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Abstract

Alastair James Quadros Doctor of Philosophy
The University of Sydney May 2014

Representing 3D Shape in Sparse Range
Images for Urban Object Classification

This thesis develops techniques for interpreting 3D range images acquired in outdoor
environments at a low resolution. It focuses on the task of robustly capturing the
shapes that comprise objects, in order to classify them.

With the recent development of off-the-shelf 3D sensors such as the Velodyne, it is
now possible to capture range images at video frame rates, allowing mobile robots to
observe dynamic scenes in 3D. Classifying objects in these scenes is a core component
of autonomous perception, as it enables reasoning at the semantic level, allowing
a robot to be more proficient in interacting with the world. To perform this task,
features are extracted from the data, which allows different regions to be compared
and matched. However, range images acquired at this speed are of low resolution,
resulting in sparse 3D point clouds, with sometimes only a few points per object.
Changes in sensor viewpoint greatly affect the distribution of 3D points on a surface,
and occlusion is prevalent. In this context, existing methods for feature extraction do
not perform well.

This thesis contributes algorithms for the robust abstraction from 3D points to
object classes. Efficient region-of-interest and surface normal extraction are evaluated,
resulting in a keypoint algorithm that provides stable orientations. These build towards
a novel feature that is designed to consistently capture local shape, regardless of sensor
viewpoint. It does this by explicitly reasoning about the difference between known
empty space, and space that has not been measured due to occlusion or sparse sensing.
The feature involves a set of parallel 3D lines ‘probing’ the environment for a surface,
and so the feature is called the ‘line image.’ When lines intercept the interpolated
surface, the depth is recorded, producing a local 21⁄2-D representation. Otherwise,
if they go behind a surface, or encounter a large gap in the data, unknown space is
registered. Visibly empty space, often found along the informative silhouette of an
object, is also captured. This allows parts of objects to be consistently represented,
capturing sufficient shape information for distinguishing class.

A dataset of objects scanned with a Velodyne was collected and hand labelled, in order
to compare this feature with several others on the task of classification. The dataset
comprised of 588 urban objects from 14 classes of vehicles, signs, buildings, people and
trees. First, a simple k-nearest neighbours approach was used, where the line image
showed improvements. Second, more complex classifiers were applied, requiring the
features to be clustered into the equivalent of visual words. This presented challenges,
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as some dimensions are effectively missing due to the incorporated unknown regions.
The clusters were used in topic modelling, allowing specific sub-parts of objects to be
learnt across multiple scales, improving accuracy by 10%.

This work is applicable to any range image data. In general, it demonstrates the
advantages in using the inherent density and occupancy information in a range image
during 3D point cloud processing. The line image encodes non-visible regions as missing
dimensions. This leaves open more probabilistic approaches to feature matching, where
limited visibility results in a distribution over potentially matching object parts.
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“it is comparatively easy to make computers exhibit adult level performance on
intelligence tests or playing checkers, and difficult or impossible to give them the skills

of a one-year-old when it comes to perception and mobility.

...

“Encoded in the large, highly evolved sensory and motor portions of the human brain
is a billion years of experience about the nature of the world and how to survive in it.
The deliberate process we call reasoning is, I believe, the thinnest veneer of human
thought, effective only because it is supported by this much older and much more

powerful, though usually unconscious, sensorimotor knowledge. We are all prodigious
olympians in perceptual and motor areas, so good that we make the difficult look easy.

Abstract thought, though, is a new trick, perhaps less than 100 thousand years old.
We have not yet mastered it. It is not all that intrinsically difficult; it just seems so

when we do it.”

- Hans Moravec, 1988
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Chapter 1

Introduction

This thesis addresses the task of classifying objects in outdoor scenes using a form of

3D sensory data called the range image. Classification is the task of assigning a label

to an object, allowing it to be perceived semantically, which is a core challenge in

autonomous perception. 3D sensing provides an alternative approach from traditional

imagery in computer vision, allowing the 3D shapes that comprise objects to be used

for classification.

In a range image, pixels record depth rather than colour, allowing the 3D location

of each pixel to be calculated in a 3D point cloud. These points trace out the

shapes of objects, as shown in Figure 1.1. However, there are limitations in sensing

for unmanned ground vehicles (UGVs) in dynamic outdoor scenes such as urban

environments. Consider Figure 1.1. The image resolution is relatively low, which

means 3D points at further ranges are far apart, and the range readings contain noise.

Objects are only partly visible, and sometimes in the shadow of another, foreground

object.

A focus in this thesis is the representation of shape in such a range image. In essence,

groups of 3D points are not inherently comparable, they must be transformed in some

way to facilitate the comparison of shape. This representation of shape is then fed to

a classification algorithm, which uses this information to infer class.

1



2 CHAPTER 1. INTRODUCTION

(a)

(b)

Figure 1.1 – (a) A range image from a Velodyne, coloured by depth. (b) The associated
3D points, coloured to show some objects.

The objective of this thesis is to interpret the above data in a manner that is: (1) robust

to low density, noise and occlusion; (2) capable of identifying many object categories;

and (3) able to do so when trained from a limited dataset. To achieve these, the

following tasks are addressed.

• Analysing basic geometric information from noisy, unevenly-sampled data.

• Creating a sufficiently distinguishable, viewpoint invariant shape representation

for sensed object parts.

• Classifying objects from their constituent parts.
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1.1 Motivation

The ability to identify a wide range of objects is important for many areas of robotics.

Seemingly simple everyday tasks require responding to objects in the environment

which are either related to the task at hand, or are critical for safety and efficiency.

Interpreting urban environments in particular provides a challenge for UGVs such

as self-driving cars. The 2007 DARPA Urban Challenge demonstrated the need for

vehicle classification in order to plan and navigate traffic [85].

While specific objects can be detected by engineering sensors and algorithms for a

narrow application, general object recognition significantly broadens the scope of a

robot. A limitation in bringing robotics into everyday life is the inability to reliably

interpret a relatively unstructured world, compared to factory floors where robotics

has been very successful. Beyond simply allowing a robot to do more than a single

task, more general object recognition can provide increased interpretive and predictive

power.

Beyond robotics, the symbol grounding problem [37] considers how words and concepts

(symbols) can gain meaning, which has significance for artificial intelligence. Object

classification permits the real world to be transformed into symbols, where objects

are defined by learned sensory properties rather than limited dictionary definitions.

The ability to reason about objects brings AI closer to more general capabilities.

1.2 Background

Object classification begins with the processing of some form of sensor data. Colour

vision has been the mainstay of computer perception for obvious reasons. The sensors

are relatively inexpensive, they produce the sort of visual data humans are familiar

with, and the data itself contains a wealth of information in colour, texture and shape.

Point feature descriptors are commonly employed in vision to find matching image

patches. Features in general convert a portion of sensory data into a vector that
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represents some aspect of the data, making it more amenable to comparison. As image

data varies greatly due to changes in viewpoint and lighting, image features such as the

Scale Invariant Feature Transform (SIFT) [52] seek to limit this variation, allowing a

given image patch to be recognised under varying conditions. This means that a given

object would be more likely to have the same features when observed under different

conditions, making it more suitable for classification. However, this invariance is

limited by the 2D nature of images, where changes in viewpoint eventually change the

image structure significantly. The three dimensional world is transformed into a two

dimensional space of pixels, from which the world must be interpreted.

Figure 1.2 – Point feature match-
ing between two point clouds of
vehicles.

With 3D data, the three dimensional world is sensed,

allowing surface geometry (i.e. 3D shape) to be used

as the basis of recognition. This is an object-centric

property, independent of viewing angle and lighting.

While lacking colour and texture, the 3D shape of an

object is often very informative by itself. However,

geometry is not sensed, it must be inferred from

3D points; this process is a primary focus of this

thesis. Several 3D features exist which represent

the geometry, elaborated in Section 2.3. In this

way, point features can facilitate matching parts of

objects, as shown in Figure 1.2.

The focus in this work is on a relatively low quality form of point cloud, where existing

features from the literature are not well suited. In the context of UGVs, vehicle motion

and dynamic objects in the environment necessitate that range images be taken at a

video-like frame rate. Sensors such as the Velodyne provide range images at up to

20 Hz, but are limited to only 64 ‘pixels’ in height (Figure 1.1). In general, higher

resolutions and point densities are difficult to achieve due to cost, image acquisition

time and outdoor distances (Section 2.1.2).

The single-viewpoint nature of sensing in a range image leads to sparse 3D points

and occlusion, which change depending on the position of the sensor. For example,
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consider the regions in Figure 1.1 that are in shadow, and distant surfaces that are

facing away from the sensor. A good shape representation must allow similarly shaped

regions to be identified as similar, even across different sensing conditions, and in the

presence of partial geometric data, which is often the case.

This viewpoint invariance is important in the context of classification. First, consider

the task of recognition, which is defined as identifying a single, specific object that has

been previously observed. As the object may appear at any relative pose, an effective

representation would allow the object to be identified regardless of pose. Classification

goes further than recognition, as it aims to identify a particular object instance that

has never been seen before, given a set of previously observed training objects in

various categories. The properties of that object are used to place it in the correct

category. Extracting these properties from the raw sensory data in a robust manner is

of prime importance to robust classification. From [8]:

One advantage [of invariant features] is that [they] can correctly extrapolate

well beyond the range of transformations included in the training set.

However, it can be difficult to find hand-crafted features with the required

invariances that do not also discard information that can be useful for

discrimination.

In summary, 3D sensing permits the 3D shape of objects to be used for classification.

In order to compare parts of objects using a sensed 3D point cloud, informative,

viewpoint-invariant features are needed. These must capture discriminative shape

information, while being robust to the non-ideal nature of range images sensed in

dynamic urban environments.
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1.3 Contributions

The primary contribution of this thesis is a novel feature that aims to achieve the

above. Detailed in Chapter 4 and shown here in Figure 1.3, it consists of a set of

parallel 3D lines probing the environment for a surface. As such, the feature is called

the line image. When lines intercept the interpolated surface, the depth is recorded,

producing a local 21⁄2-D representation. Otherwise, if they go behind an occluding

surface, or encounter a large gap in the data, unknown space is registered. In addition,

visibly empty space is registered as a different item, as it provides useful information

about the silhouette of an object. The unknown space changes with viewpoint, but

the surface and visibly empty space remains constant and provides distinguishing

information.

The line image relies on some lower level building blocks, and so these are presented

first in Chapter 3. These address assumptions of data density and quality, with the

following contributions.

• The use of the range image structure to facilitate the selection of points within

a 3D region.

• The use of a graph structure to reason about sufficient sampling and neighbour-

hood selection, permitting surface normal computation.

• A keypoint algorithm to identify positions and orientations on objects for feature

computation, where orientation stability is used as a criteria.

The line image is then detailed in Chapter 4, comprising the following contributions.

• Efficient occupancy detection along a 3D line using joint reasoning in the range

image and 3D point cloud.

• An approximate, fast surface interpolation method using PCA.

• The line image formulation using the above, with a distance metric to allow

regions to be compared consistently.

• A dataset is contributed, consisting of 588 urban objects across 14 classes,

scanned with a Velodyne.
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(a)

(b)

Empty

Unknown

Intercepts
surface

Line status Intercept depth

(c)

Figure 1.3 – (a) The rear of a parked car, where a line image is to be computed. (b) A line
image computed on the region, with lines and black surface intercepts. This is a cross-eyed
autostereogram; to see in 3D, cross your eyes until you see three images, then focus on
the centre one. (c) Each line is summarised by the bottom 2D figure, showing which were
completely in empty space (red), which found a surface (black, with associated depths), and
which encountered unknown space (cyan) behind the car.
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• A feature comparison study with spin images, NARF and FPFH, applied to

object classification with a k-nearest neighbours classifier.

Chapter 5 then focuses on processing line images for use in other classification

algorithms, contributing the following.

• An approach to clustering partially-missing line image data, using an asymmetric

distance metric and affinity propagation.

• The application of multi-class supervised latent Dirichlet allocation to 3D object

classification, using multiple scales of analysis.

1.4 Thesis Overview

Chapter 2 presents the background of this thesis. The concepts of range imaging

and the properties of the data are described, followed by segmentation techniques.

Existing global and local 3D features are outlined, motivating the use of local features.

Methods for classifying objects from a collection of local features are described.

Chapter 3 starts from the initial processing of computing simple properties on the

raw data, forming basic building blocks that are often required prior to computing

detailed local features. Region selection and surface normal computation are explored,

and efficient and robust methods are contributed. Keypoints are then developed,

which define local positions and orientations for computing complex features.

Chapter 4 examines local features, briefly describing several existing techniques.

The line image feature is then described in detail, along with a distance measure. An

object dataset is presented and then classified using a k-nearest neighbours (k-NN)

classifier. The line image is compared with existing features in classification, and

shows improved performance at smaller, local scales of analysis.
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Chapter 5 develops further processing for the line image in order to use more

effective classifiers. First, clustering is examined, with affinity propagation applied

to the dataset to produce a set of line image exemplars. Second, in order to classify

objects from multiple scales of constituent local features, supervised topic modelling is

applied to the clustering results. This approach shows a 10% improvement over k-NN.

Chapter 6 presents conclusions and potential future work.
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Chapter 2

Background

Many approaches exist for classifying objects from range images, with relevant tech-

niques from other 3D processing fields, as well as standard colour vision. The focus

of this thesis, representing shape, is one step in a pipeline of processing steps, from

the raw range image to a set of segmented, classified objects. This chapter provides

context for the pipeline that is developed in this thesis. It justifies the approaches

taken by evaluating techniques from the literature in the context of sparse range

imaging.

The following items will be discussed in order of processing, summarised in Figure 2.1.

• Range Sensing. The nature of sparse range imaging will be described, and why

it presents a challenge for 3D perception.

• Segmentation. This stage separates each object from its surrounds. This thesis

does not focus on segmentation, as existing techniques can perform it prior to

complex shape representations. This approach will be justified, and it’s effects

on classification outlined.

• Forming efficient, informative representations of objects. The raw data exists as

a set of 3D points, which must be compared with prior models. This is facilitated

by transforming the object into feature vectors, which represent the 3D shape,

and allow it to be efficiently compared.

11
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• Matching and learning from these representations, ultimately allowing classifica-

tion.

Range Image Segmentation Local Features Classification

Figure 2.1 – A rough outline of the processing pipeline.

This thesis focuses on developing shape representations for object classification, which

is performed within the shaded blocks, in the context of the entire classification

pipeline.

2.1 Range Sensing

A number of range sensors are commonly used for machine perception; this section

will provide a brief overview of their operating principles and the type of data they

produce. This thesis focuses on a form of data called the range image, which will be

described here. In particular, low resolution or sparse range images are a focus, and

are relevant due to the limitations of denser sensing in robotics.

LiDAR sensors are suited for outdoor use at reasonable ranges (eg. 1 - 100 m) for

field robotics in urban environments. They are a time-of-flight (TOF) sensor, and

operate by firing a short, near infrared laser pulse, and measuring the time it takes

for the light to return. The range and angular orientation of the laser beam allows

the calculation of the 3-dimensional location of a reflecting surface with respect to the

sensor. By taking multiple range readings at varying orientations, a 3D point cloud

can be constructed.

Depending on the sensor, LiDARs can sense depth at centimetre-resolutions, and fire

at many thousands of times a second. However, in comparison to cameras, LiDAR

sensors can be significantly more expensive. They are also an active sensor, using

more power and adding energy to the environment.

A common arrangement is a single laser directed at a spinning mirror, which measures

range at close intervals to produce a ‘scan line’, or 2-dimensional slice of the world.
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Multiple slices can build up a 3D view of the world, but this process takes time,

which limits it’s use in dynamic scenes. However, within the past decade, a number

of off-the-shelf sensors have become available which provide a full 3D scan of the

environment, at a rate which allows for real-time perception in robotics. One form of

this 3D scan is the range image, which provides additional structure to the 3D point

cloud, and is a focus of this thesis.

2.1.1 Range Images

When a set of range measurements are made from a single location in a 2D pattern,

the data can be organised as a range image (Figure 2.2a). The image coordinates can

be spherical (azimuth and elevation), often encountered in LiDAR, or other mappings

such as perspective for stereo vision. For spinning LiDAR sensors, unlike a camera,

each range measurement does not necessarily take place within a precisely regular

grid of pixels. Instead, to keep generality, a range image will be defined as a set of

continuous (rather than discrete) 2D points, with a range value for each. This is

known as a 21⁄2-D representation. This thesis primarily uses LiDAR, and so 2D space

and 2D points, in the context of range images, will refer to the continuous elevation &

azimuth polar space.

The range image representation is an alternative to the 3D point cloud, and has some

additional implicit information. One is the notion of neighbouring data points and

scanning density. Two neighbouring points in the 2D range image space, with no

further points between them, define the density of data in that region. Often the

polar density of this 2D image data is quite regular, for example with LiDAR sensors

spinning at a constant rate, producing a depth reading at a constant frequency. This

is in contrast to the 3D data, where the density is a function of the scene. Even on a

scanned surface, the 3D Cartesian density varies by the relative angle to the surface.

Another benefit of the range image is the implicit occupancy information. A sensed 3D

point not only indicates the location of a surface, but also that there is empty space

along the laser ray, between the sensor and surface. The concept of occupancy is about
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(a)

(b)

Figure 2.2 – (a) The 2D points from a Velodyne (azimuth & elevation) coloured by depth.
They do not form a rectilinear grid of discrete pixels. (b) The associated 3D points.

determining whether each region in 3D space is empty, occupied, or simply unknown

due to no laser rays passing through the region. An occupancy grid map [81] is a way

of storing this information for arbitrary rays, where ray tracing identifies which grid

cells are empty. In a range image, each 2D point is essentially looking down the ray.

The range image explicitly denotes a surface, where the 3D Cartesian space in front of

it is empty, and the space behind it is unknown. This is contrasted by an unstructured,

Cartesian 3D point cloud, where the difference between empty and unknown space

is not explicitly represented and therefore indistinguishable. Occupancy forms an
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important part of shape representation, which is introduced in Section 2.3, and fully

explored in Chapter 4.

2.1.2 Sensors

A number of sensors produce range images, including various LiDAR sensors and

stereo vision sensors, of which a brief overview will be given here. It is also worth

noting which common 3D sensing arrangements do not produce range images, and

why these present their own problems. While 3D sensors have steadily increased in

capabilities, those that produce sparse range images, as opposed to dense, accurate

images, are likely to be an attractive sensor for field robotics for some time due to

typical trade-offs in acquisition speed, point density and cost. Costs denoted here are

for rough comparison only, to highlight significant differences in affordability.

A recurring notion in sensing is that of a ‘scan’ of the scene, which is defined here as

the set of range measurements that define a single 3D snapshot of the scene, typically

to be repeated. In this sense, a scan is like an image or frame in a video.

2.1.2.1 The Velodyne Sensor

Laser
Emitters

(Groups of 16)

Laser
Receivers

(Groups of 32)

Motor
Housing

Housing
(Entire unit spins

at 5-20 Hz)

Figure 2.3 – The Velodyne HDL-64E, from [86].

The Velodyne sensor and the data

it produces will be the primary fo-

cus of this thesis, and so will be de-

scribed here in detail. The type of

data it produces provides a relevant

challenge for object classification in

field robotics that extends beyond

this one sensor.

The sensor contains 64 fixed lasers

arranged in a block (Figure 2.3), each

with a fixed elevation angle ranging from 2° above horizontal, to 24.33° below horizontal.
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The entire block rotates at a fixed speed (5-20Hz), providing a 360° field of view, and

producing 1.3 million points per second in total.

The sensor originated from the 2005 DARPA Grand Challenge, with it subsequently

being used in the 2007 DARPA Urban Challenge by five out of the six finishing teams.

The urban challenge involved driving autonomously through 97 km of urban roads

with other moving vehicles. Teams used Velodyne data for ground mapping, obstacle

detection and tracking [56, 57, 85, 49, 12]. The sensor retails for approximately $80 000

USD1, and is 13.15 kg in weight. A lower-cost, lighter, 32-laser version was released in

2010.

The data from a single 360° rotation is denoted here as a scan, and is a convenient

way to delimit data which is, in reality, a constant stream. At a rotation speed of

20 Hz, about 66 667 range measurements are made each scan, of which about 50 000

result in a valid 3D point in a typical urban scene. The operating range is 1-50 m

for low-reflectivity surfaces, up to 120 m for highly reflective surfaces, with a 2 cm

accuracy [86].

However, the 64 lasers must be calibrated to precisely determine their position and

orientation in the sensor block. Numerous methods have been used to improve upon

factory calibration [50, 36, 53]. Imperfect calibration can result in alternating laser

scan lines being erroneously offset in range and azimuth, effectively reducing the sensor

accuracy.

While each scan line produced from one of the 64 individual lasers has a fixed elevation,

the spacing between them is not equal (see Figure 2.2). In the S2 model, spacing

is closer on the higher elevation lasers, as well as minor variations determined from

calibration. In azimuth, each laser fires at approximately a fixed rate, but firings

do not occur at regular, repeatable azimuth locations, and the spacing has slight

variations. This means that a Velodyne scan cannot be converted to a regular grid of

pixels without significant data loss, errors due to interpolation, or gaps in the image.

This motivates treating range images in the general sense, where continuous 2D points

are considered instead of discrete 2D pixels.

1Informal quote from Velodyne in 2012
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(a) (b)

Figure 2.4 – (a) A typical car (red) in a Velodyne scan, 219 points. (b) Stanford bunny,
40 000 points.

A Velodyne scan will be described in this thesis as a sparse range image, due to

the relatively low data density produced in an outdoor environment. A typical car

(Figure 2.4a) 21 m away has only 219 points, and a person 13 m away only 90 points.

This is in contrast to other 3D sensing applications such as scans of manufactured

parts, sculpture or architecture. Many 3D shape analysis tools begin with benchmark

objects such as the Stanford bunny (Figure 2.4b) [83], which contains over 40 000

points. More details about the point clouds of objects will be given in Section 2.1.3.

This thesis will focus exclusively on processing data from the Velodyne HDL-64E.

However, in order to demonstrate how the sparsity of range images is a general

limitation in outdoor dynamic sensing, a few other common sensors will be described.

These provide different trade-offs in point density, scanning time, range and cost; they

highlight the limitations of denser 3D sensing.

2.1.2.2 Tilting 2D LiDAR

The least expensive LiDAR sensors consist of a single laser directed at a spinning

mirror, producing a 2-dimensional slice of the world. To acquire a full, 3D range image,

the 2D laser can be attached to a servo motor to rotate it along the perpendicular axis.

The recent PR2 robot platform [34] utilises such a setup, with a horizontal planar 2D

LiDAR on tilting servo. It uses a Hokuyo UTM-30LX sensor, which is about $5600
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USD, and weights 210 g. It has a 30 m sensing range and makes 43 200 measurements

per second in a 270° horizontal field of view. The tilting period and angular range can

vary, with faster scanning reducing data density. This is ideal for the PR2’s domain

of relatively close-range, indoor environments, and tasks such as manipulation that

can wait for several seconds for a dense scan. However, dynamic scenes require faster

scan rates, especially in fast-moving outdoor environments. This results in a lower

data density. The measurement rate is 30 times lower than a Velodyne, resulting in

an equivalent drop in data density for the same scan rate and field of view.

2.1.2.3 Stereo Vision / Structured Light

Stereo vision sensors consist of two cameras at a known offset, and produce a range

image by computing the disparity between visual features. The operating range is

limited by the disparity resolution, and areas without sufficient texture cannot be

processed.

More recently, the Microsoft Kinect [30] has enabled widespread, low-cost range

imaging, priced at under $200 USD. It is a structured light stereo camera, where

a near-infrared laser projector is used to project a distinct pattern onto the scene.

An infrared camera detects the projected pattern, distorted by the geometry of the

scene. The disparity against the known, undistorted pattern is computed internally,

which provides a measure of depth. This addresses the issue of non-textured surfaces,

and simplifies the depth computation. In addition, a co-located colour camera allows

colour and texture to be applied to the range image, producing what is known as

RGB-D data. The range image resolution is 640×480 pixels sensed at 30 Hz, or 9.2

million points per second.

However, this sensor cannot be used outdoors in the daytime, as sunlight interferes

with the infrared image. The range is also limited to approximately 5 m, with the

resolution of each depth measurement reducing significantly with range [45]. Its use

has primarily been in indoor robotics, where these limitations are less problematic. It

is worth noting that the techniques in this thesis could be applied to this low-cost,
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popular sensor in indoor settings.

2.1.2.4 Dense, Slow 3D LiDAR

Long range, high accuracy and high scanning density are achieved with static, slowly

scanning LiDAR sensors such as the RIEGL LMS-Z620. This sensor has a vertically

spinning 2D scan line attached to a slowly rotating body, with an optional camera

mounted for colouring each point. The laser produces up to 11 000 measurements per

second, forming a dense 360° scan of approximately 1.7 million points in 2 minutes,

with ranges up to 2000 m. One such scan is shown in Figure 2.5. These sensors are

also very expensive, at approximately $250 000 USD, and find their use primarily in

surveying. While the data density is ideal, the cost and long scanning time exclude

its use in real-time dynamic robotic perception.

Figure 2.5 – A dense, coloured RIEGL scan of a car park.

2.1.2.5 Accumulated LiDAR with Localisation

An example of a common 3D sensor setup that does not produce range images is

where an inexpensive 2D laser scanner is rigidly mounted to a mobile robot platform.

With sufficiently accurate localisation data, for example with an inertial navigation

system (INS) and global positioning system (GPS), the separate 2D laser scan lines

can be accumulated into a single, global reference frame. One such arrangement is

with a vertical scan line, swept over the scene as the robot moves, or a horizontal line
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(known as a push-broom arrangement). This approach is common in map-building,

and can produce dense 3D point clouds with relatively inexpensive hardware.

However, this form of data has several distinct differences to range-imaging as earlier

described. To begin with, data that is very similar to a range image could be produced

if the robot drives in a straight path. Rather than tilting the 2D LiDAR to produce

an image of elevation and azimuth, such an image would have coordinates in elevation

and the forward axis of motion (for a push-broom setup). However, more typical

driving will introduce angular and linear motion, leading to overlapping rays, and 3D

points that can no longer be mapped to a 2D image space. In addition, any given 3D

region of the scene will have a variable density between scan lines, and scan lines may

overlap in irregular ways. Noise in localisation and sensing warrant more complex

filtering or surface models to fuse the data. Moving objects must be removed from the

map, and any analysis of these must be treated completely differently. The concept

of occupancy is lost, unless the full ray of each point is stored, for example in a 3D

occupancy grid. As such, shape analysis on this data cannot be treated as the same

class of problem, and many algorithms in this thesis cannot be directly applied to this

form of data.

