Dwyer et al., 1998]) en-

able the formalisation of a number of requirements for complex systems. In many circum-

stances, however, model checking techniques for multi-agent systems introduce substantial

benefits with respect to temporal-only model checking. These benefits include:

• a richer expressivity: in addition to temporal reasoning, multi-agent systems allow

to reason about “knowledge” (and other modalities) in a formal way, for instance

when describing communication and security protocols;

• a more intuitive language for expressing requirements: the key properties of many

scenarios are difficult to express in terms of temporal-only logic. The addition of

other modal operators make clearer the correspondence between logic formulae and

plain text requirements;

• an improved efficiency: as shown in the example of diagnosability, the direct verifi-

cation of other modalities, in addition to the temporal modalities, may reduce the

complexity of the verification problem.

This thesis specifically addressed the above points by providing model checking method-

ologies and a prototype model checker, that has been tested against a number of examples.

Comparisons. References and comparisons with related work appear in previous chapters

(in particular, see Section 6.5.5, page 126). On a theoretical level, the main contributions

of this thesis differ from the works presented in Section 2.3 in various respects. Differently

from [Benerecetti et al., 1998] the methodology presented here is computationally grounded,

in the sense of [Wooldridge, 2000a]. Also, instead of relying on existing model checkers as

in [Wooldridge et al., 2002] and [Bordini et al., 2003b, Bordini et al., 2003a], Chapter 3

introduced a self-contained methodology, which avoids the translation into temporal-only

model checkers.

The algorithms and the implementation presented in this thesis use obdds and, in this re-

spect, they differ from all the SAT-based approaches presented in Section 2.3 (Section 6.5.5

has investigated the differences between the two techniques in more detail, using experi-

mental results).

Although [Gammie and van der Meyden, 2004] use obdds, they restrict the verification to

a particular class of interpreted systems, and do not consider a number of operators that

are available in mcmas; these include operators to reason about distributed knowledge,

common knowledge, “correct behaviour” and strategies of agents. Moreover, as mentioned

in Section 6.5.5, the input language of MCK and mcmas are substantially different, and

they are suited for different classes of examples.

129

Chapter 7 7.3 Future work

7.3 Future work

This thesis has shown that model checking for multi-agent systems introduces a number

of benefits with respect to temporal-only model checking. Nevertheless, some issues need

to be addressed before model checking for multi-agent systems reaches the maturity of

traditional model checking. In particular, open issues not considered in this thesis include:

• Correspondence between actual system and the input of model checkers: this prob-

lem arises for both traditional and MAS model checkers, when large examples have to

be encoded using a manual translation. Even if computationally grounded theories

of agency [Wooldridge, 2000a] (and the corresponding verification methodologies)

are a necessary condition for the verification of such examples, the correspondence

between an actual system and its representation requires care. In the case of model

checkers for MAS a further issue arises when encoding a scenario using agents: what

is an agent? The example presented in Section 6.4 is a concrete instance of this is-

sue: Livingstone models are composed of so called “modules” (for instance, a circuit

breaker is a module). But are all modules agents? Is a circuit breaker an agent?

This kind of correspondence is an open question.

• In many circumstances, understanding why a formula is false in a model may be

as useful as knowing that a formula is true in a model. Counter-examples can be

generated automatically by some temporal model checkers1; unfortunately, even in

the case of temporal-only model checkers, counter-examples are typically difficult to

understand. Counter-examples may become even more complex after introducing

non-temporal modalities. Thus, the effective generation of human-readable counter-

examples for multi-agent systems needs to be addressed with care in a mature model

checker for multi-agents systems. In parallel with this issue, fairness conditions

[Clarke et al., 1999] need to be introduced to avoid obviously un-wanted behaviours

of agents.

• Deontic interpreted systems offer a computationally grounded, fine grain semantics

for multi-agent systems. In certain cases this fine grain semantics could be refined

further by introducing variables to describe the local states of the agents. This is the

case, for instance, with the example in Section 6.4: the diagnoser could be described

more easily using one variable for each observable. This change would require a

complete redefinition of the protocols, the evolution and the evaluation functions, but

it would make deontic interpreted systems an even more “computationally grounded”

semantics for multi agent systems.

• Optimisation techniques usually included in temporal model checkers have not been

introduced in mcmas. Techniques that could be implemented in mcmas include

1Model checkers for multi-agent systems do not support this feature yet.

130

Chapter 7 7.3 Future work

abstraction, on-the-fly model checking, caching, and strategies for reordering obdd

variables.

