
Enhancing 3D Autonomous Navigation
Through Obstacle Fields

Homogeneous Localisation and Mapping, with
Obstacle-Aware Trajectory Optimisation

By

BENJAMIN J. MORRELL

A thesis submitted in fulfilment of the requirements of the
degree of DOCTOR OF PHILOSOPHY.

Faculty of Engineering and IT
School of Aerospace, Mechanical & Mechatronic Engineering

THE UNIVERSITY OF SYDNEY

MAY 2018

For my parents and grandparents

AUTHOR’S DECLARATION

T
his is to certify that to the best of my knowledge, the content of this thesis is my own
work. This thesis has not been submitted for any degree or other purposes.

I certify that the intellectual content of this thesis is the product of my own work
and that all the assistance received in preparing this thesis and sources have been
acknowledged.

SIGNED: .. DATE: ..

Benjamin J. Morrell

iii

ACKNOWLEDGEMENTS

T
his thesis was completed thanks to the support of the Australian Government, through the Aus-
tralian Postgraduate Award, and the University of Sydney who granted the award, in addition to
the Vice Chancellors Research Scholarship and a Faculty of Engineering top-up scholarship. Pur-

suing a PhD thesis can become all-consuming, and having financial matters all comfortably accounted
for is of great help to enable a focus on the research. I am constantly aware of how fortunate we are in
Australia to have such strong support.

Thanks also go to the University of Sydney and their staff, for their support throughout the pursuit
of the PhD. Part of the research presented in this thesis was carried out during a year at Texas A&M
University, and thanks go to the staff and students there for being incredibly welcoming and adopting
an Aussie Aggie. The time at Texas A&M was supported by the American Australian Association,
Northrop Grumman, Australian to US Fellowship. I am humbled by their support and am grateful for
the opportunity they enabled.

Part of this work was also carried out at the Jet Propulsion Laboratory, California Institute of
Technology, and was sponsored by The University of Sydney and the National Aeronautics and Space
Administration. I thank JPL for creating opportunities to do research there and to learn from those at
the organisation.

I have had some genuinely remarkable opportunities to be involved in exciting, engaging and unique
projects throughout my PhD, and this is thanks to my supervisor, Prof. Gregory Chamitoff. My life
has truly been enriched with being able to spend time with you, learn from you, and work with you in
robotic space engineering and beyond. The pathways you have opened for me are staggering, and it is
often hard to believe what I have been able to be a part of, with your guidance.

Thanks also to Prof. Peter Gibbens for providing a great amount of insight, advice and guidance
throughout my research at the University of Sydney.

To Robert Reid, I owe great thanks, for providing the unique opportunity to pursue research at JPL,
and for your guidance, mentorship and support throughout my time there. Thanks also to Prof. Stefan
Williams for helping to open the potential to do research at JPL.

To Prof. KC Wong, when I walked into your office at the end of my undergraduate degree, wondering
what I should do next, the opportunity you offered to work with Greg has opened up a world of possibility
of which I could not have dreamt. For this, and more, you have my enduring gratitude.

v

Much of the work that is presented in this thesis was the product of collaborative projects. I
thoroughly enjoyed these collaborations both from the academic preservative and for the camaraderie.
To Derek Keuther, I gained a lot from our time working closely together at Texas A&M. To Mauricio
Coen, I very much enjoyed working with you over an extensive range of projects and am extremely
happy that we were able to work together over the last six months of my PhD. It is empowering to
see how much we can achieve, and I look forward to working together in the future. To Marc Rigter,
I feel fortunate to have been able to work with you both in Sydney and at JPL. Our discussions and
collaborations have significantly helped to advance my research. Thanks for your support through the
late nights of flights testing and long days of debugging. To Anne Bettens, it has been invaluable to
have a great team to work with through the long coding sessions to push towards creating something
valuable. Thanks for your support and understanding through the final rush.

Throughout my time at The University of Sydney, I have been fortunate to have the support of
fellow students, to push through the challenges of a PhD. To Andrew Gong, it has been a joy to be on
the journey with you right from the first year of undergrad. To Asiful ‘Ovi’ Islam, it was a pleasure to
share an office with you and valuable to learn from your impressive approach to research and life. To
Anastasiia Volkova, I feel privileged to have been able to share so much time together (whenever we
are in the same location). You are an inspiration to strive for more and push through the challenges of
pursuing great things. Thanks for your steadfast support in the final stages of the PhD. To Abhijeet
Kumar, as partners in crime for outreach work, it is incredible to see the impact we have been able
to have. It has also been invaluable to have your support through these endeavours, and striving for
the balance of research and outreach. There has also been a healthy community of graduate students
that I would like to thank: Matt Anderson, Steven Piper, David Williams, Darren Lamburn, Daniel
Linton and Zihao Wang. A particular thanks to Matt Anderson for his valuable review of this thesis,
and regular moral support. Thanks to numerous other friends and mentors who have been through a
PhD and have provided guidance on navigating the journey.

I am extremely grateful to my friends and family for their patience, understanding and support,
especially through times when I am travelling around the world, or when I fall off the radar in the
depths of research work. A particular thanks to my uncle Richard Harding for providing his house as
a writing vacation destination. To my uncle Tony Harding, I am forever grateful for your incredible
support, particularly through the final stages of my PhD, by providing a place for me to live, being
flexible to my work hours, and reviewing my thesis. Thanks to Randii and Alice Wesson for creating a
Northern Hemisphere home during my time at JPL, and providing the support to allow me to focus on
my research there.

I reserve the final thanks for my parents. You are the foundation from which I can pursue this PhD,
the launch complex from which I can reach for the stars. You are always there with unfailing support,
and knowing this is incredibly powerful. It gives me the confidence to pursue exciting and engaging
opportunities. Your understanding and assistance throughout the PhD have been dearly valued. I hope
to make the most of what you have given me to truly make a positive impact on the world.

vi

AUTHORSHIP ATTRIBUTION STATEMENT

T
his thesis contains material published in [35, 109, 153–156, 192]. The location of this material
and my contribution in the publications is elaborated below and explained throughout the thesis.

[155]Morrell, B. J.; Chamitoff, G. & Gibbens, P.
Autonomous Operation of Multiple Free-Flying Robots on the International Space Station

25th AAS/AIAA Spaceflight Mechanics Conference, 2015.
Contribution:

I conducted the work and wrote the paper.
Location of material in thesis:

Sections 2.3.3, 4.3.5, 4.4.3 and 4.4.7

[109]Kuether, D. J.; Morrell, B. J.; Chamitoff, G. E.; Bishop, M.; Mortari, D.; Gibbens, P. W. & Coen, M.
Cohesive Autonomous Navigation System

AIAA Guidance Navigation and Control Conference, AIAA SciTech, 2016.
Contribution:

An equal collaboration with the primary author. I worked on the 3D modelling and SLAM components.
Location of material in thesis:

Section 3.1.1

[156]Morrell, B. J.; Chamitoff, G. E.; Kuether, D. J.; Coen, M. & Gibbens, P.
Integration of 3D SLAM, Rigid Body Landmarks and 3D Path Planning

AIAA SPACE 2016, 2016, 5411.
Contribution:

Extension from work in collaboration with D. Kuether. I worked on the 3D modelling and SLAM
components.
Location of material in thesis:

Sections 2.2.2, 3.1.1 and 3.1.2

[35]Chamitoff, G. E.; Saenz-Otero, A.; Katz, J. G.; Ulrich, S.; Morrell, B. J. & Gibbens, P. W.
Real-time maneuver optimization of space-based robots in a dynamic environment: Theory and on-orbit

experiments

Acta Astronautica, Elsevier, 2018, 142, 170-183.
Contribution:

I worked on analysis of on-orbit test-data, simulated test-cases and the literature review. My work in
this publication provides the basis for the trajectory optimisation contributions in this thesis.
Location of material in thesis:

Sections 2.3.2, 4.3, 4.4.1 and 4.5

vii

[153]Morrell, B.; Rigter, M.; Merewether, G.; Reid, R.; Thakker, R.; Tzanetos, T.; Rajur, V. & Chamitoff,
G.
Differential Flatness Transformations for Aggressive Quadrotor Flight

Robotics and Automation (ICRA), 2018 IEEE International Conference on Robotics and Automation,
2018.
Contribution:

I developed the theory, conducted tests, analysed results and wrote the paper.
Location of material in thesis:

Sections 5.1 and 6.2

[154]Morrell, B.; Thakker, R.; Merewether, G.; Reid, R.; Rigter, M.; Tzanetos, T. & Chamitoff, G.
Comparison of Trajectory Optimization Algorithms for High-Speed Quadrotor Flight in Close Proximity

to Obstacles

Robotics and Automation Letters, 2018. Currently in submission process.
Contribution:

I developed the theory, conducted tests, analysed results and wrote the paper.
Location of material in thesis:

Sections 2.3.2, 2.3.4, 5.3 and 6.3

[192]Reid, R.; Merewether, G.; Tzanetos, T.; Morrell, B.; Rigter, M. & Matthies, L.
A High-Speed Autonomous Quadrotor System for Vision-based Teach & Repeat

Journal of Field Robotics, 2018. Currently in submission process.
Contribution:

I contributed to development of controllers, trajectory planners and the ground control station, as well
performing test and analysis. I wrote the parts of the paper that appear in this thesis.
Location of material in thesis:

Sections 2.3.4 and 6.1

viii

All work from these publications that is contained in this thesis is my own work unless otherwise
stated and cited. In addition to the statements above, in cases where I am not the corresponding author
of a published item, permission to include the published material has been granted by the corresponding
author.

SIGNED: .. DATE: ..
Benjamin J. Morrell

As the supervisor for the candidature upon which this thesis is based, I can confirm that the
authorship attribution statements above are correct.

SIGNED: .. DATE: ..
Gregory E. Chamitoff

ix

ABSTRACT

T
he capability of small flying robots, such as quadrotors and free-floating satellites, are making
them useful tools for a wide range of applications. Quadrotors can be used for search and
rescue, facility inspection, infrastructure surveying and parcel delivery. Free-flying satellites

can be assistants inside space stations and monitor the outside of space stations and satellites. A
critical capability to enable these applications is autonomous navigation near obstacles. Autonomous
navigation is a challenge for small flying robots as they have limited payload capacity, hence require
low-powered, low-weight sensors, and efficient computation. The robots also need to localise, map, and
plan trajectories in 3D, a significantly enhanced challenge over 2D applications. Being flying vehicles,
the dynamic-feasibility of planned trajectories and the control algorithms to track the trajectories are
also essential considerations.

The state-of-the-art for autonomous navigation systems is heterogeneous, with a combination of
many different algorithms. What is proposed here is a more homogeneous system, with the aim for
enhanced efficiency.

To determine the location of a robot, visual Simultaneous Localisation and Mapping (SLAM)
algorithms using stereo or depth cameras are the leading approach for small flying robots. While SLAM
algorithms produce a map, it is purely for localisation, so a separate 3D mapping algorithm is required:
producing occupancy grids or signed distance fields for trajectory planning. No algorithms can combine
SLAM and 3D mapping into one algorithm without the use of lidar. This work proposes the use of 3D
objects, modelled with Non-Uniform Rational B-Spline (NURBS) surfaces, to serve both as features for
SLAM and as obstacles for trajectory planning. Modelling as objects, rather than complete environments,
manages the computational requirements, and using NURBS surfaces allows the resolution to be varied
for different tasks. The proposed approach is demonstrated on sets of simulated data, demonstrating
tracking errors of under 2% of the total path length, mapping errors as low as 2 cm and an appropriate
collision-cost profile for obstacle representation in trajectory planning.