On a related note, accumulating several sparse 3D range images suffers from problems

such as these. While the data density and coverage may be increased, the very nature

of the data is changed, and presents problems of data fusion. Processing becomes

centred on an accumulated map, where tasks like localisation and tracking become

prerequisites for classification.

This thesis is about interpreting single scans, or range images acquired at relatively

fast speeds such as to allow real-time robotic perception in dynamic, 3D environments.

Ideally, the algorithms would be robust to any issues caused by low data density, such

that object classification can occur immediately instead of waiting for the ideal data

to be collected and merged. While Velodyne data may be too sparse to distinguish

some objects, many common urban categories such as pedestrians, signs, and vehicles

should be distinct enough. A human can distinguish these categories by visually

inspecting the point cloud, so it is possible.
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Furthermore, operating on a per-scan basis allows several tasks to be done in a

pipeline of operations (such as segmentation, tracking and classification). This greatly

simplifies the software implementations in a robotic system, where the coupling

between components is a simple per-scan input/output.

Data fusion from multiple scans can potentially occur later on in the pipeline, and could

benefit from the single-scan information. In [80], the position of each object segment

was tracked, and the pool of per-scan object descriptors were used in classification.

Tracking could use the single-scan shape representations for making correct associations.

These representations could be improved in a filter, once properly aligned with their

corresponding observations in subsequent scans. Object classification can proceed

immediately, and if the data is found to be insufficiently distinguishing, the robot can

then proceed to gather more information as required.

2.1.2.6 Future sensing capabilities

The capabilities and affordability of LiDAR and other 3D sensors have steadily

improved, and so a valid question is whether it is worth addressing the issues of sparse,

noisy range images such as those from the Velodyne. In particular, as the automotive

industry becomes increasingly interested in LiDAR for assisted and autonomous

driving, sensor costs may drop with economies of scale. However, there will likely

always be trade-offs in affordability, scan density, accuracy and range. The Velodyne

is already a very expensive sensor in comparison to visual cameras, and can easily

be the most expensive component of a robotic system. More affordable sensors are

likely to have even less resolution. Stereo camera-based sensors like the Kinect are

significantly cheaper, but the physics of their sensing make high resolution, outdoor,

long range measurements difficult. The result is that sparse range images are an

attractive sensing modality for dynamic sensing in field robotics.
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2.1.3 Sensed Objects

Considering the choice to focus on sparse 3D LiDAR sensing, and the physical

constraints of this modality, this section will describe the properties of the point

clouds of objects scanned with a Velodyne. The primary properties are the levels of

occlusion, density and noise, and they must be considered when designing algorithms

for representing and matching objects. Some typical objects demonstrating these are

shown in Figures 2.6 to 2.8.

All objects self-occlude, meaning the side further from the sensor is never visible in a

single range image, because it is in the shadow of the near side. More distant objects

are additionally occluded by shadows cast from nearer ones.

The density of object point clouds vary significantly, primarily due to the distance to

the object. Within an object, the density varies as a function of the relative surface

angle to the sensor. This can produce very sparse points along buildings and car sides

at a steep angle. Noise also exists, in the range of each laser, and between lasers due

to slight calibration errors (see Figure 3.4).
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(a) Well-sampled car, exhibits self occlusion.

(b) 4-wheel drive vehicle, with dense rear and sparse side, due to orientation.

(c) Van occluded by a foreground object.

Figure 2.6 – Point clouds of objects come in varying quality, shown in the above and the
following few pages. Each sub-figure is a single object shown from multiple views, with
the originating full scene also shown in grey. The bounding box is shown at ground level,
oriented towards the sensor. The green axis also points to the sensor, with the blue axis
facing vertical. (a) The best object scans (such as this) are still self-occluding. (b) Surfaces
at an increasing angle to the sensor become sparse. (c) Objects can be occluded by others.
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(a) Van irregularly occluded by robot antenna.

(b) Van with a variation in shape
(open door) and clutter (person).

(c) Person, well-
sampled.

(d) Person, distant and low resolution.

Figure 2.7 – The range image can also be missing data, as in (a). In this case, an antenna
on the robot is positioned closer than the minimum operating range of 0.9 m, and so no
object is observed ‘in front’ of the van; it is still recognisable to a human. This also occurs
due to non-returns, where the laser beam does not reflect back to the sensor. (b) Objects
can also vary in shape, or be cluttered with others, such as this van with the back door open,
and a person (blue). The van and person are segmented into the same object by the mesh
technique [23] due to their proximity. (c) A person can be clearly discerned at close range,
but a person across the intersection in (d) forms only a vague shape of the correct size.
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(a) Left to right: two traffic lights (near & far),
and a near traffic sign.

(b) Tree.

(c) Large tree. (d) Distant tree.

Figure 2.8 – (a) Distant traffic lights and nearby traffic signs have only a thin line of points
on the pole. (b) (c) (d) Trees show a great deal of variation in shape, with the canopy only
partly visible as a scatter of points.

Figures 2.6 to 2.8 illustrate the levels of occlusion, density and noise present in the

data. These are a product of range based sensing in real environments. Algorithms

that analyse the 3D shape of objects using this data must deal with these complexities.

2.2 Segmentation

One part of classifying an object is in separating, or segmenting it from the scene. This

thesis does not focus on segmentation, instead relying on existing techniques which
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will be briefly described here. However, the assumption of segmentation influences

how other processing aspects are done. Failures in segmentation occur as either

over-segmentation, where single objects are split up, or under-segmentation, where

separate objects or regions are joined into one segment. Segmentation in the context

of object classification can be approached in one of two ways:

(1) Segmentation first. Simple properties of the data can be used to segment each

object, allowing the whole object to then be analysed and classified.

(2) Segmentation last, or at the same time as classification. Small regions of the data

can be analysed and potentially even classified as belonging to object classes,

followed by segmentation as a final step of grouping parts together.

Another way to consider this is how much processing is required in the segmentation

step, and to what degree it overlaps with object representation and classification. When

segmentation occurs as a first step, errors can carry over to the next step of object

representation, discussed in the next section. However, this approach subsequently

allows the whole object to be analysed and a single representation formed, or for

the analysis of smaller regions within the object to be pooled together to perform

classification.

Segmentation is an extensive topic in computer vision, with the operation being similar

to the 3D case. It is often posed as a graph clustering problem, where vertices of the

graph represent pixels within the image, and edges denote some distance [78]. This

can be be based on pixel properties such as intensity and colour, or slightly larger

regions of textures or edges. A common approach is to then use Markov random fields

(MRFs) to solve graph cuts to segment the image [15].

However, these simple per-pixel properties are often insufficient for semantically

meaningful classification, as objects and regions contain a variety of edges and colours.

More successful approaches use more information, such as complex local features (eg.

SIFT [52]), or regions grouped into superpixels [64]. In [33], superpixels form nodes
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in a graph, and are classified with a conditional random field (CRF) [47], performing

segmentation and classification at the same time.

In 3D data, segmentation can be based on simple ‘per-point’ properties such as

physical separation, surface connectivity or normals; these are often clearer than

edges and colours in visual images for separating whole objects. Computing these

simple properties is the subject of Chapter 3. Several segmentation techniques have

been successful on Velodyne scans using these simple ‘segmentation first’ point-based

properties.

Surface concavity can form the basis of separating regions [58], where highly concave

angles between surface normals separate surfaces. For example, when the surface of

an object meets the ground, it often forms a concave angle. This algorithm relies on

good surface normals, and can over-segment non-smooth surfaces, such as typically

caused by vegetation for example. It can also under-segment when points of contact

between two objects are not sufficiently concave.

Another approach is to first isolate the ground, followed by clustering connected

regions [23, 56, 51]. This assumes all objects are physically separated, except for the

ground, which is explicitly modelled and removed first. A number of different ground

detection techniques can be used [55], with a mesh based approach from [23] found

most suitable for Velodyne data (this mesh, or graph, is also used in Section 3.1.2).

This is shown in Figure 2.9. Real time performance has been achieved due to the

relatively simple operations [23]. While many objects can be clearly segmented with

these techniques, results can degrade with clutter, as objects too close to each other

have connected voxels, resulting in under-segmentation. Very sparse or missing data

can lead to over-segmentation, where voxels are not sufficiently close, or are broken

up by occlusion.

Similar to techniques applied in vision, a Markov network can be used with local

3D statistical features [60] to perform segmentation and classification at the same

time, producing simple categories. While ‘segmentation last’ approaches such as

these consider more information to solve both problems jointly, there are a number of

advantages to using the ‘segmentation first’ approach. First, by keeping segmentation
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Figure 2.9 – Mesh-segmented scan [23] of some pedestrians (centre), cars (right), bus (left),
buildings (upper-left).

functionally separate, it can be used to reduce the large amount of data prior to

more intensive processing. This allows complex features to be computed solely on

objects rather than the whole scan, reducing computation time. It also permits

other perceptual tasks to run independently, such as tracking. In the DARPA Urban

Challenge, Team Cornell used segmented objects as the starting point for more

advanced perception such as tracking [56]. More recently, Stanford’s vehicle takes this

approach with object classification [51].

Another benefit to this approach is that, when classifying an object, the assumption

that a set of parts belongs to an object allows techniques that are not otherwise

possible. This is further elaborated in Section 2.4. MRFs are limited to modelling

relationships between directly neighbouring components, and so cannot do inference

between all parts of an object without requiring significant computational resources,

or unless there are few parts2.

This thesis largely presumes segmented objects as the input to object representation

and classification. As such, the possibility of incorrect segmentation must be considered

during these tasks.

2 Reducing an arbitrary object down to a few parts in a repeatable manner is a subject of this
thesis, and so Markov network approaches may be an area of future work.
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2.3 Object Representations

This section will outline existing techniques that take a 3D point cloud of an object,

and create from it a representation which (1) summarises relevant information and (2)

facilitates the comparison of objects. Of particular focus is how robust these algorithms

are to sparse range imaging in the field, where varying, non-ideal data is present,

as shown previously in Section 2.1.3. There are many techniques for representing a

3D object [17, 79]. Many originate from 3D modelling, where the task is to match

complete, dense, meshed 3D vertices. However, these present problems when applied

to noisy, incomplete range image data. To represent objects, three broad approaches

exist: global features, featureless alignment and local features. This last approach is

a focus of this thesis due to its robustness and representative power, which will be

illustrated in this section.

Feature vectors are a common method of comparing two point clouds, which transform

the raw data to provide salient information for matching. Feature vectors are also

known as descriptors, or signatures, and will be referred to here simply as features.

The term global refers to computing the feature over the whole point cloud of the

object, as opposed to a local feature computed on a small region of the object. Often,

features can be applied globally or locally. Global features allow an entire object

to be matched directly, but have limitations in generalising to variations in sensing

and variations within a class. Local features allow objects to be compared piece-wise,

which presents numerous benefits and challenges.

2.3.1 Aims

First, to define the aims of object representations such as features, consider the

problem of determining if two separate 3D point clouds are similar, which is a task

that often underlies object classification. In the simplest case, the two point clouds to

be compared are cleanly segmented objects, and are scans of the exact same object

taken at different positions. This is encountered in the task of object recognition,
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where a previously observed object must be found in the scene. A point cloud can

vary by: (1) The pose (position and orientation) of the object relative to the sensor;

(2) The point cloud density, particularly if an object is further away; (3) Occlusion,

possibly by other objects, and always by itself. Methods of matching that are largely

invariant to these will likely be more successful.

Beyond recognition, object classification has additional requirements of the matching

process. Consider supervised classification, wherein a set of labelled training objects

are available, and a new, unknown test object is to be classified. One simple method is

to match the test object to each of the training objects. If matches can be made across

largely varying conditions, less training data is required. In addition, the test object

may have never been observed before, and may vary significantly from all training

objects in the correct class. This intra-class variation motivates representations which

allow generalisation.

In summary, a good object representation can match objects that are sensed from

different positions, and general enough to match varying objects within a class. In light

of these aims, object representations in the literature will be introduced, motivating

the use of local features. Note that 3D descriptors are an active field of research, for

example, with many newly developed algorithms being made available in the recent

Point Cloud Library (PCL) [68]. More details on a few local descriptors is also given

in Chapter 4, where they are used in comparative experiments.

2.3.2 Global Methods

Global features transform the entire point cloud of an object, allowing the whole

object to be compared at once. This can simply be the extents of the object, or a

more detailed feature vector summarising constituent shapes. Global properties of an

object are often distinct even in low density point clouds, where smaller shapes are not

salient or cannot be resolved. However, they are sensitive to prior segmentation errors,

as over- or under-segementation has a significant impact on the global properties of

an object.
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A number of approaches collapse an object down into a histogram. Shape Distributions

[61] sample the probability of a function of two or three random points on an object;

for instance, the probability function of the distance between two random points. This

is invariant to translation and rotation, and does not require anything beyond the

3D object points. Other approaches require surface normals to be computed from

the point cloud, binning these in a histogram. For example, the Extended Gaussian

Image [42], or orientation histogram, is defined on the surface of a sphere, partitioned

into bins. Each 3D point (with a surface normal) is placed on the location of the

sphere which has the same surface normal. In addition to the surface normal, the

local curvature can also be used to define a histogram [38, 7].

A more recent global feature is the Viewpoint Feature Histogram [70], developed for

object and pose recognition using noisy, sparse stereo data. It is part of a class of ‘Point

Feature Histogram’ descriptors [71], which capture various point-to-point angular

differences between surface normals. As the target application required the object pose

for grasping, the Viewpoint Feature Histogram was designed not to be rotationally

invariant. Instead, all training objects (various cups and bowls) were scanned at many

orientations on a turn-table, with the matched object simultaneously determining the

object pose. While this approach worked well for the task of recognising previously

observed objects, the need to collect significant amounts of training data makes scaling

difficult.

The above approaches result in a histogram, where different regions of the object are

accumulated into a single bin. When a given region is not observed due to occlusion,

some bin values will change, negatively affecting comparison. In addition, the spatial

structure of the object is not intuitively preserved, with many arrangements potentially

mapping to one histogram.

In contrast, another method of capturing global shape is by defining a set of spatial

bins which encompass parts of the object, and performing operations over these bins.

These include 3D Shape Histograms [1], where a sphere is aligned with the object

centre, and split into bins along radial and angular sections. The object’s 3D points

are placed in these bins, forming a spatial histogram.
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Many global features such as this require a central point and axes to align the object

reference frame, called normalisation. For example, for the above 3D Shape Histogram

to be repeatable, the correct centre point and orientation of the bins must be chosen

across all instances of matching objects. These can be the mean point of the object’s

point cloud, as well as axes aligned to the vector of greatest variance, found from

principal component analysis (PCA). However, these are not reliable under partial

occlusion, or when an object’s overall geometry does not provide a clear longitudinal

axis. The mean point is also skewed towards regions of higher point density, such

as surfaces facing the sensor. While the rotational alignment can be removed for

some features by using Spherical Harmonics [44], a centering point is still needed, and

occlusion is still an issue.

A different approach is to align the point clouds, directly determining 3D point-to-

point or surface similarity [22, 24]. Various forms of the Iterative Closest Point (ICP)

algorithm exist [67], which aligns two point clouds given a rough initial alignment.

Several initial orientations can be tried, or local feature matches can provide an initial

alignment using sample consensus [71]. This approach matches large scale structure

without an exact predefined centre and orientation. However, correct alignment is not

guaranteed, and is more difficult with occlusion.

In addition to matching objects in the face of occlusion and view-point changes,

matches must be made across differently shaped objects in the same class. The

notion of similarity captured by global spatial binning or alignment has limitations,

as portions of the objects may be similar, but could never rigidly align. As a trivial

example, compare a limousine to a car. While the front and rear portion may match

well, the distance between them is rigidly fixed in the representation, preventing

a match. Other classes such as building facades and trees can exhibit even more

variability.
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2.3.3 Local Features

The above issues motivate local shape representations, which allow objects to be

compared piece-wise. This is a common approach in vision, where SIFT [52] is

prevalent. By matching small regions within an object, issues of occlusion, bad

segmentation and intra-class variation can be tackled. This comes at the cost of more

complexity, as several new issues must be addressed.

(1) Specific regions must be selected for computing features and performing matching.

An object can either be segmented into a set of exclusive patches, such as curves

[20, 40]; or a set of overlapping spherical regions can be defined by keypoints.

The latter approach is taken in this thesis, and addressed in Section 3.3.

(2) Given a set of local matches, a single class label must be determined for the

whole object, addressed in Chapter 5.

In addition, the original requirements of matching across variations in pose, density

and occlusion also apply to local regions, with the concession that not all regions have

to match. Local 3D features are the subject of Chapter 4, where a more detailed

overview is given, and a novel local feature, called the line image, is developed that

addresses these requirements. A brief overview of existing local features will be given

here to provide context.

The design of local features is similar to global features, which in many cases can

simply be applied to a local region of points. The centre of the region, and the

corresponding surface normal can provide a set of reference axes for alignment, e.g.

for spatial bins. Some examples are: a histogram of relative surface normals [71],

statistical descriptors such as eigenvalues from PCA [16], a 3D grid with moments

computed on each cell [14].

The spin image [43] is a widely-used feature that is computed at a central point, with

a precomputed surface normal. Each sensed point in the region is transformed into

coordinates based on the surface normal (see Figure 2.10). This can be visualised as
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a 2D image, or grid, spinning about the surface normal, defining hollow cylindrical

3D bins. Sensed points are binned to form a 2D histogram. The resulting spin

image allows different regions of points to be compared and matched, using 2D image

processing techniques.

α

β

xL

P

p

n
B

Figure 2.10 – From [43], the spin image computed at a vertex p of a meshed surface. For
each sensed point x, the spin coordinates (α, β) are calculated, which then form a histogram.
α is the distance of x from the normal line L, and β is the distance from the plane P .

The issues with local features such as these are the topic of Chapter 4, which describes

their limitations when applied to sparse range image data, and a novel feature is

developed to address these. By matching local regions, an object can be matched even

if it is partly occluded. As objects in range images self-occlude in ways dependent

on their relative pose to the sensor, the ability to make partial matches improves the

viewpoint invariance of the overall classification system. In addition, large variations

within each class can be tolerated, as only some, salient parts of the objects must

match.

2.4 Matching and Learning

Given an object represented by a set of local features, this section describes how

classification is performed, from local regions up to whole objects. This provides

context for local features, which must be compared and manipulated to achieve the

final goal of object classification. One desired aspect is the ability to generalise, from

limited training data to classes with variability in sensing conditions and underlying

shape. Ideally, the approach is also applicable to many more categories of objects.
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There are two aspects to classifying an object given its parts: (1) performing inference

on the parts (local feature vectors), followed by (2) classifying the object from these

parts. The former step can involve classifying the object part, giving it an object

class label (e.g. denoting it as belonging to a car, or a pedestrian). Then, the second

step can involve pooling all part labels to determine the whole object’s class label.

Alternately, the inference on parts can involve clustering the training data, turning a

massive set of feature vectors into a finite number of primary shapes. Statistics can

be collected on this set of shapes, allowing more effective whole-object classification

methods, such as topic models.

2.4.1 Local Feature Classification

The typical task of supervised classification is to determine the label of a new,

unknown feature vector given a labelled training set. In this instance, the feature

vector corresponds to an object part, and is to be classified as belonging to a certain

object class. A feature vector can be considered as a point in a feature space, and

comparing two features is posed as computing their distance in feature space. Many

classification algorithms exist [8], and they generally seek to separate the feature space

into class-specific regions.

The simplest method to classify an object is to first classify its parts independently,

followed by a pooling operation. A simple, yet often effective classification method

is k-nearest neighbours (k-NN), which finds the closest k training points (feature

vectors) to the test point. The k nearest training points ‘vote’ on the class label to

apply. When classifying an entire object from a set of feature vectors, these votes can

be pooled; the class with the most votes is the classifier output. This applies to any

discriminative classifier.

Similarly, classifiers such as Naive Bayes provide a class posterior probability for

each part, and the posteriors can be multiplied together to arrive at a single object

label. One approach that bridges Naive Bayes with k-NN is the Naive Bayes Nearest

Neighbours (NBNN) algorithm [13], which was applied to classifying each image from a



36 CHAPTER 2. BACKGROUND

set of features. It approximates the optimal classifier under a Naive Bayes assumption

in terms of summing nearest neighbour distances.

However, Naive Bayes assumes (Equation (2.1)) that object parts Si are conditionally

independent given the class C, which is likely not the case. This is because several

parts of an object which commonly occur together (i.e. are correlated) result in salient

larger structures. Naive Bayes collapses together all parts from all training objects

for a given class, simplifying inference but losing information. Different classes of

objects can share many of the same small, individual parts, meaning there is significant

overlap between object classes in the feature space.

p(S1, S···, Sn|C) =
n∏
i=1

p(Si|C) (2.1)

For example, consider performing Naive Bayes on two point clouds of objects, such as

a car and a truck, which have been cut up into many overlapping spheres of 1 m radius.

Looking at each part by itself, its probability of being a car or a truck is evaluated, with

no knowledge of the other parts. Finally, the probabilities from all the constituent parts

are combined for each object. Unless there were, on average, sufficiently distinguishing

isolated parts, the task will not succeed. This motivates methods that consider several

parts at once by modelling inter-part statistical dependencies.

2.4.2 Topic Modelling

Topic models are a recent approach which are relevant to this goal [9]. Originally

used for analysing collections of text documents, topic models have been applied

successfully to other fields such as classifying visual images from constituent local

features [28]. It is the subject of Section 5.2.

It functions on a ‘bag of words’ representation [21], which is a way of reducing a large

set of high-dimensional feature vectors into a more manageable form. In particular, it

permits techniques from document classification such as topic modelling to be applied

to visual or 3D data. Features are first clustered or quantised, which is the subject of
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wd,n : the nth word from document d.
zd,n : the topic which generated the corresponding word.
θd : topic proportions for document d.
β1:K : the K topics (distributions over words).
α δ : hyperparameters of the model.

Figure 2.11 – Graphical model of LDA, showing the conditional dependencies of each
variable. Plates denote replicated variables, empty circles are unobserved variables, and
shaded are observed.

Section 5.1. Each cluster forms a visual word, with the entire set of clusters forming a

vocabulary. When a feature vector is associated with a cluster, it is summarised by the

word (an index number of the vocabulary). Thus, a set of feature vectors comprising

an object is reduced into a set of words. In this thesis, a feature vector represents

the shape of a part of an object, and so words form repeatably detectable parts.

Techniques such as topic models are then able to infer the statistical relationships

between parts (words).

The simplest form of topic model is Latent Dirichlet Allocation (LDA) [10], a generative

probabilistic model, shown in graphical form in Figure 2.11. In the context of document

modelling, the input data consists of a set of documents, with each document containing

a set of words from a fixed vocabulary. In the generative model, there are a predefined

number of topics, with the following structure:

(1) Each topic βk is a distribution over the vocabulary of words.

(2) Each word w in a document d is generated from a topic (zd,n is the assignment

of word n in document d to a topic).

(3) Each document has a distribution over topics θd.

This is known as a mixed membership model, as each document has a mixture of topics.
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Distributions are encouraged to be sparse, so that documents are effectively assigned

a few topics, and topics a few words. Topics loosely capture a set of co-occurring

words. In the context of document analysis, this groups words from similar topics, for

example a topic pertaining to genetics would contain the words ‘sequence’, ‘molecular’

and ‘genome’ [9]. These words were likely to co-occur in a document about genetics.

Translating to the problem of 3D object classification, each object is a document, and

each local feature (associated to a cluster) is a word, or predefined shape. Topics

then capture sets of loosely co-occurring shapes. Rather than requiring every object

in a class to have one distribution of shapes (i.e. topic), topic modelling provides

an extra layer; the number of topics can exceed the number of classes. As such, the

abstraction goes from isolated shapes, to sets of co-occurring shapes, to classes. For

instance, vehicles may have ‘wheels, bottom edges and corners along the ground’ as

one topic, with another set of shapes further distinguishing trucks, sedans etc. Indeed,

hierarchical forms of topic models exist [74]. There are many variants of topic models

due to the ease of modifying the graphical model.

In order to classify objects from topics, one approach is presented in supervised topic

models [11], where training labels are incorporated into the graphical model, allowing

the class labels of test objects to be inferred. Alternately, topics can be considered as

a form of dimensionality reduction, with classes inferred from standard classifiers such

as k-NN, support vector machines (SVM) etc. applied to the topic vector.

In summary, local features can be classified independently and pooled to classify

an object. Alternately, features can be clustered to find the equivalent of words in

a common vocabulary, and then used in frameworks such as topic models to learn

co-occurring sets of shapes. This provides a more complex but possibly more powerful

approach.
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2.5 Conclusion

Dynamic range imaging in the field from a mobile robot is an informative sensing

modality. However, the nature of the environment and sensing technology results

in relatively sparse 3D data, significant amounts of occlusion and variation in point

density, all of which change with the relative pose of the sensor in the scene.

Objects can be segmented out from their surrounds using existing techniques based on

simple properties like spatial connectivity, allowing whole objects to be analysed. This

provides an efficient modular mechanism for classification, in contrast to techniques

that first compute features everywhere and perform intensive tasks like CRFs for

segmentation and classification together. The former approach is used in this thesis

for speed and simplicity, although the second is a viable alternative once an effective

local representation is developed.

Representing an object in terms of a feature reduces it into an easily comparable

numerical form. Global, object-wide features require some form of positional and

rotational normalisation, or may be invariant to these changes by design. However,

the extensive amount of occlusion, density variation and class variability motivate the

use of local features.

Once an object is represented by a set of local features, it can be classified by matching

and learning from these parts. In one approach, the parts can be independently

classified and the results pooled together. Another method is to cluster the local

features, forming repeatable shapes, or words. This allows co-occurring shapes to be

found with topic modelling, providing an intermediate level to represent classes.

The remaining chapters of this thesis are organised as follows: Chapter 3 examines

basic building blocks for shape analysis, required for Chapter 4, which examines local

features and provides the full formulation of the line image feature. An object dataset

is introduced, and classified with k-NN. Chapter 5 then looks at processing required

for using topic models to classify the 3D object dataset. These are arranged into a

pipeline of increasing abstraction in Figure 2.12.
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Sensed range image / 3D points Segmentation

Low level shape analysis

Keypoints

Line image feature

k-NN classification Labelled dataset

Clustering

Classification with topic models

Chapter 3
Building Blocks

Chapter 4
Capturing Complex
Shape

Chapter 5
Classification from
Parts

Figure 2.12 – An outline of this thesis as a pipeline from sensory data to classification,
linked to each relevant section.



Chapter 3

Building Blocks for 3D Shape

Analysis

The overall objective of this thesis is to compare the various shapes within objects,

finding similarities and using these to perform classification. The sensed data, however,

begins with depth measurements, and so these must be transformed into a measure of

shape. This process, generally known as feature extraction, will be considered in the

following steps.