• A graphical interface and an on-line version of mcmas are currently under develop-

ment, with the aim increasing the number of potential mcmas users.

.

131

Bibliography

[Agotnes, 2005] Agotnes, T. (2005). Action and knowledge in Alternating-time Temporal

Logic. Synthese. Special issue on Knowledge, Rationality and Action.

[Alur and Dill, 1994] Alur, R. and Dill, D. (1994). A theory of Timed Automata. Theo-

retical Computer Science, 126(2):183–235.

[Alur et al., 1998] Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., and

Tasiran, S. (1998). MOCHA: Modularity in model checking. In Proceedings of the

10th International Conference on Computer Aided Verification (CAV’98), volume 1427

of LNCS, pages 521–525. Springer-Verlag.

[Alur et al., 2006] Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., and

Tasiran, S. (2006). http://embedded.eecs.berkeley.edu/research/mocha/.

[Alur et al., 1997] Alur, R., Henzinger, T. A., and Kupferman, O. (1997). Alternating-

time temporal logic. In Proceedings of the 38th IEEE Symposium on Foundations of

Computer Science (FOCS’97), pages 100–109. IEEE Computer Society.

[Alur et al., 2002] Alur, R., Henzinger, T. A., and Kupferman, O. (2002). Alternating-

time temporal logic. Journal of the ACM, 49(5):672–713.

[Anderson, 1958] Anderson, A. R. (1958). A reduction of deontic logic to alethic modal

logic. Mind, 58:100–103.

[Beizer, 1990] Beizer, B. (1990). Software Testing Techniques. Van Nostrand Reinhold,

New York, 2nd edition.

[Benerecetti et al., 1998] Benerecetti, M., Giunchiglia, F., and Serafini, L. (1998). Model

checking multiagent systems. Journal of Logic and Computation, 8(3):401–423.

[Bengtsson et al., 1998] Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.,

and Weise, C. (1998). New generation of Uppaal. In Proceedings of the International

Workshop on Software Tools for Technology Transfer.

132

http://embedded.eecs.berkeley.edu/research/mocha/

BIBLIOGRAPHY

[Beyer et al., 2003] Beyer, D., Lewerentz, C., and Noack, A. (2003). Rabbit: A tool for

BDD-based verification of real-time systems. In Hunt, W. A. and Somenzi, F., edi-

tors, Proceedings of the 15th International Conference on Computer Aided Verification

(CAV 2003), LNCS 2725, pages 122–125. Springer-Verlag, Berlin.

[Biere et al., 1999a] Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. (1999a). Symbolic

model checking without BDDs. In Proc. of TACAS’99, volume 1579 of LNCS, pages

193–207. Springer-Verlag.

[Biere et al., 1999b] Biere, A., Clarke, E., Raimi, R., and Zhu, Y. (1999b). Verifying safety

properties of a PowerPC microprocessor using symbolic model checking without BDDs.

In Proceedings of the 11th International Conference on Computer Aided Verification

(CAV’99), volume 1633 of LNCS, pages 60–71. Springer-Verlag.

[Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal Logic,

volume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press.

[Bordini et al., 2003a] Bordini, R., Fisher, M., Pardavila, C., Visser, W., and Wooldridge,

M. (2003a). Model checking multi-agent programs with CASP. In Proceedings of the

15th International Conference on Computer Aided Verification (CAV’03), volume 2725

of LNCS, pages 110–113. Springer-Verlag.

[Bordini et al., 2003b] Bordini, R. H., Fisher, M., Pardavila, C., and Wooldridge, M.

(2003b). Model checking AgentSpeak. In Rosenschein, J. S., Sandholm, T., Michael,

W., and Yokoo, M., editors, Proceedings of the Second International Joint Conference

on Autonomous Agents and Multi-agent systems (AAMAS-03), pages 409–416. ACM

Press.

[Brat et al., 2000] Brat, G., Havelund, K., Park, S., and Visser, W. (2000). Model checking

programs. In Proceedings of the 15th International Conference on Automated Software

Engineering (ASE-2000), pages 3–12. IEEE Computer Society.

[Brayton et al., 1996] Brayton, S., Hachtel, G., Sangiovanni-Vincentelli, A., Somenzi, F.,

Aziz, A., Cheng, S., Edwards, S., Khatri, S., Kukimoto, Y., Pardo, A., Qadeer, S.,

Ranjan, R., Sarwary, S., Shiple, T., Swamy, G., and Villa, T. (1996). VIS: A system

for verification and synthesis. In Proceedings of the 8th International Conference on

Computer Aided Verification (CAV’96), volume 1102 of LNCS, pages 428–432. Springer-

Verlag.

