98,211 research outputs found

    A framework for effective management of condition based maintenance programs in the context of industrial development of E-Maintenance strategies

    Get PDF
    CBM (Condition Based Maintenance) solutions are increasingly present in industrial systems due to two main circumstances: rapid evolution, without precedents, in the capture and analysis of data and significant cost reduction of supporting technologies. CBM programs in industrial systems can become extremely complex, especially when considering the effective introduction of new capabilities provided by PHM (Prognostics and Health Management) and E-maintenance disciplines. In this scenario, any CBM solution involves the management of numerous technical aspects, that the maintenance manager needs to understand, in order to be implemented properly and effectively, according to the company’s strategy. This paper provides a comprehensive representation of the key components of a generic CBM solution, this is presented using a framework or supporting structure for an effective management of the CBM programs. The concept “symptom of failure”, its corresponding analysis techniques (introduced by ISO 13379-1 and linked with RCM/FMEA analysis), and other international standard for CBM open-software application development (for instance, ISO 13374 and OSA-CBM), are used in the paper for the development of the framework. An original template has been developed, adopting the formal structure of RCM analysis templates, to integrate the information of the PHM techniques used to capture the failure mode behaviour and to manage maintenance. Finally, a case study describes the framework using the referred template.Gobierno de Andalucía P11-TEP-7303 M

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    A Pattern Language for High-Performance Computing Resilience

    Full text link
    High-performance computing systems (HPC) provide powerful capabilities for modeling, simulation, and data analytics for a broad class of computational problems. They enable extreme performance of the order of quadrillion floating-point arithmetic calculations per second by aggregating the power of millions of compute, memory, networking and storage components. With the rapidly growing scale and complexity of HPC systems for achieving even greater performance, ensuring their reliable operation in the face of system degradations and failures is a critical challenge. System fault events often lead the scientific applications to produce incorrect results, or may even cause their untimely termination. The sheer number of components in modern extreme-scale HPC systems and the complex interactions and dependencies among the hardware and software components, the applications, and the physical environment makes the design of practical solutions that support fault resilience a complex undertaking. To manage this complexity, we developed a methodology for designing HPC resilience solutions using design patterns. We codified the well-known techniques for handling faults, errors and failures that have been devised, applied and improved upon over the past three decades in the form of design patterns. In this paper, we present a pattern language to enable a structured approach to the development of HPC resilience solutions. The pattern language reveals the relations among the resilience patterns and provides the means to explore alternative techniques for handling a specific fault model that may have different efficiency and complexity characteristics. Using the pattern language enables the design and implementation of comprehensive resilience solutions as a set of interconnected resilience patterns that can be instantiated across layers of the system stack.Comment: Proceedings of the 22nd European Conference on Pattern Languages of Program

    Knowledge-based diagnosis for aerospace systems

    Get PDF
    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center

    Self-tuning diagnosis of routine alarms in rotating plant items

    Get PDF
    Condition monitoring of rotating plant items in the energy generation industry is often achieved through examination of vibration signals. Engineers use this data to monitor the operation of turbine generators, gas circulators and other key plant assets. A common approach in such monitoring is to trigger an alarm when a vibration deviates from a predefined envelope of normal operation. This limit-based approach, however, generates a large volume of alarms not indicative of system damage or concern, such as operational transients that result in temporary increases in vibration. In the nuclear generation context, all alarms on rotating plant assets must be analysed and subjected to auditable review. The analysis of these alarms is often undertaken manually, on a case- by-case basis, but recent developments in monitoring research have brought forward the use of intelligent systems techniques to automate parts of this process. A knowledge- based system (KBS) has been developed to automatically analyse routine alarms, where the underlying cause can be attributed to observable operational changes. The initialisation and ongoing calibration of such systems, however, is a problem, as normal machine state is not uniform throughout asset life due to maintenance procedures and the wear of components. In addition, different machines will exhibit differing vibro- acoustic dynamics. This paper proposes a self-tuning knowledge-driven analysis system for routine alarm diagnosis across the key rotating plant items within the nuclear context common to the UK. Such a system has the ability to automatically infer the causes of routine alarms, and provide auditable reports to the engineering staff

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling
    • …
    corecore