(1) Surface region definition: The depth measurements, often irregularly spaced and

sparse, will be broken down into representative regions of points, with surface

properties such as normals computed on each region.

(2) Keypoint definition: These properties will be used to align 3D keypoints, which

gives each region of points a fixed axis of alignment.

(3) Feature computation: With this information, more complex shape descriptors

can be computed robustly on these local regions (e.g. with respect to varying

point density).

This chapter addresses the first two items. Efficient region selection techniques are

explored, followed by applying these to the task of surface normal computation in the

41
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context of noisy, sparse LiDAR measurements. Keypoints are then considered, with a

contribution in using surface orientation stability rather than location stability. The

methods in this chapter form some of the basic building blocks of more complex 3D

processing tools presented in following chapters. These properties, and how robustly

they can be computed, affect how the more complex shape analysis is done.

3.1 Region Selection

When analysing the shape at a point on a surface, the support region must be defined,

determining the scale of analysis. This is typically a neighbourhood of points within a

spherical region centred on a target point of interest Pc, with radius r. Using this set

of points, properties of the surface are then inferred, such as surface normals; thus the

neighbourhood of points must sufficiently represent the surface shape.

The following competing aspects are involved in region selection algorithms.

(1) Desired geometric information (small scale surface shape, or broad, large-scale

shape). For example, a highly curved region can be considered flat when ‘zoomed

in’ to a smaller scale.

(2) Available geometric information, due to the sampling rate. There may be

insufficient sampling to analyse shape at smaller scales, similar to how the

Nyquist frequency limits high frequency analysis in sampled data.

(3) Computation time considerations for selecting the supporting points, and what

sampling requirements a particular algorithm has (e.g. only a few, approximate

neighbours may be needed). For real-time applications, the selection of the

sensed points can sometimes be the bottleneck in a processing pipeline.

The task of region selection is also known as the fixed radius near neighbours problem;

an early survey is given in [4]. It is similar to the k-nearest neighbour problem, where
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a set of k points closest to a query point are desired. In this case, k may vary, with

the distance to the query point being the gating mechanism.

This section presents several methods for selecting neighbourhoods of 3D points from

the literature, and contributes a novel fast method which exploits the range image

structure. The time complexity of each algorithm is explored, and computation times

are measured on Velodyne data. These techniques are then used in the next section

to compute surface normals.

3.1.1 k-d Tree

A k-d tree [6] is a standard method of finding nearest neighbours in a k-dimensional

point cloud, and does not require any specific point structure. In this case, k = 3.

Points are organised in a binary search tree, where each branch partitions space in

one dimension, shown in Figure 3.1. The branching is terminated when each leaf node

contains fewer than a given number of points. In 3D, the k-d tree forms a hierarchy

of rectangular cuboids.
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Figure 3.1 – Adapted from [6], a k-d tree visualised in 2D (a), with each splitting node
partitioning the space into rectangles of smaller size. Note that in 3D, these are rectangular
cuboids. (b) The same k-d tree in graphical form. The dimension which is split changes at
each depth, cycling through all dimensions. Remaining data points (not shown) are stored
in the bottom ‘leaf nodes’ (square).

Region selection is performed by finding which rectangular cuboids are partially or
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fully within the sphere of selection. This is implemented by traversing down the tree,

inspecting each node, which defines a cuboid. If the distance of the target centre to at

least one of the 8 vertices of the cuboid is within the radius r, deeper nodes of the tree

are checked. Eventually, a leaf node is reached, wherein the distance of each contained

data point is checked. Various shortcuts can be taken, such as not traversing any

deeper when a cuboid is fully within the sphere, allowing all containing points to be

added to the region without further distance computations.

The implementation in [59], known as the Fast Library for Approximate Nearest

Neighbors (FLANN) was used1, providing a baseline for comparing other selection

methods. While approximations such as in [59] can provide speed improvements at

the cost of accuracy, they are focused on high-dimensional data, and have not been

applied to the task of 3D region selection. The effect they have on sampling uniformity

and subsequent geometric analysis is unknown, and will not be considered here.

It is worth noting that k-d trees are used extensively in many fields, and a large amount

of implementation effort is ongoing in the community. A very recent comparison of

k-d tree software libraries on unstructured 3D LiDAR data is given in [26]. While

optimisations, parallelization and GPU implementations could be applied to most

types of neighbourhood selection algorithms, the availability of open source k-d tree

libraries gives them practical benefits.

3.1.2 Bearing graph

Range images provide additional structure that can be used to facilitate region selection.

A single scan of the Velodyne can be treated as a set of 2D points in elevation and

azimuth (Section 2.1.2.1). A graph structure as in [58] provides neighbourhood

connectivity between these 2D points, shown in Figure 3.2. This structure will be

referred to as the bearing graph. Each point is connected to the preceding and following

points in the scan line, as well as to points above and below (in elevation). Links are

1The index type KDTreeSingleIndexParams was used, with the default max leaf size of 10, as
recommended for 3D point clouds in the FLANN manual.
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then removed based on heuristics to separate foreground and background points. It is

efficient, as data is already ordered by azimuth and elevation. It can also incorporate

segmentation information (by removing links between different segments) to prevent a

selection over more than one object.

3.1.2.1 Selection

To select all points within a given radius of a central point, an algorithm similar to a

breadth-first search (BFS) [75] can be used. Points (vertices in the graph) are added

to the selection as they are ‘marked’ as visited, and within the specified region.

Alternately, just four neighbours of a point can be used as a representative sample. This

will be referred to as the sparse graph selection, and is particularly relevant for surface

normal computation, as in [58] and discussed further in Section 3.2.1.1. However, as

the majority of the noise is in the range, close, directly connected neighbours can be

too close for accurate surface analysis. This is shown in (Figure 3.4). Surface normals

are smoothed in [58] by averaging them, but this is only effective for unbiased errors,

which is not the case here. Instead, this work selects four points further away, utilising

a graph traversal algorithm shown in Algorithm 1. Each direction (up/down/left/right)

is traversed up to a given distance to acquire each neighbour.

An issue with performing graph traversal on this data is the numerous missing edges.

Due to the simple construction of the graph (linking neighbours, then removing them

if they are relatively long), an optimal mesh is not achieved, unlike more intensive

algorithms such as Delaunay triangulation. In addition, the angular distances between

neighbouring points are not precisely equal, and there is noise in the range. In ideal

data, two adjacent edges (i.e. connecting three neighbouring points) along a flat surface

would be of similar length. With the above issues, one of the adjacent edges can

be significantly larger. As a result, the graph construction algorithm can sometimes

remove an edge that should have been kept.

The resulting missing edges in the graph can limit the availability of neighbours in

some directions, or the distance that can be traversed in a given direction. To account
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for this, the algorithm can side-step missing links when traversing in a given direction.

While this may result in a neighbour situated diagonally from the centre point, this

provides a more complete neighbourhood. The effect this larger-scale neighbourhood

has on surface normal computation is further discussed in Section 3.2.1.1.

3.1.2.2 Minimum valid scale

In addition to region selection, the graph can help define the minimum scale of shape

analysis. As a link between two points indicates that they belong to the same surface,

the distance between directly connected points defines the smallest spherical radius

at which the region can be analysed. For instance, if point p’s nearest connected

neighbour in elevation (from the scan line above or below), pe, is 0.2 m away, the

selection of all points inside a spherical region of 0.1 m radius about p will not

include pe. Lacking support points in elevation, the distribution of points will not be

representative of the surface. This is a common issue in sparse range image data, as

shown in Figure 3.3, where the ground becomes a set of well-separated scan lines. In

this example, the minimum scale of analysis is 0.2 m (assuming any neighbours in

azimuth are within this range). Note that, in the absence of a graph connection, the

geometry of the region may be accurately represented at the smaller scale; consider

a horizontal wire, with no graph edges in elevation. This property of scale selection

from the graph will be utilised in Section 3.2.1.2.

This notion of a representative neighbourhood of points brings up an insight into

3D shape analysis on points. Shape is determined not only from the existence of

points, but also their absence in the empty space surrounding a surface. Unfortunately,

the absence of points may be due to the lack of samples rather than a lack of a

surface. The structure of the range image, and subsequent bearing graph, allow some

reasoning about sufficient surface sampling. This leads to the concept of occupancy

maps (introduced earlier in Section 2.1.1), where unknown space is distinguished

from known-empty and occupied space. This concept is explored further in Chapter

Chapter 4, where it becomes key in capturing complex 3D shape in sparse range image

data.
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(a)

(b)

(c)

Figure 3.2 – Constructing a bearing graph [58]. (a) A scan of a car behind some posts. (b)
The full graph, connecting neighbours in elevation and azimuth. (c) The final graph after
‘cleaning’ by removing large edges. In this case, edges in elevation that were more than 3
times the length of adjacent edges (in elevation) were removed. The same was performed for
azimuth. Finally, any edge more than 5 m long was removed.
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(a) (b)

(c)

Figure 3.3 – Determining the minimum valid scale for region selection on a Velodyne scan.
(a) A well sampled spherical selection on the front of a car. (b) A spherical selection on
the ground, too sparse to represent the planar nature of the region. The large angle of
the surface relative to the sensor results in points spread out in this manner, leaving the
other rows outside of the spherical threshold. When analysing shape, such results must be
filtered out. The mesh shown in (c) (built as in [58]) connects sparse points along a surface.
Consider selecting a spherical region of fixed radius r centred at point p. In order to check
if the region will contain a sufficient sample, the adjacent points to p in the graph can be
inspected. If p has neighbours in elevation, and they are all beyond the radius of the sphere,
the region is too small for surface analysis. The same applies for azimuth.
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Figure 3.4 – (a) A planar surface, with each laser coloured separately. (b) The mean
distance from the fitted plane for each laser, showing strong biases. While each laser may
have 2 cm accuracy, the errors in calibration between lasers introduce significant errors in
depth. As a result, using two directly neighbouring points between lasers (i.e. in elevation) for
surface normal computation will not be representative of the surface. This can be mitigated
by using neighbours further away; this is detailed in Section 3.2.1.1 and Figure 3.10.
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Input : point index start, direction d ∈ {left, right, up, down}
Output : neighbour point index

1 prev ← start;
2 while True do
3 current← Graph(prev, d);
4 if current ∈ ∅ then

// Check perpendicular neighbours for a way through.

5 for dp ⊥ d do
6 perpNeigh← Graph(prev, dp);
7 current← Graph(perpNeigh, d);
8 if current ∈ ∅ then
9 continue;

10 else
11 break;

12 if ¬ WithinRegion(current, start) then
13 if prev == start then
14 Return current ;
15 else
16 Return prev ;

17 prev ← current;

Algorithm 1: Traversing the graph in a given direction to find a point just
within a given region. The routine goes around breaks where possible. If the
only neighbour is outside of the region, it returns it anyway, such that the region
can still be analysed when the scan density is low.
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3.1.3 Range image grid

image

sensor

region

D

α
r

Pc

Figure 3.5: Selecting a 3D
spherical region in the range
image. Using the depth D
of the centre point Pc and
the desired region radius r,
the angular width α can be
determined: α = arcsin( r

D
).

This defines a patch (θ, φ) in
the range image about the
central point’s angular coor-
dinates (θc, φc):

θ ∈ [θc − α, θc + α]

φ ∈ [φc − α, φc + α]

This patch is illustrated by
the blue dashed lines. All sensed points (red) between these lines are then filtered
by their distance to the centre point to obtain the final selection.

The range image organises range data by azimuth and elevation, with each ‘pixel’

having a depth value. While some sensors genuinely acquire one depth measurement

per pixel, laser scanners such as the Velodyne sample depth along the azimuth

coordinate irregularly. Gridding these points by azimuth invariably results in some

cells getting two points, or none at all. In addition, the elevation spacing between

individual lasers is constant but not regular.

Nevertheless, the range image provides a simple, efficient data structure upon which to

do region selection and other inference. Rather than ‘pixelising’ the data by selecting

a single depth for each pixel, this work instead stores 3D points in their corresponding

2D cell. When selecting a spherical region about a given centre point, the range image

can be used to efficiently select the contained points, detailed in Figure 3.5. Simple

trigonometry defines a patch in the range image that contains the sphere. For each

2D cell within this patch, the algorithm checks whether the contained 3D points are

within the sphere in Cartesian space.
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This method can be considered a type of cell technique [4], which works well on

relatively uniform data in low dimensions. In this case, the uniformity of the 2D

bearing space (elevation and azimuth) is exploited. In addition, the linear data

structure of the grid means that iterating over each row of 3D points is fast in practice.

This is because of the concept of locality of reference, where accessing consecutive

memory locations is faster than accessing memory in disparate locations.

3.1.4 Computation time

These methods for selecting a region of points will now be compared. To summarise

the previous sections, the methods under comparison are:

(1) The k-d tree.

(2) The bearing graph.

(3) The sparse bearing graph selection, in which only four neighbouring points

are selected from the bearing graph, at a specified distance away (useful for

computing surface normals).

(4) The range image grid.

For each of these, the experimental computation time and algorithmic time complexity

will be examined. In considering time complexity, the focus is on increasing the

number of points within the region to be selected. This can either be from denser

sensing, or a larger region.

Computation times2 were measured for each region selection method. Table 3.1 shows

initialisation and selection times for a radius of 0.3 m, a typical scale used in this work

for surface normal computation on Velodyne data. Figure 3.6 shows how the selection

time for each algorithm scales with the radius of the region.

To generalise these results, the algorithmic time complexity of each stage of a selection

algorithm will now be considered. Region selection algorithms can be broken down

into the following stages:

2Algorithms were run on a Core2Duo E8400 3 GHz machine; they were implemented in C++.
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Figure 3.6 – Computation times for each region selection method for a range of scales.
These times are an average over 20 scans of different urban environments, where in each
scan, a region about every point was selected.

Selection Method Initialisation Selection time for
time (ms) 0.3 m radius (µs)

k-d tree 14.7 12.8
Graph 4.88 23.1
Sparse graph 4.88 0.284
Image grid 0.567 1.65

Table 3.1 – Computation times for region selection methods for a radius of 0.3 m. Note
that initialisation operates on the whole range image, while selection is the average time for
a single region (note the different units).
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(1) Data structure initialisation, where all data points are organised in some fashion.

This only needs to be done once (per scan).

(2) Retrieval of a subset of points from the data structure, which may include points

outside the region to be selected. For example, the k-d tree retrieves rectangular

cuboids, some of which contain points outside of the target spherical region.

(3) Compute the distance from the region centre to each point in the above set,

to identify which ones are inside the region. This may occur during the set

retrieval, such as in the bearing graph.

There tends to be trade-offs between these stages. For example, the k-d tree has a large

initialisation time due its detailed data structure. This structure then allows accurate

subsets of points to be retrieved, meaning fewer subsequent L2 norm computations need

to be done on points outside the desired region. A summary of the time complexities

is given in Table 3.2, with the details outlined as follows.

3.1.4.1 Stage 1: Initialisation

k-d tree With n as the number of data points, the time complexity of initialising a

k-d tree is O(n log n) [5].

Graph As the data is already sorted by azimuth and elevation, graph construction

is an O(n) operation.

Sparse graph The same graph is constructed for the sparse graph.

Image grid The range image grid is also O(n), with n binning operations.
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3.1.4.2 Stage 2: Subset / cell retrieval

k-d tree For k-d trees, the complexity of a region selection operation in [5] is denoted

as O(log n). The primary computations can be grouped into computing distances of

cuboid vertices (stage 2, considered here), and computing distances of data points

(stage 3). With more points, the k-d tree will grow more layers of nodes (under a

max-leaf size constraint), resulting in more vertices to check, but scaling sublinearly

as O(log n).

Graph For the graph selection method, retrieval involves the breadth-first-search

(BFS) algorithm, which scales with O(|V |+ |E|), the number of vertices and edges in

the graph respectively. As there can only be up to four edges for each vertex, this is

O(n).

Sparse graph The same complexity applies to the sparse graph, as it effectively

runs a BFS, but on a significantly smaller subgraph with no need for tracking visited

vertices.

Image grid The cell retrieval stage for the range image grid can be considered as

finding the grid cell bounds in elevation and azimuth. This of order O(1), as all data

points are then immediately available in contiguous memory for each row.

3.1.4.3 Stage 3: Data point distances

Each algorithm results in a different number of data points that need their distances

from the central point Pc checked. For example, once the k-d tree cuboid cells are

retrieved as above, the data points within them must be checked, in order to filter out

all points outside the region. Reducing the number of points to check is the goal of

these algorithms. The worst case scenario is a naive algorithm that forgoes the prior

two stages, and simply checks the distance to every point in the entire scan (i.e. brute

force).
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It is helpful to consider each algorithm as carving out a different 3D region which

contains this subset of points. For example, the k-d tree defines a set of rectangular

cuboids. However, the volume of this region is not necessarily reflective of the number

of points, as point density in 3D depends on the surface. A better approach is to

consider the range image, where the density is approximately uniform in the image

coordinates (e.g. elevation/azimuth). Thus it is useful to consider regions of 3D space

by their corresponding 2D region in the image space. A smaller 2D area means fewer

data points, and so fewer distance computations.

For example, consider a scanned planar surface, and consider a 3D spherical region on

this surface. The sensed surface within the sphere can be projected into the range

image, resulting in a 2D distorted ellipse of area S. A different 3D region such as a

cube would result in a different 2D area C. If C was larger than S, the cube would

contain more data points, and this would be true regardless of the range image density.

As such, the cube method would have a ‘stage 3’ that is slower than the sphere method,

as more distance computations would be needed. This notion is applied to each region

selection algorithm, and is visualised in the right column of Table 3.2.

k-d tree Recall in Section 3.1.1 the ability for k-d trees to skip data points in

cuboids already completely within the sphere. In effect, only cuboids along the border

of the sphere must have their constituent data points checked. This hints at favourable

scaling. Once again, consider a planar surface of data points. The 3D region carved

out by the cuboids along the boundary of the 3D sphere, projected into the 2D image,

will give a region similar to a blocky hollow circle (see Table 3.2). Consider this 2D

region to have an area K. Depending on the tree structure, it is possible for K to be

less than S.

Graph For the graph selection method, all points within the sphere have their

distance computed during the BFS, plus the direct neighbours just outside of the

sphere. This results in an encompassed 2D area slightly larger than S.
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Sparse Graph For the sparse graph, just four lines radiate from the centre, each

line being a graph traversal in a given direction. As a result, significantly fewer

distance computations are needed, at the cost of an incomplete, sparse selection.

Image grid For the range image grid selection method, the 2D region is simply a

square, as the algorithm operates in this space already. It is larger than S.

Finally, note that this section is considering the scaling of algorithms as the number of

points within the region increases. Thus, as long as the above ratios of 2D area are not

significantly affected by n, this ‘stage 3’ operation always scales by O(n). However,

the algorithms differ by a constant factor, approximated by the 2D areas (shown in

Table 3.2). If one method only requires half the number of data distance calculations,

it can be twice as fast in this stage.

Algorithm Initialisation
Subset/cell
retrieval

Approx. area of data
distance computations

k-d tree O(n log n) O(log n)

Graph O(n) O(n)

Sparse graph O(n) O(n)

Image grid O(n) O(1)

Table 3.2 – Comparing the time complexity of each stage of each selection algorithm. Note
that the final stage always scales at O(n), but differs between each algorithm by a constant
factor, approximated by the shown grey area, against the black circle representing a spherical
boundary.
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3.1.4.4 Summary

For a full spherical region of points, the k-d tree ultimately scales the best, theoretically

and in practice. With increasing data density, the benefit of only needing to compute

data point distances on the boundaries of the sphere could overcome the additional

computations of tree traversal and cuboid vertex distances. The higher initialisation

time is insignificant when over a few thousand region selection queries are needed.

The graph selection method performs the worst experimentally (Table 3.1), likely due

to the relatively expensive BFS algorithm. The sparse, four-neighbour graph selection

requires no BFS and only a few L2 norm operations, resulting in significant time

savings. While the selected points are not a complete, dense selection of all points

in a sphere, the sample distribution is sufficient for surface normal computation, as

described in the next section.

The range image has a fast initialisation time, and a very fast and constant ‘retrieval’

time. This comes at the expense of more L2 norm computations on extraneous points

captured in the grid. Nevertheless, this combination produces the fastest computation

time for a full spherical selection of points on Velodyne data. As such, this is the

method of choice later in this thesis, when requiring a full neighbourhood.

3.1.5 Conclusion

Several methods for selecting neighbourhoods of 3D points were described, beyond

the standard k-d tree. The bearing graph provided a minimum scale of analysis, as

well as a fast subsample of up to four neighbouring points. The range image exploits

the regularity of data in azimuth and elevation, providing the fastest dense selection

of points in a spherical region, although the time complexity favours the k-d tree for

higher density range images. Given such a region of points, properties like surface

normals and shape descriptors can be computed.
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3.2 Surface Normals

Surface normals are computed from sensed points, in an operation similar to fitting

a plane to each local region. This provides an initial level of abstraction towards a

geometric surface. They are commonly used in segmentation [58] and shape analysis

(Section 4.1.3). This section presents methods of surface normal computation in the

context of noisy, sparse range data, contributing some minor improvements.

s

t

Figure 3.7

The surface normal can be defined in terms of a surface S, where

each 3D point on S is parameterized by curvilinear coordinates x(s, t)

(Figure 3.7). The surface normal is then the cross product of partial

derivatives:

n =
δx

δs
× δx

δt
(3.1)

In 3D sensing, the surface is unknown, and the estimation of the normal at each 3D

point provides a first order approximation of the surface. This requires the selection

of a set of surrounding points, as presented in the previous section. The non-ideal

noisy range data in field robotics distinguishes the surface normal estimation problem

from similar tasks in 3D modelling and graphics fields, where data is often more ideal

(as shown in Section 2.1.2).

An overview of normal estimation techniques for range sensing is given in [46]. They

can either be based on optimisation, such as fitting a plane with least-squares, or based

on averaging, wherein the normals of surrounding triangles are averaged (provided such

structure is available). Badino et al. [2] computed surface normals on Velodyne data

in a highly efficient manner by working directly in the range image space. However,

as foreground cannot easily be separated from the background in this method, the

surface normals on the boundaries of objects were distorted. Moosmann et al. [58]

computed surface normals using an averaging method on the graph structure discussed

in Section 3.1.2, but using the nearest neighbours in the graph makes this method

subject to noise.
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Based on the conclusions of Klasing et al. [46], the fastest algorithm depends on the

region selection data structure available. This section analyses two commonly used

surface normal algorithms applied to Velodyne data in terms of the selection structures

discussed previously.

3.2.1 Computation methods

3.2.1.1 Cross product on graph

P

n̂ r1

r2

r3

r4

Figure 3.8 – Surface normal n̂ via the average cross product
of relative vectors ri, formed from point P to neighbouring
points in the graph.

n =
r1 × r2
‖r1 × r2‖

+
r2 × r3
‖r2 × r3‖

+ . . .

The cross product method allows the use of the graph structure. It was called the

AreaWeighted algorithm in [46] and applied to Velodyne data in [58]. Relative vectors

are formed from the centre point to each surrounding point, and then the cross product

is computed on each pair of roughly perpendicular vectors. These are averaged to

produce the surface normal at the centre point. This is demonstrated in Figure 3.8.

In [58], the nearest neighbours in the graph were used to compute the surface normal,

followed by applying a moving average filter to reduce noise. However, as shown previ-

ously in Figure 3.4, errors between lasers are biased, and so averaging is not effective.

Instead, this thesis contributes the sparse graph selection algorithm (Section 3.1.2),

which allows further neighbours to be used for better noise resistance (see Table 3.4).

The resulting surface normals are also blurred with neighbouring values (averaged

with a Gaussian weight based on point distance).

A visual comparison is given in Figure 3.10. This method relies on the graph structure,

which can have missing links due to non-returns, or overly sparse data. Without at

least one connected neighbour in both azimuth and elevation, this method cannot

compute a surface normal.
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3.2.1.2 Principle Component Analysis

Figure 3.9 – PCA on
the middle of a person
(side-view), resulting in
an ellipsoid and surface
normal.

Another method for estimating the surface normal is by com-

puting Principal Component Analysis (PCA) on a spherical

selection of points. This involves computing the symmetric

covariance matrix C on the set of N points {pi}:

p̄ =
1

N

N∑
i=1

pi (3.2)

C =
1

N

N∑
i=1

(pi − p̄)(pi − p̄)T (3.3)

The eigenvalues and eigenvectors are then computed on C.

The eigenvector corresponding to the smallest eigenvalue is the

surface normal; it is the direction of least variation. This was

called the PlanePCA method in [46], where it was shown to

be equivalent to the maximum likelihood solution of the local

plane estimation.

This method effectively fits a 3D Gaussian function to the region, visualised as an

ellipsoid, and is shown in Figure 3.9. The eigenvalues provide additional information,

and can be used for basic shape classification as in [48]. This is utilised for keypoint

detection in Section 3.3.2.

Graph scale selection

Statistical features such as PCA can give invalid results when computed on neighbour-

hoods that are not representative of the local geometry, as shown in Figure 3.3. In the

cross product method, neighbours were chosen regardless of hard limits of distance (in

particular, the sparse graph selection algorithm allows neighbours to be further than

the specified distance if none would otherwise exist). As PCA requires a spherical

region of points, the minimum radius of this region can be determined from the graph,

as described in Section 3.1.2.2. Alternately, for a chosen scale of analysis, all points

which have an insufficient neighbourhood sampling at this scale can be disregarded.
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For a given radius r and sensed point p, if p lacks a neighbour in elevation or azimuth

within distance r, it is disregarded. This provides a consistent scale of analysis with

regards to varying point density, at the expense of missing surface normals.

3.2.2 Comparison

Average computation times for each stage of the surface normal algorithms are shown

in Table 3.3. The cross product method is twice as fast as PCA, with more points

receiving surface normals. The main time expenditure of PCA is in region selection, as

it requires all points within the region to be selected (using the image grid algorithm).

The cross product method only requires four neighbours from the faster sparse graph

selection method. Also, the scale constraint of PCA results in sparser regions not

receiving surface normals, although these could be computed at larger scales.

A visual comparison of normals is shown in Figure 3.10, where PCA shows smoother,

less noisy results. A quantitative comparison of error on a planar surface is shown in

Table 3.4, showing PCA to be most accurate. It is worth noting that, for the cross

product approach on nearest neighbours, the effective scale of the surface normal

computation is much smaller, perhaps providing more detail at the expense of more

noise.