[Bryant, 1986] Bryant, R. E. (1986). Graph-based algorithms for boolean function ma-

nipulation. IEEE Transactions on Computers, 35(8):677–691.

[Bryant, 1991] Bryant, R. E. (1991). On the complexity of VLSI implementations and

graph representations of boolean functions with application to integer multiplication.

IEEE Trans. Comput., 40(2):205–213.

133

BIBLIOGRAPHY

[Burch et al., 1992] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang,

L. J. (1992). Symbolic model checking: 1020 states and beyond. Information and

Computation, 98(2):142–170.

[Chaum, 1988] Chaum, D. (1988). The dining cryptographers problem: Unconditional

sender and recipient untraceability. Journal of Cryptology, 1(1):65–75.

[Chellas, 1980] Chellas, B. (1980). Modal Logic: An Introduction. Cambridge University

Press, Cambridge.

[Cheng, 1995] Cheng, A. (1995). Complexity results for model checking. Technical Report

RS-95-18, BRICS - Basic Research in Computer Science, Department of Computer

Science, University of Aarhus.

[Cimatti et al., 2002] Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore,

M., Roveri, M., Sebastiani, R., and Tacchella, A. (2002). NuSMV2: An open-source

tool for symbolic model checking. In Proceedings of the 14th International Conference on

Computer Aided Verification (CAV’02), volume 2404 of LNCS, pages 359–364. Springer-

Verlag.

[Cimatti et al., 2003] Cimatti, A., Pecheur, C., and Cavada, R. (2003). Formal verification

of diagnosability via symbolic model checking. In Proceedings of IJCAI03, volume 1871

of LNCS, pages 363–369. Springer Verlag.

[Clarke and Emerson, 1981] Clarke, E. and Emerson, E. (1981). Design and synthesis of

synchronization skeletons for branching-time temporal logic. In Proceedings of Workshop

on Logic of Programs, volume 131 of LNCS, pages 52–71. Springer-Verlag.

[Clarke et al., 2004a] Clarke, E., Kroening, D., and Lerda, F. (2004a). A tool for checking

ANSI-C programs. In Jensen, K. and Podelski, A., editors, Tools and Algorithms for the

Construction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in

Computer Science, pages 168–176. Springer.

[Clarke et al., 2006] Clarke, E., Kroening, D., and Lerda, F. (2006).

http://www.cs.cmu.edu/∼modelcheck/cbmc/.

[Clarke et al., 2004b] Clarke, E., Kroening, D., Strichman, O., and Ouaknine, J. (2004b).

Completeness and complexity of bounded model checking. In 5th International Con-

ference on Verification, Model Checking, and Abstract Interpretation, volume 2937 of

Lecture Notes in Computer Science, pages 85–96.

[Clarke et al., 1986] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Auto-

matic verification of finite-state concurrent systems using temporal logic specifications:

A practical approach. ACM Transactions on Programming Languages and Systems,

8(2):244–263.

134

http://www.cs.cmu.edu/~modelcheck/cbmc/

BIBLIOGRAPHY

[Clarke et al., 1999] Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Check-

ing. The MIT Press, Cambridge, Massachusetts.

[Cohen and Levesque, 1990] Cohen, P. R. and Levesque, H. J. (1990). Intention is choice

with commitment. Artificial Intelligence, 42(2-3):213–261.

[Cox et al., 2005] Cox, J., Bartold, T., and Durfee, E. (2005). A distributed framework

for solving the multiagent plan coordination problem. In Proceedings of the Fourth

International Conference on Autonomous Agents and Multiagent Systems (AAMAS’05),

pages 821–827.

[Daws et al., 1995] Daws, C., Olivero, A., Tripakis, S., and Yovine, S. (1995). The tool

KRONOS. In Hybrid Systems III, volume 1066 of LNCS, pages 208–219. Springer-

Verlag.

[Dennett, 1987] Dennett, D. (1987). The Intentional Stance. MIT Press.

[Ditmarsch et al., 2005] Ditmarsch, H., Hoek, W., Meyden, R., and Ruan, J. (2005).

Model checking russian cards. In Proceedings of Mochart — Third International Work-

shop on Model Checking and Artificial Intelligence, volume 149(2). Electronic Notes in

Theoretical Computer Science.

[Ditmarsch et al., 2006] Ditmarsch, H., Hoek, W., Meyden, R., and Ruan, J. (2006).

http://homepages.cwi.nl/∼jve/papers/04/demo/.

