6 research outputs found

    Representing 3D shape in sparse range images for urban object classification

    Get PDF
    This thesis develops techniques for interpreting 3D range images acquired in outdoor environments at a low resolution. It focuses on the task of robustly capturing the shapes that comprise objects, in order to classify them. With the recent development of 3D sensors such as the Velodyne, it is now possible to capture range images at video frame rates, allowing mobile robots to observe dynamic scenes in 3D. To classify objects in these scenes, features are extracted from the data, which allows different regions to be matched. However, range images acquired at this speed are of low resolution, and there are often significant changes in sensor viewpoint and occlusion. In this context, existing methods for feature extraction do not perform well. This thesis contributes algorithms for the robust abstraction from 3D points to object classes. Efficient region-of-interest and surface normal extraction are evaluated, resulting in a keypoint algorithm that provides stable orientations. These build towards a novel feature, called the ‘line image,’ that is designed to consistently capture local shape, regardless of sensor viewpoint. It does this by explicitly reasoning about the difference between known empty space, and space that has not been measured due to occlusion or sparse sensing. A dataset of urban objects scanned with a Velodyne was collected and hand labelled, in order to compare this feature with several others on the task of classification. First, a simple k-nearest neighbours approach was used, where the line image showed improvements. Second, more complex classifiers were applied, requiring the features to be clustered. The clusters were used in topic modelling, allowing specific sub-parts of objects to be learnt across multiple scales, improving accuracy by 10%. This work is applicable to any range image data. In general, it demonstrates the advantages in using the inherent density and occupancy information in a range image during 3D point cloud processing

    Representing 3D shape in sparse range images for urban object classification

    Get PDF
    This thesis develops techniques for interpreting 3D range images acquired in outdoor environments at a low resolution. It focuses on the task of robustly capturing the shapes that comprise objects, in order to classify them. With the recent development of 3D sensors such as the Velodyne, it is now possible to capture range images at video frame rates, allowing mobile robots to observe dynamic scenes in 3D. To classify objects in these scenes, features are extracted from the data, which allows different regions to be matched. However, range images acquired at this speed are of low resolution, and there are often significant changes in sensor viewpoint and occlusion. In this context, existing methods for feature extraction do not perform well. This thesis contributes algorithms for the robust abstraction from 3D points to object classes. Efficient region-of-interest and surface normal extraction are evaluated, resulting in a keypoint algorithm that provides stable orientations. These build towards a novel feature, called the ‘line image,’ that is designed to consistently capture local shape, regardless of sensor viewpoint. It does this by explicitly reasoning about the difference between known empty space, and space that has not been measured due to occlusion or sparse sensing. A dataset of urban objects scanned with a Velodyne was collected and hand labelled, in order to compare this feature with several others on the task of classification. First, a simple k-nearest neighbours approach was used, where the line image showed improvements. Second, more complex classifiers were applied, requiring the features to be clustered. The clusters were used in topic modelling, allowing specific sub-parts of objects to be learnt across multiple scales, improving accuracy by 10%. This work is applicable to any range image data. In general, it demonstrates the advantages in using the inherent density and occupancy information in a range image during 3D point cloud processing

    3D modeling of point clouds

    Get PDF
    We present our research on modeling simple shapes in a point cloud using both Expectation Maximization (EM) and Markov Chain Monte Carlo (MCMC). The shapes to be modeled are Planes, Cylinders and Cones. Although most point clouds consist of more complex shapes, they may also contain these three simple shapes. In the case of man-made structures, a large percentage of a point cloud could be made up of simple shapes. Creating a model of shapes can lead to a huge reduction in data.School of Electrical & Computer Engineerin

    Enhancing 3D Autonomous Navigation Through Obstacle Fields: Homogeneous Localisation and Mapping, with Obstacle-Aware Trajectory Optimisation

    Get PDF
    Small flying robots have numerous potential applications, from quadrotors for search and rescue, infrastructure inspection and package delivery to free-flying satellites for assistance activities inside a space station. To enable these applications, a key challenge is autonomous navigation in 3D, near obstacles on a power, mass and computation constrained platform. This challenge requires a robot to perform localisation, mapping, dynamics-aware trajectory planning and control. The current state-of-the-art uses separate algorithms for each component. Here, the aim is for a more homogeneous approach in the search for improved efficiencies and capabilities. First, an algorithm is described to perform Simultaneous Localisation And Mapping (SLAM) with physical, 3D map representation that can also be used to represent obstacles for trajectory planning: Non-Uniform Rational B-Spline (NURBS) surfaces. Termed NURBSLAM, this algorithm is shown to combine the typically separate tasks of localisation and obstacle mapping. Second, a trajectory optimisation algorithm is presented that produces dynamically-optimal trajectories with direct consideration of obstacles, providing a middle ground between path planners and trajectory smoothers. Called the Admissible Subspace TRajectory Optimiser (ASTRO), the algorithm can produce trajectories that are easier to track than the state-of-the-art for flight near obstacles, as shown in flight tests with quadrotors. For quadrotors to track trajectories, a critical component is the differential flatness transformation that links position and attitude controllers. Existing singularities in this transformation are analysed, solutions are proposed and are then demonstrated in flight tests. Finally, a combined system of NURBSLAM and ASTRO are brought together and tested against the state-of-the-art in a novel simulation environment to prove the concept that a single 3D representation can be used for localisation, mapping, and planning

    Sparse Shape Modelling for 3D Face Analysis

    Get PDF
    This thesis describes a new method for localising anthropometric landmark points on 3D face scans. The points are localised by fitting a sparse shape model to a set of candidate landmarks. The candidates are found using a feature detector that is designed using a data driven methodology, this approach also informs the choice of landmarks for the shape model. The fitting procedure is developed to be robust to missing landmark data and spurious candidates. The feature detector and landmark choice is determined by the performance of different local surface descriptions on the face. A number of criteria are defined for a good landmark point and good feature detector. These inform a framework for measuring the performance of various surface descriptions and the choice of parameter values in the surface description generation. Two types of surface description are tested: curvature and spin images. These descriptions, in many ways, represent many aspects of the two most common approaches to local surface description. Using the data driven design process for surface description and landmark choice, a feature detector is developed using spin images. As spin images are a rich surface description, we are able to perform detection and candidate landmark labelling in a single step. A feature detector is developed based on linear discriminant analysis (LDA). This is compared to a simpler detector used in the landmark and surface description selection process. A sparse shape model is constructed using ground truth landmark data. This sparse shape model contains only the landmark point locations and relative positional variation. To localise landmarks, this model is fitted to the candidate landmarks using a RANSAC style algorithm and a novel model fitting algorithm. The results of landmark localisation show that the shape model approach is beneficial over template alignment approaches. Even with heavily contaminated candidate data, we are able to achieve good localisation for most landmarks

    Representation and Classification of 3-D Objects

    No full text
    Abstract—This paper addresses the problem of generic object classification from three-dimensional depth or meshed data. First, surface patches are segmented on the basis of differential geometry and quadratic surface fitting. These are represented by a modified Gaussian image that includes the well-known shape index. Learning is an interactive process in which a human teacher indicates corresponding patches, but the formation of generic classes is unaided. Classification of unknown objects is based on the measurement of similarities between feature sets of the objects and the generic classes. The process is demonstrated on a group of three-dimensional (3-D) objects built from both CAD and laser-scanned depth data. Index Terms—Classification, object recognition, 3-D vision. I
    corecore