In summary, PCA provides smooth, accurate surface normals, but requires more

computation to produce. If the scale of analysis is fixed, not all data points can receive

surface normals. The cross product approach is faster and provides surface normals at

more points, but is noisier. PCA also provides additional shape information beyond

the surface normal, which is explored further in the next section.
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Algorithm / stage Time (ms) Order
Cross product method
4-neighbour selection 15.26 O(n)
Cross product 17.17 O(1)
Gaussian blur 25.77 O(1)
Total 58.21
(91.49% of scanned points)
PCA method
Valid radius check 2.03 O(1)
Image sphere selection 70.59 O(n)
PCA 43.27 O(n)
Total 115.90
(70.08% of scanned points)

Table 3.3 – Average times per scan for surface normal computation; times are broken down
according to each step in the process. The percentage of scanned points that received surface
normals is also shown. The order refers to the time complexity of one single surface normal
computation, where n refers to the number of points in a region. A region radius of 0.3 m
was used, with an average of 53 846 points per scan. As previously, algorithms were run on
a Core2Duo E8400 3 GHz machine, and implemented in C++.

Algorithm mean angular error (rad)
Cross product (nearest neighbours) 0.3172
Cross product (neighbours 0.2 m away) 0.1275
PCA (0.2 m radius) 0.0531

Table 3.4 – Mean angular error of surface normals on a close planar surface (shown in
Figure 3.4a.

(a) (b)

0°

45°

(c)

Figure 3.10 – Surface normals computed on the planar region in Figure 3.4a, with each
point coloured by the angular difference of the surface normal to a globally-fitted plane. (a)
Cross product method, using closest neighbours (and smoothed), whereas (b) uses neighbours
0.2 m away (and smoothed). (c) PCA. Note: the gap in the plane is due to a large angular
difference between two lasers in the Velodyne sensor used.
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3.3 Keypoints

When comparing two local regions, the surface normal can help to orient them into a

common reference frame prior to comparison. This section addresses the problem of

finding keypoints, which generally define a set of stable positions and orientations,

allowing local regions to be extracted and compared with others. These are calculated

from the data, so that they reoccur at the same pose relative to salient shapes. This

approach is commonly used in colour vision (e.g. SIFT) to first define a reduced set

of points in the data, as well as a direction at each point for alignment. Features

are then computed on these regions. Reducing an object to a small set of consistent

features can greatly assist feature matching and classification algorithms, which often

do not scale well with the number of data points.

For example, consider the task of finding locally matching shapes between two objects

A and B, which are scanned to produce n and m points respectively. These objects

can be at any arbitrary rotation or position with respect to one another. One way to

find matches is to split each point cloud up into separate regions, and compare each

pair of regions. Suppose each region is a sphere of fixed radius, centred on each data

point. This results in n and m regions, with n×m comparisons.

Clearly, this process is not favourable to scaling, and yet an even more significant

problem remains to be addressed- that of region orientation. Consider simply overlaying

the regions and visually comparing them. As each point cloud can be at any orientation,

and any given shape can be at any orientation, there is an issue of alignment. Even

given two regions of exactly the same shape, the two must be oriented correctly in

order to match. Aligning the surface normals of both regions is a common step,

although often more is required, depending on the method of comparison.

Regions are typically compared by forming a descriptor of the region, a feature vector

which encodes a notion of shape. The distance of this vector to other feature vectors

allows regions to be compared, as introduced in Section 2.3. The specifics of shape

descriptors is the topic of the next chapter. While not all shape descriptors have

the same requirements of alignment, many use the concept of spatial bins, where the
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region is separated into a regular grid of smaller regions. If this grid is not aligned

correctly, the descriptor will be different, and a match will not be found.

While colour vision keypoints require a single 2D orientation, 3D sensing requires two

3D orientations (i.e. two perpendicular vectors, with the third perpendicular vector of

the axes implicitly defined). The difficulty in defining 3D orientation is a key factor in

designing a feature. The design of many features is motivated by this aspect. This

section explores existing keypoint algorithms, and contributes a method that focuses

on orientation stability.

3.3.1 Existing approaches

For a 3D orientation, one vector is typically formed from the surface normal, but

a second, perpendicular vector must also be defined. Without a further constraint,

the local axes is free to ‘spin about’ the surface normal. One solution is to form a

descriptor that only requires the one orientation vector, such as in the Spin Image

(as introduced earlier in Section 2.3.3), where all data in the free ‘spin dimension’ is

accumulated, losing some spatial information.

In colour vision, intensity derivative extrema are used to locate and orient keypoints,

and so similar approaches can be considered for 3D data. The first derivative of a

surface is the surface normal, the second derivative is known as the principal curvature.

This is an intrinsic property of the surface, in that its value does not depend on

the position or orientation of the surface. A number of 3D keypoint algorithms are

based on using the principle curvature [54, 94, 39], however, they focus on denser,

cleaner data from 3D modelling. In [84], an operator based on curvature was used,

which found multi-scale interest points on unstructured point clouds. It accounted for

variable sampling density, and was applied to a sparsely scanned car, segmenting it

into broad regions of differing curvature.

However, applying curvature-based algorithms to sparse, noisy range image data can

be problematic. A method for computing principal curvature on Velodyne data is

given in Appendix A, and results are visualised in Figure A.1. With sparse range
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image data, few regions have more than the bare minimum six required points to

compute curvature, making it subject to noise. There are only a few points with

significant curvature. In order to detect more subtle curvature, smaller support regions

must be used, which is only possible on well-sampled, nearby surfaces.

Unless an object has large corrugations, there are only so many large curvatures before

the object wraps around and occludes itself. In a range image, any surface with a

normal greater than 90° from the viewing ray3 must be self-occluded and therefore not

visible. Large changes in surface normal inherently result in this condition. Curvature

at such occlusions cannot be reliably computed, as only half the points in the region

are visible (and may appear quite flat, depending on the sharpness of the curvature).

Furthermore, the surface normals at these points are not likely to be stable, being

on regions with highly varying surface normals by definition. Minor changes in the

limited sample of data can change the surface normal estimate significantly.

A recent 3D keypoint algorithm called the Normal Aligned Radial Feature (NARF)

[76] seeks to find stable surface normals nearby object boundaries and regions of high

principal curvature. An interest value is defined at each point, with maxima typically

found near, but not on, object borders and highly curved regions. Orientation is

determined from surface normals and either a nearby 2D image boundary direction

or the principal curvature. NARF interest values and resulting keypoints applied to

Velodyne data are shown in Figure 3.11.

This algorithm assumes surface normals are stable when principal curvature is low. In

sparse range image data, the surface normals themselves are often not well defined,

with not enough information to additionally compute principal curvature robustly.

Nevertheless, NARF also uses the boundaries of objects in the image, and appears

to produce keypoints on Velodyne data as specified, near object boundaries and

strong curves. NARF keypoints, and the associated features, are compared with the

contributed keypoint algorithm of this thesis in Section 4.4. While NARF does provide

a significantly reduced set of keypoints, the resulting classification performance is

reduced, as will be shown in Section 4.4.

3The relative vector from the sensor to the surface
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(a) Image

(b) 3D

Figure 3.11 – NARF keypoints (large red) on a Velodyne scan, coloured by the NARF
interest value.

3.3.2 Keypoints at Stable Orientations

Rather than trying to define a well-localised set of keypoints (such as on sharp curves),

this section focuses on a method for detecting regions where a single orientation such

as a surface normal can be robustly extracted. In this way, locations which provide

good orientation alignment are used as keypoints. While well-localised keypoints

may be fewer in number, this work argues that there is insufficient data in a sparse

range image to do this robustly. More in-depth analysis (e.g. complex features) may

be capable of defining well-localised regions, but these often require the orientation

alignment that keypoints provide in the first place.

In this thesis, regions with stable surface normals are found by computing a measure of
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λ2

λ1

λ0

λ0

λ1
λ2

λ0 ≈ λ1 ≈ λ2 λ0 ≈ λ1 � λ2 λ0 � λ1 ≈ λ2

Sscatter = λ0

−→
S surface = (λ1 − λ2)−→e2

−→
S linear = (λ0 − λ1)−→e0

Figure 3.12 – PCA metrics from [48], measuring how scattered, flat or linear a region
is. Eigenvectors −→e0 ,

−→e1 ,
−→e2 are shown by arrows, with corresponding eigenvalues ordered by

increasing value λ0 ≥ λ1 ≥ λ2.

surface normal quality. In [48], PCA was computed on local regions, and the relative

eigenvalues were used to compute a measure of how flat, linear or scattered a region

was (shown in Figure 3.12). This thesis uses these metrics to extract keypoints at

(1) highly flat regions, where the surface normal is well defined, and (2) highly linear

regions, such as on poles, where the linear direction is well defined. Due to the central

role of PCA, these are referred to as ‘PCA keypoints’. As the eigenvalues vary by

the size of the spherical region of points, this thesis normalised Ssurface and Slinear by

the norm of the eigenvalues |(λ0, λ1, λ2)|. Two thresholds then define flat and linear

regions, which were empirically tuned to attain keypoints on visually flat and linear

regions.

Poles often have no well defined surface normal, and can sometimes have only a single

row of vertical points (Figure 3.13). PCA keypoints allow distinctive regions such as

these to be considered in feature extraction and comparison, rather than disregarding

them.

While PCA keypoints have a well defined single vector, a second vector is often needed,

in order to define a 3D set of axes for alignment. The aim is to define a local frame,

or (xL,yL, zL) set of axes, with two axes explicitly defined, and the remaining axis
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Figure 3.13 – Keypoints at flat or linear
regions on a car, pedestrian and sign.

implicit. As stated previously, a second axis is not easy to define from the data alone,

and so some additional assumptions are made here. In this section, the primary axis

refers to the well-defined eigenvector from PCA (surface normal or linear direction),

and the secondary axis refers to the remaining explicitly defined axis that will be

outlined here.

3.3.2.1 Flat regions

For flat regions, this second axis is defined by taking into account the vertical direction

(i.e. gravity direction), so that it faces as downwards as possible. While this means the

axes are not fully invariant to relative pose (the object could roll or pitch), in many

contexts, full invariance may not be needed. A mobile robot will typically face the

right way up, or at least know which direction is down, and most objects in an urban

setting have a preferred vertical orientation. For example, cars and trees are almost

always the ‘right way up’. In this work, as the sensor is always oriented correctly, the

vertical direction is defined as the sensor frame z axis.

To compute this downward-facing axis, the vector (0, 0,−1) is projected onto the

plane defined by the surface normal n̂ (which equals the eigenvector e2). With I3 as

the 3× 3 identity matrix:

a = (I3 − n̂ · n̂T )[0, 0,−1]T (3.4)

b = n̂× â (3.5)

FS = (â, b̂, n̂)T (3.6)

In this local frame FS, the surface normal becomes the local zL axis, and the local

xL axes faces towards the ground (Figure 3.14a). With the region oriented in this
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xL (down)

yL
zL

(surface
normal)

(a) Flat
xL

yL (linear direction)

zL (to sensor)

(b) Linear, horizontal

xL (linear direction)

yL

zL (to sensor)

(c) Linear, vertical

Figure 3.14 – PCA local axes on differently-shaped regions of points. The local xL axis
faces downwards, and zL faces away from the surface.

manner, an algorithm ‘looking along’ the zL axis would see a perpendicular surface,

and would face the right way up. Features such as the line image and others to be

described in Chapter 4 summarise a local image, formed by looking at the point cloud

from this frame.

Finally, there is the case where the surface normal is highly vertical, and so the xL

axis cannot ‘point downwards’. In this case, the eigenvector e0 corresponding to the

largest eigenvalue is used for the xL axis4.

3.3.2.2 Linear regions

For highly linear regions, where the surface normal is not well defined, the linear

direction forms the primary axis. The secondary axis is resolved by aligning it towards

the sensor origin. This vector is used as the local zL axis. This is because, lacking a

better source of alignment, the resulting frame will have a similar ‘view’ of the surface

as the sensor. If the whole region is highly linear, the shape may be symmetric about

the linear direction anyway.

In addition, the linear direction e0 must be resolved as either positive or negative. This

was not an issue for the surface normal, as it has an unambigous direction, pointing

away from the surface5. To resolve this, if e0 is mostly vertical (less than 45° from the

4This is not necessarily a stable, well-defined direction for flat regions, and so is not used for all
flat regions.

5Due to the nature of the range image, no surfaces can be ‘facing away’ from the sensor, and so
the surface normal must always form an angle of less than 90° with the vector from the sensor origin
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vertical axis), it is faced downwards, and becomes the local xL axis. Note that xL

also faces downwards in the case of flat regions.

In that case that e0 is mostly horizontal, the guiding principle is to get xL to still

face downwards. To do this, e0 is defined as the local yL. The direction (left or

right relative to the sensor) is chosen such that xL faces downwards (i.e. by the right

hand rule). Consistently downward-facing xL axes are shown in Figures 3.14b, 3.14c

and 3.15c.

Thus, for a surface normal n at point p:

c = (I3 − ê0 · ê0
T ) · (−p) (3.7)

d = ĉ× e0 (3.8)

If mostly vertical: ‖e0 · [0, 0, 1]T‖ > cos(45°) then:

FL = (e0, d̂, ĉ)T (3.9)

Else:

FL = (d̂, e0, ĉ)T (3.10)

As such, keypoints on flat surface regions have a local frame FS, and keypoints on

thin linear regions have a local frame FL.

3.3.2.3 Discussion

A detailed step-by-step description of the algorithm is given in Appendix B, and the

axes on flat and linear regions computed on an excavator are shown in Figure 3.15.

These keypoints on flat and linear regions are not necessarily at local extrema ‘interest

points’, as in SIFT and NARF features, they simply provide a stable local orientation

for repeatable features. On some objects, the sampling is sparse enough that further

reduction is not required, and in other cases subsampling can reduce the number of

keypoints if required.

to the sensed point. Calculated surface normals that violate this are flipped.
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(a) Excavator point cloud (b) Flat (green), linear (blue) regions

(c) Axes at each keypoint (red/green/blue = x/y/z)

Figure 3.15 – PCA keypoints and local axes on an excavator.
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The primary weakness of this algorithm is on objects with large, flat surfaces such as

buildings, where the large number of keypoints lead to a high degree of redundancy

in subsequent descriptors. This can lead to scaling issues later on in classification,

discussed in Chapter 5. One option is to heavily subsample large, flat regions, detected

by PCA computed at larger scales. Another approach is to reduce the number of points

after feature computation, by removing redundant sets of nearby and highly similar

features. This has the benefit of not arbitrarily losing shape information, which is

possible when subsampling keypoints prior to detailed larger-scale analysis. Depending

on the speed of feature computation and the specific classification algorithms used,

these may not be serious issues, and are left as future work.

In order to evaluate the effectiveness of this keypoint algorithm, it is compared with

NARF keypoints on the task of object classification in the next chapter. While metrics

exist for comparing keypoint repeatability [72], it is difficult to quantify how much

information is lost by disregarding many points in favour of a sparse, repeatable set.

Keypoint reduction for object classification draws a fine line between reducing the

number of regions to match, and ensuring enough informative regions are captured

such that different classes can be distinguished. Given the nature of the sparse range

image, this thesis argues that even more sparse, localised keypoints are not easily

determined without in-depth shape analysis, which is what the subsequent feature

extraction stage seeks to do. Instead, as such features require an orientation, PCA

keypoints provide the locations where orientation is likely to be stable.

3.3.3 Summary

Keypoints define positions and orientations about which features are computed and

compared. Existing approaches to keypoints rely on curvature extrema, which are not

well defined on sparse range images with inevitable environmental and self occlusion.

NARF keypoints also consider 2D object borders, but use surface normals without

considering how well defined they are. A primary goal of keypoints is to produce an

orientation, and so the contributed PCA keypoints are defined by stable orientations,
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with surface normals on flat regions and linear directions on thin regions. These are

compared in the next chapter in the context of object classification.

3.4 Conclusion

This chapter outlined processing steps for progressive abstraction from raw point

clouds to simple surface properties and aligned regions of interest. The approach

ensures that the sampling of points in a given region is sufficient for the computation

of surface normals. PCA provides simple shape information, from which aligned

keypoints are defined. Building upon this abstraction, the next chapter considers

larger regions, describing how to capture the more complex and distinguishing shape

information necessary for object classification.
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Chapter 4

Capturing Complex Shape

As introduced in Section 2.3, local features are used to summarise the appearance

of a region of the data, converting it into a vector of numbers which can be easily

compared and matched to other regions. In vision, features may describe some aspect

of the local colour, intensity or visual texture, whereas when processing 3D sensor

data, features typically summarise the local geometry in some way.

In sparse range images, inferring and capturing this geometry is difficult due to

variable density and occlusion. This chapter contributes a novel feature, called the

line image [62], which addresses these issues by explicitly reasoning about occupancy.

An object dataset was collected to evaluate the performance of this feature on the task

of object classification. The dataset consists of 14 classes of labelled objects scanned

with a Velodyne in an urban setting. Objects were classified with a simple k-nearest

neighbours (k-NN) classifier. The line image showed improved performance at smaller

scales of analysis compared to existing features.

4.1 Invariance and Distinguishability

Two desirable properties of features are: (1) the ability to capture distinguishing

information, and (2) to do so in a consistent manner, such that the same sensed shape

75
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receives the same feature values. This section will describe some existing features

from the literature in the context of these properties. The limitations of these features

when applied to sparse range image data motivates the line image feature.

4.1.1 Viewpoint Invariance

To achieve a consistent representation, viewpoint invariance is desired. Consider a

scanned object, where a particular region of it is converted into a feature vector. If the

sensor is subsequently moved, and the process repeated, a viewpoint invariant feature

would be very similar to the original. The sensor and objects can move about in the

world, and so being able to match and recognise a given region regardless of pose is

crucial. In classification, this allows an object to be learnt from a single viewpoint,

instead of requiring many different poses to be learnt.

At best, this creates a one-to-one mapping from a feature vector to a certain local

3D shape, rather than a many-to-one mapping. This is important for any statistical

inference involving local shapes. Consider the latter, non-ideal case where many

different feature vectors from different viewpoints indicate a single underlying shape.

This is shown in Figure 4.1. In supervised classification, the goal is to infer relationships

between shapes and classes. However, shapes are not observed, only feature vectors.

A given shape may occur often in a class, but in this non-ideal case, the evidence

is split across disjoint instances. Thus, if there are n feature vectors for the same

shape, then determining the same degree of correlation certainty requires n times

more observations in the form of labelled training data. The problem can be even

worse when inferring relationships between two different shapes, which underlies topic

models in Section 5.2.

3D sensing has the potential for greater viewpoint invariance than is possible with

2D visual imagery, as the 3D geometry is inherently object-centric. However, the

geometry must be inferred from the sensed 3D point cloud, which does vary with

viewpoint. Changes in the position of a sensor with respect to the environment results

in changes to the distribution of 3D points in the scene. An example of this variation
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Figure 4.1 – If many different feature vectors represent a single shape (left), the evidence
connecting features to classes is split up. A viewpoint invariant feature (right) is able to
accrue more evidence from the same amount of training data.

is shown in Figure 4.2, where a fixed location is observed from several positions. Two

primary changes are density and occlusion. Density depends on the distance to the

surface, and the relative angle of the surface to the sensor, both of which change with

viewpoint. Some regions become very sparse, with large gaps between points. An

object’s silhouette is where it occludes itself, and this also changes with viewpoint.

Objects also occlude others as they cast shadows in the 3D data. These effects lead

to issues when trying to capture the shape of a region of points, as points appear or

disappear depending on viewpoint. Existing features are not robust to these issues

(described in further detail in Section 4.1.3).

4.1.2 Occupancy

A more consistent representation of the range image data considers the notion of

occupancy, where there are three types of space: occupied, empty and unknown.

Occupied space is detected by points on a sensed surface. Empty space exists along

the ray between the sensor and the sensed surface point. All other space is unknown,

as it has not been sensed. This approach is used in occupancy grid mapping [82], where

the world is partitioned into a grid, and ray tracing is used to identify known-empty

cells. Without this concept of occupancy, sparse sampling and occlusion lead to

confusion between what is observed empty space and what is unknown space. The

space between sparse 3D points is unknown space, as is the region in the shadow of a

foreground object. Observed empty space, on the other hand, surrounds an object,
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Figure 4.2 – The effect of viewpoint changes on a point cloud. The sensor vehicle was
driven through a car park, and the point clouds aligned into a single frame of reference. A
fixed region on a car corner was selected (black). The distribution of points changes greatly
with viewpoint.
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defining geometry by indicating where a surface does not exist.

Empty space is a potentially useful source of information. Capturing as much distin-

guishing information as possible is important for sparse range imaging, where there

is limited sensing resolution and subsequent geometric detail. Consider an object

silhouette, which is a 2D outlining shape that forms useful information in computer

vision. Along a silhouette, observed empty space surrounds an object, defining a

viewpoint-dependent 2D boundary. Ideally, this geometric information should be

captured, but the object also occludes itself here. Capturing shape information along

silhouettes in a viewpoint invariant manner requires that empty and occluded space

be captured and distinguished. While occluded space is effectively missing data that

will change with viewpoint, empty space is invariant, distinguishing information.

Current features in the literature do not explicitly encode both unknown and empty

spaces, which can lead to a decreased robustness in dynamic outdoor sensing conditions

where occlusion is prevalent and there is limited resolution. In order to consistently

deal with occlusion while capturing as much information as possible, this chapter

contributes the ‘line image’ feature. It detects occupancy by using the range image,

providing a representation of the surface, empty space and unknown space. Upon

comparison with another region, the unknown portions act as ‘wild cards’ in the

matching process; they are permitted to match to anything. This makes the feature

highly invariant to viewpoint changes and occlusion, while capturing salient information

about the empty spaces within a region.

4.1.3 Existing Features

An overview of existing features was given in Section 2.3; three features will now

be described in further detail, as they are used in the experiments in Section 4.4.

In particular, the effects of variable point density and occlusion will be discussed.

In existing features, occlusions are either ignored or confused with empty space.

Most descriptors inherently presume space with no points is empty space, and the

violation of this assumption due to occlusion and non uniform sampling causes a lack
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of robustness.

4.1.3.1 Spin Image

The spin image [43] requires a central point and orienting surface normal. Surrounding

points are transformed into perpendicular and parallel components (Figure 2.10). This

can be visualised by placing a grid or image at the centre point, and spinning it about

the surface normal, accumulating points in each cell. Several spin images are shown

in Figure 4.3. This representation only requires a single, central surface normal rather

than a full set of 3D axes, which can be difficult to define (Section 3.3).

Figure 4.3 – Spin images on a car, pedestrian and traffic sign. The large black arrow is the
central surface normal, with the image aligned to it. The image is swept around the arrow,
accumulating points. Empty cells are not shown.

To compare two spin images, the linear correlation coefficient R is computed. With

two spin images P and Q, with N bins:

R(P,Q) =
N
∑
piqi −

∑
pi
∑
qi√

(N
∑
p2
i − (

∑
pi2))(N

∑
q2
i − (

∑
qi2))

(4.1)

In order to handle data with occlusions, a second similarity measure C (Equation (4.2))

was provided. In this measure, the correlation coefficient only includes occupied bins,

treating empty bins as potentially occluded, and effectively allowing them to match

to anything. Thus N becomes the number of bins that are occupied and mutually

overlapping between two spin images. Using fewer bins results in a lower confidence
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in the correlation coefficient, and so this is penalised by a second term, scaled by a

constant λ.

C(P,Q) = (arctanhR(P,Q))2 − λ
(

1

N − 3

)
(4.2)

While this accounts for occlusion, it does so by treating empty space as occluded

space and ignores both. As such, only the relative values of occupied bins are actually

used to distinguish and match regions. Removing empty bins weakens the ability to

discriminate shapes, as empty space can match to occupied space and not be penalised.

In addition, bins encapsulating both occupied space (sensed points) and unknown

space can still change. This is because if unknown space is observed, revealing more

points, the bin count will increase.

Another problem is the density requirements of the spin image. Spin images generated

from regions of different point densities can be compared, as the linear correlation

coefficient accounts for this. However, the point density within the region that the

spin image encompasses must be consistent. As the spin image infers shape from

the density of points in bins, varying the density of points in a non-uniform manner

will impact the representation. This is problematic, as the density in a range image

varies with surface orientation. Additionally, the size of bins must be above the point

density, or bins passing through the surface will not collect any points. These can

be addressed by first computing a triangular mesh over the points. The spin image

computation then involves the integral of each triangle across the swept volume of each

pixel. However, generating a clean surface mesh on a Velodyne scan is problematic

due to sparsity and noise.

4.1.3.2 Fast Point Feature Histograms (FPFH)

The Fast Point Feature Histogram (FPFH) [71] is a recent feature that describes the

local variation in surface normals using a histogram. It builds on previous iterations

of Point Feature Histogram features [69], and more variations exist [70]. The FPFH

requires a surface normal at each point.
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To compute it on a given region, consider the central query point pc and a spherical

neighbourhood of points p around it. Each neighbour and the central point form a

pair of points pi and pj, with a line between them1. These two points also have two

corresponding surface normals ni and nj. The angles formed between these surface

normals and the connecting line are captured in three feature values, detailed in

Table 4.1.

Table 4.1 – Computation of the three features comprising the SPFH, as in [71]

A coordinate frame is defined based on the two points pi,pj and their surface
normals ni,nj.

u = ni

v = (pj − pi)× u
w = u× v

The difference between surface normals and point positions are then captured in
three features:

α = v · nj
φ = (u · (pj − pi))/‖pj − pi‖

θ = arctan
w · nj
u · nj

These values are computed across all such point pairs, and are accumulated into

three respective histograms. These histograms are then normalised by the number of

points to achieve density invariance. They are then concatenated together to form the

Simplified Point Feature Histogram (SPFH).

FPFH then goes a step further, and considers neighbourhoods of SPFH. Note this

means that SPFH must first be computed about every point in the target region (or an

even subsample). Once again, consider a central point pc, and surrounding points p,

this time each with their own histogram. All these histograms are summed, weighted

by the 3D distance to the central point, to finally create the FPFH. Thus, for each

1pi is the point with the smaller angle between its surface normal and the line connecting the two
points.
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neighbouring point pk and corresponding distance ωk:

FPFH(p) = SPF(p) +
1

k

k∑
i=1

1

ωk
· SPF(pk) (4.3)

An implementation exists in the Point Cloud Library (PCL) [68], where the final

feature comprises of 33 dimensions, or 3 histograms of 11 bins. In order to match

FPFH features, the Histogram Intersection Kernel [71] is used. With two features f1,

f2 with N dimensions, the distance is simply the sum of the element-wise minimum:

d(f1, f2) =
N∑
i=1

min(f i1, f
i
2) (4.4)

While this feature is invariant to constant density changes, a variation of density

within the region of analysis will affect the histogram. In most cases, an occlusion will

also change the histogram.