[Dwyer et al., 1998] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1998). Property

specification patterns for finite-state verification. In Ardis, M., editor, Proceedings of

the 2nd Workshop on Formal Methods in Software Practice (FMSP’98), pages 7–15,

New York. ACM Press.

[Dwyer et al., 2006] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (2006).

http://patterns.projects.cis.ksu.edu/.

[Emerson, 1990] Emerson, E. A. (1990). Temporal and modal logic. In van Leeuwen,

J., editor, Handbook of Theoretical Computer Science, pages 996–1071. Elsevier Science

Publishers.

[Emerson and Halpern, 1985] Emerson, E. A. and Halpern, J. Y. (1985). Decision proce-

dures and expressiveness in the temporal logic of branching time. Journal of Computer

and System Sciences, 30(1):1–24.

[Fagin et al., 1995] Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995). Rea-

soning about Knowledge. MIT Press, Cambridge.

[Franceschet et al., 2004] Franceschet, M., Montanari, A., and de Rijke, M. (2004). Model

checking for combined logics with an application to mobile systems. Automated Software

Engineering, 11:289–321.

135

http://homepages.cwi.nl/~jve/papers/04/demo/
http://patterns.projects.cis.ksu.edu/

BIBLIOGRAPHY

[Gabbay et al., 2003] Gabbay, D., Kurucz, A., Wolter, F., and Zakharyaschev, M. (2003).

Many-Dimensional Modal Logics: Theory and Applications, volume 148 of Studies in

Logic. Elsevier.

[Gammie and van der Meyden, 2004] Gammie, P. and van der Meyden, R. (2004). MCK:

Model checking the logic of knowledge. In Proceedings of 16th International Confer-

ence on Computer Aided Verification (CAV’04), volume 3114 of LNCS, pages 479–483.

Springer-Verlag.

[Goldblatt, 1992] Goldblatt, R. (1992). Logics of Time and Computation, Second Edition,

Revised and Expanded, volume 7 of CSLI Lecture Notes. CSLI, Stanford. Distributed

by University of Chicago Press.

[Goldschlag et al., 1999] Goldschlag, D., Reed, M., and Syverson, P. (1999). Onion rout-

ing. Communications of the ACM, 42(2):39–41.

[Goranko and Jamroga, 2004] Goranko, V. and Jamroga, W. (2004). Comparing seman-

tics for logics of multi-agent systems. Synthese, 139(2):241–280.

[Harel, 1984] Harel, D. (1984). Dynamic logic. In Gabbay, D. and Guenthner, F., editors,

Handbook of Philosophical Logic, Volume II: Extensions of Classical Logic, volume 165

of Synthese Library, pages 497–604. D. Reidel, Dordrecht.

[Hendrik, 2006] Hendrik, L. (2006). http://staff.science.uva.nl/∼lhendrik/.

[Henzinger et al., 2003] Henzinger, T. A., Jhala, R., Majumdar, R., , and Sutre, G. (2003).

Software verification with blast. In Proceedings of the Tenth International Workshop on

Model Checking of Software (SPIN), pages 235–239. Lecture Notes in Computer Science

2648, Springer-Verlag.

[Hoek and Wooldridge, 2003a] Hoek, W. and Wooldridge, M. (2003a). Cooperation,

knowledge, and time: Alternating-time temporal epistemic logic and its applications.

Studia Logica, 75(1):125–157.

[Hoek and Wooldridge, 2003b] Hoek, W. and Wooldridge, M. (2003b). Towards a logic of

rational agency. Logic Journal of the IGPL, 11(2):135–159.

[Hoek et al., 2006] Hoek, W. v., Lomuscio, A., and Wooldridge, M. (2006). On the com-

plexity of practical atl model checking knowledge, strategies, and games in multi-agent

systems. In Proceedings of the fifth international joint conference on Autonomous agents

and multiagent systems (AAMAS’06), Hakodake, Japan. ACM Press. To appear.

[Hoek and Wooldridge, 2002] Hoek, W. v. and Wooldridge, M. (2002). Model checking

knowledge and time. In SPIN 2002 – Proceedings of the Ninth International SPIN

Workshop on Model Checking of Software, Grenoble, France.

136

http://staff.science.uva.nl/~lhendrik/

BIBLIOGRAPHY

[Holzmann, 1997] Holzmann, G. J. (1997). The model checker SPIN. IEEE transaction

on software engineering, 23(5):279–295.

[Holzmann, 2003] Holzmann, G. J. (2003). SPIN Model Checker, The: Primer and Ref-

erence Manual. Addison Wesley Professional.