Leading trajectory planning approaches are also heterogeneous, with the combination of a global
path planner, local trajectory optimiser and reactive obstacle avoidance. This split of algorithms can
provide sub-optimal trajectories, though, when being used for flight close to obstacles. Presented
here is the Admissible Subspace Trajectory Optimiser (ASTRO), an algorithm that provides a middle
ground, optimising dynamics over a large horizon with consideration for complex obstacle fields. ASTRO
performs polynomial optimisation with the inclusion of constraints. The constraint formulation is
flexible to include a wide range of obstacles, including dynamic obstacles with motion models and
uncertainty growth. ASTRO is shown to provide comparable computation time and success rate to the
state-of-the-art, through batches of simulations. Flight tests on quadrotors show that the algorithm can
produce trajectories that are more dynamically-feasible (easier to track) than the state-of-the-art, by
including obstacles directly in the optimisation.

Trajectory tracking control for quadrotors utilises the differential flatness transformation to link
position and attitude controllers. There are singularities in the transformation though, and existing
methods to handle the singularities can fail in different scenarios. These methods are analysed in detail
to highlight where failures occur, and a new, robust method is proposed. The new method is successfully
demonstrated in aggressive flights.

xi

The proposed algorithms for SLAM and trajectory planning are brought together into a complete
system to demonstrate the homogeneous concept. This system is compared to the state-of-the-art in a
novel simulation framework. The results successfully prove the concept that a single 3D representation
can be used for localisation, mapping and planning with lightweight sensors. The current implementa-
tion of NURBSLAM is shown to be less efficient and less accurate than the state-of-the-art; however,
it is more robust in scenarios with sparse visual features, successfully operating in cases where other
visual SLAM algorithms fail, and demonstrating better recovery from errors.

The work presented in this thesis can be built upon to evolve the SLAM algorithm further, to be more
efficient and accurate. Tests can be performed in more environments and with real camera data, to aid
development and to further characterise where NURBSLAM provides benefits over the state-of-the-art.