4.1.3.3 Normal Aligned Radial Feature (NARF)

The Normal Aligned Radial Feature (NARF) [76] seeks to capture empty space, such

that the outer shape of objects can be described. However, it does does not consider

unknown space. NARF also has a corresponding keypoint formulation, described

earlier in Section 3.3.1, and an implementation is available in PCL.

To compute it about a central point, the spherical region of surrounding points is

first selected. These are transformed into a coordinate frame relative to the central

Figure 4.4 – From [76], a normal-aligned image patch of a chair
corner, with each green beam tracing out pixels, accumulated into
a single dimension of the NARF feature vector. The red arrow
is the dominant direction, defining the starting position for the
rotationally invariant version.
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point’s surface normal, such that the normal vector becomes the z-axis. The x,y point

coordinates are then placed into an ‘image’ of 2D cells, creating a normal-aligned

image, effectively looking along the normal at the surface. The image patch is blurred,

and then a star-shaped set of beams (Figure 4.4) are placed on the image. Each

beam traces over pixels, whose depth values are accumulated in a weighted function,

resulting in a single value per beam. Empty pixels are given a maximum negative

depth, resulting in a distinguishing beam value. Each beam value corresponds to

a dimension in the NARF feature. To produce a rotationally-invariant feature, the

largest beam value defines an aligning orientation. Alternately, the vertical orientation

can be used.

In terms of viewpoint invariance, the underlying normal-aligned image patch (which

NARF summarises) has several issues. First, empty space is defined as a lack of

points, which considers visibly-empty space and unknown space as the same. As such,

occluding foreground objects and missing sensor data are registered as edges2. Also,

in sparse sensing, the local 3D point density may be too low for the chosen image

patch resolution, requiring interpolation.

Finally, consider a region encompassing a silhouette edge, which NARF seeks to

capture. The normal-aligned image patch effectively ‘looks along’ the surface normal,

which is offset from the sensor viewing angle. At any such offset angle, the image

patch is actually looking around the occluding edge, registering the unknown space

as empty. Were the sensor position to change, this unknown space may change to

become a surface, resulting in the image patch changing. This depends on the object;

the region near a sharp edge on a building would have the same normal-aligned image

patch regardless of viewpoint. However, curved surfaces with a ‘receding’ silhouette

would have a changing patch. This demonstrates a conflict in normal-aligned 3D

features: the normal-aligned frame is desired for viewpoint invariance, but the sensory

data is affected by the sensor’s view. The normal-aligned frame can ‘look’ at unknown

regions. This motivates the explicit use of occupancy in a 3D feature.

2NARF keypoints distinguish between edges from foreground occlusion and real object silhouette
edges, focusing keypoints near the latter. However, this does not preclude resulting regions from
being partly occluded, particularly at larger scales.
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4.1.4 Summary

In summary, variable density and occlusion can cause problems with existing fea-

tures. Occupancy is treated in two ways in the literature: (1) Unknown space is

assumed to be empty space, which is not a good assumption, as it will change with

viewpoint/occlusion. (2) Any space with no data (empty space and unknown space)

is disregarded during matching, as in spin images, resulting in a loss of information.

There are also general problems with variable and low point density, which can be

viewed as a case of unknown space.

The contribution of this chapter is the line image feature, which addresses these issues

by explicitly considering occupancy. Unknown regions from low density or occlusion

are distinguished from empty regions, with both stored in the feature. Unknown parts

in the feature can then match to anything, acting as wild cards. The empty space

provides distinguishing information such as along object silhouettes. This aims to

improve viewpoint invariance and distinguishability, resulting in more robust region

matching in sparse range image data.
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Empty

Unknown

Intercepts
surface

Occluding trunk

CarLine status

Intercept depth

Figure 4.5 – The line image feature computed on the corner of a car, which has been partly
occluded by a tree trunk. The status of each line, and the depth of surface intercept, is
shown on the left. The point cloud is coloured by surface normal for visualisation.

4.2 The Line Image

This section describes the components of the line image feature [62]. The core concept

is in placing a set of 3D line segments in space and detecting whether they become

occluded or intercept a surface. This is shown in Figure 4.5. Each line generates

two values: (1) A discrete ‘status’ label si indicating whether the line was only in

empty space, went into unknown space, or intercepted a surface. (2) A depth value di

indicates where the unknown space or surface was found.

For a specific point in space, the line image feature f is represented by two equally

sized vectors d and s:

f = (d, s) (4.5)

d = (d1, d2, . . . , dn), di ∈ <

s = (s1, s2, . . . , sn), si ∈ {intercept, occlusion, empty}

for a feature containing n lines. Computing the distance between two features f1,
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f2 (detailed in Section 4.2.4) is a function of the Root-mean-square error (RMSE)

between d1 and d2, excluding entries corresponding to occlusions.

Generating this feature involves inspecting the occupancy along each line segment,

which is done efficiently using the range image, detailed in Section 4.2.1. Detecting

where line segments intercept a surface is then detailed (4.2.2). Multiple line segments

are combined into a full line image feature (4.2.3), and matched to other line images

(4.2.4). Then, in Section 4.4, the line image is compared to the existing features

discussed previously on the task of object classification.

4.2.1 Detecting Occupancy Along a Line

In range sensing, to detect whether a region of 3D space is empty, occupied or unknown,

ray tracing is often employed, as mentioned in Section 2.1.1. Each laser return defines

a ray from the sensor, through free space to an occupied point in the world. Typically,

the sensory data is accumulated in a voxel grid. If a ray intersects and passes through a

voxel, that voxel is deemed to be empty. If no rays enter the voxel, it is in an unknown

state. This process is computationally intensive, particularly if higher resolution voxel

grids are desired, and the data rate is high. This is the case for the Velodyne, with

1.3 million rays per second.

4.2.1.1 Range image occupancy

For 3D data organised in a range image, there is an alternative method, as each

2D point in the image represents a ray. For clarity, 2D will mean the range image

coordinate space, with azimuth and elevation in this case (depending on the sensor, a

camera model may be used instead). Angular distance thus refers to the 2D distance

between points on an image. Sensed points will refer to the data obtained from the

range image sensor, as opposed to synthetic points used during computation.

The occupancy at an arbitrary synthetic 3D query point p3D
q can be determined by

transforming it into the range image, and simply checking if it is ‘in front’ or ‘behind’
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the image data, from the point of view of the sensor. Consider the query point’s image

coordinates p2D
q and depth dq, and the nearest sensed point in the image p2D

s , with

depth ds. If the query point is behind the sensed point, is it occluded, and in unknown

space (dq > ds). If the query point is in front of the sensed point, it is in observed

empty space (dq < ds). If these points are very near each other (dq ≈ ds), the query

point may lie near a surface (this will be elaborated upon in the next section). Finally,

in the case that the range image has portions of missing data, for instance from non

returns or sensor failures, there may not be a nearby sensed point in the 2D image

space. In this case, the query point is in unknown space. These cases cover detecting

empty, unknown and occupied space in a range image, all using a single spherical

transform, a nearest (2D) neighbour look-up, and a range comparison.

4.2.1.2 Selecting points along a line

This concept can be extended to a region in 3D space defined by a line. To determine

the occupancy along a line segment, first, sensed points will be selected if they have a

corresponding ray passing near the line. The range image is used to facilitate this,

shown in Figure 4.6. If the line segment is sufficiently short and far away, it can

be approximated in the range image by a 2D line. If a given sensed point is close

enough to the 2D line, it is selected. The point is connected to the line at its nearest

approach, producing a corresponding point on the line Pline. This process is detailed

in Algorithm 2.

In order to efficiently select points, the range image grid is used, described earlier in

Section 3.1.3. This stores 2D points into a grid, with each cell containing multiple

points. In particular, cells are not square, and vary in size. While cells are evenly

spaced in azimuth, each of the 64 rows are assigned to each laser scan line, resulting

in uneven elevation ‘heights’ of each row. For instance, the upper 32 lasers are angled

closer together in elevation, resulting in the upper 32 image grid rows being shorter.

The process of selecting points is detailed in Algorithm 2. First, the cells along the line

are traced by determining the line’s position at each cell boundary. Surrounding cells
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Figure 4.6 – Detecting occupancy along a line. (a) A 3D point cloud of a car, with points
coloured by depth, and a line segment which intercepts the car. This is viewed from above
in (b). (c) The same scene in the range image. The large, red-outlined points near the
line segment in the range image are also shown in (a). These points quantify that the line
segment is in front of the scene at the top, and behind the scene at the bottom.
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within the small angular distance ts are also selected. The 2D sensed points within

these cells are projected onto the 2D line. Those further than ts are removed, with the

remaining points sorted by position along the line. This produces two equal-length

lists of points: Psensed and Pline (the projected points on the line).

4.2.1.3 Line occupancy transitions

These points determine the occupancy along the line. In the line image, a line is

typically positioned to begin above a surface, and moves into and behind a surface

Traversing along the line in this order, (iterating through Psensed and Pline in line

3 of Algorithm 3), each sensed point is compared with its corresponding line point,

determining the line’s occupancy up to that position. The state of the line thus begins

as ‘empty’, and is changed to unknown or intercepted as the line is traversed. This

process is shown in Algorithm 3, with a corresponding flow diagram in Figure 4.7

detailing how the state of the line changes.

The final state of the line is set to si, the output status of the line. While a line may

pass through alternating regions of empty space, unknown space, and even several

surfaces, a single value is desired for simplicity. Similarly, the position of the first

surface intercept is stored in di. If the line enters unknown space, the last position of

where it was in empty space is stored in di. In this case, the line becomes empty up to

di, at which point is becomes unknown for the remainder of the line3. This makes it

more distinguishable when matching line images (Section 4.2.4), as the ‘empty space’

portion cannot match to a surface intercept.

To begin with (state = empty, Figure 4.7a, or line 6 of Algorithm 3), the algorithm

checks if a surface intercept is nearby, detailed in the next section. If there was no

intercept, the algorithm checks for unknown space. This occurs from (1) a lack of

sensory data, or (2) occlusion. In the first case, some regions of a range image can

have no data (e.g. due to laser non-returns), resulting in a significant gap in the

points along a line. If such a gap occurs (line 12 of Algorithm 3) the line is considered

3Unless a surface intercept is found.
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unknown from the last observed point before the gap. The second case of occlusion is

detected by comparing the depth value of the sensed point to the depth value on the

line. If the line is in front of the sensed point, the line is in empty space, else it is in

unknown space.

This process continues as each point along the line is inspected. Once ‘unknown’,

the line cannot subsequently become empty if it encounters empty space, as the

earlier unknown space may contain a surface. However, it is allowed to transition to

intercepted, so as not to miss capturing the informative surface; this is elaborated

upon in Section 4.2.6. When the line registers an intercept, some additional processing

is done to ensure the best intercept is found, detailed in the next section, after which

the line traversal is ended.

Input : Line segment L3D ∈ (L3D
start, L

3D
end)

Output : Sensed points Psensed, and their nearest points on the line Pline
1 L2D

start, L
2D
end = 3DTo2D(L3D);

2 ClipToImageBoundary(L2D
start, L

2D
end);

3 Lgridstart, L
grid
end = 2DToGrid(L2D

start, L
2D
end);

4 cells ∈ ∅;
5 for (x,y) = Lgridstart to Lgridend do
6 append to cells : (x,y) and directly neighbouring cells;
7 P = GetSensedPointsFromGrid(cells);
8 Psensed, Pline, Dline ∈ ∅;
9 for psi ∈ P do

10 distance, pli = ProjectOnLine(psi, L
2D);

11 if (distance < ts) ∧ (pli inside L2D) then
12 append to Psensed : psi;
13 append to Pline : pli;
14 append to Dline : ‖pli − L2D

start‖;
15 Sort Psensed and Pline by Dline;
16 Return Psensed, Pline ;

Algorithm 2: PointsOnLine, shown visually in Figure 4.6. A 3D line segment
is transformed into the range image grid, and the corresponding sensed points
are selected and ordered.
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Table 4.2 – Parameters and variables used in the line image, and in Algorithms 2 to 4.
Values were set to reflect the density of Velodyne data.

Variable Description Value

Line parameters

ts Points are selected if they are closer than this 2D distance
from the line segment.

0.28°

ta The line is unknown if there is no data along the line for
this (2D) angular length.

2°

RPCA PCA is computed on a spherical region of points at this
size.

0.3 m

tp A region of points is represented by a 3D Gaussian. The
line segment passes through, obtaining a maximum value.
It must be higher than this threshold to be deemed a
surface intercept.

0.2

tlength Once a surface intercept is found, continue along the line
for this short distance (m), looking for a better one (larger
Gaussian value).

0.8 m

Line arrangement parameters

Rdisk Outer radius of circular disk pattern of lines. Each ring
of lines is positioned at a radius, evenly spaced up to the
outer radius. This defines the scale of analysis.

Nsections The number of lines in each radial section, beginning from
the innermost ring.

{8,16,32,
32,64,64}

Algorithm variables

Psensed Sensed points near the line (red in Figure 4.6).

Pline Points on the line closest (in 2D) to Psensed.

N (p;µ,Σ,Λ) 3D Gaussian function evaluated at p, with parameters:
mean µ, eigenvalues Σ and eigenvectors Λ.
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Input : line segment L
Output : si, di

1 Psensed, Pline ← PointsOnLine(L);
2 si ← empty;
3 for psi ∈ Psensed , pli ∈ Pline do
4 switch si do
5 isIntercepted, length, g ← SurfaceIntercept(psi, L);
6 case empty
7 if isIntercepted then
8 si ← intercept;
9 di ← length;

10 gbest ← g;
11 continue;

12 if ‖ 3DTo2D(pli − p(li−1)) ‖ > ta then // Gap in data.

13 si ← unknown;
14 if ‖psi‖ < ‖pli‖ then // Line is behind point.

15 si ← unknown;
16 else // Still in empty space.

17 di ← LineLength(pli); // Line was last visible here.

18 continue;

19 case unknown
20 if isIntercepted then
21 si ← intercept;
22 di ← length;
23 gbest ← g;

24 continue;

25 case intercept // Was already intercepted.

26 if ‖ LineLength(pli) −di‖ > tlength then
27 break 2; // Too far from best existing intercept

28 if isIntercepted ∧ (g > gbest) then
29 di ← length;
30 gbest ← g;

31 continue;

32 Return si, di ;

Algorithm 3: Computing si and di for a line segment. Also see the flow diagrams
in Figure 4.7, which provide an equivalent description of the case structure within
the for loop.
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Figure 4.7 – When traversing along a line, each sensed point is inspected (for loop in
Algorithm 3), changing the state of the line. The state begins as empty (typically above the
surface), changing to unknown if there is a large gap in the data, or a point is far in front of
the line. If an intercept is detected, the line continues to be traversed for a certain length,
to ensure the best intercept is found.
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4.2.2 Detecting Surface Intercepts

This section describes the task of detecting whether the line intercepts a surface and

where. This necessitates some form of surface model to interpolate the surface at

the line. While the bearing graph described in Section 3.1.2 can be converted into a

triangular mesh, it is not very robust. Any noise or incorrectly connected or removed

edges between points can result in an incorrect surface. Triangulation in general is

avoided in this work due to the sparsity and noise of the points from a Velodyne

scan. In addition, thin poles can have only a single line of points, not enough for

triangulation.

This work uses a local Gaussian representation, fitted by computing PCA at each

point, as described earlier in Section Section 3.2.1.2. Therefore, before computing the

line image, PCA must be computed on all regions of the point cloud. In particular, if

the PCA keypoint algorithm from Section 3.3.2 is used, no additional computation is

required. An example of such a set of Gaussians is shown in Figure 4.8.

(a) (b)

Figure 4.8 – (a) A scan of a car. (b) Ellipsoids representing local Gaussians, used in surface
interpolation.

To compute the surface intercept, recall that each point along the line is inspected

in Figure 4.7. Each point also has an associated Gaussian function. Therefore, for a

specific point, the maximum value of the corresponding Gaussian is determined along

the line4. If this value is above a threshold, it is considered an intercept. This method

is illustrated in Figure 4.9, and in Algorithm 4. The local Gaussian function represents

4This involves a simple transform of the line coordinates followed by a projection
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noisy regions of points, approximating simple planar or linear shapes. As before, the

point density of the region is checked to ensure there is a sufficient distribution of

points (Section 3.2.1.2).

As there are often several sensed points surrounding the line at the intercept, each

with an associated Gaussian, there may be several detected intercepts within close

proximity. In this case, the largest Gaussian function value across all intercepts is

chosen as the best one. In order to prevent a truly separate, second surface from

overriding the first, the line is only traversed a further 3D distance tlength m.

This approach presents a balance between simple, fast methods such as nearest-

neighbour interpolation, and more intensive surface modelling techniques, such as

fitting splines. It is worth noting that, in the case that the surface model fails to

interpolate a given surface, the line image handles this gracefully. The line will miss

the intercept, but end up behind the points, registering unknown space instead. The

penalty is a lower amount of surface information captured in the feature. With the

PCA method, this often occurs at large ranges, when the density of points is below

the chosen scale of analysis.
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Input : Sensed point P , line segment L
Output : isIntercepted, length

1 if PointDensityLow( P , RPCA) then
2 return False;
3 neighbours = Sphere( P , RPCA);
4 µ,Σ,Λ = PCA(neighbours);
5 p = arg maxpN (p;µ,Σ,Λ) subject to p ∈ L;

6 g = N (p;Pµ,Σ,Λ) if g > tp then
7 return True, LineLength(p), g;
8 return False;

Algorithm 4: SurfaceIntercept

Figure 4.9 – Detecting the surface intercept for two lines (points coloured by height). The
Gaussian distributions (shown as ellipses) represent the local point cloud near the line. The
maximum value of the Gaussian is found along each line, shown by a red cross. The line
passing very near a trunk (right) is outside the threshold, so it does not intercept the surface.
The line passing through the sparse ground (left) is within the threshold, providing a surface
intercept.
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(a)

(b)

Figure 4.10 – Occupancy line traversals in various situations about a car. In each image,
the range image grid is shown above, with the car points/cells coloured purple. The blue 3D
line, oriented from top to bottom, defines the red cells in the image grid, with the associated
3D points also coloured red. These are traversed to find an intercept (large green square).
The local Gaussian resulting in this intercept is shown as a grey ellipse. (a) An intercept on
the car bonnet (with two different views and a zoomed version). (b) An intercept on the
thin door frame.
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(a)

(b)

Figure 4.11 – (a) The line encounters the windshield, which gives no laser returns, resulting
in missing data. The cyan square indicates the last location the line was in front of the data;
it is in unknown space from this point onwards. (b) The line goes behind the car, again
noting where it encountered unknown space.
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4.2.3 Creating a Detailed Feature

A given line segment can now probe a region of space, detecting emptiness, unknown

space or a surface. These operations are demonstrated in Figures 4.10 and 4.11. The

line image feature is composed of a set of these lines, describing a local region. First, a

central point must be defined, along with a local orientation frame (described earlier in

Section Section 3.3.2), where, for instance, the surface normal forms the z coordinate.

Lines are then positioned parallel to the local z axis, arranged evenly through the

region. This results in a representation similar to a 21⁄2-D height map, with addition

occupancy information, shown in Figure 4.5.

Lines are organised in concentric rings about the central point. This arrangement

allows for different spin orientations to be compared, detailed in Section 4.2.4. In this

work, to produce a detailed feature, 6 rings were used, each one evenly spaced up to

Rdisk. From the innermost ring outwards, the number of lines were 8, 16, 32, 32, 64, 64,

which is 216 in total5. This number is a compromise between computational speed and

sufficient sampling resolution. The underlying raw points have a limited resolution,

5Some figures in this thesis show a reduced number of lines for clarity

(a)

Empty
Unknown
Intercepts
surface

Depth

(b)

Figure 4.12 – (a) A line image computed on a person, with large black surface intercepts.
This is a cross-eyed autostereogram; to see in 3D, cross your eyes until you see three images,
then focus on the centre one. (b) A graphic of the status and depth vectors. Note that there
are only sets of 8, 16, 32 lines here for clarity.
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making very high sampling redundant.

The feature was also restricted to describing a spherical region, with lines beginning

and ending at the spherical boundary of radius 1.2×Rdisk m (this permits the outer

ring of lines some length). Note that this arrangement of lines is not critical; a more

traditional square image is also possible.

4.2.4 Comparing Line Images

With occlusion measured in the feature, it can be accounted for when determining

if two line images f and f ′ are similar (e.g. Figure 4.13). A measure of distance

r, similar to the root-mean-square error (RMSE), is generated from the visible (i.e.

not unknown) portions of the features. An additional value v measures the amount

of visibility, giving a degree of confidence in r. These can be combined in different

manners, depending on the aims of matching and classification.

4.2.4.1 Visible difference and mutual visibility

Each line li is compared with the corresponding line l′i in f ′, to compute the measures

r and v from Equation (4.6). In the simplest case, if f and f ′ contained surface

intercepts only, an appropriate measure of distance would be the RMSE of d and d′.

However, adding occlusion and empty space requires an additional logical step. Each

line has three states: intercepted at a point, empty, or unknown from a point onwards.

The amount they contribute to the comparison value r depends on how much their

respective states conflict.

If a surface intercept on li falls within an unknown region of l′i, it is not appropriate

to increase the distance measure, as there is no conflict in information. Therefore, the

line is not counted in the RMSE calculation, shown in Table 4.3 and Equation (4.6).

However, the information available to calculate a distance between f and f ′ has reduced.

The loss of surface intercepts to occlusion is reflected in v (Equation (4.7)), which is

the percentage of mutually visible points. As an extreme example, if one line image
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Figure 4.13 – Matching two line images on cars, with the right car (f ′) partly occluded.
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contains mostly unknown lines, another line image may only match well if the majority

of the surface intercepts fall in the unknown space. The two features are consistent,

but the amount of information we have is low. This provides a measure of confidence

in r, which may change greatly if unknown regions become observed.

Another scenario is when a surface intercept on li is compared with an empty line l′i,

meriting a large increase in the distance measure. To make empty space distinguishable,

the maximum error for these lines are added to the RMSE function (i.e. the whole

length). A similar case is when the line l′i is empty up to point, from which it becomes

unknown. If li’s intercept depth occurs in the empty portion, it is penalised in the

same manner.

These cases are summarised in Table 4.3. The value r is the RMSE, not including

unknown points, and heavily penalising points in empty space. The value v is the

percentage of mutually visible points.
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Table 4.3 – Different line types and the effects of matching them. This shows the error values
ei and the increment to nr (how many valid error values), which are used in Equation (4.6).
Similarly, the increment to nv (number of mutually visible points) is shown, which is used
in Equation (4.7).

Line states
intercepted at di
all empty
empty up to di, then unknown

li, l
′
i error ei inc. to nr inc. to nv effect

di − d′i 1 2 r changes
|li| 1 1 r increases
|li| 1 1 r increases
- 0 0 v decreases
0 1 0 r decreases
- 0 0

Each line li has the following:

si = line status: intercept, empty, unknown

di = location on line where intercept/occlusion occurred

|li| = line length

ei = line error, defined in the table above

With the resulting distance measures {r, v}:

r =

√∑
e2
i

nr
(4.6)

v =
No. points in f visible in f ′ + vice versa

No. points in f and f ′

=
nv

|{S |si = intercept} |+ |{S ′ |s′i = intercept} |
(4.7)
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Asymmetric distance

The visibility measure v measures how much surface was lost to unknown space

during matching. A slight variation considers only how much surface was lost in ‘one

direction’, from f to f ′.

va(f , f
′) =

No. points in f visible in f ′

No. points in f
(4.8)

In other words, how much surface from f was actually used in matching. This

asymmetric measure permits missing portions to match to more complete instances,

but not vice versa. This can be advantageous, as the previous symmetric measure

would only permit half-visible features to match best to other half-visible features.

This formulation was motivated by the task of clustering, discussed later in Chapter 5,

where exemplars with greater visibility were desired. However, it was found to produce

better results in k-NN classification as well, discussed in the upcoming Section 4.4.

4.2.4.2 Combined distance measure

The two values {r, v} may be used separately, or combined into a single distance

measure. A common task is to compare a target feature with a set of features in

memory. If a distribution of possible matches is desired, matches with a low distance r

may be sought regardless of their visibility v. If only the best matches were desired, as

is the case in nearest neighbour classifiers, then matches with a low r and high v would

be sought. This draws parallels to the spin image similarity metric (Equation (4.2)),

where the number of empty bins is similar to v. In this case, as r is in metres, v is

scaled by the radius of the feature (Equation (4.9)), producing the distance measure

m. Alternately, standard deviations of the r values across a dataset could be used as

scaling factors for v.

m = r − va ·Rdisk (4.9)
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4.2.4.3 Alignment Constraints

The ring arrangement of lines was chosen to allow for an alternate method of comparing

line images without needing alignment in spin. Recall that, while the surface normal6

provides a z axis for the lines, another axis is required to constrain the ‘spin’, to

align two line images. Without this, two line images can still be compared in a

similar fashion to convolution, where all spin angles are compared, and a best match

is returned. However, this can make line images individually less distinguishable,

particularly when a large number of unknown line portions permit a larger number of

matches. In practice, the vertical orientation (parallel to the direction of gravity, as in

Section 3.3.2) produces accurate matching in an urban setting.

This may seem like a step backwards for viewpoint invariance, as objects that roll or

pitch significantly (or sensors which do so) are not matched with non-rotated instances.

However, this is a limitation with the simple feature matching used in algorithms

such as k-nearest neighbours classification, where the different features (parts) of an

object are matched independently. Ideally, any rotation would be permitted, but

with some coherence across the parts of an object. Without this constraint, features

become much less distinguishable; for example, a person can be constructed out of a

combination of improbably rotated and combined car parts. Additionally, without

higher level contextual awareness (such as where the ground is, or how likely a car is

to be rolled 90°), constraining roll and pitch in this context is the simplest approach.

This is further discussed and shown in Section 4.4.

4.2.5 Implementation Details and Assumptions

The line image algorithm was implemented for Velodyne data, but could be applied

to other range image sensors. No pixel structure for the range data is assumed, only a

2D layout of some form. The Velodyne sensor uses 64 lasers in a spinning head, each

producing a row of points at a particular elevation. The points are not sampled in a

precise or regular pattern in azimuth, and the lasers are not evenly spaced in elevation.

6or perpendicular to the linear direction as in Section 3.3.2
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Table 4.4 – Average computation time per single feature (2 m radius), computed on the
Sydney Urban Objects Dataset (Section 4.3). Run on a Core2Duo E8400 3 GHz, single
thread C++.

Feature Generation (ms)
Line Image 1.49
Spin Image 0.096
FPFH 0.345
NARF 0.177

Parts of the range image often have no data due to non-returns. Despite this, the

line image can still form a consistent representation of the world, as unexpected gaps

in data simply results in a line being marked as unknown, without loss of generality.