[Hughes and Cresswell, 1996] Hughes, G. E. and Cresswell, M. J. (1996). A New Intro-

duction to Modal Logic. Routledge, New York.

[Huth and Ryan, 2004] Huth, M. R. A. and Ryan, M. D. (2004). Logic in Computer

Science: Modelling and Reasoning about Systems (2nd edition). Cambridge University

Press, Cambridge, England.

[Jamroga, 2004a] Jamroga, W. (2004a). Some remarks on alternating temporal epistemic

logic. In Dunin-Kȩplicz, B. and Verbrugge, R., editors, Proceedings of the International

Workshop on Formal Approaches to Multi-Agent Systems (FAMAS’03), pages 133–140.

[Jamroga, 2004b] Jamroga, W. (2004b). Using Multiple Models of Reality. On Agents who

Know how to Play Safer. PhD thesis, University of Twente, Enschede, The Netherlands.

[Jamroga and van der Hoek, 2004] Jamroga, W. and van der Hoek, W. (2004). Agents

that know how to play. Fundamenta Informaticae, 62:1–35.

[Jonker, 2003] Jonker, G. (2003). Feasible strategies in alternating-time temporal epis-

temic logic. Master’s thesis, University of Utrech, The Netherlands.

[Kacprzak et al., 2006] Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Rai-

mondi, F., and Szreter, M. (2006). Comparing BDD and SAT based techniques for

model checking Chaum’s dining cryptographers protocol. Fundamenta Informaticae. to

appear.

[Kitano, 1998] Kitano, H., editor (1998). RoboCup-97: Robot Soccer World Cup I, volume

1395 of LNCS. Springer-Verlag.

[Kozen, 1983] Kozen, D. (1983). Results on the propositional mu-calculus. Theoretical

Computer Science, 27:333–354.

[Kupferman et al., 2000] Kupferman, O., Vardi, M. Y., and Wolper, P. (2000). An

automata-theoretic approach to branching-time model checking. Journal of the ACM,

47(2):312–360.

[Lomuscio and Raimondi, 2006a] Lomuscio, A. and Raimondi, F. (2006a). The complexity

of model checking concurrent programs against CTLK specifications. In Proceedings of

the fifth international joint conference on Autonomous agents and multiagent systems

(AAMAS’06), pages 548–550, Hakodake, Japan. ACM Press.

137

BIBLIOGRAPHY

[Lomuscio and Raimondi, 2006b] Lomuscio, A. and Raimondi, F. (2006b). MCMAS: A

model checker for multi-agent systems. In Hermanns, H. and Palsberg, J., editors,

Proceedings of TACAS 2006, Vienna, volume 3920, pages 450–454. Springer Verlag.

[Lomuscio and Raimondi, 2006c] Lomuscio, A. and Raimondi, F. (2006c). Model check-

ing knowledge, strategies, and games in multi-agent systems. In Proceedings of the

fifth international joint conference on Autonomous agents and multiagent systems (AA-

MAS’06), pages 161–168, Hakodake, Japan. ACM Press.

[Lomuscio et al., 2003] Lomuscio, A., Raimondi, F., and Sergot, M. J. (2003). Towards

model checking interpreted systems. In Proceedings of 2nd International Joint Confer-

ence on Autonomous Agents and Multi-Agent Systems (AAMAS’03), pages 1054–1055,

Melbourne. ACM Press.

[Lomuscio and Sergot, 2003] Lomuscio, A. and Sergot, M. (2003). Deontic interpreted

systems. Studia Logica, 75(1):63–92.

[Lomuscio and Sergot, 2004] Lomuscio, A. and Sergot, M. (2004). A formalisation of vi-

olation, error recovery, and enforcement in the bit transmission problem. Journal of

Applied Logic, 2(1):93–116.

[Marrero et al., 1997] Marrero, W., Clarke, E., and Jha, S. (1997). Model checking for

security protocols. Technical Report CMU-CS-97-139, Carnegie Mellon University.

[McCarthy, 1979] McCarthy, J. (1979). Ascribing mental qualities to machines. In Ringle,

M., editor, Philosophical Perspectives in Artificial Intelligence. Harvester Press.

[McMillan, 1992] McMillan, K. (1992). The SMV system. Technical Report CMU-CS-92-

131, Carnegie-Mellon University.

[McMillan, 1993] McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic

Publishers.