xii

TABLE OF CONTENTS

Page

List of Tables xix

List of Figures xxi

1 Introduction 1

1.1 Background . 2

1.2 Challenges and Current State-of-the-Art . 4

1.3 Gaps . 6

1.4 Focus of Thesis . 8

1.5 Contributions . 8

1.5.1 Localisation and Mapping . 9

1.5.2 Trajectory Optimisation . 10

1.5.3 Analysis of the Differential Flatness Transformation for Quadrotors 11

1.5.4 Analysis of Dynamic Feasibility of Trajectories for Quadrotors and the Impact of

How Obstacles are Considered . 11

1.6 Outline of Thesis . 14

2 Background and Related Work 15

2.1 Simultaneous Localisation And Mapping (SLAM) . 16

2.1.1 Key Concepts and Terminology . 16

2.1.2 Point Cloud SLAM . 20

2.1.3 Visual SLAM - Preliminaries . 21

2.1.4 Indirect Visual SLAM . 24

2.1.5 Direct Visual SLAM . 26

2.1.6 Semi-Direct Visual SLAM . 28

2.1.7 Appearance-Based Visual SLAM . 29

2.1.8 Geometric-Feature-Based Visual SLAM . 30

2.1.9 Summary and Assessment . 30

2.2 3D Mapping . 35

2.2.1 3D Mapping Algorithms . 35

2.2.2 3D Modelling . 43

2.3 Trajectory Optimisation . 49

xiii

TABLE OF CONTENTS

2.3.1 Optimisation Approaches . 49

2.3.2 Planning with Obstacles . 50

2.3.3 Planning with Dynamic Obstacles . 53

2.3.4 Trajectory Planning for Quadrotor UAVs . 57

2.4 Complete Systems . 62

2.4.1 Software . 62

2.4.2 System Examples . 62

2.4.3 Current State-of-The-Art . 64

2.5 Summary and Identification of Gaps . 64

3 Localisation and Mapping with 3D Object Representations 67

3.1 Review of Candidate 3D Object Representations . 68

3.1.1 Ellipsoids - Full Application to SLAM and Trajectory Planning 68

3.1.2 Gaussian Process Implicit Surfaces - Assessment of Potential for SLAM and

Trajectory Planning . 76

3.1.3 Non-Uniform Rational B-Splines - Assessment of Potential for SLAM and Trajec-

tory Planning . 79

3.1.4 Selected 3D Object Representation . 86

3.2 NURBSLAM: Using NURBS Surfaces for Localisation, Mapping and Trajectory Planning 87

3.2.1 Data Association . 87

3.2.2 Mapping - Object Generation . 87

3.2.3 Mapping - Object Update . 90

3.2.4 Localisation . 97

3.2.5 SLAM . 103

3.2.6 Trajectory Optimisation . 104

3.3 NURBSLAM Demonstration, Testing and Analysis . 106

3.3.1 Mapping . 106

3.3.2 Localisation . 110

3.3.3 SLAM . 112

3.3.4 Trajectory Optimisation . 118

3.4 Conclusion . 119

4 Trajectory Optimisation 121

4.1 Contributions . 122

4.2 Preliminaries . 124

4.3 Algorithm Description . 124

4.3.1 Convexity of the Cost Function . 127

4.3.2 Boundary Conditions . 128

4.3.3 Obstacles and Performance Constraints . 131

4.3.4 Example Constraint Cost Functions . 134

4.3.5 Dynamic Obstacles . 140

4.3.6 Optimisation Techniques . 142

xiv

TABLE OF CONTENTS

4.3.7 Replanning and Multiple Robots . 146

4.3.8 Multi-Segment Optimisation . 148

4.3.9 Summary of ASTRO . 151

4.4 Simulation Results . 152

4.4.1 Static Demonstrations . 152

4.4.2 Randomised Seeding and Perturbations . 157

4.4.3 Dynamic Obstacles and Multi-Robot Planning . 158

4.4.4 Analysis of Optimisation Techniques . 164

4.4.5 Constraint Type Comparison . 167

4.4.6 Convex, Quadratic Steps and Line Search . 169

4.4.7 Computation Time Analysis . 173

4.4.8 Summary of Simulation Tests . 174

4.5 Trajectory Optimisation for Space-Based Robotics . 175

4.5.1 SPHERES . 175

4.5.2 On-Orbit Testing . 176

4.5.3 Results From On-Orbit Testing . 177

4.5.4 Lessons Learned . 180

4.6 Conclusion . 181

5 Trajectory Optimisation for Quadrotor UAVs 183

5.1 The Differential Flatness Transformation for Quadrotors 184

5.1.1 Description of the Transformation . 185

5.1.2 Singularities . 188

5.1.3 Existing Methods to Address the Singularity . 188

5.1.4 Analysis of Differential Flatness Transformations 190

5.1.5 New Approaches to Address the Singularity . 192

5.1.6 Summary of Analysis . 196

5.2 ASTRO for Quadrotors . 197

5.2.1 Modifications to ASTRO for Application to Quadrotors 198

5.2.2 Comparison with Existing Planners . 198

5.3 Quadrotor Trajectory Optimisation - Simulation Comparisons 202

5.3.1 Algorithm Implementation . 202

5.3.2 Test Case Generation . 203

5.3.3 Results . 203

5.3.4 Summary and Assessment of Simulation Comparisons 205

5.4 Conclusion . 206

6 UAV Flight Demonstrations 207

6.1 Description of Hardware System . 208

6.1.1 High-Level Architecture . 208

6.1.2 Airframe . 210

6.1.3 On-Board Computing . 210

xv

TABLE OF CONTENTS

6.1.4 Actuation . 211

6.1.5 Control . 211

6.1.6 Localisation . 212

6.1.7 Mapping . 213

6.1.8 Planning . 214

6.1.9 Ground Control Station . 215

6.2 Differential Flatness Testing - Aggressive Flights . 217

6.2.1 Software-in-the-Loop Tests . 218

6.2.2 Flight Tests . 218

6.2.3 Conclusions - Differential Flatness . 221

6.3 Comparison of Planners . 222

6.3.1 Obstacle-Aware Flight Tests . 223

6.3.2 Conclusions - Comparison of Planners . 225

6.4 Conclusions . 227

7 Integrated System 229

7.1 SpaceCRAFT Robot Simulation Framework . 230

7.1.1 Framework Design . 231

7.2 SLAM Demonstration . 233

7.2.1 Test Case . 233

7.2.2 Results . 233

7.2.3 Comments . 236

7.3 Full System Demonstration . 236

7.3.1 Test Case . 236

7.3.2 Results - NURBSLAM . 237

7.3.3 Results - Performance Comparison . 241

7.4 Conclusions and Discussion . 242

8 Conclusion 245

9 Future Work 249

A SVD for Determining Transformations 251

B Subspace Projection 253

B.1 Gradient . 253

B.2 Coefficients . 254

C Quaternion Maths 255

C.1 Quaternion Definition . 255

C.2 Quaternion Multiplication . 257

C.3 Quaternion Multiplication properties . 258

C.4 Transformations vs. Rotations . 259

xvi

TABLE OF CONTENTS

C.5 Quaternions for Attitude Transformations . 259

C.5.1 Quaternions to Rotation Matrices . 260

C.6 Quaterion Rates . 261

C.7 Quaternion Logarithm and Exponential . 261

C.8 Quaternion Interpolation - SLERP . 262

C.9 Quaternion Finite Differencing . 263

C.10 Quaternion Integration . 264

D Quaternion Derivation of Differential Flatness Transform 265

D.1 Compute the Thrust Vector . 265

D.2 Coupling Thrust with Attitude . 265

D.3 Singularities . 267

D.4 Angular Rates . 267

D.5 Angular Acceleration . 268

List of Acronyms and Abbreviations 270

List of Symbols 274

Bibliography 279

xvii

LIST OF TABLES

TABLE Page

1.1 Summary of gaps and contributions . 13

2.1 Comparison of key factors for indirect and direct visual SLAM 29

2.2 Datasets for SLAM testing . 32

2.3 Summary of SLAM algorithms . 33

2.4 Demonstrations and tests of SLAM algorithms . 34

2.5 Assessment of algorithms for 3D modelling . 48

3.1 Tracking and mapping errors for simulated Ellipsoid SLAM examples 71

3.2 Summary of strengths and limitations of 3D modelling algorithms 86

3.3 RSME errors for mapping tests . 106

3.4 Tracking and mapping errors for SLAM test case . 114

3.5 Scaled sensitivity to NURBSLAM parameters . 115

3.6 Percentage of computation time for a single scan for steps of the NURBSLAM process 117

4.1 Comparison of optimisation configurations: . 165

4.2 Trajectory planning results for a single trajectory in a large warehouse environment 168

4.3 Comparison of constraint types for batch of 100 test cases in a large warehouse environment 169

4.4 Trajectory planning computation times and improvement . 174

4.5 Trajectory planning computation times . 174

5.1 Performance summary of differential flatness methods . 197

5.2 Results from Simulation Batch Test . 205

6.1 Tracking errors for flights at 35s . 224

7.1 Tracking errors for orbit test case . 235

7.2 Tracking errors for full system demonstration . 241

xix

LIST OF FIGURES

FIGURE Page

1.1 The autonomous navigation stack. 2

1.2 The different layers of planning algorithms. 3

2.1 SLAM depiction . 17

2.2 Demonstration of loop closure with ORB-SLAM2 . 20

2.3 Depiction of the different variations of direct SLAM methods 22

2.4 Examples of image features being extracted . 24

2.5 Example maps produced by indirect and semi-direct SLAM algorithms 26

2.6 Example maps produced by semi-dense and sparse visual SLAM algorithms 27

2.7 Example map from RatSLAM . 30

2.8 Example maps from geometric-feature-based SLAM . 31

2.9 Dense 3D reconstruction from ORB-SLAM2 . 36

2.10 Example points cloud dense 3D reconstructions . 37

2.11 Example combination of global and local occupancy maps . 38

2.12 Example map representations . 40

2.13 Rapid replanning examples . 54

2.14 Demonstrated applications of quadrotor trajectory planning 58

2.15 Examples of aggressive manoeuvres for quadrotors . 60

2.16 Hierarchical controller diagram . 61

2.17 Example quadrotor systems . 63

3.1 Ellipsiod model described by centroid . 69

3.2 Example ellipsoid extraction . 69

3.3 Ellipsoid SLAM simulated examples. 71

3.4 Large simulated Ellipsoid-SLAM test case . 72

3.5 Top-down view of the Large simulated Ellipsoid-SLAM test case 72

3.6 Image processing pipline . 73

3.7 Ellipsoid-SLAM trajectory and map with real data . 74

3.8 Tracking errors from the Ellipsoid-SLAM test on real data . 74

3.9 Illustration of issues with Ellipsoid-SLAM . 75

3.10 GPIS surface generation for a sphere . 77

3.11 Parametric mesh required for NURBS . 79

xxi

LIST OF FIGURES

3.12 NURBS curve fitting examples . 83

3.13 Mesh requirements for NURBS surface fitting . 84

3.14 NURBS surface fitting example . 85

3.15 Mesh generation example . 90

3.16 Steps to use new data to extend a NURBS curve . 91

3.17 Depiction of surface splitting steps . 96

3.18 Example Surface extension. 97

3.19 Demonstration of NURBS alignment . 99

3.20 Flow diagram for the SLAM algorithm . 104

3.21 Mapping sequence for the distorted spheroid object . 107

3.22 Final mapping result from a single orbit of the distorted spheroid object 108

3.23 Mapping results for different objects . 109

3.24 Mapping result for the distorted spheroid object when using multiple NURBS surfaces . . . 109

3.25 3D track of localisation testing . 110

3.26 Error plots for localisation test . 111

3.27 Localisation odometry error . 111

3.28 SLAM Tracking and Mapping . 112

3.29 Error plots for NURBSLAM tracking . 113

3.30 SLAM odometry error analysis . 113

3.31 Mapped object from SLAM test case . 114

3.32 Accuracy/computation time trade-off analysis . 116

3.33 Trajectory planning with NURBS objects . 118

4.1 ASTRO algorithm depiction . 124

4.2 Ellipsoid depiction . 135

4.3 Cylinder constraint diagram . 136

4.4 Rectangular prism constraint diagram . 138

4.5 Example of a slice of an ESDF . 139

4.6 Diagram of dynamic obstacle model . 141

4.7 Timeline of delays and fixed replanning computation time . 147

4.8 ASTRO planning sequence for static obstacles . 153

4.9 ASTRO planning a single segment with cubic prism obstacle constraints 154

4.10 Multi-segment trajectory optimisation with ASTRO using an ESDF 155

4.11 Example of trajectory optimisation with keep-in corridor constraints 156

4.12 Demonstration of randomised initial seeding . 157

4.13 Effect of random perturbations to escape from infeasible local minima 158

4.14 Dynamic obstacle test case snapshots . 159

4.15 Adversarial dynamic obstacle with keep-in corridor constraints 159

4.16 Two robot dynamic replanning example . 160

4.17 Cooperative planning impasse example . 161

4.18 Six robot trajectory planning example, without cooperation . 162

xxii

LIST OF FIGURES

4.19 Animation sequence for six robots navigating through a junction with cooperation 163

4.20 Comparison of different methods of trajectory optimisation through obstacles 168

4.21 Cost step results at different stages of optimisation for the first iteration 170

4.22 Cost step results at different stages of optimisation for the third iteration 171

4.23 Cost step results showing benefit of quadratic line-search . 172

4.24 Convex trajectory optimisation between seven waypoints with cylindrical keep-in constraints173

4.25 The Synchonized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) . . . 176

4.26 Implementation limitations . 177

4.27 SPHERES planned and true trajectories with a dynamic obstacle 178

4.28 SPHERES planned and true trajectories with dynamic and static obstacles 179

5.1 Block diagram of the hierarchical tracking controller . 185

5.2 Quadrotor axes convention . 185

5.3 Axes evolution for pitching through the singularity . 191

5.4 Axes evolution for picthing forward near the singularity . 192

5.5 Two examples where the differential flatness transformations fail 193

5.6 Axes evolution for pitching while at 90◦ roll . 195

5.7 Closest axes selection and error between each axes-set and the current orientation 196

5.8 Environments used for trajectory planning . 204

6.1 Concept of operations . 209

6.2 High-Level Architecture . 209

6.3 Quadrotor used for flight tests . 210

6.4 Example of RDP reducing the number of waypoints . 215

6.5 Ground Control Station with operator controls . 216

6.6 Planned aggressive trajectory between three waypoints . 217

6.7 Software in the loop simulation results for pitching trajectory 218

6.8 Aggressive trajectory flight results for three differential flatness transformations 219

6.9 Planned aggressive trajectory acceleration and corresponding attitude set points as quaternions220

6.10 Flight results from highly aggressive trajectory . 221

6.11 Medium lab environment with numerous obstacles . 222

6.12 Planned and executed trajectories for each algorithm at a trajectory time of 35 s 224

6.13 Tracking Root-Mean-Square (RMS) errors across a range of flights of increasing speed for

each algorithm . 225

6.14 Planned and executed trajectories for UNCO and ASTRO at a trajectory time of 25 s 226

7.1 System diagram for the ROS-Unreal robot simulation framework 231

7.2 Example graphics generated in an Unreal simulation . 232

7.3 Orbit test case trajectories, comparing NURBSLAM and ORB-SLAM2 234

7.4 Position errors for orbit test case . 234

7.5 Angular errors for orbit test case . 235

7.6 Odometry-error for orbit test case . 235

xxiii

LIST OF FIGURES

7.7 Mapping examples from NURBSLAM in the orbit test case . 236

7.8 Planned, tracked and true trajectories from NURBSLAM in the full system demonstration . 237

7.9 Trajectory from NURBSLAM in the full system demonstration with top-down view 238

7.10 Tracking errors for NURBSLAM in the full system demonstration 238

7.11 Odometry errors for NURBSLAM in the full system demonstration 239

7.12 Mapping examples from NURBSLAM in the full system demonstration 240

7.13 Full system results for ORB-SLAM2 with Voxblox and ASTRO 241

xxiv

C
H

A
P

T
E

R

1
INTRODUCTION

I
mprovements in light, powerful processors and compact sensors have led to increasing capabilities

for small flying robots, which in turn has led to a growing number of areas to apply such robots.

Unmanned Aerial Vehicles (UAVs), also known as drones, are one type of flying robot that has

rapidly become more prevalent. In particular, quadrotor UAVs that use multiple propellers to provide

lift and control, have grown in popularity due to their ability to take-off and land vertically, to hover, fly

at slow speeds, and manoeuvre around obstacles. These capabilities have opened up applications for

search and rescue, surveillance, inspection of infrastructure, inspection of industrial plants, warehouse

inventory checking, and package delivery. Additionally, Small flying robots are often cheaper than larger

robotic systems, opening up more use-cases in high-risk environments, or where there is a restricted

budget. In many of these applications there is also growing interest in high-speed and high-acceleration

flight, so a robot can complete a task more quickly, and can reactively avoid collisions.

Another field for small flying robots is in space. In this domain, there has been growing interest to

provide an autonomous, free-floating satellite as an assistant onboard space-stations. These systems

also have applications to inspection and repair outside a space-station or on satellites. Additionally,

there is demand in future space exploration missions for small flying robots to explore more rapidly

than rovers and to access caves and cliff faces.

A significant strength of small flying robots is their 3D manoeuvrability and size, allowing them to

operate in and around buildings and objects, to move into areas where other systems can not. Because

of this strength, the most beneficial applications for small flying robots require flight near to obstacles.

The applications for these robots also requires autonomy: the robot needs to determine where it is,

what is around it, and how to get to its goal, all with its own sensors and computation. Achieving

this autonomous navigation capability for operation near obstacles is one of the critical challenges for

enabling the many applications of small flying robots.

1

CHAPTER 1. INTRODUCTION

1.1 Background

For small flying robots to achieve autonomy, they need to implement what will be referred to as the

autonomous navigation stack, as depicted in Fig. 1.1. The stack includes several layers of capability

starting from sensors to perceive the environment through to the control to move through it. While

there is not always a strict division between layers and robotic systems may not require every layer, the

stack is a convenient structure to discuss the different components required for autonomous navigation.

Each layer in the stack will be described in general, and then the challenges relevant for small flying

robots will be highlighted.

FIGURE 1.1. The autonomous navigation stack. A depiction of the different layers required
for autonomous navigation

The sensing layer relates to the devices that are used to perceive the environment. This sensing

helps the robot determine where it is, and what obstacles are around it. Possible sensors include

monocular cameras, stereo cameras, depth cameras (such as RGBD cameras: Red, Green, Blue and

Depth), lidar, radar, proximity sensors, GPS antennae, and inertial measurement units (IMUs). The

particular selection of sensors depends on the desired tasks for a robot.

The image processing layer takes information from the sensors, such as the cameras or lidar, and

extracts useful information for other layers of the stack. This information could be to help localisation,

by detecting and tracking landmarks, to help the mapping of obstacles by computing 3D locations of

observations, or to classify observations to guide higher-level task-planning.

Odometry is tracking the movement of a robot from a starting position. For ground-based robots,

this can be done with wheel encoders, but for flying robots, Visual Odometry (VO) algorithms tend to be

used. These algorithms use successive camera images of the environment to track movement. Distinct

features are extracted from images and are matched in subsequent observations. The movement of the

features from frame to frame gives information to update the estimate of the robot’s motion.

Localisation is similar to odometry, in that the goal is to track the position and orientation (the pose)

of the robot; however, localisation looks to give a global position with respect to a fixed reference frame.