Thresholds and parameters in this feature (shown in Table 4.2) reflect the expected

density of the range image, as well as the scale and detail of the shapes to be captured.

The computation time for an average line image is shown in Table 4.4, along with

existing features from the literature. The additional complexity makes it about 15

times slower than spin images.

A key assumption this algorithm makes is that the emitted and sensed ray both follow

approximately the same path, and are encapsulated by a single 2D point in the range

image. Relatively large distances between emitter and sensor (with respect to the

operating distance) will break this assumption. The occupancy of a given point can

still be determined, but two range images will be required to inspect the emitted

and sensed ray separately. The extra range image (describing the emitted rays) can

be computed from the original given the relative pose of the emitter to the sensor.

Ultimately, the range image could be substituted for an unstructured set of rays,

but searching for rays that pass near a given line segment would be computationally

intensive.

Another assumption is that the range image is dense enough to not miss entire surfaces

between rays. In the case of LiDAR, rays occupy a certain beam width, with gaps

between rays that are technically unknown space. However, these are unlikely to hold

anything surprising unless the resolution is low enough to miss surfaces. The threshold

ta accounts for large gaps in the image, but the line image would be less informative
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if this was set to occur everywhere. Sensing at such extremely low resolutions relative

to the scale of the desired objects warrants more thorough occupancy mapping.

4.2.6 Caveats

By requiring a specific surface intercept location for each line, small or thin surfaces

that can exist between lines are lost. Structures such as people’s limbs or thin tree

branches require the set of lines to be dense enough to intercept them regularly. This

is in contrast to binning techniques, where a low-resolution feature with large bins

can still capture points, if not their fine structure.

However, poles are successfully captured, due to the PCA keypoint alignment on thin,

linear regions. For instance, a PCA keypoint on a pole provides a local x-axis parallel

to the pole. The subsequent arrangement of lines results in lines sampling the surface

precisely along this x-axis.

In addition, binning techniques permit points to move about within bins, whereas the

line intercept is a relatively rigid registration of the local surface. This may mean the

line image is too specific, with the distance between similar features increasing rapidly

upon slight shape variation or misalignment. This could be detrimental to the ability

to generalise from training data in classification. Some form of blurring or summary

of the depth variation as in NARF [76] could fix this, although it is then difficult to

preserve the occupancy information.

Another issue is the negative effect of small to moderate gaps or occlusions in the

data. These result in the line registering unknown space from that point onwards,

whereas in most cases, the likelihood of a surface occurring in such a space is very low.

For example, if most of the line is in empty space, but encountered a small amount

of unknown space early on, it will be marked as largely unknown. Subsequently, in

matching line images, surfaces are permitted to match to this excessive unknown

space, which was in fact empty space. This issue motivated the transition of the

unknown state to the intercepted state, so that surface information was not lost.

Ultimately, any feature vector will result in the loss of some information present in
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the raw data. This chapter argues that occupancy (in this case, unknown space) is

important information to preserve for viewpoint invariance, but it is equally important

to capture distinguishable information (empty space, intercepts).

Finally, the surface interpolation method could be improved upon. A constant scale

of analysis was used in this work (0.3 m), which was a trade off of surface complexity

and density in Velodyne data. When the density falls too low (e.g. only one horizontal

scan line within 0.3 m), a surface is not generated, and the line image registers only

unknown space at the surface points. This reduces the amount of distinguishing

information at further ranges. More complex multi-scale interpolation would alleviate

this.

4.2.7 Summary

This section contributed the line image, a feature that incorporates occupancy and

surface interpolation in order to attain viewpoint invariance. It exploits the 2D

structure of the range image, performing line traversals in the range image to select

support points to infer occupancy. Surface interpolation is done by simple PCA,

producing a 21⁄2-D representation of the surface with additional occupancy information.

The unknown portions of each line act as wild cards, allowing anything to match to

them, whereas the empty portions contribute distinguishing information. The line

image will be applied to a dataset of objects in the following two sections, where it is

compared to existing features in the task of classification.
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4.3 Sydney Urban Objects Dataset

This dataset [63] contains single Velodyne scans of a variety of common urban road

objects, and was collected in order to test matching and classification algorithms. In

particular, it aims to provide non-ideal sensing conditions that are representative of

practical urban sensing systems, with a large variability in viewpoint and occlusion. It

consists of 588 objects across classes of vehicles, pedestrians, signs and trees, collected

in the Central Business District of Sydney, Australia. These are shown in Table 4.5.

Objects are labelled with two levels of specification. (1) Using 8 classes (simple

class), with each class distinct in shape. (2) Using 14 classes (detailed class), where

similar categories such as 4WD’s, vans and cars are separate. The 14 classes provides

an additional level of difficulty, where subtle shape differences must be captured to

distinguish some classes, such as traffic lights and traffic signs. Using two levels of

specification can better identify misclassification. For example, misclassifying a 4WD

as a car is not as bad as misclassifying a car as a building.

The experimental platform used to collect this data has several sensors, with the

primary focus on this dataset being the Velodyne. Other sensors include a GPS-INS,

visual cameras (e.g. omnidirectional) and 2D SICK LiDARs, which were also logged

but not labelled; these could provide additional sources of information in future. The

full sensory data was logged during a drive through the Sydney CBD (Figure 4.14a).

This environment contained a large number of dynamic objects (vehicles, pedestrians),

with lots of occlusion.
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Figure 4.14 – Dataset location
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Table 4.5 – Object classes

Simple class Detailed class No. instances

Car 4WD

(4 wheel drive)

21

Car 88

Ute

(Tray utility

vehicle)

16

Van 35

Heavy Vehicle Bus 16

Truck 12

Pedestrian 152

Building Building 20

Pillar Pillar 20
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Table 4.5 – (continued)

Simple class Detailed class No. instances

Pole Pole 21

Trunk 55

Sign Traffic lights 47

Traffic sign 51

Tree Tree 34

4.3.1 Labelling Methodology

From the full set of Velodyne scans, individual objects were manually selected and

labelled. Labelling consisted of selecting each point in a given object, using a custom

interactive visualisation application (Figure 4.15). Fast region selection routines from

Section 3.1.3 allowed the use of a 3D spherical ‘paintbrush’ to select and label sets of

points.
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Figure 4.15 – Labelling application

Objects had to be recognised by a human in the point cloud, precluding objects that

were too distant (low density) or occluded to identify. However, for some objects, it

was difficult to distinguish between classes. For example, poles and some smooth,

straight trunks appeared very similar. This motivated their grouping in the 8-class

dataset. The limited sensor field of view in elevation also leads to ambiguities between

poles and traffic signs, and so traffic signs were only labelled thus if the sign portion

was visible. Similarly, trees had to have visible foliage, else they were trunks. Highly

cluttered configurations of objects were avoided, such as pedestrians that were too

close to others to separate, and bikes resting on poles. Segmentation algorithms are

likely to group these, and so being able to classify them is important, but using them

in evaluating classification performance is an additional difficulty, and so is avoided in

this work.

Nevertheless, many recognisable but only partly visible objects were labelled, as this is

predominant in the environment. Traffic regularly occludes other objects, and objects

that are too close or tall are clipped by the limited sensor field of view in elevation.

A combination of close range, highly visible objects and distant or occluded objects
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were chosen, with a variety of orientations. In order to get a reasonable number of

object instances for each class, scans were chosen for the objects they contained, not

at random. The dataset is not an unbiased sample of objects in an urban environment;

rather it provides a variety of object instances, encompassing different class variations,

poses and quality.

The resulting 588 objects were split into four groups, called folds for performing

cross-validation in classification. To evaluate a supervised classification technique,

cross-validation is a method of splitting a dataset into training and testing sets. For

instance, in four-fold cross-validation, the classifier is first trained on the first fold,

with the remaining three folds forming the test data to be classified. This is repeated

with the second fold as training data, and so on. This allows all the data to be used

in training and testing the classifier.

As some labelled scans were taken at relatively close positions along the driven route,

care was taken to ensure that different folds did not share the same underlying, scanned

object (else a classifier would be trained and tested on the same object). Using the

logged GPS localisation, objects were transformed into the global reference frame,

positioning them into the map shown in Figure 4.14a. Distinctly separate regions of

objects were then assigned to one of the four folds. Additionally, for a given class, the

number of objects in each fold was set to be approximately equal.

4.3.2 Variation in Range and Occlusion

To show the variation in occlusion and range in the dataset, this section estimates the

degree of occlusion based on several assumptions. A measure of occlusion can help

identify low quality objects in the dataset, and could be used to evaluate a classifier’s

robustness to occlusion.

First, consider the polar area of an object in a range image. This area varies as the

range to the object changes, and occlusions occur. The relationship between object
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range R, width w, height h and polar area is shown in Equation (4.10).

polar area = arctan
w

R
arctan

h

R
(4.10)

A simple measure of polar area is simply the number of points in an object, as a range

image sensor samples points approximately evenly in polar space. This means that,

for a given object at any range R, with no occlusion, c in the following equation is

constant:

c =
arctan2 1

R

nPoints
(4.11)

Increasing levels of occlusion will increase c, and so this becomes a measure of occlusion.

In order to compare different objects in the same class, a simplifying assumption is

made: the visible surface area of objects across a given class is constant. The polar

area also varies with object rotation; consider for example a frontal view of a car vs a

side view. While this effect can be significant for some objects, it can be considered as

a type of self-occlusion. Without additional annotations to the dataset, it is difficult to

account for, and so is ignored for simplicity. In classes where these two assumptions do

not hold, c becomes less informative. For instance, buildings and trees will rarely have

the same visible surface area, whereas cars and pedestrians are more homogeneous.

The variation in range, number of points, and the associated relative c values are

shown in Figure 4.16. The dataset contains a wide variation of ranges (up to 40 m)

and occlusion levels.
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4.4 Classification With k-NN

In order to compare the efficacy of the line image, it was applied to classifying objects

in the above dataset, along with the three previously discussed local features: spin

images [43], FPFH [71] and NARF [76]. A k-nearest neighbours classifier was used as

a benchmark for comparing features. While there are many more advanced methods

to classify objects from a set of local features, this was used as the simplest method

for comparing different feature types. The next chapter focuses on classification using

more complex methods.

This section will first describe the classification experiments performed, and the metrics

used to evaluate them. Implementation details for each feature are discussed, followed

by the experimental results and discussion.

4.4.1 Experimental Method

For each feature type, objects were classified using the same process. Keypoints

were first extracted on each object, using the PCA keypoint formulation described in

Section 3.3.2. Features were computed about each keypoint, resulting in many features

for each object. As a separate experiment, NARF features were also computed at

NARF keypoints, a much reduced set. The average number of keypoints for each class

is shown in Table 4.6, with computation times in Table 4.7. An exception is FPFH,

which requires computation at every point in its formulation.

All features were computed at the same scale, denoted here as the radius. For the

spin image, the image length was considered the radius, as it corresponds to the

radius of the cylindrical region it sweeps. Furthermore, to remove issues with clutter,

only points on the segmented object were used for feature computation (although

surrounding points were used for occupancy detection in the line image, with any

surface intercepts outside of the target object counted as unknown space).

The objects were split into testing and training sets, with four-fold cross validation.

Given the labelled training set of features, the k nearest neighbours for each test
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feature was found7. To determine a single object class, each of its features provided k

votes, and the class with the most votes was used as the final result.

As each local feature is analysed independently, it must represent a shape which

discriminates its class, necessitating analysis at different scales for each class. To

investigate how features performed at different scales, each object was classified

multiple times, each time using a different radius for the feature size.

Finally, recall that the Sydney dataset had two levels of specification, in that some

objects were given an additional, more specific label. The ‘8 classes’ set of labels

considers relatively distinct categories, whereas the ‘14 classes’ set of labels specifies

vans, utes, trucks etc. Classification was done on the 8-class set and the 14-class set

(i.e. the same data, but with different labels), with results in the following Section 4.4.4

for both.

Table 4.6 – Average number of keypoints (and subsequent feature vectors) for each class.

Class Av. points per
object

Av. PCA key-
points per object

Av. NARF key-
points per object

4WD 660 235 24
Building 2318 1257 62
Bus 1847 603 59
Car 582 183 21
Pedestrian 111 36 5
Pillar 338 181 14
Pole 116 25 8
Traffic lights 164 49 9
Traffic sign 127 28 7
Tree 400 129 21
Truck 2489 678 61
Trunk 243 66 12
Ute 637 261 21
Van 1152 322 33

7k = 3 was used, which gave the best performance in preliminary results
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Table 4.7 – Total keypoint computation time across the whole dataset.

Keypoint algorithm Total in dataset Total computa-
tion time (s)

PCA 100 761 19.41
NARF 10 210 10.25
All points 288 536

4.4.2 Classification Metrics

Several metrics for classification performance are considered. All objects begin with

a ground truth class label, and after classification, receive an inferred class label.

Compiling these two sets of labels into a 2D histogram forms the confusion matrix.

Each row considers all the instances of a given, ground truth class. Each subsequent

column then indicates how many objects in this class were classified as each inferred

class. For example, see Table 4.10. The confusion matrix shows which classes were

often confused as others.

In order to summarise the results into a single number for easy comparison, the F1

[65] and normalised mutual information (NMI) [77] measures are considered.

4.4.2.1 F1 Measure

To compute the F1 measure, first consider a single class. The multi-class confusion

matrix can be reduced into a binary confusion matrix, summarised in Table 4.8.

Table 4.8 – Binary confusion matrix, for a given class of objects.

Classified as this class Classified as not this class
Is actually in this class True positives (tp) False negatives (fn)

Not actually in this class False positives (fp) True negatives (tn)

The elements of this matrix are the counts of objects that were actually in this class
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or not, and were classified correctly or not. These counts define precision and recall:

precision =
tp

tp+ fp
(4.12)

recall =
tp

tp+ fn
(4.13)

Precision measures how often the predicted class labels were actually correct. Recall

measures how many of the actual objects in that class were identified. Thus, a classifier

can be highly precise for a given class (e.g. when it does identify a car, it is often

correct), but with low recall (it fails to identify many cars).

The F1 measure combines precision and recall, and varies from 0 (worst) to 1.

F1 = 2 · precision · recall

precision + recall
(4.14)

It is computed on each class separately. To summarise the results across all classes,

these are averaged together.

4.4.2.2 Normalised Mutual Information

The NMI also ranges from 0 (worst) to 1, and is a measure from information theory

that captures the agreement between ground truth category X and any discrete

assignment Y .

It is defined as follows, with I as the mutual information, and H as the entropy.

NMI(X, Y ) =
I(X;Y )√
H(X)H(Y )

(4.15)

It is computed for each class separately, using the binary classification matrix as above.

It is also computed across the entire confusion matrix for a single, multi-class measure.

This measure is used in evaluating unsupervised classification and clustering, which

is relevant to techniques discussed later in Section 5.2. In this chapter, supervised

classification is performed, and so X and Y both refer to the same class labels.
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However, if for instance, all utes were classified as 4WDs, and vice versa, the NMI

would remain high. Permuting the columns of the confusion matrix does not affect

the NMI.

Just as the F1 measure incorporates precision and recall, the NMI incorporates the

homogeneity and completeness of the assignments, which are two desirable properties

defined in [66] (the NMI is the harmonic mean of the homogeneity and completeness,

and is equivalent to the v-measure [66], shown in [3]). To describe these, imagine the

act of classification as placing coloured balls into buckets. The colour represents the

ground truth X, and the bucket, the inferred class label Y . While in this chapter,

there are the same number of buckets as colours, this need not be the case. After

classification, if each bucket Y only contained balls of a single colour, the results

satisfy homogeneity (however, two buckets may have the same colour). Inversely, if

all balls of the same colour ended up sharing the same bucket, the results satisfy

completeness (however, that bucket may contain other colours).

In supervised classification, the NMI provides a different measure of performance

to the F1 measure. For example, if all vans were consistently classified as cars, the

multi-class NMI would not penalise this as much as the average F1 measure. This is

because only the completeness will be reduced, whereas the precision and recall would

be zero for that class. This is relevant for the Sydney dataset (Section 4.3), where

similar, related classes in the 14-class set (e.g. trunks, poles, signs; and cars, vans

and utes) may end up being inferred as a single class. Alternately, if all objects were

classified arbitrarily as buildings, F1 would be non-zero for that class (as recall would

be high, and precision low but non-zero), whereas the NMI would be zero.

4.4.3 Implementation Details

Line Image

For the line image, this experiment used the distance measure m with the assymetric

va visibility measure (Equations (4.8) and (4.9)). In addition, a match threshold of

0.75 on va was used to remove matches which require a high degree of occlusion, which
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was found to improve performance.

Spin Image

The implementation of spin images followed the method in [43], which involved

binning the scanned points and using bilinear interpolation. The spin image was

found to perform significantly worse using the occlusion-handling similarity metric

(Equation (4.2)), and so the results shown here use the original correlation coefficient

(Equation (4.1)). As for resolution, a 16× 16 spin image was found to perform better

than a lower resolution 8× 8 image.

FPFH

The FPFH implementation from PCL v1.6 [68] was used. FPFH requires surface

normals at all points, and so the bearing graph and cross product method was chosen

(Section 3.2.1.1) to produce as many surface normals as possible. FPFH requires

that the PFH be computed first at all points8 on an object, precluding it from being

computed only at keypoints. Forming a histogram over a dense set of surface normals

also somewhat negates the need for sparser, stable orientations. The number of data

points could be reduced based on a measure of local uniqueness as in [71], but was

left as the full set in this experiment.

NARF

PCL was also used here, however an issue with applying Velodyne data to this

implementation is the uneven spacing between scan lines in elevation. The image

resolution was set to 0.5°, but at least one row of pixels had no data, as a result of

the slightly larger gap between the top and bottom sets of 32 lasers. The internal

interpolation resulted in a slight bump along this gap, which in turn created a line

of NARF keypoints near this artifact. Similarly, the image required square pixels,

necessitating a loss in many points along the more densely sampled azimuth. The

keypoint parameters were modified as to attain as many points as reasonably possible

along object edges and corners, as this was found to improve results.

8with valid surface normals
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Orientation Constraints

Most large urban objects have a vertical orientation, so keypoints were additionally

constrained to only match to other keypoints with a similar sized z component in

orientation. This permits objects to change in position and yaw, but not significantly

in roll and pitch, as discussed earlier in Section 4.2.4.3. This improved results across

all features.

Computation Times

Computation times for the whole dataset at a radius of 2 m are shown in Table 4.9.

Note that FPFH was computed at all points (2.8 times as many features), and so took

longer. k-NN scales by O(n2), and so the resulting time spent computing distances

far outweighs the feature generation times. This motivates more efficient classification

methods. The line image distance metric takes about twice as long as the spin image,

which in turn is twice as long as NARF (and FPFH, if adjusted for the increased

points).

Table 4.9 – Total computation time on full dataset, at 2 m radius, across all folds.

Feature Generation (s) k-NN (s)
Line Image 150.4 2009
Spin Image 9.7 817
FPFH 99.6 2770
NARF, PCA keypoints 17.9 466
NARF, NARF keypoints 2.1 17



126 CHAPTER 4. CAPTURING COMPLEX SHAPE

4.4.4 Results

Beginning with the 8-class set, classification metrics for each class, at each radius,

are shown in Figures 4.16 and 4.17. A summary of the best values across all classes

is shown in Table 4.11. The confusion matrix for line images at their best is shown

in Table 4.10. These are repeated for the more specialised 14-class dataset. See

Appendix C for additional confusion matrices and metrics for each feature.

4.4.4.1 8 Classes

Table 4.10 – The confusion matrix for the line image at 2.75 m radius, showing how many
instances from each true class (rows) were classified as each inferred class (columns).
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Building 20 0 0 0 0 0 0 0
Car 5 154 0 0 0 0 0 1
Pedestrian 0 0 151 0 1 0 0 0
Pillar 2 0 0 14 4 0 0 0
Pole 1 0 2 5 61 5 2 0
Traffic sign 0 5 3 3 25 59 2 1
Tree 2 5 1 0 7 3 15 1
Truck 12 7 0 0 0 0 0 8

Table 4.11 – 8 Classes: Maximum metrics for each feature.

Feature Max F1 Radius Max
NMI

Radius Max Ac-
curacy

Radius

Line Image 0.7 2.75 0.71 2.0 0.72 2.75
Spin Image 0.68 4.75 0.7 3.25 0.69 4.75
FPFH 0.67 4.75 0.53 4.75 0.67 5.0
NARF, PCA keys 0.65 1.75 0.62 1.75 0.64 1.75
NARF, NARF keys 0.61 2.0 0.55 2.25 0.58 2.0
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Figure 4.16 – F1 measure, across different support radii for each feature.
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Figure 4.17 – Normalised Mutual Information (NMI), across different support radii for
each feature.
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4.4.4.2 Specialised 14 Classes

Table 4.12 – The confusion matrix for the expanded 14-class dataset, using the line image
at 1.75 m radius. Truth = row, inferred = column.
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4wd 0 0 0 21 0 0 0 0 0 0 0 0 0 0
Building 0 20 0 0 0 0 0 0 0 0 0 0 0 0
Bus 0 10 2 0 1 0 0 0 0 0 1 0 0 2
Car 2 1 0 85 0 0 0 0 0 0 0 0 0 0
Pedestrian 0 0 0 0 151 1 0 0 0 0 0 0 0 0
Pillar 0 4 0 0 0 13 0 0 0 0 0 3 0 0
Pole 0 0 0 0 0 0 7 1 0 0 0 13 0 0
Traffic lights 0 0 0 1 2 3 1 28 1 0 0 11 0 0
Traffic sign 0 0 0 1 8 3 2 3 25 1 0 8 0 0
Tree 0 3 0 0 2 1 0 1 0 20 0 7 0 0
Truck 0 8 0 2 0 0 0 0 0 0 1 0 0 1
Trunk 0 1 0 0 0 7 5 1 0 2 0 39 0 0
Ute 0 3 0 11 0 0 0 0 0 0 0 0 0 2
Van 0 9 0 12 0 0 0 0 0 0 0 0 0 14
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Table 4.13 – Per-class metrics, 14 classes, line image at 1.75 m.

Class Precision Recall F1 Often confused as
4wd 0.0 0.0 0.0 Car (100%)
Building 0.34 1.0 0.51
Bus 1.0 0.13 0.22 Building (63%)
Car 0.64 0.97 0.77
Pedestrian 0.92 0.99 0.96
Pillar 0.46 0.65 0.54 Building (20%)
Pole 0.47 0.33 0.39 Trunk (62%)
Traffic lights 0.82 0.6 0.69 Trunk (23%)
Traffic sign 0.96 0.49 0.65 Trunk (16%)
Tree 0.87 0.59 0.7 Trunk (21%)
Truck 0.5 0.08 0.14 Building (67%)
Trunk 0.48 0.71 0.57 Pillar (13%)
Ute 0.0 0.0 0.0 Car (69%)
Van 0.74 0.4 0.52 Car (34%)

Table 4.14 – Specialised 14 Classes: Maximum metrics for each feature.

Feature Max F1 Radius Max
NMI

Radius Max Ac-
curacy

Radius

Line Image 0.48 1.75 0.64 1.75 0.5 1.75
Spin Image 0.54 4.75 0.65 3.25 0.53 4.75
FPFH 0.46 2.25 0.49 4.75 0.47 2.25
NARF, PCA keys 0.46 1.75 0.54 1.75 0.47 1.75
NARF, NARF keys 0.42 2.25 0.5 2.25 0.42 2.25
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Figure 4.18 – Class average F1 measure, and NMI on confusion matrix (14 Classes).
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Figure 4.19 – F1 measure, across different support radii for each feature (14 Classes).
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Figure 4.20 – Normalised Mutual Information (NMI), across different support radii for
each feature (14 Classes).
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4.4.5 Discussion

The variation in performance across each class and scale indicates the strengths and

weaknesses of each feature. Each object class contains a different set of distinguishing

shapes, best captured by certain features at certain scales.

Scale

The line image’s best performance is approximately the same as the spin image’s best,

but at a smaller radius of 2 m, compared with the spin image’s 3.25 m. This indicates

that the line image can distinguish different classes based on smaller, constituent parts,

rather than larger regions encompassing most of the object. At these smaller scales,

the surface interpolation and detection of distinguishing empty space enables more of

the geometry to be captured. For the spin image, without interpolation, the density

of some regions may be below the size of the bins at small scales, resulting in poorer

performance. Alternately, at larger scales, the line image degrades in performance,

where the spin image peaks. This could be due to fewer lines in the line image

intersecting the target object, as well as the distance metric enforcing those lines to

be rigidly matched. In contrast, large bin sizes in spin images may allow a greater

variation of shape, as points can move more freely within each bin.

Note that at large scales (spherical regions of 4 m radius), the region encompassed by

the feature is, in many cases, the entire object, negating the concept of classification

by parts and the potential benefits this brings (see Section 2.3.3). Nevertheless, such

‘global’ scales perform best for some features. A general issue with the simple k-NN

method of classification is that small, independent parts have a limited class specificity

on their own, even if as much geometric information is captured as possible. This

becomes more significant at the smallest scales (less than 0.5 m), where most feature

metrics drop towards zero. Large or global object representations are highly specific,

but lack the ability to generalise beyond limited training data. In this experiment,

the former may have been more important than the latter. This motivates other

approaches that combine object parts to produce higher specificity, detailed in the

next chapter.
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Line Image

The line image performed better than others on cars, pedestrians and pillars, and

relatively well on trees, trunks and traffic lights. These objects have distinguishing

silhouettes, and so the corresponding empty space surrounding them was captured

and used in classification.

However, line images confused most buses and trucks with buildings, whereas spin

images were more successful here. These objects are best distinguished at large scales,

with right-angle edges and corners. At smaller scales, the component parts of these

classes are very similar. Again, k-NN considers these parts independently, and so it is

plausible to construct a building out of pieces of a bus’s geometry.

Line images may not be as successful as spin images in capturing the details of these

types of shapes. Consider two surfaces joined in a right angle edge, such as on the back

of a bus (Figure 4.21). A line image captures a 21⁄2-D view of the region, aligned to a

(a) (b)

Figure 4.21 – (a) A line image on the rear surface of a bus. The right side surface is not
intercepted, with only some empty space captured in the non-intercepting lines. (b) A spin
image on the same location, with the bus facing side-on. The image ‘spins’ about the black
arrow, spinning out of the page. The rear of the bus is collated into a line of bins, with
the side face captured along a square section of bins. Spin images may capture more shape
information in this case.
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keypoint on one of the flat surfaces. Half the lines will only intercept the perpendicular

surface, with the other surface facing parallel to the remaining lines. These lines only

capture some of the empty space in front of the parallel surface. Contrast this with a

spin image, which bins all points in the region, not limited to a 21⁄2-D view (albeit

collapsing information along bins). The spin image may be a stronger representation

for this type of geometry.