[McMillan, 2002] McMillan, K. L. (2002). Applying SAT methods in unbounded sym-

bolic model checking. In Proc. of the 14th Int. Conf. on Computer Aided Verification

(CAV’02), volume 2404 of LNCS, pages 250–264. Springer-Verlag.

[Meyden, 1998] Meyden, R. (1998). Common knowledge and update in finite environ-

ments. Information and Computation, 140(2):115–157.

[Meyden and Shilov, 1999] Meyden, R. v. and Shilov, H. (1999). Model checking knowl-

edge and time in systems with perfect recall. In Proceedings of Proc. of FST&TCS,

volume 1738 of Lecture Notes in Computer Science, pages 432–445, Hyderabad, India.

[Meyden and Wong, 2003] Meyden, R. v. and Wong, K. (2003). Complete axiomatizations

for reasoning about knowledge and branching time. Studia Logica, 75(1):93–123.

138

BIBLIOGRAPHY

[Moore, 1990] Moore, R. C. (1990). A formal theory of knowledge and action. In Allen,

J., Hendler, J., and Tate, A., editors, Readings in Planning, pages 480–519. Kaufmann,

San Mateo, CA.

[Moura et al., 2004] Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M.,

and Tiwari, A. (2004). SAL 2. In Alur, R. and Peled, D., editors, Computer-Aided

Verification, CAV 2004, volume 3114 of Lecture Notes in Computer Science, pages 496–

500, Boston, MA. Springer-Verlag.

[Moura et al., 2006] Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M.,

and Tiwari, A. (2006). http://sal.csl.sri.com.

[Muscettola et al., 1998] Muscettola, N., Nayak, P. P., Pell, B., and Williams, B. C.

(1998). Remote agent: to go boldly where no AI system has gone before. Artificial

Intelligence, 103(1–2):5–47.

[Nabialek et al., 2004] Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., and

Szreter, M. (2004). VerICS 2004: A model checker for real time and multi-agent sys-

tems. In Proceedings of the International Workshop on Concurrency, Specification and

Programming (CS&P’04), volume 170 of Informatik-Berichte, pages 88–99. Humboldt

University.

[Otterloo et al., 2003] Otterloo, S., van der Hoek, W., and Wooldridge, M. (2003). Knowl-

edge as strategic ability. Electronic Notes in Theoretical Computer Science, 85(2):1–23.

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational Complexity. Addison-

Wesley.

[Pecheur and Simmons, 2000] Pecheur, C. and Simmons, R. (2000). From Livingstone

to SMV: Formal verification of autonomous spacecrafts. In Proceedings of the First

Goddard Workshop on Formal Approaches to Agent-Based Systems (FAABS), volume

1871 of Lecture Notes in Computer Science, pages 103–113. Springer Verlag.

[Penczek and Lomuscio, 2003] Penczek, W. and Lomuscio, A. (2003). Verifying epistemic

properties of multi-agent systems via bounded model checking. Fundamenta Informat-

icae, 55(2):167–185.

[Penczek et al., 2004] Penczek, W., Szreter, M., Woźna, B., and Zbrzezny, A. (2004).

SAT-based unbounded model checking for TCTL. Technical report, ICS PAS, Ordona

21, 01-237 Warsaw. To appear.

[Penczek et al., 2002] Penczek, W., Woźna, B., and Zbrzezny, A. (2002). Bounded model

checking for the universal fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156.

[Pettersson and Larsen., 2000] Pettersson, P. and Larsen., K. G. (2000). Uppaal2k. Bul-

letin of the European Association for Theoretical Computer Science, 70:40–44.

139

http://sal.csl.sri.com

BIBLIOGRAPHY

[Pnueli, 1981] Pnueli, A. (1981). The temporal semantics of concurrent programs. In

Theoretical Computer Science, volume 13, pages 1–20. Elsevier Science Publishers.

[Pucella, 2005] Pucella, R. (2005). Logic column 11: The finite and the infinite in temporal

logic. SIGACT NEWS, 36:86.

[Quielle and Sifakis, 1981] Quielle, J. P. and Sifakis, J. (1981). Specification and ver-

ification of concurrent systems in CESAR. In Proceedings of the 5th International

Symposium on Programming, volume 131 of LNCS, pages 337–351. Springer-Verlag.

[Raimondi and Lomuscio, 2004a] Raimondi, F. and Lomuscio, A. (2004a). Automatic ver-

ification of deontic interpreted systems by model checking via OBDDs. In Proceedings

of the Sixteenth European Conference on Artificial Intelligence (ECAI04), pages 53–57.

IOS PRESS.