GPS can provide localisation information, but for applications flying in and around buildings, GPS is

not reliable. Instead, localisation can be done with sensor observations of distinct landmarks to provide

location information. The landmarks are similar in concept to how humans use distinct buildings,

2

1.1. BACKGROUND

structures and natural features as landmarks for navigation. For robots, these landmarks could be

beacons or visual icons specifically designed for the task. Alternatively, lidar scans could be matched to

a known 3D map of the objects in an environment. Another approach is to use visual features, similarly

to VO. The map of landmarks or features that are used for localisation could be pre-mapped or could be

generated online1, for operation in an unknown environment. This process of online localisation and

map generation is known as Simultaneous Localisation And Mapping (SLAM). If using visual features,

the algorithms are referred to as Visual SLAM (VSLAM). VSLAM differs from VO in that the features

detected and tracked are stored in a global map, enabling the global pose to be detected when revisiting

explored areas. The overlap of VSLAM with VO means that the one algorithm often fills both roles.

While SLAM does include a mapping component, often the map generated is purely for localisation

and does not provide a useful representation for other tasks, such as representing obstacles or producing

a visually detailed map. Therefore, other algorithms generate 3D maps for these purposes, using the

sensor information and a known global robot pose from localisation. Often mapping can be hierarchical,

with a large scale global map that is infrequently updated, and a small obstacle map around the robot

that is updated rapidly.

The trajectory planning layer uses a map of the obstacles in the environment and a known robot

pose to determine the path the robot should fly to reach a goal location. The planner layer itself has

several layers, as depicted in Fig. 1.2. A particular robotic system may only have some subset of these

layers. The highest layer is the decision making, to determine where the robot should go, given some

activity-goal, such as exploration. Next, a global planner produces a long distance path to get from

where the robot is to the goal, through a global obstacle map. This global plan can then used to generate

waypoints, between which a trajectory is optimised to minimise traverse time, minimise control effort,

or maximise smoothness (dynamic-optimality). Here we make a distinction between a path: which

is a sequence of positions, and a trajectory: which is a time-dependent sequence of positions, and as

such encodes velocity and acceleration. Flying robots need trajectories, as they incorporate dynamic

considerations to ensure the systems can fly where planned. In addition to the optimised trajectory,

there can also be local replanners that rapidly adjust a short-term trajectory to avoid obstacles.

FIGURE 1.2. The different layers of planning algorithms.

The near-term trajectories are tracked using the final layer of the stack: control. The control layer

needs to take into account the dynamic restrictions of the robot to track the trajectory and reject

1Running an algorithm online means that it is doing the computations while the robot is moving and making new
observations.

3

CHAPTER 1. INTRODUCTION

disturbances. Reactive collision avoidance can also be incorporated into the controller, to quickly avoid

new obstacles.

Each layer of the autonomous navigation stack has specific challenges, which are in addition to the

challenges of combining the different layers to give the desired capability for a given robotic system. For

small flying robots, these challenges are enhanced due to limitations of size, weight and power. Being

small in size, and needing to fly, these robots cannot carry large payloads, hence cannot carry large

sensors or large processors. Additionally, small flying robots cannot carry large batteries; hence the

power for sensors and computation is limited. Another challenge is that the robots are operating in 3D,

a more complex problem than for 2D, ground-based robots. Finally, the requirement to be flying means

that careful consideration needs to be taken of the dynamics.

The specific challenges in each of the layers, for small flying robots, will be discussed below, in

addition to highlighting the current state-of-the-art for addressing those challenges.

1.2 Challenges and Current State-of-the-Art

For sensors, there have been strong demonstrations using lidar [52, 103], but the restrictions of small

flying robots mean that these sensors, which are large and power-hungry, tend to be on larger systems.

RGBD cameras are lighter, with lower power requirements and have frequently been used on flying

robots [4, 63, 99, 163, 177]. Stereo cameras are emerging as a standard sensor modality [147, 172, 177],

being small, lightweight, low-power sensors that can also provide depth information (through stereo

image processing). Some systems operate with only a single camera and extract depth from the motion

of the robot [61]. These cameras are complemented with IMUs and occasionally ultrasonic proximity

sensors.

With stereo or RGBD cameras as the primary sensor, image processing requirements are to a)

produce 3D positions of observations in each pixel (point clouds) from stereo or depth images, and

b) extract visual features from the images for use in odometry and localisation. Visual features are

distinct points in the environment that can be consistently detected and described from a wide range of

viewpoints. The limited computational power onboard small flying robots means that these algorithms

need to run efficiently, and often the 3D location of observations may only be computed for features,

rather than the whole image.

VO is the leading approach for odometry on small flying robots, as there is limited information

available other than the camera images (monocular, stereo or RGBD) and IMU readings. Some systems

integrate with IMU output to perform Visual Inertial Odometry (VIO). There are numerous capable

algorithms, including MSCKF [213], ORB-SLAM2 [163], DSO [55], SVO [68], ROVIO [19] and Vins-

Mono [183]. These algorithms differ in the visual features used, and the method of performing the

estimation.

Localisation and odometry tend to use the same algorithms for small flying robots by performing

VSLAM. Leading VSLAM algorithms include ORB-SLAM2 [163], MSCKF [213] and VinsMono [183].

Additionally, VO algorithms could be combined with a back-end SLAM algorithm for longer-term

navigation. These SLAM algorithms store a 3D map of the visual features used for localisation. The

features in new observations are matched to the features in the map to give information on the robot

4

1.2. CHALLENGES AND CURRENT STATE-OF-THE-ART

pose. More features are added to the map as the robot explores new areas. These VSLAM algorithms

do not require a pre-mapped environment and can operate in real-time onboard small flying robots.

Localisation can also be done using a physical, 3D map of the environment, but these algorithms require

lidar, which is not ideal for small flying robots. Localisation can also be performed in pre-mapped

environments, with stored visual features, such as the result from a VSLAM algorithm or from prior

imagery of an environment [42]. Some systems do not do localisation at all, and instead, only use

odometry to track position within a small area of operation.

The SLAM algorithms used for localisation produce a map of 3D features. While these features

have 3D locations, the map is not a physical representation of the environment that can be used for

planning. Therefore, it is currently common practice to use another algorithm that takes point cloud

data from processed stereo or depth images, along with the estimate of the robot pose, to build a 3D map.

Efficiently mapping in 3D brings a more significant challenge than mapping in 2D, with a significantly

increased amount of information to consider. For the limited computational power on small flying robots,

these maps tend to be discretised into 3D grids. Cells in the grid could contain a probability of occupancy

in what is an occupancy grid, such as in OctoMap [91]. Alternatively, the cells could contain a signed

distance to the nearest surface, called a Euclidean Signed Distance Field (ESDF), as in Voxblox [171].

These maps can be generated and updated online and provide the needed volumetric representation of

the environment for planning. Often systems use a global occupancy map, that may be pre-mapped, and

a regularly updated local occupancy map for collision avoidance [52, 63, 147, 177].

The occupancy maps tend to be a representation of the whole environment that has been observed.

If instead, individual objects in the environment were mapped and modelled, then the resulting

representation could have uses beyond just obstacle representation and localisation. For instance, 3D

object representations play an important role in interaction with the environment, such as grasping [22,

144]. Object representations are also useful for object classification [17, 44], a capability that is important

for feeding higher level logic, such as finding tools, and deciding how best to interact with them. An

object representation that can be used for localisation, obstacles, grasping models and classification,

would be highly valuable, however, such capabilities are currently difficult to achieve. Another benefit

to representing objects is that dynamic obstacles can naturally be captured, by assigning a velocity to

the object that is observed to move: something that can not be done with occupancy grids.

The challenge for planning trajectories with small flying robots is in efficiently generating collision-

free trajectories through obstacle-rich environments in 3D, with 6 degrees of freedom. The current

leading approach is first to generate a set of waypoints with a global planner and then to optimise a

trajectory through these waypoints to maximise smoothness. Obstacle avoidance relies on the collision-

free global plan, with the trajectory optimisation step having no consideration of obstacles [26, 32].

Other systems use rapid local replanning over a short planning horizon to avoid collisions and dynamic

obstacles. To enable operation with limited computational power, the global planners run at a slow rate,

and the local planners more frequently, but only with short trajectories.

For planning with quadrotors, a property of quadrotor dynamics called differential flatness is used

to ensure dynamic-feasibility. This transformation allows trajectories for position and yaw to be planned,

which can then be transformed into the full quadrotor state, including the desired rotor revolutions.

Planning continuous trajectories in position, yaw and their derivatives leads to continuous controls,

5

CHAPTER 1. INTRODUCTION

helping to ensure that the trajectory can be flown.

The primary goal of control is to track a planned trajectory, with consideration of the robot dy-

namics and actuation restrictions. Such considerations are critical for flying robots. For quadrotors,

the differential flatness property is again used to have a split between a position controller, and an

attitude controller. The position controller runs a feedback loop to track the position and velocity of

the trajectory and produce a desired acceleration vector. The differential flatness transformation then

uses the acceleration and desired yaw to give the desired orientation for the attitude controller to track,

giving thrust and moments. The controller by Lee et al [118] is the most commonly used and employs

this hierarchical control architecture.

When looking at a complete flying robot system, they tend to take components of the layers discussed

above. For example, an early example developing the algorithms for a complete system is presented

in [115]. More recently, there are many field-tested examples, such as Mohta et al. [147] who achieve

high-speed autonomous flight indoors and outdoors by implementing: VIO with stereo cameras and

no localisation; mapping with a 3D laser scanner to have a 2D global occupancy map and 3D local

occupancy map; and a global planner to produce collision-free paths. Another example is Perez-Grau

et al. [177], who demonstrate indoor autonomous collision avoidance using stereo for VIO and an

RGBD camera for localisation and mapping. They use a pre-mapped global occupancy grid and a local

occupancy grid for collision avoidance. For planning trajectories, they use a long-term global planner,

combined with a rapidly replanning local planner.

1.3 Gaps

For small flying robots, there are currently many very capable algorithms for each layer of the au-

tonomous navigation stack and systems that have successfully demonstrated autonomous flight. How-

ever, gaps are still present between the current state-of-the-art and the desired capability. In general,

the current leading algorithms are heterogeneous: multiple algorithms are needed to satisfy each layer

of the stack [4, 63, 147, 170, 177]. SLAM is separated from 3D mapping, and trajectory planning is

divided between global and local planners. For computationally limited systems, as with flying robots,

there are potential benefits in having more homogeneous algorithms. There are also a number of gaps

within the different layers of the autonomous navigation stack. These gaps will be elaborated below and

are explored in detail in Chapter 2.

1. No map produced by SLAM with lightweight sensors is also useful for trajectory plan-

ning.

The leading SLAM algorithms use visual features as landmarks for localisation and mapping; hence

the resulting map is a sparse set of points that are not useful for trajectory planning [19, 55, 163, 183].

A 3D, volumetric representation is required for trajectory planning algorithms, to adequately model the

obstructions in the environment; therefore, a separate 3D mapping algorithm needs to be employed.

This requirement could be alleviated by having a SLAM algorithm that immediately produces a map of

obstacles. The result is potential gains in efficiency. Such a capability can be achieved by algorithms

using lidar [16, 52], but not yet for RGBD cameras or stereo cameras. A central part of this concept

is the method of representing the 3D environment. No 3D modelling method currently produces a

6

1.3. GAPS

representation that can effectively be used for mapping, localisation and as an obstacle, with lightweight

sensors. Further, no methods of obstacle mapping represent 3D objects individually, an area where

there are potential benefits for feeding object classification and interaction as well as representing

dynamic obstacles.