The expanded vehicle classes (ute, 4WD, van) were all confused with cars, and vans

with buildings. Utes and 4WDs were not very distinguishable with any feature. These

classes may be too similar to distinguish with k-NN, requiring a stronger classifier to

pick out the few shapes which differ. Likewise, the similarly shaped classes of poles,

traffic signs, trees and trunks had some confusion across all features.

Spin Image

Spin images did well on buildings, traffic signs and other thin structures. Due to the

alignment of PCA keypoints on thin regions, the spin image ‘spins about’ the long

axis. In the case of poles, this results in a distinguishing line of bins being occupied. A

wider traffic sign on top falls into bins away from this line. As such, these structures

fall into bins in relatively informative ways.

Spin images did not perform well on trees, potentially due to the scattered, unstructured

internal foliage. Lines in line images often do not reach a tree’s internals, instead

intercepting the outer foliage as a surface, or else becoming occluded.

FPFH

FPFH peaked at larger scales, where a sufficiently distinguishing variation in surface

normals is captured. Trees performed very well; the highly variable overall shape of

trees may be best captured by FPFH’s reduction into a non-spatial histogram. Trucks

and pillars also performed well, having distinct angular structures which translate well

into a histogram of angles. However, it had lower performance on linear structures

such as traffic signs/lights, and pedestrians. Such structures are not well-described by
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their surface normals. However, if linear orientations were incorporated in a similar

histogram, these might be better distinguished.

NARF

NARF, similar to line images, peaked at a small, 1.75 m radius. NARF performed

well on trees and buildings, but not on trucks, traffic signs and pedestrians.

Using NARF keypoints resulted in a drop in performance, although given that there

were ten times fewer keypoints, the boost in computation speed may make this

worthwhile. Pedestrians received only 5 NARF keypoints on average, resulting in a

relatively large drop of 0.2 in NMI. Given that larger objects such as buildings and

trees were reduced to fewer keypoints without significant performance loss, NARF

keypoints may be best applied selectively based on object size.

Specific object failures

Some distant objects failed at the PCA keypoint level, where as few as 5 keypoints were

extracted. The low density of points meant that the fixed radius PCA computation

did not have enough points to proceed. This could be fixed with a more adaptive

selection of scale to compute PCA.

Occlusion of key identifying structures caused some failures. On one large, box-like

set of traffic lights, the associated pole was occluded, and so was classified as a car.

The same occurred for a car-sized tree canopy with the trunk occluded. Incorporating

additional simple object properties such as distance from the ground could alleviate

this.

Summary

Each feature captured different aspects of geometry, with different features being well

suited to certain classes containing favourable distinguishing structures. Line images

were very successful at smaller scales, with only large buildings and trucks being

less accurately classified. Spin images were equally good, but required larger scales

encompassing the whole object. Many sets of similar classes such as vehicles, as well
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as poles, signs and trunks, were consistently confused. With the highest 8-class NMI

at 0.71, the dataset proved very challenging, leaving much room for improvement with

stronger classifiers or still better features.

4.4.6 Conclusion

This chapter presented the line image feature as a way of representing and matching

regions in sparse 3D range image data under realistic conditions of variable density

and occlusion. Occupancy detection within the feature allowed occluded, or unknown,

spaces to be matched with anything, while empty space and surface intercepts provided

a strong description of shape.

The line image was compared with existing features on the task of object classification,

using a collected dataset of urban objects. With a simple k-NN approach, objects

were classified using each feature type, with different scales of support radii compared.

Overall, line images performed equally well to spin images, but did so at smaller scales.

The good performance of line images at smaller scales is encouraging, as small regions

of an object can be matched rather than matching the whole object at once. This

is advantageous for identifying partially observed objects. This also allows classes

with a large variation in global shape to be accurately identified by smaller structures.

Ultimately, the k-NN approach is limited in that each part must be relatively class-

specific, and so object parts are disadvantaged compared to using the whole object.

There is also no clear way to combine different scales of analysis. This motivates other

approaches to combining object parts together for classification. The next chapter

explores techniques to achieve this, utilising the line image’s ability to capture local

shape to learn recurring object parts, followed by more detailed inference on these

parts.



Chapter 5

Classification from Parts

This chapter focuses on applying the line image feature to more advanced classifica-

tion methods, involving clustering and topic modelling. As outlined in Section 2.4,

classification from parts has two aspects to consider: (1) performing inference on the

parts (each represented by a feature vector), followed by (2) classifying the object

from these parts. In the previous chapter, a k-nearest neighbours classifier was used

on each feature, with the votes from all feature vectors in an object pooled to classify

the object. However this approach is limited due to the following issues:

• There is no clear way to combine multiple scales of analysis.

• The relative importance of each part is not considered.

• The structure requires parts to be reasonably class-specific.

• Parts are classified independent of other parts in the object.

• The method scales poorly at O(n2).

An alternative approach is through clustering, which discretises the feature space into

specific, repeatable parts. This allows the distribution of features to be modelled,

enabling more advanced object classification methods. In particular, topic modelling

is a recent approach that shows success in classifying visual images from component

features, and so is examined here.

This chapter makes the following contributions:

139
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(1) The use of Affinity Propagation (AP) clustering on line images to generate

exemplars for each class.

(2) The application of supervised Latent Dirichlet Allocation (sLDA) to classify

objects from multiple scales of line images.

It will be shown that this approach results in significant improvements over k-NN

classification, with an F1 score of 0.82, compared with 0.7.

5.1 Clustering

This section outlines an approach to clustering line images, presenting results on

the Sydney dataset in Section 4.3. These are then used in classification in the next

Section 5.2.

So far in the processing pipeline, a feature vector has been extracted from each region in

the point cloud, allowing shapes to be compared with a measure of distance. However,

classification techniques often go beyond the pairwise matching of k-NN. Instead,

feature vectors are considered as points in a high dimensional feature space, and the

distribution of these points is modelled. For example, modelling the distribution of

points over each class enables Naive Bayes classification, where new data points are

assigned a probability distribution over classes. Note that, in this section, points will

refer to feature vectors in feature space.

One approach to define a distribution in the feature space is through quantization, or

clustering. This process discretises the feature space, with each region defined by a

cluster. A new feature is then assigned to the closest cluster1, allowing statistics to be

collected. The clusters provide a space upon which to do inference. In essence, an

object is reduced into a set of previously observed shape instances.

However, the line image is not a simple vector in euclidean space, and so this requires

some consideration. As a data point, it consists of a standard continuous vector d,

1Multiple closest matches can be used to more accurately localise within feature space in a method
called sparse coding.
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and an additional ‘mask’ s. The measure of distance described in Section 4.2.4 does

not fulfil the triangle inequality, which is a requirement for these features to be in a

metric space. Many algorithms presume a Euclidean space, or at least a metric space.

Without a metric space, comparing more than two data points becomes non-intuitive.

To demonstrate the lack of a triangle inequality, consider two different line images

A and B representing differently-shaped regions, that are completely visible with

no unknown regions present. Now consider a third line image C, with unknown

regions organised in such a way that the RMSE to both fully-visible line images is

zero. That is to say, the partially-visible region in C could in fact be either A or

B. In this situation, the triangle inequality does not hold for the RMSE measure r

(Equation (4.6)), as r(A,B) > r(A,C) + r(B,C). Penalising for unknown regions in

the distance measure m (Equation (4.9)) will increase the right hand side, but does

not guarantee the triangle inequality. In the context of clustering, if point a is close

to cluster c, and point b is close to c, in a non-metric space, it does not follow that

a is near b. Also note that, if the number of unknown lines in c were subsequently

reduced, the similarity of a and b could be increasingly inferred.

5.1.1 Clustering techniques

With this is mind, two general methods to cluster the line image are explored.

(1) The (non-metric) distance measure m, from Equation (4.9), is used to define

a similarity matrix, upon which exemplar-based clustering algorithms are per-

formed, such as affinity propagation.

(2) The line image is interpreted as an instance of incomplete data in a metric space,

where the task of clustering is to infer the missing portions from support data.

The first approach is then implemented in the next section.
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5.1.1.1 Exemplars from the Similarity Matrix

Affinity Propagation [31] (AP) is a relatively recent exemplar-based clustering method,

and is discussed in this section. To motivate this approach, consider the simplest

clustering algorithm of k-means. An immediate issue is that there is no clear way to

compute the mean of a set of line images without ignoring the empty and unknown

portions. Instead, exemplar-based approaches are considered, where an existing data

point is chosen to represent each cluster. Exemplar clustering, and affinity propagation

in particular, has benefits over inferred models (such as a Gaussian mixture model), in

that detail is not lost to an oversimplified model, and the difficulty of inferring more

complex models is avoided [32]. Additionally, a non-metric similarity measure can be

used [25]. Affinity propagation has benefits over other exemplar clustering techniques

such as k-medoids, as it considers all data points simultaneously without an initial

starting set.

It requires a similarity matrix s(i, k), which indicates how suitable point k is as an

exemplar for point i. The entries can be any similarity measure, or the negative of a

distance measure. The matrix can also be sparse to save on computation time and

memory. The diagonal entries s(k, k) indicate how suitable point k is as an exemplar

prior to clustering; these are called the preference values.

The algorithm functions by passing messages between data points i and k. The two

messages are the responsibility r(i, k), and the availability a(i, k). The responsibility

considers the exemplar assignment problem from the point of view of the data point i.

When considering the pair {i, k}, the update rule determines how suitable k is to be

an exemplar for i, given all other possible exemplars k′. Initialising a(i, k) = 0, it is

computed by:

r(i, k)← s(i, k)−max
k′ 6=k
{a(i, k′) + s(i, k′)} (5.1)

The availability then considers the problem from the point of view of the exemplar

k, pooling the responsibility values that each data point i has assigned to k. It is
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computed by:

a(i, k)← min

0, r(k, k) +
∑

i′ /∈{i,k}

max {0, r(i′, k)}

 (5.2)

The self-availability a(k, k) is separately computed:

a(k, k)←
∑
i′ 6=k

max {0, r(i′, k)} (5.3)

After computing r and a for all pairs, the assigned exemplar for point i is:

assignment(i) = arg max
k
{a(i, k) + r(i, k)} (5.4)

Affinity propagation is run by iteratively computing the responsibility and availability

messages. Each update is damped by a constant λ, with the message x set to

λxt + (1− λ)xt−1. It is run until a convergence criteria is met, which can be when the

output exemplar points remain constant for several iterations.

The number of exemplars is controlled by varying the preference values, with smaller

numbers resulting in fewer exemplars. Preferences can be individually set, or all set to

the same value, such as the median value of the similarity matrix. Several additions

to this algorithm exist, such as adaptive AP [89] for scanning preference and damping

values, and hierarchical AP [35].

Applying affinity propagation to missing data presents the following problem: a data

point with lots of unknown space can match well to many other data points. This

could result in points with the most unknown space being chosen as exemplars, simply

because the most data points match to them. As discussed earlier, having a large

amount of unknown space in an exemplar can group two very different points in the

same cluster. Missing data can be penalised by the mutual visibility v, however, this

prevents partially visible points from supporting matching, but more-visible instances.

Thankfully, affinity propagation can use asymmetric similarity measures, and so the

asymmetric visibility va can be used (Equation (4.9)). Combined into the measure m,
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Figure 5.1 – Ideally, data points
with less visibility (more unknown
space) would support matching
instances that are more visible
(shaded) as exemplars.

this allows a largely missing data point to match strongly to a more complete version

(Figure 5.1), but not the other way around.

Additionally, the self-similarity or preference value of each data point could be scaled

by the degree of unknown space in a line image. However, it is often the case that the

geometry is coupled to the degree of visibility as measured. For instance, flat regions

on walls are often fully visible, whereas line images on pedestrians invariably have

unknown space. Such complex shapes, with an aligning surface normal not facing the

sensor, tend to self-occlude. As a result, the preferences were set to a constant value,

purely to control the final number of clusters. Experiments and results from affinity

propagation are further discussed in Section 5.1.2.

5.1.1.2 Modelling Incomplete Data

An alternative approach to clustering is to consider the line image as a data point in

a metric space, but with some dimensions partly missing. This is known as missing

or incomplete data, commonly encountered in surveys [73] and bioinformatics [90].

For example, a line image would be a single vector in a metric space with values

(0.3, 0.4, ?, 0.1, ?, 0), where question marks indicate missing dimensions. This could be

made completely Euclidean if empty space was assigned, for instance, a maximum

negative value. Missing data is typically imputed by a model, and so has relevance in

clustering which seeks to model the different regions in the feature space.

Clustering is done in an iterative fashion, alternately fitting the model and updating

the clusters. This approach can allow k-means clustering when coupled with a model

such as PCA, as in [41], or fuzzy c-means clustering as in [93]. Alternately, instead of
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clustering data points and inferring the missing dimensions, they can be marginalised

away during logistic regression classification [91].

Fitting a model while inferring missing dimensions fits into the framework of the

Expectation Maximisation (EM) algorithm. For example, in a Gaussian mixture

model (GMM), EM alternately infers latent variables (the responsibilities of each

Gaussian for explaining each data point) and Gaussian parameters [8]. The above

missing data elements can also be considered as latent variables, and inferred in the

process of EM. However, for the GMM in particular, the number of free parameters in

the model becomes an issue. With 216 dimensions in the line image, the covariance of

size 216× 216 presents many parameters to fit, particularly when a reasonable number

of clusters are desired per class, as the aim is in modelling all an object’s parts with

clusters.

In summary, this approach is promising because it specifically reasons about unknown

space as a value to be inferred, as opposed to matching heuristics that penalise

unknown space in the exemplar based approach. However, it requires an underlying

local model for each cluster, without too many parameters. This approach was not

pursued, but does present an interesting line of future work.

5.1.2 Experiments

Affinity propagation clustering was used on the object dataset introduced previously

(Section 4.3), in order to perform classification with topic models (Section 5.2). The

goal was to extract a representative number of clusters at several scales of analysis.

As such, line images were generated at radii of 0.5, 1 and 2 m, at PCA keypoints as

in Section 4.4. This resulted in a set of n = 100 761 line images for each scale, across

the whole dataset. Initially, each set of n features were clustered. However, two issues

resulted:

(1) Classes with the most keypoints dominated, with most exemplars extracted from

buildings.
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(2) The memory requirements were high, as three n × n matrices2 were required

(for the similarities, availabilities and responsibilities).

The first issue is, in part, a problem with doing clustering independently from classifi-

cation. The clustering process does not consider how well each class is represented

by the exemplars it produces. This was tackled by clustering each class separately,

acquiring class-specific exemplars. As fewer input data points were clustered at any

one time, this resulted in much smaller matrices, reducing memory and computation

time requirements. The cost of this approach is that it cannot be applied to strictly

unsupervised classification, as class labels are required in this prior step of clustering.

The number of clusters was controlled by varying the preference values of the similarity

matrix, resulting in a set of clusters C for each class, and for each preference value.

As the number of data points also influences the number of clusters, classes with a

large number of keypoints received a large number of clusters at the same preference

value, compared to other classes. In order to balance the classes, cluster sets C of

approximately equal size were selected from each class. Roughly 10 clusters per class

resulted in approximately 500 clusters in total, across all three scales. In order to

classify objects using a four-fold cross validation, clustering was performed only on

training data for each fold (i.e. it was performed four times).

5.1.3 Results

Each feature vector from the dataset was matched to the final set of cluster exemplars.

Many clusters appear to be repeatably localised on a given class of objects (Figure 5.2).

The distribution of associations across classes is shown in Figure 5.3, showing each

class has some degree of representation by the chosen exemplars. Exemplars are

not necessarily class specific. The desired outcome at this stage is that objects are

represented by a collection of shared parts. Classes are subsequently inferred by the

statistics of parts, detailed in the next section.

2Sparse matrices could be used, but this requires an additional heuristic to determine which
similarities are too small.
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(a) Keypoints on pedestrians

(b) Isolated clusters

(c) Keypoints on cars (no raw points)

(d) Isolated clusters

Figure 5.2 – (a) Clusters on pedestrians, with each keypoint coloured by cluster association.
Small grey points are the raw sensor data. (b) Separate cluster associations, showing clusters
approximately matching to heads, shoulders, torsos, legs. (c) (d) The same on cars (with
different colour-to-cluster mappings from pedestrians).
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Figure 5.3 – Probability of each cluster (row) given each class (column), i.e. columns sum
to 1. Clusters are arranged by originating class, showing a faint diagonal. While some
clusters are class-specific, many are shared across several classes. Typical similarities can be
observed, such as clusters present in cars also present in 4WDs, utes and vans. This is for a
1 m radius feature.
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5.1.4 Summary

Affinity propagation was applied to line images, with the asymmetric distance measure

allowing less visible instances of shapes to support more visible ones. Imbalances in

the number of data points in each class necessitated per-class clustering, followed

by selecting the preference values which provided an approximately equal number of

clusters from each class. The resulting clusters were specific to different regions of

objects, and had a degree of class specificity and class coverage. These clusters will be

used to support classification in the next section.

5.2 Classification with Topic Models

This section applies topic modelling to classify 3D objects using line images and the

above clustering results. Topic models were introduced earlier in Section 2.4.2, and

provide a generative model that captures some underlying statistical relationships

between the parts of an object, allowing for richer classification. Topic models are used

in computer vision [28, 18, 74], and have recently been applied to 3D point clouds [27]

using a modified spin image.

To re-iterate the basics of topic modelling from Section 2.4.2, objects are comprised

of a set of feature vectors, with each instance capturing the local shape of an object

region. Each instance is associated with a cluster, allowing it to be summarised by

the cluster I.D., or codeword. Each object, also referred to as a document in this

context, is summarised by a set of these codewords, in this case from a vocabulary of

approximately 500 codewords (the total number of clusters from the previous section).

This set of codewords is known as a ‘bag of words’ representation [21].

Now consider the simplest form of topic model: Latent Dirichlet Allocation [10] (LDA).

This model describes how an object is generated. Consider a fixed number of K topics:

(1) Each topic βk is a distribution over the vocabulary of words.

(2) Each word w in a document d is generated from a topic (zd,n is the assignment

of word n in document d to a topic).
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(3) Each document has a distribution over topics θd.

In the process of training the model (shown in graphical form in Figure 2.11), the

distributions that comprise topics and documents are encouraged to be sparse. This

results in topics loosely capturing co-occurring shapes within objects.

5.2.1 Multi-class Supervised LDA

LDA is an unsupervised classification method, where each topic can be considered as a

class. However, this is not strictly necessary; topics are simply co-occurring codewords

(parts). A larger number of topics than classes can be used, and the distribution over

topics can be used as a feature vector. This (single) vector can then be used with

standard supervised classifiers. However, a better approach which integrates class

labels into the graphical model itself is in supervised LDA [11] (sLDA). Each document

has an associated response variable that the model is to predict, given labelled training

instances. The response variable was originally formulated to be generally applicable

to any type of data, such as predicting movie ratings from reviews [11]. This was

extended to the multi-class case in [87] for image classification, resulting in topics

which best predict classes.

This section focuses on using multi-class sLDA for 3D data, which results in classifi-

cation scores 10% better than from the best k-NN classification in Section 4.4. This

is the first work to apply sLDA to 3D data, to the best knowledge of the author. It

provides a framework for combining multiple scales of local features, while finding

correlations between features which best distinguish class.

5.2.1.1 Model

This section provides a review of multi-class sLDA, as described in [87]3. An object

(document) d is generated by drawing items from the Dirichlet (Dir) and Multinomial

(Mult) distributions, following the process shown in graphical form in Figure 5.4:

3 Note that the model in [87] also included an additional step for handling image annotations,
which is not used here.
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wd,nzd,n N

D

βkθdα K

Yd ηc
C

wd,n : the nth word from document d.
zd,n : the topic which generated the corresponding word.
θd : topic proportions for document d.
Yd : the document’s class label.
β1:K : the K topics (distributions over words).
η1:C : the C class-specific topic frequency coefficients.
α : Dirichlet hyperparameter.

Figure 5.4 – Graphical model of sLDA.

(1) Draw the topic proportions θd ∼ Dir(α).

(2) For each keypoint on the object:

(1) Draw a topic assignment zn|θ ∼ Mult(θ).

(2) Draw a codeword wn|zn ∼ Mult(βzn).

(3) Draw class label c|z1:N ∼ softmax(z̄, η), with:

z̄ =
1

N

∑
n

zn (5.5)

softmax(z̄, η) = p(c|z̄, η) =
exp(ηTc z̄)∑
l exp(ηTl z̄)

(5.6)

In determining the class label for an object, z̄ is a vector of the frequencies of each

topic, and η1:C the weights. These weights are estimated when training the model,

and so classes in sLDA consist of regions in the topic frequency space.

Note that sLDA uses the empirical frequencies of word-topic assignments, rather than

the topic proportions θd. As described in [11], this is because, while θd ought to

describe these frequencies, an issue occurs if θd is additionally used to explain classes.

When estimating the model, some topics can end up explaining classes instead of
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words. Such topics would not assist inferring the class given the words. Instead, with

z̄, topics must explain both words and classes during estimation.

5.2.1.2 Training

Training seeks to maximise the likelihood of the words in an object, and the object’s

class label. From the point of view of the class, a given object has a point in the topic

frequency space, whose position is controlled by the set of word-topic assignments

zn. The boundaries between class regions are also controlled by the topic coefficients

η1:C . The goal is to move this point and the boundaries to correctly separate the

classes. From the point of view of the words, each word is assigned a topic by zn,

which maximises the likelihood of that word. However, only a few topics per document

are permitted through θ, due to the Dirichlet prior and in order to maximise the

log-likelihood. Likewise, topics can only contain a few words through β.

The process of training the model was followed from [87]; a brief overview will be given

here. Training consists of estimating the parameters, which includes the topics β1:K

and the class coefficients η1:C . In order to do this, the latent (per-document) variables

must also be estimated, across the labelled training dataset. These consist of the topic

proportions per object θd and each word’s topic assignment zd,n. The latent variables

are estimated by computing the conditional distribution of the latent variables, given

an initial set of model parameters and a labelled dataset. This is approximated using

variational inference.

Variational inference allows the true posterior distribution to be approximated by a

set of simpler, tractable ones. The process minimises the KL-divergence between the

true and approximate distributions. In this case, a factorised distribution [8] is used

(also known as the mean-field method) to simplify computation. This considers the

approximating distribution q for each latent variable as independent. Each q is then

optimised in turn, holding the other distributions constant, iteratively refining the
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approximation. The factorised distribution is

q(θ, z) = q(θ|γ)
N∏
n=1

q(zn|φn) (5.7)

where the parameters fitted are γ, a Dirichlet distribution over topics, and φn, a

multinomial over topics.

Once this variational posterior is computed, the model parameters β1:K and η1:C are

estimated. EM is used, where the E-step consists of inferring the above variational

posterior for the latent variables. The M-step then estimates the parameters, and

these steps are repeated until convergence. For the full formulation, see [87].

5.2.1.3 Classification

Once training is complete, test objects can then be classified. This involves inferring

the class labels given an object’s words. First, the latent variables are estimated as in

training. Second, the probability p(c|z̄, η) (Equation (5.6)) is approximated as in [87],

with the softmax function becoming a simple maximum. With φn as the variational

approximation of zn, replacing z̄:

c = arg max
c

ηTc φ̄ (5.8)

5.2.2 Experiments

The implementation of multi-class sLDA available from [88] was used. As before, the

Sydney dataset (Section 4.3) was split into four folds. The previous Section 5.1 yielded

several sets of cluster exemplars, with a set:

• for each fold (clustered on the associated training data),

• for each scale of 0.5, 1 and 2 m radius.

For a given fold and scale, the line images from each object were assigned the closest

exemplar, or codeword. This resulted in a given object having a set of codewords,
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which was summarised as a histogram over the vocabulary (i.e. the counts of each

word in the object). The is the bag of words model.

The training objects were then used to train the model, with sLDA estimating the

topics β1:K and per-class topic frequency coefficients η1:C . These were then used to

infer the classes of the test objects.

The number of topics was varied, with results shown in Figure 5.5a. The number of

clusters per class was also varied, shown in Figure 5.5c.

5.2.3 Results

The results from varying the number of topics are shown below. The metrics are

from the 14-class dataset. With 200 topics providing the best result, the confusion

matrices and class-specific metrics are then examined. This is shown first with the

8-class dataset in Section 5.2.3.1, and repeating again for the 14-class dataset in

Section 5.2.3.2. In addition, the matrices underlying the ‘code-word to topic’ and

‘topic to class’ mapping are visualised in Figures 5.7 and 5.8, and further discussed in

Section 5.2.4.

Note that, in this chapter, the clustering, training and classification are performed on

the 14-class set only. The 8-class results are purely a post-classification step grouping

the results of vans, 4WDs etc.
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Figure 5.5 – Metrics on the full 14-class dataset, with a varying number of topics. 200
topics produced the best result, at the cost of a long training time (although testing takes
less than a minute). Increasing the number of clusters per class had a small negative effect
on performance.
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5.2.3.1 8 Classes

Table 5.1 – Metrics for the 8 classes classified with sLDA, compared with the best from
k-NN.

Metric sLDA k-NN
Average class F1 measure 0.82 0.7
NMI 0.76 0.71
Average class accuracy 0.82 0.72

Table 5.2 – The confusion matrix for sLDA.
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Building 18 0 0 0 0 0 1 1
Car 0 155 0 0 0 0 1 4
Pedestrian 0 0 151 0 1 0 0 0
Pillar 0 0 0 16 4 0 0 0
Pole 0 1 2 6 49 15 3 0
Traffic sign 0 1 2 0 13 79 2 1
Tree 0 0 1 0 2 2 29 0
Truck 1 9 0 0 0 1 0 17

Table 5.3 – Per-class metrics, 8 classes.

Class Precision Recall F1 Often confused as
Building 0.95 0.9 0.92
Car 0.93 0.97 0.95
Pedestrian 0.97 0.99 0.98
Pillar 0.73 0.8 0.76 Pole (20%)
Pole 0.71 0.64 0.68 Traffic sign (20%)
Traffic sign 0.81 0.81 0.81 Pole (13%)
Tree 0.81 0.85 0.83
Truck 0.74 0.61 0.67 Car (32%)
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5.2.3.2 Specialised 14 Classes

Table 5.4 – Metrics for the specialised 14 classes classified with sLDA, compared with the
best from k-NN.