[Raimondi and Lomuscio, 2004b] Raimondi, F. and Lomuscio, A. (2004b). Symbolic

model checking of deontic interpreted systems via OBDDs. In Proceedings of DEON04,

Seventh International Workshop on Deontic Logic in Computer Science, volume 3065

of Lecture Notes in Computer Science, pages 228–242. Springer Verlag.

[Raimondi and Lomuscio, 2004c] Raimondi, F. and Lomuscio, A. (2004c). Towards model

checking for multiagent systems via OBDDs. In Proceedings of the Third NASA Work-

shop on Formal Approaches to Agent-Based Systems (FAABS III), volume 3224 of Lec-

ture Notes in Computer Science, pages 213–221. Springer Verlag.

[Raimondi and Lomuscio, 2004d] Raimondi, F. and Lomuscio, A. (2004d). Verification

of multiagent systems via ordered binary decision diagrams: an algorithm and its im-

plementation. In Jennings, N. R., Sierra, C., Sonenberg, L., and Tambe, M., editors,

Proceedings of the Third International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS’04), volume II, pages 630–637. ACM.

[Raimondi and Lomuscio, 2005a] Raimondi, F. and Lomuscio, A. (2005a). Automatic ver-

ification of multi-agent systems by model checking via OBDDs. Journal of Applied Logic.

To appear in Special issue on Logic-based agent verification.

[Raimondi and Lomuscio, 2005b] Raimondi, F. and Lomuscio, A. (2005b). The complex-

ity of symbolic model checking temporal-epistemic logics. In Proceedings of Concur-

rency, Specification & Programming (CS&P), pages 421–432. Warsaw University.

[Raimondi and Lomuscio, 2005c] Raimondi, F. and Lomuscio, A. (2005c). Model checking

knowledge, strategies, and games in multi-agent systems. Technical Report RN/05/01,

Department of Computer Science, UCL, London, UK.

[Raimondi and Lomuscio, 2006] Raimondi, F. and Lomuscio, A. (2006).

http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/.

140

http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/

BIBLIOGRAPHY

[Raimondi et al., 2005] Raimondi, F., Pecheur, C., and Lomuscio, A. (2005). Applications

of model checking for multi-agent systems: verification of diagnosability and recover-

ability. In Proceedings of Concurrency, Specification & Programming (CS&P), pages

433–444. Warsaw University.

[S. W. Squyres et al., 2004a] S. W. Squyres et al. (2004a). The Opportunity Rover’s

Athena Science Investigation at Meridiani Planum, Mars. Science, pages 1698–1703.

[S. W. Squyres et al., 2004b] S. W. Squyres et al. (2004b). The Spirit Rover’s Athena

Science Investigation at Gusev Crater, Mars. Science, pages 1698–1703.

[Sampath et al., 1995] Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., and

Teneketzis, D. (1995). Diagnosability of discrete-event systems. IEEE Transactions on

Automatic Control, 40(9):1555–1575.

[Schnoebelen, 2003] Schnoebelen, P. (2003). The complexity of temporal logic model

checking. In Proceedings of the 4th Conference Advances in Modal Logic (AiML’2002),

volume 4 of Advances in Modal Logic, pages 437–459. King’s College Publications.

[Sistla and Clarke, 1985] Sistla, A. P. and Clarke, E. M. (1985). The complexity of propo-

sitional linear temporal logic. Journal of the ACM, 32(3):733–749.

[Somenzi, 2005] Somenzi, F. (2005). CUDD: CU decision diagram package - release 2.4.0.

http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.

[Tarski, 1955] Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applica-

tions. Pacific Journal of Mathematics, 5:285–309.

[van der Meyden and Su, 2004] van der Meyden, R. and Su, K. (2004). Symbolic model

checking the knowledge of the dining cryptographers. In Proceedings of the 17th IEEE

Computer Security Foundations Workshop (CSFW’04), pages 280–291, Washington,

DC, USA. IEEE Computer Society.

[van Drimmelen, 2003] van Drimmelen, G. (2003). Satisfiability in alternating-time tem-

poral logic. In LICS ’03: Proceedings of the 18th Annual IEEE Symposium on Logic in

Computer Science, pages 208–213, Washington, DC, USA. IEEE Computer Society.

[Vardi and Wolper, 1986] Vardi, M. Y. and Wolper, P. (1986). An automata-theoretic

approach to automatic program verification. In Proc. 1st Symp. on Logic in Computer

Science, pages 332–344, Cambridge.

[Wooldridge, 2000a] Wooldridge, M. (2000a). Computationally grounded theories of

agency. In Durfee, E., editor, Proceedings of ICMAS, International Conference of Multi-

Agent Systems, pages 13–22. IEEE Press.