2. The leading approaches for trajectory planning near obstacles are hierarchical, sacrific-

ing optimality.

For the current state-of-the-art, a global planner generates collision-free paths, without considering

dynamics to produce waypoints for a trajectory optimiser [26]. The optimiser does consider dynamics

but does not include obstacles and instead relies on the global plan to produce collision-free trajectories.

The overall result can be less optimal, in terms of trajectory smoothness, than a long-term trajectory

optimiser that considers obstacles. A sacrifice in smoothness leads to a reduction in trajectory tracking

performance, especially for high-speed flight.

3. Methods to avoid dynamic obstacles for flying robots are only local or are very conserva-

tive.

Reactionary planners and control are used to avoid dynamic obstacles for flying robots, and do so

very effectively; however, they operate over a short horizon, with the primary focus to avoid colli-

sions [5, 13, 176]. Therefore the resulting actions could push the robot in a direction that is inferior for

the longer-term trajectory. Dynamic obstacles could be included in a trajectory optimisation algorithm

to consider a large planning horizon, but existing approaches to do so are very conservative [174, 227].

4. Existing methods for the quadrotor differential flatness transformation have sensitivi-

ties near a singularity.

There are several methods to address the singularity in the differential flatness transformation, but

there are orientations near the singularities where these methods fail [118, 121, 139, 216]. These issues

occur during aggressive flight, such as can be required for obstacle avoidance and high-speed flight

amongst obstacles.

5. There has not been consideration of how the method of including obstacles in trajectory

planning impacts the dynamic-feasibility of trajectories.

Different methods of considering obstacles in planning (e.g. [26, 32]) can affect how dynamically-optimal

the resulting trajectory is. The dynamic-optimality affects how easily the trajectory can be tracked:

the dynamic-feasibility. When flying near obstacles, this factor is critical, yet there has not been any

analysis to characterise which methods of considering obstacles provide the most dynamically-feasible

trajectories.

7

CHAPTER 1. INTRODUCTION

1.4 Focus of Thesis

The goal of the thesis is to contribute to enhancing the capability of flying robots to navigate au-

tonomously near to obstacles. This goal is realised through a focus on four main layers of the autonomous

navigation stack: localisation, mapping, planning and control. These layers are developed to address the

gaps identified above. In general, an approach is taken to strive for greater homogeneity in algorithms,

to have one algorithm filling many roles, rather than multiple separate algorithms. In particular, the

focus areas of the thesis are:

1. Combined localisation and 3D mapping in one algorithm with a common 3D representation objects

in the environment.

2. A trajectory optimisation algorithm that includes static and dynamic obstacles directly in the

optimisation.

3. Handling singularities in the quadrotor dynamic model for control.

4. Analysing the dynamic-feasibility of trajectories for flying near obstacles.

Focus 1 aims to combine the localisation and mapping layers to have one SLAM algorithm that

also produces a 3D map of obstacles that can be used for trajectory planning. This algorithm uses

Non-Uniform Rational B-Splines (NURBS) as the single 3D representation for localisation, mapping

and obstacle representation, and is referred to as NURBS Localisation And Mapping (NURBSLAM).

Focus 2 address the planning layer, by enhancing a trajectory optimisation algorithm to provide a

middle ground between a global planner and a local optimiser. The algorithm is called the Admissible

Subspace TRajectory Optimiser (ASTRO). ASTRO optimises the coefficients of a polynomial to minimise

a cost function that combines a trajectory cost (smoothness) and obstacle costs. The algorithm is

developed to generate solutions with many obstacles, including dynamic obstacles, all of which are

included directly in the optimisation.

Focus 3 investigates the control layer by considering quadrotors and performing an analysis of the

differential flatness transformation. In particular, the work focuses on issues near singularities in the

transformation.

Focus 4 analyses a combination of the planning layer and the control layer by testing how variations

in trajectory planning algorithms affect how well a quadrotor can track a trajectory in flight.

Focus 1 and 2 are also brought together to test the concept of homogeneous localisation and mapping

with a combined system demonstration of NURBSLAM and ASTRO in a novel robotics simulation tool.

1.5 Contributions

The main contributions of this thesis are summarised below. The relation of these contributions to the

gaps identified, and the relevant section in this thesis are summarised in Table. 1.1.

8

1.5. CONTRIBUTIONS

1.5.1 Localisation and Mapping

One of the main contributions in this thesis is NURBSLAM, which uses one 3D representation for

mapping, localisation and obstacle representation by modelling objects. NURBSLAM is designed to

operate with RGBD data, and is enabled by the following contributions:

A. Application of NURBS for Mapping.

An algorithm is presented that uses NURBS for online mapping of objects from point cloud data. The

algorithm includes scan processing to produce a structured mesh, initial surface fitting, and extending

surfaces with new observations. The result is a representation of objects, which has potential future

applications for grasping and manipulation. The algorithm is shown to be able to produce accurate

representations of objects, with Root-Mean-Square Errors of under 5mm when observations are made

from a known pose.

B. Application of NURBS for Localisation.

The shape of a NURBS surface is exploited to provide detailed information for localisation. This

information is used by aligning new point cloud observations of an object to the NURBS surface. Tools

from the Point Cloud Library [200] are used to find point correspondences and alignments. The resulting

transformation is included in an Extended Kalman Filter (EKF) as an observation to update the state

estimate, with a Multiplicative EKF used to estimate attitude. The approach can achieve mean tracking

errors of under 1% of the total trajectory length when localising to pre-mapped objects.

C. Application of NURBS as obstacle representations.

Surface points and surface normals from a NURBS surface are used to compute signed distances to

query points on a trajectory. The algorithm also computes an approximate distance gradient with a

vector from a query point to the nearest location on the surface. The signed distance and gradient

information provide what is required for trajectory optimisation algorithms. The method of using

NURBS as an object is successfully demonstrated, and the evolution of the signed distance is shown to

have the desired traits for an obstacle representation. Being a representation of obstacles, the NURBS

has the potential to be extended to represent dynamic obstacles.

D. Application of NURBS for SLAM.

Localisation and mapping with NURBS are combined to perform SLAM, online, in an unknown

environment. This capability is demonstrated in simulated test cases, showing tracking errors at 2% of

the total path length, and mapping errors as low as 2 cm. The algorithm is susceptible to bad alignments,

though, when there is shape ambiguity but recovers quickly for good odometry tracking.

E. System demonstration of NURBSLAM with trajectory planning.

The complete system of NURBSLAM with trajectory planning is successfully demonstrated, showing

that a single representation can be used for mapping, localisation and obstacle representation, without

the need for lidar. NURBSLAM is also compared to the current state-of-the-art in heterogeneous

approaches: ORB-SLAM2 [163] with Voxblox [171]. NURBSLAM is shown have a higher computational

load, and be less accurate, but is more robust and has with the ability to quickly recover from errors.

Additionally, NURBSLAM can successfully operate in cases with sparse visual features and changing

light conditions, where ORB-SLAM2 fails.

9

CHAPTER 1. INTRODUCTION

F. Development of a novel robotic simulation framework.

As part of a collaborative effort, a connection between the game development engine, Unreal and the

Robot Operating System (ROS) was used to create a framework for testing autonomous navigation

algorithms in environments with high visual fidelity. The capability of this tool for assessing autonomous

navigation algorithms is demonstrated by testing NURBSLAM and the current state-of-the-art.

1.5.2 Trajectory Optimisation

Another central contribution of this thesis is the development and extension of ASTRO. The algorithm

has been enhanced from an earlier version to provide the following contributions2.

A. Long-term trajectory optimisation with obstacles

ASTRO provides the middle ground between a global planner that generates collision-free paths without

dynamic considerations and a local optimiser that produces dynamically-optimal trajectories without

consideration of obstacles. By including obstacles directly in the optimisation, ASTRO can produce

dynamically-optimal and collision-free trajectories. These trajectories can be generated without the

need for a global planner for moderately complex environments. A large set of simulated examples

demonstrate these capabilities of ASTRO. The following two contributions enable ASTRO to efficiently

generate solutions to these complex planning problems with many constraints.

B. Enhanced constraint formulations to enable the application of ASTRO to a wide

range of problems.

ASTRO has been made flexible to include a variety of constraints that can represent numerous obstacle

shapes, free-space restrictions or performance limitations. This flexibility of representation allows the

appropriate constraints to be defined for a given scenario, resulting in a planning problem that is well

suited to ASTRO. An analysis of the constraint formulations provides insight into the best way to

handle constraints in the optimisation for efficient solution generation. Simulations demonstrate how

the flexible constraint formulation in ASTRO can allow the algorithm to be applied to a wide range of

scenarios.

C. Development of techniques for optimisation to enable efficient solutions to problems

with many constraints.

A suite of techniques has been implemented in ASTRO to improve the optimisation performance and

enable solutions to be generated when there are many constraints. These techniques include a quadratic

line-search, iterative sub-problems, adaptive weights for constraint costs and randomised perturbations.

The optimisation performance is analysed in detail to demonstrate the benefit of these techniques

D. Formulation to include dynamic obstacles in the optimisation

Dynamic obstacles are included in ASTRO with a dynamic model for their motion, allowing the

obstruction to be time-dependent. This approach makes the trajectories less conservative, and allows

more optimal trajectories, by accounting for the free-space that becomes available when an obstacle

moves. The size of dynamic obstacles is increased as a function of time to account for the increase in

the uncertainty of the obstacle position and to ensure safe trajectories. Tests cases with numerous

2More specific details on these contributions are given in Chapter 4.

10

1.5. CONTRIBUTIONS

static and dynamic constraints demonstrate the challenging classes of problems that can be solved by

including dynamic obstacles in the optimisation.

E. Analysis of on-orbit tests from the International Space Station

An earlier version of ASTRO was tested on free-floating robots on the International Space Station. An

analysis of the results from the tests, in particular with dynamic obstacles, identified several lessons-

learned for trajectory optimisation of free-floating satellites, which has informed further development of

ASTRO.

1.5.3 Analysis of the Differential Flatness Transformation for Quadrotors

The singularity in the differential flatness transformation for quadrotors has been analysed in detail in

this thesis to address the issues with existing methods. The main contributions from this work are:

A. Analysis of the limitations with existing methods

A thorough analysis is performed to identify where existing methods of handling the singularity in

the differential flatness transformation fail, showing where there are issues in orientations near

the singularity. The analysis provides valuable information for those using the existing methods to

understand where issues may arise.

B. Development of a new Combined Method

A combination of existing transformation methods is proposed, where multiple transformations are

computed, and the result that is closest to the current state of the quadrotor is selected. The combined

method is shown to provide robust performance throughout all scenarios tested.

C. Flight tests to demonstrate challenges and solutions

A set of aggressive flights tests showed that the issues with the differential flatness transformation can

be experienced in flight and that the new Combined Method successfully addresses those issues. The

tests also highlighted remaining challenges in tracking yaw through orientations where it is ill-defined.