Metric sLDA k-NN
Average class F1 measure 0.65 0.48
NMI 0.68 0.64
Average class accuracy 0.63 0.5

Table 5.5 – The confusion matrix for sLDA.
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4wd 4 0 0 16 0 0 0 0 0 0 0 0 0 1
Building 0 18 1 0 0 0 0 0 0 1 0 0 0 0
Bus 0 0 11 3 0 0 0 1 0 0 0 0 0 1
Car 4 0 0 81 0 0 0 0 0 1 0 0 2 0
Pedestrian 0 0 0 0 151 0 0 0 0 0 0 1 0 0
Pillar 0 0 0 0 0 16 1 0 0 0 0 3 0 0
Pole 0 0 0 0 0 0 8 1 4 0 0 8 0 0
Traffic lights 0 0 0 0 1 0 0 33 5 2 0 6 0 0
Traffic sign 0 0 0 0 1 0 1 7 34 0 1 6 1 0
Tree 0 0 0 0 1 0 0 1 1 29 0 2 0 0
Truck 0 1 1 3 0 0 0 0 0 0 5 0 1 1
Trunk 0 0 0 1 2 6 1 8 2 3 0 32 0 0
Ute 0 0 0 11 0 0 0 0 0 0 0 0 5 0
Van 2 0 2 14 0 0 0 0 0 0 2 0 1 14
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Table 5.6 – Per-class metrics, 14 classes.

Class Precision Recall F1 Often confused as
4WD 0.4 0.19 0.26 Car (76%)
Building 0.95 0.9 0.92
Bus 0.73 0.69 0.71 Car (19%)
Car 0.63 0.92 0.75
Pedestrian 0.97 0.99 0.98
Pillar 0.73 0.8 0.76 Trunk (15%)
Pole 0.73 0.38 0.5 Trunk (38%)
Traffic lights 0.65 0.7 0.67 Trunk (13%)
Traffic sign 0.74 0.67 0.7 Traffic lights (14%)
Tree 0.81 0.85 0.83
Truck 0.63 0.42 0.5 Car (25%)
Trunk 0.55 0.58 0.57 Traffic lights (15%)
Ute 0.5 0.31 0.38 Car (69%)
Van 0.82 0.4 0.54 Car (40%)
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Figure 5.6 – A dendrogram showing similarities between classes. This was built by taking
the average distribution of topics for each class, and applying hierarchical clustering. This
results in intuitive groupings such as between vehicles, and signs/poles.
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Figure 5.7 – The per-class, per-topic coefficients η1:C (darker is higher). To classify an
object (Equation (5.8)), each class (row in the above) receives a score, computed as follows.
Consider the object’s topic frequencies z̄, a vector of equal length to a row in the above
figure. These are multiplied with the class/row of η above, and summed to produce the class
score. The class with the maximum score is chosen as the output. As such, if an object
contains a topic that falls in a dark-shaded cell for a given class, that class becomes more
likely. (In actuality, there are only 13 rows of η, with the final class defined by a score of
less than 0; η can contain negative elements. The above visualisation considers the last row
as all zeros, and normalises each column to range from 0 to 1.)

0 100 200 300 400 500

0

50

100

150

Code-words

T
op

ic
s

Figure 5.8 – The distribution of codewords (columns) over each topic (rows), so each
row sums to one. Darker corresponds to more probability. Each topic (row) encodes the
co-occurrance of shaded codewords.
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5.2.4 Discussion

Using only 14 topics results in poor performance; this case treats each topic as

representing one class. There is significant improvement at 50 topics, continuing to

increase up to 200 topics. Beyond 200 topics, overfitting occurs and performance

slowly decreases. In comparison, visual sLDA in [87] was performed on 8 classes

of whole images in particular settings or activities, where 100 topics was found to

be optimal. Figure 5.7 shows how topics relate to classes, with some topics shared

between classes, and some that are class-specific. With 200 sets of co-occurring shapes,

there is a large latent space to separate classes. Using this number of topics reinforces

the interpretation of topics as subcomponents of a class, and not directly as classes

themselves. Using too few topics limits the ways two classes can differ. Using too

many topics results in overfitting the model, impacting its ability to generalise to new

data. The optimal number of topics may depend on the size and variability of the

dataset, with more classes warranting more topics.

To examine what each topic encodes, the distribution of words over topics is shown

in Figure 5.8. Words are sparse, with approximately 5 to 10 words of significant

probability in each topic. Thus, each topic reflects roughly 5 parts that are likely to

occur together in an object. Some words are more common across topics, seen as

vertical bands. These occur regardless of other shapes, and so have a greater degree

of statistical independence.

Using more exemplars for each class had a small negative effect. It may be that

splitting the small dataset up into an even more verbose dictionary of codewords

reduces the ability to find salient topics. As clustering is performed in isolation to

training the model, the exemplars chosen are not optimal.

This approach produced significant gains over k-NN (Tables 5.1 and 5.4), with 10%

gains in accuracy metrics in both 8-class and 14-class datasets. Looking at the 14-class

results, the NMI increases from k-NN’s 0.64 to sLDA’s 0.68, a less significant gain

than the F1 increase from 0.48 to 0.65. Recall from Section 4.4.2 that NMI permits

two classes to be grouped, whereas the F1 measure is strict in considering misclassified
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objects. This indicates that the classes previously being misclassified were being

consistently placed in another class. With sLDA, they are now being distinguished.

One issue with the k-NN results was the large number of false-positive buildings,

particularly with buses, trucks and vans (Table 4.12). This may be because flat regions

are common to these classes, and there are many more flat parts on buildings, resulting

in many k-NN votes for this class. In contrast, sLDA results in high precision for

buildings. It considers sets of regions rather than independent pooling, improving the

ability to distinguish these objects.

While training can take several hours for a large number of topics (Figure 5.5b),

classification is very fast, taking only 46 s for all folds of the dataset for the 200 topics.

This excludes feature generation and matching to exemplars, although there are only

approximately 500 exemplars whose distances must be computed. This contrasts with

the half-hour classification time of k-NN.

Specialised classes such as 4WDs, utes and vans are still not clearly separated from

cars. However, buses, traffic signs and trees perform much better. Some insight

into the similarities of classes is shown in Figure 5.6, where they are arranged in

a dendrogram, formed from hierarchical clustering on the average topic vector of

each class. Two possible approaches could further improve these subtle classes:

(1) Clustering techniques that identify class-specific exemplars. (2) Hierarchical

classification such as in [74], in order to acknowledge the commonalities that group

classes like vehicles, and focus on more subtle differences.

5.2.5 Conclusion

This section applied multi-class supervised LDA to 3D object classification. Using a

dictionary of codewords from the previous clustering stage, each object was represented

as a set of codewords. This allowed multiple scales of analysis to be combined, as each

scale simply provided another set of codewords. The model then learned topics, or

co-occurring sets of codewords, with each object summarised by the frequencies of

each topic. These topic frequencies were used to distinguish object classes. The best
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F1 score of 0.82 was achieved by using 200 topics, a significant gain over the k-NN

approach of the previous chapter. As such, this approach provides a principled way of

combining local features for object classification.



Chapter 6

Conclusion

This thesis has presented an approach for performing object classification on sparse

range images, with an evaluation on urban field data from a Velodyne LiDAR. The

emphasis has been on the following.

• Addressing the effects of sparsity and noise in the data during low level operations

such as surface normal computation.

• Forming invariant and distinguishing local shape representations, allowing object

parts to be matched.

• Using these local shape representations to classify objects.

Without an effective local shape representation, it becomes difficult for classification

algorithms to generalise beyond the pose and shape of training instances.

This chapter summarises the proposed solutions presented in this thesis, and suggests

future directions for this work.

6.1 Summary of Contributions

The processing steps proposed in this thesis are combined into a pipeline in Figure 6.1.

These are grouped as: (1) abstracting from raw data to basic geometric information,
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Sensed range image / 3D points

Bearing graph Cross product
surface normals

Minimum valid scale

Range image grid Region selection PCA

Keypoints

Line image

Clustering (training) Labelled dataset

Topic model training

Classification

(Line traversal,
occupancy)

(Surface interpolation)

Chapter 3
Basic Geometry

Chapter 4
Feature Extraction

Chapter 5
Classification

Figure 6.1 – The presented pipeline from sensory data to classification, linked to each
relevant section.

(2) the line image feature for capturing a complex, local shape representation, and

(3) using sets of line images for classifying objects.

6.1.1 Low Level Shape Analysis

Chapter 3 presented several processing steps from raw point clouds to simple surface

regions and their properties. It examined region selection and the various data

structures supporting this, followed by surface normal computation. Keypoints were

examined, which define specific locations and orientations for features. Contributions

included:

• Using the range image for efficient spherical region selection.

• Using the bearing graph for defining a minimum valid scale of analysis.

• Performing traversal on the bearing graph to select further neighbours for surface

normal computation via the cross product method.

• Keypoints derived from PCA eigenvalues, providing locations at stable orienta-

tions.
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6.1.2 The Line Image

Chapter 4 presented the line image feature. This feature incorporated occupancy

information in order to capture distinguishing information while remaining invariant

to changes in viewpoint. It involved a set of parallel 3D lines aligned to the surface,

probing for the depth of the interpolated surface. Using the range image, each line was

considered as being ‘in front’ or ‘behind’ the sensed points, allowing lines to register

occlusion (unknown space) and empty space. Missing data in the range image was

likewise registered as unknown space. This produced a local 21⁄2-D representation of

occupancy. The distance measure between two line images permitted unknown space

to match to anything, while penalising violations of observed empty space.

The Sydney Urban Objects Dataset was introduced, providing a means to compare

the line image with several existing features on the task of object classification.

Using a simple k-NN classifier, different features and support scales were compared.

Line images performed equivalently to spin images, but at smaller scales of analysis,

encompassing parts rather than whole objects.

To summarise, the contributions of this chapter were:

• Efficient occupancy detection along a 3D line using joint reasoning in the range

image and 3D point cloud.

• An approximate, fast surface interpolation method using PCA.

• The line image formulation using the above, with a distance metric to allow

regions to be compared consistently.

• The Sydney dataset, consisting of 588 urban objects across 14 classes, scanned

with a Velodyne.

• A feature comparison study with Spin Images, NARF and FPFH, applied to

object classification with a k-NN classifier.
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6.1.3 Classifying from Local Features

The k-NN approach assumes each feature is independent, which can mean reduced

performance for smaller scale, part-sized shapes. In order to use more advanced

classification techniques, clustering was examined in Section 5.1, allowing the feature

space to be reduced into a set of clusters. Affinity propagation was used to cluster

line images with an asymmetric distance measure, allowing less visible instances of

line images to support more visible ones.

Using these clusters as a dictionary of codewords, Section 5.2 examined the use

of multi-class supervised LDA for 3D object classification. Each line image in an

object became a codeword (its nearest cluster exemplar), reducing an object into

a bag of words. This representation permitted multiple scales of line images to be

combined. Given the labelled training dataset, the topic model then learned topics,

which encoded co-occurring sets of codewords. The classification process involved

inferring each object’s topics using the learnt model, and using the frequency of topics

to predict the class. This process was faster than k-NN, and produced a higher F1

score of 0.82.

In summary, this chapter’s contributions were:

• An approach to clustering partially-missing data, using an asymmetric distance

metric and affinity propagation.

• The application of multi-class supervised latent Dirichlet allocation to 3D object

classification, using multiple scales of analysis.

6.2 Future Research

There are potential improvements or extensions for each section of this thesis. These

involve keypoints, surface models, and improvements to the line image and associated

distance measures. In terms of machine learning, there is the potential for incorporating

more information from the line image and geometry, as well as better models for

clustering and classification.
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6.2.1 Keypoint and Surface Definition

A large issue with the PCA keypoint algorithm is that large, flat surfaces received

many points, which increased the computation burden and redundancy. One way

around this would be to compute PCA at an additional, larger scale, and subsample

large flat areas more heavily.

A general issue with defining keypoints from simple analyses such as PCA and

curvature is that informative regions can be disregarded before any complex shape

analysis is performed. A flat region is informative for distinguishing class, but many

overlapping flat regions are redundant. To solve this, keypoints as sparse, well-localised

positions could be revisited after clustering. Features such as line images would first

be computed as before, at all locations as defined by simple PCA keypoints. Then,

these features would be matched to a set of exemplars. For each region, the feature

with the best match to an exemplar would be kept, and the rest discarded. This way,

instead of a given region of points producing a set of the same, redundant codewords,

a single codeword is produced. Final keypoints are aligned to where an exemplar was

found to match. Such a scheme would not lose information naively, while producing

fewer, localised keypoints.

Another area of ‘low level’ future work is in surface interpolation, which the line

image relies on. PCA is currently only computed at a single scale, with areas of very

low density not receiving any interpolated surface. Instead, multiple scales could be

computed, as determined from the bearing graph. An alternative is surface modelling

in the range image space. For instance, a Gaussian process could yield more effective

results, if an efficient formulation was used.

6.2.2 Line Image Formulation

Several other aspects of the line image could be modified and improved, as touched

upon in Section 4.2.6. The line image still requires much more computation power

than spin images. Two aspects that influence this are the number of lines, and the
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length of lines. Using many lines provides more detail, and too few lines can lead

to some smaller surfaces being missed altogether. One modification would be to use

fewer lines, but to analyse a larger region with each line, effectively turning lines into

cylinders. Rather than looking for where a specific line intercepts a surface, a cylinder

can encompass a surface patch. Additional surface properties could also be captured,

such as PCA eigenvalues.

Long lines result in more points to select, sort and traverse. The line length in the

current formulation is set by the overall spherical size of analysis, but the surface

of interest1 and surrounding volume only occupies a small portion of the line. Long

lines can also encounter unknown space, or even other surfaces, before encountering

the visible surface of interest. This is difficult to improve upon without making

prior assumptions of where the relative surface depth may be. As a result, the line

formulation searches all depths. A rough surface model over the spherical region could

define a reduced space to inspect.

Another option is to disregard lines altogether, and detect surface depths using another

method (e.g. simple projection). In order to capture the occupancy at locations without

Locations without a surface could then be assigned an ‘inspection depth’, based on a

neighbouring surface depth. This defines a 3D point whose occupancy can be inspected

with the range image, in order to capture things like empty surrounding space, or

occluded space.

6.2.3 Distances and Clustering

The distance measure between line images could be improved. The current measure

involves matching heuristics that could be based on something more principled. If line

images were modelled as incomplete data, as suggested in Section 5.1.1.2, a distance

measure based on information theory may be applicable.

In addition, the line image is essentially a small image patch, and so second-order

features of the line image itself could be considered. The challenge, as in clustering, is

1This is nominally at the keypoint where the feature is being computed
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to incorporate the unknown and empty space. One method would be to use a set of

linear filters, similar to Gabor filters in vision. Each filter would describe some aspect

of the line image’s surface intercepts or empty regions. For example, a filter could be

specific to a flat portion, or a transition from surface to empty space. This transforms

the line image into a set of filter weights. Unknown portions could be represented by

considering a distribution over each weight.

For clustering, the approach of Section 5.1.1.2 could be pursued, where each cluster is

modelled, considering the unknown space as missing data to be inferred. Additionally,

if clustering was done jointly with classification [92], the clusters chosen could better

distinguish each class.

6.2.4 Classifying from Multiple Parts

A natural area of continuation for this work is exploring better machine learning

approaches to classification from constituent parts. A simple extension would be

permitting each line image to be associated to a distribution of codewords, accounting

for the range of potential matches due to unknown portions of the feature.

A significant source of information that is lost in the bag-of-words representation is

larger scale structure. The geometric arrangement of codewords could be considered.

The geometric consistency of features across two different objects can be used to align

and match them [43, 71]. Generalising this to classification could take the form of

constellation models [29] or other graphical models [19], although this may require

sparse, well localised keypoints. Another approach in topic modelling does this [18] by

over-segmenting the image into patches, and then limiting the codewords within each

patch to be from a single topic. Topics then reflect words that are spatially nearby.

Segmentation could also be revisited in the context of classification, for example with

MRFs, as discussed in Section 2.2.

Other sources of sensory information could be added to the process, for instance,

colour imagery of each object. Standard colour vision approaches could generate visual

words, which can be added to the dictionary.
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6.2.5 Other Applications

One aspect that was not in the scope of this thesis was tracking. In the target

scenario of video frame rates in dynamic environments, multiple observations provide

an additional source of information. In [51], classification of tracks of objects produced

good results. If a specific region was tracked, for instance by localised keypoints or

from matching line images, the line images across observations could be merged in a

filter. This could permit unknown space to be filled in by subsequent observations.

In the field of planning and next best view prediction, a common objective is to move

the robot to a location for better sensory data. A line image allows limitations in

sensory data to be connected to semantic uncertainty. For example, there could be a

region that, due to occlusion, could belong to a person or a trunk. If this object’s class

hinged on that region, moving to better observe this target would take precedence.
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Appendix A

Principal Curvature

Surface normals can be interpreted as the derivative of the surface, and the second order

derivative is called the principal curvature. It consists of the vector p1, tangential to

the surface along which the surface curvature is the greatest, and p2, the perpendicular

vector along which the curvature is the least (diagram).

The method called QuadTransSVD in [46] was used. This involves computing the

surface normals with PCA as in Section 3.2.1.2, then tranforming the points to a

local frame defined with the z coordinate parallel to the surface normal. A quadratic

surface is then fitted to the data. This procedure requires six or more neighbours.

More efficient but noisy approaches are possible using the graph structure to define

curvature.
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(a) Dense, well sampled regions

(b) Sparser region

Figure A.1 – Principal curvature calculated on a Velodyne scan.



Appendix B

PCA Keypoint Algorithm

The keypoint extraction algorithm for a given Velodyne scan is as follows:

(1) A bearing graph structure is computed, as in [58], shown in Figure 3.2.

(2) Region selection. A spherical region of points (of a given radius) is selected

about each point p, using the range image grid method in Section 3.1.3 for speed.

(3) Minimum valid scale filtering. Regions with an insufficient sample of points at

this radius are disregarded, as described in Section 3.1.2.2.

(4) PCA is computed on each region. This provides a mean point (the average 3D

position of all points in the region), eigenvalues and eigenvectors for each region.

(5) Surfaceness and linearness are computed using the eigenvalues of each region, as

in [48], shown in Figure 3.12. Highly flat and linear regions are chosen using

two thresholds.

(6) For these regions, the mean point is used as the keypoint position.

(7) The frame orientation is computed, as outlined in Sections 3.3.2.1 and 3.3.2.2.

(8) Final sub-sampling. Many mean points are often in close proximity, so they are

subsampled. An example of the resulting keypoints is shown in Figure 3.13.
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Appendix C

Additional k-NN Results

C.1 Spin Image, 3.25 m

Table C.1 – Confusion matrix for Spin Image, 3.25 m.
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4wd 1 0 0 20 0 0 0 0 0 0 0 0 0 0
Building 0 20 0 0 0 0 0 0 0 0 0 0 0 0
Bus 0 5 7 1 0 0 0 0 0 0 2 0 1 0
Car 3 0 0 84 1 0 0 0 0 0 0 0 0 0
Pedestrian 0 0 0 0 152 0 0 0 0 0 0 0 0 0
Pillar 0 0 0 2 1 9 0 0 0 0 3 3 0 2
Pole 0 0 0 0 0 0 4 1 1 0 0 15 0 0
Traffic lights 0 0 0 0 7 2 0 27 4 0 0 7 0 0
Traffic sign 0 0 0 0 8 0 0 4 35 0 0 4 0 0
Tree 0 7 0 9 3 0 0 2 0 5 0 8 0 0
Truck 0 5 0 0 0 0 0 0 0 0 5 0 1 1
Trunk 0 3 0 0 2 7 3 0 0 1 0 39 0 0
Ute 0 0 0 12 0 0 0 0 0 0 0 0 2 2
Van 0 1 1 10 0 0 0 0 0 0 1 0 0 22
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Table C.2 – Per-class metrics, Spin Image, 3.25 m.

Class Precision Recall F1 Often confused as
4wd 0.25 0.05 0.08 Car (95%)
Building 0.49 1.0 0.66
Bus 0.88 0.44 0.58 Building (31%)
Car 0.61 0.95 0.74
Pedestrian 0.87 1.0 0.93
Pillar 0.5 0.45 0.47
Pole 0.57 0.19 0.29 Trunk (71%)
Traffic lights 0.79 0.57 0.67
Traffic sign 0.88 0.69 0.77
Tree 0.83 0.15 0.25 Car (26%) Trunk (24%) Building (21%)
Truck 0.45 0.42 0.43 Building (42%)
Trunk 0.51 0.71 0.6
Ute 0.5 0.13 0.2 Car (75%)
Van 0.81 0.63 0.71 Car (29%)
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C.2 FPFH, 4.75 m

Table C.3 – Confusion matrix for FPFH, 4.75 m.
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4wd 0 0 0 10 1 0 0 0 0 2 2 0 2 4
Building 0 16 3 0 0 0 0 0 0 0 1 0 0 0
Bus 1 3 3 1 1 0 0 1 0 0 2 0 1 3
Car 11 0 1 66 1 1 0 0 0 0 0 0 2 6
Pedestrian 0 0 1 2 120 0 3 12 5 1 0 7 1 0
Pillar 0 6 0 0 0 12 0 1 1 0 0 0 0 0
Pole 0 0 0 0 1 0 8 2 4 0 0 6 0 0
Traffic lights 0 0 1 0 11 0 0 19 7 2 0 5 2 0
Traffic sign 0 2 1 0 1 1 3 8 26 3 0 6 0 0
Tree 0 1 0 0 2 0 0 4 1 24 0 2 0 0
Truck 0 5 0 0 0 0 0 0 0 0 5 0 2 0
Trunk 0 0 0 1 8 0 8 10 5 1 0 21 1 0
Ute 3 0 3 3 0 0 0 2 0 0 3 0 1 1
Van 0 1 4 11 0 0 0 0 0 0 0 0 0 19

Table C.4 – Per-class metrics, FPFH, 4.75 m.

Class Precision Recall F1 Often confused as
4wd 0.0 0.0 0.0 Car (48%)
Building 0.47 0.8 0.59
Bus 0.18 0.19 0.18
Car 0.7 0.75 0.73
Pedestrian 0.82 0.79 0.81
Pillar 0.86 0.6 0.71 Building (30%)
Pole 0.36 0.38 0.37 Trunk (29%)
Traffic lights 0.32 0.4 0.36 Pedestrian (23%)
Traffic sign 0.53 0.51 0.52
Tree 0.73 0.71 0.72
Truck 0.38 0.42 0.4 Building (42%)
Trunk 0.45 0.38 0.41
Ute 0.08 0.06 0.07
Van 0.58 0.54 0.56 Car (31%)
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C.3 NARF, PCA Keypoints, 2 m

Table C.5 – Confusion matrix for NARF (PCA keypoints), 2 m.
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4wd 4 0 0 13 0 0 0 0 0 1 0 0 0 3
Building 0 18 0 0 0 0 0 0 0 0 2 0 0 0
Bus 0 11 1 1 0 0 0 0 0 0 1 0 0 2
Car 6 0 0 72 0 0 0 1 0 0 0 0 3 6
Pedestrian 0 0 0 1 150 0 0 0 1 0 0 0 0 0
Pillar 0 0 0 0 2 11 0 0 0 0 1 6 0 0
Pole 0 0 0 0 2 1 11 1 3 0 0 3 0 0
Traffic lights 0 0 0 0 26 4 1 6 4 0 0 6 0 0
Traffic sign 0 0 0 0 20 1 1 3 22 0 0 4 0 0
Tree 0 0 0 1 2 0 0 2 0 19 0 4 0 6
Truck 0 3 2 4 0 0 0 0 0 0 0 0 0 3
Trunk 0 0 0 0 21 8 3 2 7 0 0 13 1 0
Ute 2 0 0 8 0 0 0 0 0 1 0 0 0 5
Van 3 0 1 10 0 0 0 0 0 1 1 0 1 18

Table C.6 – Per-class metrics, NARF (PCA keypoints), 2 m.

Class Precision Recall F1 Often confused as
4wd 0.27 0.19 0.22 Car (62%)
Building 0.56 0.9 0.69
Bus 0.25 0.06 0.1 Building (69%)
Car 0.65 0.82 0.73
Pedestrian 0.67 0.99 0.8
Pillar 0.44 0.55 0.49 Trunk (30%)
Pole 0.69 0.52 0.59
Traffic lights 0.4 0.13 0.19 Pedestrian (55%)
Traffic sign 0.59 0.43 0.5 Pedestrian (39%)
Tree 0.86 0.56 0.68
Truck 0.0 0.0 0.0 Car (33%) Van (25%) Building (25%)
Trunk 0.36 0.24 0.29 Pedestrian (38%)
Ute 0.0 0.0 0.0 Car (50%) Van (31%)
Van 0.42 0.51 0.46 Car (29%)



C.4. NARF, NARF KEYPOINTS, 2 M 187

C.4 NARF, NARF Keypoints, 2 m

Table C.7 – Confusion matrix for NARF (NARF keypoints), 2 m.
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4wd 3 0 0 12 0 0 0 0 0 0 0 0 1 5
Building 0 17 2 0 0 0 0 0 0 1 0 0 0 0
Bus 1 9 1 0 1 0 0 0 0 0 0 0 0 4
Car 8 0 0 69 2 0 0 0 0 0 0 0 0 9
Pedestrian 0 0 0 0 143 0 1 1 3 0 0 2 0 0
Pillar 0 0 0 0 5 13 0 1 0 0 0 1 0 0
Pole 0 0 0 0 3 0 6 0 6 0 0 4 0 0
Traffic lights 0 0 0 0 32 0 1 4 5 0 0 5 0 0
Traffic sign 0 0 0 0 15 0 4 2 20 0 0 9 0 0
Tree 0 1 1 1 2 0 0 2 0 17 0 7 0 3
Truck 1 3 1 3 0 0 0 0 0 0 1 0 0 3
Trunk 0 0 1 0 29 4 2 1 3 1 0 14 0 0
Ute 2 0 0 8 0 0 0 0 0 0 0 0 0 6
Van 3 0 3 12 1 0 0 0 0 0 2 0 1 13

Table C.8 – Per-class metrics, NARF (NARF keypoints), 2 m.

Class Precision Recall F1 Often confused as
4wd 0.17 0.14 0.15 Car (57%) Van (24%)
Building 0.57 0.85 0.68
Bus 0.11 0.06 0.08 Building (56%) Van (25%)
Car 0.66 0.78 0.72
Pedestrian 0.61 0.95 0.75
Pillar 0.76 0.65 0.7 Pedestrian (25%)
Pole 0.43 0.32 0.36 Traffic sign (32%) Trunk (21%)
Traffic lights 0.36 0.09 0.14 Pedestrian (68%)
Traffic sign 0.54 0.4 0.46 Pedestrian (30%)
Tree 0.89 0.5 0.64 Trunk (21%)
Truck 0.33 0.08 0.13 Van (25%) Car (25%) Building (25%)
Trunk 0.33 0.25 0.29 Pedestrian (53%)
Ute 0.0 0.0 0.0 Car (50%) Van (38%)
Van 0.3 0.37 0.33 Car (34%)
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