[Wooldridge, 2000b] Wooldridge, M. (2000b). Reasoning about Rational Agents. MIT

Press.

141

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

BIBLIOGRAPHY

[Wooldridge, 2002] Wooldridge, M. (2002). An introduction to multi-agent systems. John

Wiley, England.

[Wooldridge et al., 2002] Wooldridge, M., Fisher, M., Huget, M., and Parsons, S. (2002).

Model checking multiagent systems with MABLE. In Proceedings of the First Interna-

tional Conference on Autonomous Agents and Multiagent Systems (AAMAS-02), pages

952–959, Bologna, Italy.

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. R. (1995). Intelligent

agents: theory and practice. Knowledge Engineering Review, 2(10):115–152.

[Wooldridge and Lomuscio, 2000] Wooldridge, M. and Lomuscio, A. (2000). Multi-agent

VSK logic. In Ojeda-Aciego, M., de Guzmán, I. P., Brewka, G., and Pereira, L. M., edi-

tors, Logics in Artificial Intelligence — Proceedings of the Seventh European Workshop,

JELIA 2000 (LNAI Volume 1919), pages 300–312. Springer-Verlag.

[Woźna et al., 2004] Woźna, B., Lomuscio, A., and Penczek, W. (2004). Bounded model

checking for deontic interpreted systems. In Proc. of the 2nd Workshop on Logic and

Communication in Multi-Agent Systems (LCMAS’04), volume 126 of Electronic Notes

in Theoretical Computer Science, pages 93–114. Elsevier.

[Woźna et al., 2005] Woźna, B., Lomuscio, A., and Penczek, W. (2005). Bounded model

checking for knowledge over real time. In Proceedings of the 4st International Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS’05), volume I, pages 165–

172. ACM Press.

[Woźna and Zbrzezny, 2005] Woźna, B. and Zbrzezny, A. (2005). Bounded Model Check-

ing for the existential fragment of TCTL and Diagonal Timed Automata. In Czaja, L.,

editor, Proceedings of the International Workshop on Concurrency, Specification and

Programming (CS&P’05), pages 586–597. Warsaw University.

[Yovine, 1997] Yovine, S. (1997). KRONOS: A verification tool for real-time systems.

Springer International Journal of Software Tools for Technology Transfer, 1(1-2):123–

133.

142

	Preliminaries
	Introduction
	What is a multi-agent system?
	Definition of the problem: verification of MAS
	Applications
	Structure of this thesis

	Background literature
	Modal logics and multi-agent systems
	Syntax and axiomatic systems
	Kripke semantics
	Completeness and correspondence results
	Extended Kripke semantics
	The temporal logic CTL
	Other temporal logics
	ATL

	Many-dimensional modal logics
	Combining logics

	Complexity
	The complexity of modal logics

	MAS theories
	Interpreted systems
	Deontic interpreted systems
	Reasoning about actions in interpreted systems
	Why interpreted systems?

	Model checking
	Problem definition
	Model checking techniques
	Fix-point characterisation of CTL
	Ordered Binary Decision Diagrams
	SAT-based translations
	Automata-based techniques

	Model checking tools
	SPIN
	MOCHA
	SMV and NuSMV

	Review of other temporal model checkers
	Complexity results for model checking

	Model checking multi-agent systems: state of the art
	Theoretical investigations
	Model checking tools for multi-agent systems

	Model checking multi-agent systems using OBDDs
	Problem definition
	Explicit verification using NuSMV and Akka
	Symbolic model checking of interpreted systems using OBDDs
	Boolean encoding of deontic interpreted systems
	Model checking temporal properties
	Model checking epistemic properties
	Model checking correct behaviour
	Model checking strategies
	Discussion

	The complexity of model checking multi-agent systems
	The complexity of ``explicit'' model checking
	The complexity of model checking compact representations
	Discussion

	MCMAS
	Overview
	The language ISPL
	General structure of an ISPL program
	Formal syntax of ISPL

	Implementation details
	Usage

	Applications
	The bit transmission problem (with faults)
	The protocol of the dining cryptographers
	A different encoding

	Strategic games
	A simple card game
	RoadRunner and Coyote
	Nim

	Diagnosability and other specification patterns
	Verification of recoverability

	Experimental results
	The bit transmission problem
	The protocol of the dining cryptographers
	Strategic games
	Diagnosability
	Discussion

	Conclusion
	Contribution
	Benefits and comparisons
	Future work

	References