1.5.4 Analysis of Dynamic Feasibility of Trajectories for Quadrotors and the

Impact of How Obstacles are Considered

Three trajectory optimisation algorithms: ASTRO, the UNConstrained Optimiser (UNCO) [26] and

the Tube and Cube constrained Optimiser (TACO) [32], were compared to assess the impact that the

method of considering obstacles has on dynamic-feasibility. The algorithms were compared in batches of

tests cases, and with trajectories tracked in flight. The contributions in this area are:

A. Implementation of ASTRO for quadrotors and comparison with the state-of-the-art

ASTRO is extended to optimise for quadrotor dynamics and perform multi-segment optimisation

through a set of waypoints. ASTRO provides an alternative method of considering obstacles by including

them directly in the optimisation. This approach allows fewer waypoints to be used, and smoother

trajectories to be generated. ASTRO is also able to represent free-space restrictions in the optimisation,

providing the capability to produce more conservative trajectories.

11

CHAPTER 1. INTRODUCTION

B. Analysis of tracking performance in flight

Trajectories planned by ASTRO, UNCO and TACO in an obstacle-rich indoor environment were flown

with a quadrotor to assess the tracking performance. The tests highlighted that different methods of

considering obstacles do impact the dynamic-feasibility of the resulting trajectory. Additionally, the

tests showed that ASTRO provides dynamically superior trajectories, with better tracking performance

when flying at high speed, near obstacles.

12

1
.5

.
C

O
N

T
R

IB
U

T
IO

N
S

TABLE 1.1. Summary of gaps and contributions

Gap Contribution to address gap Chapter/Section

1 No map produced by SLAM with
lightweight sensors is also useful for
trajectory planning.

Development of algorithms to use Non-Uniform Rational B-Splines
(NURBS) for online mapping, localisation and obstacle representation
with RGBD data: NURBSLAM.

Chapters 3, 7

2 The leading approaches for trajectory plan-
ning near obstacles are hierarchical, sacri-
ficing dynamic-optimality.

Extension of the Admissible Subspace TRajectory Optimiser (ASTRO) to
provide a middle-ground between local optimising and long term planing
by including obstacles directly in the optimisation. This contribution in-
cludes enhancing constraint formulations and optimisation techniques in
ASTRO to enable the efficient generation of solutions to problems with
numerous constraints.

Chapter 4

3 Methods to avoid dynamics obstacles for
flying robots are only local or are very con-
servative.

Development of a class of dynamic obstacles in ASTRO that model the
dynamics of obstacles inside the optimisation to enable less conserva-
tive trajectories. The size of the obstacles are grown to account for the
uncertainty in their position.

Chapter 4

4 Existing methods for the quadrotor differ-
ential flatness transformation have sensi-
tivities near a singularity.

1) Analysis of existing methods to address the singularity and identifica-
tion of their limitations.
2) Formulation of a combined method for the transformation that is robust
to sensitivities near the singularity.
3) Flight tests to demonstrate issues can be experienced in flight, and that
the combined method addresses those issues.

Chapters 5, 6
Sections 5.1, 6.2

5 There has not been consideration of how
the method of including obstacles in tra-
jectory planning impacts the dynamic-
feasibility of trajectories.

1) Analysis of three different obstacle avoidance strategies for trajectory
optimisation of quadrotors including an extension of ASTRO to apply to
quadrotors.
2) Testing of the algorithms in flight to highlight differences in dynamic-
feasibility.
3) Demonstration that ASTRO for quadrotors can give the best dynamic-
feasibility when flying at high speeds near obstacles.

Chapters 5, 6
Sections 5.2, 5.3,
6.3

13

CHAPTER 1. INTRODUCTION

1.6 Outline of Thesis

The remainder of the thesis is structured as follows:

Chapter What is presented

2 A thorough review of the literature and current state-of-the-art for autonomous

navigation of small flying robots. This review covers localisation, mapping,

trajectory planning, control and complete systems. The chapter provides the

context for the work in this thesis.

3 A presentation of NURBSLAM, the combination of localisation, mapping and

obstacle representation. This chapter includes an analysis of 3D modelling

algorithms, a description of NURBSLAM and demonstration of the algorithm in

simulated test cases.

4 A detailed description of the trajectory optimisation algorithm, ASTRO, includ-

ing a thorough presentation of theory, analysis of the algorithm and tests on a

variety of planning scenarios.

5 Quadrotor applications for planning and control. First, a description and analysis

of the differential flatness transformation is presented, followed by tests in

simulation. The chapter also describes how ASTRO is applied to quadrotors and

compares the performance with the state-of-the-art in a batch of test cases.

6 Hardware flight tests with quadrotors to analyse both the differential flatness

transformation and how the dynamic-feasibility of trajectories is affected by the

method of considering obstacles in trajectory planning.

7 Demonstration of the combined NUBRSLAM and ASTRO system, with a com-

parison to the state-of-the-art in heterogeneous algorithms. Tests are performed

in a new simulation tool with high-fidelity visuals.

The thesis ends with a conclusions chapter before summarising avenues for future work.

14

C
H

A
P

T
E

R

2
BACKGROUND AND RELATED WORK

T
his thesis studies methods to enhance the autonomous navigation capability of small flying

robots such as quadrotor unmanned aerial vehicles (UAVs) and free-flying space-based robots.

The desired capability is for a robot to be able to use its own sensors and processors to: determine

its location, build a map of the environment around it, and plan a trajectory to move through that

environment. These capabilities touch on all aspects of the navigation stack described in Chapter 1:

sensors, image processing, odometry, localisation, mapping, planning and control.

This chapter provides a background on the key components of the navigation stack before analysing

the state-of-the-art at the time of publication. In particular, there is a focus on algorithms that are

suitable for small flying robots. Localisation will first be reviewed, where the leading algorithms perform

Simultaneous Localisation And Mapping (SLAM). SLAM incorporates the top half of the stack: sensors,

image processing, odometry and localisation. While SLAM does include a mapping component, it will

be shown that current leading SLAM algorithms require a separate mapping algorithm. Therefore

a review of 3D mapping algorithms is presented, including a review of methods to model 3D objects.

Trajectory optimisation algorithms are then reviewed, with a particular focus on the consideration of

static and dynamic obstacles. An important component of trajectories is their dynamic feasibility: how

well a robotic system can fly the trajectory. The methods to ensure a dynamically-feasible trajectory are

reviewed for one class of hardware systems, quadrotors, which also includes an analysis of the bottom of

the navigation stack: control. The complete navigation stack is then considered by comparing existing

systems for autonomous navigation of quadrotors.

In addition to a background on autonomous navigation for small flying robots, this chapter highlights

the gaps in the literature. These gaps are summarised at the end of this chapter, along with a summary

of how the work in this thesis addresses those gaps.

15

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Simultaneous Localisation And Mapping (SLAM)

One of the key requirements for autonomous navigation is localisation, to know where the robot is

positioned in the world. Localisation can be done with global positioning systems, such as GPS, but

this approach is not robust for operations indoors, in dense cities, underwater or for space exploration.

GPS has limited precision as well, which can make the technology insufficient for navigation near

obstacles. Hence, localisation for robots is generally done by making observations of the world, with

sensors such as a camera, lidar, proximity sensor or a combination of such sensors. These observations

detect features in the environment and track the position of these features with respect to the robot, to

estimate the movement of the robot. These features can be thought of as landmarks, similarly to how

humans may use distinct buildings or natural features and landmarks for determining where they are.

For robotics, these landmarks can take a variety of forms, including 3D structures, detailed visual tags,

distinct visual points or visual appearance. If a map of features is already known and is provided to

the robot, then the robot can match the features it sees to this map to determine its location. If such a

prior map is not known, then the robot can match the features it sees to features it has previously seen.

The storage of observed features is the process of mapping. Building a feature map while using it to

localise is known as Simultaneous Localisation And Mapping (SLAM) and is a coupled estimation of

the robot state and the state of the features in the map. SLAM has broad applications to all areas of

mobile robotics, wherever a robot needs to navigate in an unknown, or partially-known environment.

Equally, there is a broad range of SLAM algorithms, each with different strengths. The state-of-the-art

for these algorithms will be discussed here.

In particular, there are three key components of SLAM that will be discussed:

1. Features: what features are used for localisation and how are the features linked with the sensors

used?

2. Map Representation: how are the features stored and grouped to make the map?

3. Estimation Algorithm: given observations of features and the map, how is the joint estimation of

state and map performed?

Through the range of variations of the components above, there are a set of categories within

which many of the leading algorithms in the literature can be placed. The first category of algorithms

directly use 3D data as features, with point clouds from a lidar, or a depth camera (for example, a

Red, Green, Blue and Depth camera: RGBD). Visual cameras have seen much application in recent

times, and algorithms using visual features are split into categories of direct, indirect, semi-direct,

appearance-based and geometric-feature-based. Each of these categories will be discussed in relation to

the three components listed above.

First, a high-level overview of the key concepts and terminology of SLAM is given, to give the context

for a discussion of the different categories of SLAM algorithms.

2.1.1 Key Concepts and Terminology

The basic premise of SLAM is to estimate both the robot state (position and orientation) and the

state of a map. In the simplest sense, the map could be thought of as a set of features, also known

16

2.1. SIMULTANEOUS LOCALISATION AND MAPPING (SLAM)

as landmarks. Fig 2.1.a depicts the SLAM problem for the case where the landmarks are assumed to

be point landmarks. The robot makes predictions on its movement to update its state estimate (robot

position and orientation). This prediction uses either IMU information, odometry information, or a

simple motion model, such as constant acceleration or constant velocity. Observations of landmarks are

matched to predicted landmark observations from the map. The error between the predicted landmark

and the observed landmark, sometimes referred to as the innovation, can be used to update the estimate

of both the robot state and the landmark positions. It is the observation of multiple landmarks that

helps to update the estimates accurately: this can be thought of as using multiple observations to

triangulate position. In contrast to using GPS or fixed beacons, though, the position of the landmarks is

not known; hence SLAM is a joint estimation of the robot state and the states of the landmarks. As a

robot moves around an environment and makes more observations, the correlations between landmarks

and the robot can become stronger to reduce the uncertainty in the map and robot state, as depicted in

Fig. 2.1.b.

FIGURE 2.1. The joint estimation of the robot state and landmarks states that characterises
SLAM. (a) Robot states, x, are tracked over time, with dynamics, u connecting states
and observations, z, of landmarks, m, which adds information to the joint estimation.
(b) Depiction of the correlation between landmarks and the robot. As the correlations
strengthen (thicker lines), the esimates become more certain. Images from Durrant-
Whyte et al. [92]

The features used for landmarks are not always point-landmarks, as will be discussed in later

sections, and the map representation can vary. Nonetheless, the same conceptual understanding applies:

observations are matched to features from a map, and the error between the predicted and the actual

observation is used to update estimates of both the robot pose and the map.

2.1.1.1 Estimation Approaches

The estimation of robot states and the map of landmarks can be performed in a number of ways. The

problem is commonly formulated in a probabilistic sense with a joint posterior of the robot and landmark

states given the past states, movements and observations. This framework naturally lends itself to

a filtering-based approach, using a variant of a Kalman filter, where there is a dynamic prediction-

17

CHAPTER 2. BACKGROUND AND RELATED WORK

correction sequence. The prediction step uses the motion model, IMU or odometry to estimate the new

state of the robot, which increases the uncertainty. The correction step then uses the observations of

the landmarks to update both the robot state and the map, reducing the uncertainty. Kalman Filter

approaches have seen frequent use, being a convenient way to handle the probabilistic representation of

the SLAM problem. The type of filter can vary, from being an Extended Kalman Filter (EKF) [19, 46, 92,

137, 225], a particle filter [31, 63, 92, 148, 177], a combination of particle filters and EKF filters [23], or

more modern variants to the Kalman filter [213]. A challenge for filtering-based methods is that there

can be large computational loads when the environment grows larger and the number of states (robot

and landmark states) to track increases.

More recently, graph-based approaches have shown strong performance, where the map is repre-

sented by a connected set of robot poses (the graph nodes) and the landmarks observed at those poses.

These graphs are called pose-graphs. Any two nodes can be connected by the robot motion between them

as well as the common landmark observations (called a co-visibility graph). The graph-based representa-

tions enable the use of graph-optimisation techniques to update the estimate of the robot and map in a

way that is more efficient when there are many landmarks in the environment. The improved efficiency

with scale is because the pose-graph approach estimates a set of pose-states, with landmarks projected

from the poses, whereas filter approaches estimate the states of the map feature, as well as the current

state. Another contrast between pose-graphs and filters is that the graph maintains information on the

history of the trajectory, rather than having that history represented in a covariance. The resulting

optimisation is more computationally expensive than filters but can produce more accurate results. This

optimisation can be done over the whole graph, or a recent history of the graph to improve computation

time. This general field of estimation is called Pose-Graph Optimisation (PGO) and has benefited from

recent mathematical advances that have allowed the problems to be solved efficiently, such as in the

open-source tool GTSAM [47], making PGO amenable to SLAM. Graph-based representations have

been successfully used in a wide range of state-of-the-art algorithms [55, 57, 119, 143, 163, 183].

2.1.1.2 Data Association

A component of SLAM that is critical to strong performance is the accurate matching the observed

features to the map features: a process called data association. When selecting the features to extract

and the map representation, the method of data association is of prime consideration. Ideally, features

can be represented with a detailed descriptor that includes information beyond just a position. The

descriptor aids robust data association, to ensure the observed feature is matched to the correct

map feature. False data association, when features are incorrectly matched, can be fatal for a SLAM

algorithm, leading to an incorrect update to the state and map estimates from which the algorithm may

not be able to recover.

The nature of the feature descriptors depends on the SLAM algorithm, ranging from image features,

structure in the environment and visual textures. The discussion of different SLAM techniques will

talk about the features used and how data association is performed.

Another approach to robust data association is to take advantage of a large set of features to

determine the robot pose that satisfies the close alignment of the most features. Such an approach

requires rejection of outliers to not corrupt the solution with false associations. Algorithms like Random

18

2.1. SIMULTANEOUS LOCALISATION AND MAPPING (SLAM)

Sample Consensus (RANSAC) [65] are commonly used for outlier rejection. A simple example of such

data association is Iterative Closest Point (ICP) [228], for cases where features are 3D points. The

criteria for outlier rejection is the distance between an observed 3D point and the closest map feature.

The inlier sets (those points not rejected) are used to estimate an update in the relative pose of the

robot to best align the points. This alignment is applied to all points, and the process repeated: finding

the closest points, then outlier rejection, then pose transformation until a convergence criterion is met.

The result is that the observation has been transformed to best align all points with the map. Each

inlier observation feature is then associated with the closest feature point on the map. ICP can be

used for matching point cloud observations (large sets of 3D points) to a physical 3D map as a data

association step. More commonly, though, the pose transformation computed by ICP to align observed

points and mapped points is directly used to inform the estimate of the motion of the robot [141, 168].

When matching point cloud observations to a point cloud map, the process is often referred to as scan

registration.

2.1.1.3 Loop Closure

For long term navigation in large environments, it can be important to recognise that a location has

been revisited and to utilise that information to correct the drift in the robot and map estimates. This

recognition and correction process is known as loop closure. The first step in loop closure is recognising

that a location has been revisited: loop detection. Data association of the features themselves can be

used for loop detection, by matching observations at the end of a loop to features stored at the start

of the loop. In large environments though, the drift in the estimate of the map and robot states often

means that a complete loop is not predicted with the map even when a physical loop has been travelled.

Therefore the features at the start of the loop and the current observations are too far away to be

matched (see Fig. 2.2.a). To address this challenge, algorithms employ place recognition as a separate

algorithm to detect loop closures based on the appearance of a scene. Techniques such as visual bag

of words can be used to describe the appearance of a given camera view to then be used to detect

loops [162].

Once a loop has been detected, then the new information is used to perform a loop correction to

do a global adjustment to the map and robot trajectory. The algorithm for the loop correction depends

on the map representation used. For example, an effective approach for graph-based methods is to

run a pose-graph optimisation with extra edges in the graph from the loop closure. The result of loop

correction is shown in Fig. 2.2.b:

Loop closure algorithms can also be used for relocalisation if a robot becomes lost or starts in an

unknown location of a mapped environment.

2.1.1.4 Summary

What has been described here is a conceptual overview of SLAM and some of the key terms and algo-

rithmic components. Not all SLAM algorithms use all of the techniques described, and the combination

of techniques that are used can be a point of comparison between SLAM algorithms. The following

19

CHAPTER 2. BACKGROUND AND RELATED WORK

FIGURE 2.2. Demonstration of loop closure with ORB-SLAM2 [162]. (a) A loop is completed,
but the error of the estimate of the robot pose means that a loop is not predicted. The
visual bag of words approach detects the loop though, as indicated by the blue line. (b)
With a loop detected and corrected, the trajectory and map now aligns to complete the
loop. Images are from [162].

sections review particular types of SLAM that vary based on the sensors required, the features used,

the map representation and the method of estimation.

2.1.2 Point Cloud SLAM

Point Cloud SLAM algorithms directly use 3D point observations of the environment (point clouds) as

the features to match against a 3D model of that environment. Each 3D point is matched to the closest

3D point in the model, and the difference between them is used to inform the update of the state and

map estimates. The map is a 3D model such as a point cloud or an occupancy grid (3D cells that are

either occupied or free1) and data association is achieved by minimising the distance between the set

of observed 3D points and the map 3D points. ICP, or a similar variant, is commonly used in these

algorithms to compute the transformation to update the position of the robot.

Point cloud algorithms require an accurate point cloud from the sensors and hence tend to be limited

to the use of lidars, or RGBD (colour and depth) cameras. Lidar can either operate in 2D or 3D with

the use of a gimbal or a lidar with multiple scan lines. Lidar with point cloud SLAM is used with great

success for ground-based robots, with many readily available algorithms, such as in the Robot Operating

System, as reviewed by Santos et al. [203]. Ground-based robots can use 2D representations of the

environment, but the algorithms are more difficult to implement for 3D navigation.

There are a few notable examples in 3D, with varying map representations and optimisation

approaches. Fang et al. [63] matches point cloud observations from an RGBD camera to an occupancy

grid, which is produced offline. The estimation is performed with a particle filter but only to update

the state estimate: the process is purely to provide global localisation of the robot and relies on VIO

(described in Section 2.1.3) to track position; therefore the approach is not a full SLAM solution.

1See Section 2.2.1.2 for more details on occupancy grids.

20

2.1. SIMULTANEOUS LOCALISATION AND MAPPING (SLAM)

A similar approach is taken by Perez-Grau et al. [177], who use an RGBD camera to create a point

cloud and use that point cloud to match to a 3D probability grid, where a field of occupancy probability

is sampled at grid points. Similarly to Fang et al. [63], their approach relies on visual inertial odometry

and a map that has been previously built. They use a Monte Carlo Localisation approach to estimate the

pose of the robot, given the point cloud observations. Both [63] and [177] use a pre-mapped environment,

hence are performing localisation, rather than SLAM.

One algorithm that does do full SLAM with point cloud observations is presented by Droeschel

et al. [52]. The map representation is an occupancy grid where each grid stores a surfel: a mean and

covariance of the points within that cell. Observations are grouped into surfels and matched to the map

of surfels, using a Gaussian mixture observation model in an optimisation-based approach to determine

data association and pose transformation. The map is generated online, in a local area around the robot.

For larger scale SLAM, local surfel maps are stored in keyframes and a graph optimisation approach

employed.

Full 3D SLAM with matching of point clouds to a point cloud map has also been demonstrated

by Kaul et al. [103], with operation onboard a multi-rotor UAV. They use a novel algorithm for scan

registration (matching an observed point cloud to the map point cloud) to incrementally localise the

robot as well as build a global map.

The algorithms of both Droeschel et al. [52] and Kaul et al. [103] rely on observations from a lidar

that is either actively or passively actuated. A downside to these techniques is that they required

heavy sensors with large power consumption as well as a large amount of processing power to run the

algorithms2. RGBD sensors require less power, but no existing technique can perform online localisation

and mapping with them. Therefore, there is a general trend toward using lighter, passive sensors such

as visual cameras. These techniques will be discussed below.

2.1.3 Visual SLAM - Preliminaries

Visual SLAM algorithms are becoming more and more popular due to the low cost, size, weight and

power of visual cameras. This trend has been supported by the enhanced capability of digital cameras

with suitable properties for computer vision applications. The use of visual cameras is of particular

value to small flying robots, where there are tight constraints on weight and power.

Visual SLAM algorithms take on a variety of forms, which will be discussed and compared in the

sections below. First, this section will overview terminology, key points of comparison and common

components of visual SLAM algorithms. For a detailed overview of the key algorithmic concepts in

visual SLAM, refer to the tutorial presented by Scaramuzza and Fraundorfer [70, 205].

2.1.3.1 Determining Depth

The sensors used in visual SLAM can either be monocular cameras, stereo cameras or multiple-camera

arrays. Stereo cameras enable a depth estimate of a pixel in the image to be determined from a single

observation using the disparity in pixel locations from left to right camera. This stereo depth perception

2The sensors are also active, projecting radiation into the environment, which may not be desired in particular application
domains.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

is similar to the way that human eyes perceive depth. Multi-camera systems can extend this concept

to more than two cameras by making multiple stereo pairs. In contrast, monocular cameras require

motion to determine the 3D structure of observations, using approaches called Structure From Motion

(SfM) [106]). SfM can be thought of as constructing a virtual stereo pair of images from two monocular

images at different locations. Without a physical baseline (such as the distance between two stereo

cameras), the depth estimates from monocular techniques have a scale ambiguity, though: i.e. the

relative size and location of observations can be determined, but an absolute size can not. The scale

ambiguity can be resolved if an IMU is used as this will give information on the effective baseline

between two monocular images. Stereo and monocular cameras are the most popular, with stereo

benefiting from direct 3D measurements but at the expense of additional computation for processing

two images. Stereo cameras also require an additional camera and a rigid mounting to have a consistent

baseline between the two cameras.

2.1.3.2 Visual SLAM Classes

There are two main classes of visual SLAM algorithms: indirect and direct. Indirect algorithms extract

visual features from the environment and use the error between the 3D location of the features to

update the estimate of both the robot pose and the map. The estimation for indirect methods aims to

minimise the geometric error between features. Direct methods, in contrast, directly use pixels in an

image as the features and look to minimise photometric error: the differences in pixel intensities. A

differentiating component of indirect SLAM algorithms is the type of visual features used. For direct

SLAM algorithms, a differentiating factor is the choice of which pixels are used in an image, either with

all pixels (dense), a subset of pixels (semi-dense), or patches of pixels (sparse), as depicted in Fig. 2.3.

FIGURE 2.3. Depiction of the different variations of direct SLAM methods. Different amounts
of pixels are used ranging from (a) dense, (b) semi-dense and (c) sparse. Images from [68].

Another axis of classification is the method of estimation. Along this axis, one end is filter-based

approaches, estimating the current state and covariance along with the map-feature-states. On the

other end, there are pose-graph-based approaches, building a graph and optimising over that graph.

To limit the size of this review, the comparison of this axis of classification is included throughout the

discussions on indirect and direct visual SLAM. Refer back to Section 2.1.1.1 for a summary of the key

differences between filter approaches and pose-graph approaches.

22

2.1. SIMULTANEOUS LOCALISATION AND MAPPING (SLAM)

2.1.3.3 Common Algorithms

A common algorithmic feature for visual SLAM is a process called Bundle Adjustment (BA) [218], where

the bundle of observed features at a given camera pose can have their positions in space adjusted by

modifying the pose of the camera. With many poses stored and their corresponding bundles of features,

BA will adjust the poses to best align all features.

Another common algorithm employed is Perspective from n Points (PnP), which is used in estimating

the position of the robot from matched observations (an example algorithm is [150]). PnP operates

similarly to ICP by matching observations of a set of features to a stored map of features to determine

the motion of the robot. Where ICP matches 3D points to a 3D map, though, PnP matches 3D points to

2D image points. The stored map features in 3D space are projected onto image space and compared

against the observed features in the image. The algorithm computes the transformation of the robot

pose to minimise the reprojection error: the error in the 2D space of the image. This transformation is

used to update the estimate of the robot pose.

2.1.3.4 Visual SLAM Terminology

The literature of visual SLAM algorithms differentiates between Visual Odometry (VO), Visual Inertial

Odometry (VIO) and visual SLAM (VSLAM). There are many common elements between each of the

algorithms, and the differences can be subtle. The difference between VO and VIO is that VIO uses

an IMU to aid in position estimation. VSLAM could be with or without an IMU. Algorithms without

integration of an IMU simply use each observation to update the robot pose estimate.

Regardless of IMU integration, the primary goal for VIO and VO algorithms is to track the position

of the robot, i.e. odometry. Nonetheless, in tracking the position of the robot, these algorithms are

running a SLAM algorithm: detecting features and updating a map of those features. The differentiation

to VSLAM is that VSLAM performs loop closures, allowing the creation, maintenance and use of a large

scale map. To confuse the matter further, often VO or VIO algorithms can be combined with a back end

SLAM algorithm to achieve VSLAM. For the discussion here, the important components to consider are

the features, the map representation and the estimation methods, which can be equivalently compared

between VO, VIO and VSLAM. The capability for loop closure or the use of an IMU are just two factors

that will be discussed below.

2.1.3.5 Performance Comparisons

Many of the references describing the algorithms include a performance comparison with other, state-of-

the-art algorithms. For a complete comparison, Delmerico et al [48] present a benchmark analysis for

monocular VIO algorithms. Their tests are on hardware suitable for small flying robots, with datasets

recorded by quadrotors. Li et al. [120] also provide a broad assessment, with tests of 8 algorithms that

do not require an IMU, on indoor, outdoor and underwater datasets. They also compare each algorithm

on the datasets provided in the original publications of each algorithm.

Presented below is a discussion on the leading algorithms for VSLAM, describing the features used,

the map representation, the method of estimation and the capability demonstrated.

23

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.4 Indirect Visual SLAM

Many of the most successful VSLAM algorithms use an indirect approach: extracting image features

from the environment and tracking those image features as the robot moves through the environ-

ment [104, 119, 163, 183, 213]. There are two components to using image features: features detectors

and feature descriptors. Detectors extract the feature points from an image by running a sequence

of image processing steps and extracting distinct points of interest. Descriptors provide a detailed

description of the feature. The description is represented by a vector of parameters that are computed

based on the surrounding pixels. Two examples of image features being extracted are shown in Fig. 2.4.

The ideal detector is to able to extract the same features from a wide range of view angles, rotations,

changes in scale, blurring and illumination changes. The ideal descriptor enables robust data association

between these features: to accurately match a feature when observed again from a different view angle,

scale, illumination, etc. Both descriptor and detector are ideally very fast to compute so that features

can be extracted from a stream of images, as is required for VSLAM.

FIGURE 2.4. Examples of image features being extracted. (a) SURF features, in red, on an
example image, depicting the use of surrounding pixels (image is from OpenCV Python
tutotials [149]). (b) ORB features, in green, highlighted on an image (image is from
ORB-SLAM2 [161]).

There are many types of detectors and descriptors, and in general, an algorithm can perform both

tasks. These algorithms range from corners detectors, such as Harris Corner Detectors or FAST corners,

to techniques that calculate metrics from surrounding pixels, such as SURF, SIFT, BRISK, BRIEF,

FREAK and ORB [159]. Mukherjee et al. [159] present a thorough experimental review of image

detectors and descriptors, including summaries of each of the different algorithms and comparative

assessment of performance. They conclude that SIFT feature descriptors with a FAST detector is a

strong combination, as is the use of ORB as a detector and descriptor. The most appropriate combination,

though, can depend on the desired application, which affects what the visual nature of the environment

is, what the likely distortions are, what sensors are being used and the goal for using the features.

Whichever detector/descriptor combination is used, indirect VSLAM consists of extracting a set

of features from each image and over multiple observations the 3D location of those features are

determined. The 3D location can be determined with stereo cameras, RGBD cameras or with the

movement of a monocular camera. As the camera moves through an environment, the observed features

24

2.1. SIMULTANEOUS LOCALISATION AND MAPPING (SLAM)

and their 3D location are stored and updated to build the map representation. For localisation, the

features that are observed are matched to the set of features in the map to inform the estimate of the

robot pose. These observations also give information on the estimate of the feature locations. Herein

lies a challenge of SLAM: the joint estimation of the robot state and the map state (the positions of the

features in the map). The method to perform the joint estimation is a key factor of different algorithms

and influences the map representation used. One approach is to use a Kalman filter. The resulting map

is the set of features in 3D space. This state vector can become very large as the area of operation grows,

making the Kalman filter less feasible.

A more efficient map representation has emerged with recent work, to represent the map with a

pose-graph [19, 55, 119, 163, 183]. This map representation is used in the estimation by performing a

variant of pose-graph optimisation: adjusting the poses in the keyframes to minimise the geometric error

of features observed in different keyframes. This allows the history of observations and estimations

to be considered in an update, rather than just the current state and covariance, as done in a filter-

based algorithm. Considering the whole history of observations allows for loop closure operations to be

performed in a global update. The estimation can use the complete graph [104, 163], or a non-linear

optimisation could be performed on a sliding window of keyframes: considering only a reduced subset of

recent keyframes [119, 183].

Pose-graph-based SLAM algorithms tend to have separation of tracking the robot pose and updating

the map. In Parallel Tracking and Mapping (PTAM) [104] and ORB-SLAM2 [161, 163], for instance,

the robot pose is tracked frame to frame by matching features observed to existing features in the map.

Only when a new keyframe is inserted does the map get updated and only on loop closure is the full

graph optimised.

Both the feature map and pose-graph map are very effective for localisation, but they do not provide

a 3D representation of the environment that is useful for visualisation or representation of obstacles.

An example of a map produced by indirect algorithms is shown in Fig. 2.5.a.

Indirect VSLAM algorithms show consistently strong performance, with stereo cameras, RGBD

cameras and with monocular cameras. PTAM [104] was the state-of-the-art until recently. The algorithm

uses FAST features in a pose-graph. ORB-SLAM2 could be considered as the current state-of-the-art (at

the time of publishing) and has been frequently utilised, including for aerial robots [4]. ORB-SLAM2

uses ORB feature detectors and descriptors in a pose-graph with loop closure capability (see Fig. 2.2 for

a loop closure example). ORB-SLAM2 can operate through large environments using either monocular,

stereo or RGBD cameras and does not require an IMU. OKVIS [119] and VINSMono [183] do integrate

an IMU into their algorithm, use monocular cameras and employ a pose-graph that is optimised

with a sliding window approach (fixed-lag smoothing). A recently developed algorithm that uses close

integration with an IMU is the Stereo Multi-State Constraint Kalman Filter (S-MSCKF) [213], that

fuses observations of FAST features into the measurement model of a Kalman Filter. Their approach has

shown impressive performance running onboard a quadrotor, with high-speed flight and transition from

indoor to outdoor lighting conditions. S-MSCKF can be regarded as one of the leading VIO algorithms

to date. Other than ORB-SLAM2, all of these algorithms can be regarded as VO algorithms: they do not

perform loop closure.

25

CHAPTER 2. BACKGROUND AND RELATED WORK

FIGURE 2.5. Example maps produced by indirect and semi-direct SLAM algorithms. (a) Map
produced from the indirect algorithm, ORB-SLAM2 [163]. The robot pose is in blue,
and the features are the black and red points. (b) Map produced by Semi-Direct Visual
Odometry (SVO) [68], with ground truth in red, tracked trajectory in blue and features
as green points. Both maps consist of the robot poses and a large set of point features in
3D space: a representation that is not useful for trajectory planning. Images are from
the respective references.

Indirect approaches tend to perform well on a wide range of scenarios, with strong data association

between features and robustness to photometric errors, but the algorithms can perform poorly in low-

detail environments, or environments with high-frequency texture. In these cases, it becomes difficult

to extract and match distinct features when much of the image looks similar. Direct methods, using

more of the pixels in an image, can perform better in these challenging environments.

2.1.5 Direct Visual SLAM

Direct VSLAM algorithms use image pixels and their intensities as the features to match frame to

frame. When using pixels as features, it is the photometric error that is used in the estimation: the goal

is to minimise the differences in pixel intensities between an image taken by the robot and the predicted

image based on a model of the environment. This model is created by projecting the observed pixels

into 3D space to produce a point cloud, where each point has an associated intensity. When predicting

the image the camera will see, a simulated image of the model is generated, as would be seen from

estimated camera pose. The 3D point cloud model is the map: and is often referred to as a dense 3D

reconstruction. To start the SLAM process, there needs to be an initial model, from which to produce a

predicted image. The initial model can simply be a random depth field [57], a fixed depth with large

uncertainties [19] or the initial pose could be tracked by an indirect method to then build the starting

direct map [55].

Direct SLAM is a less mature field than indirect SLAM [56], but it is a field that has recently grown

in capability due to enhanced computational speeds and the greater availability of cameras suited for

computer vision applications. Direct methods are particularly sensitive to photometric errors, such

as image distortions and rolling shutters; hence they require modern cameras that are designed to

26

2.1. SIMULTANEOUS LOCALISATION AND MAPPING (SLAM)

minimise such errors.

The benefit of direct algorithms, compared to indirect algorithms, is that more of the information

in an image is used, with can lead to more robust data association and the ability to localise in envi-

ronments with low or high-frequency texture. By using the image intensities directly, the computation

time in extracting features is removed, but that computational load is replaced by the need to generate

predicted images from a 3D model. Additionally, there are more pixels to consider. As a result, direct

algorithms are generally slower than indirect algorithms. Direct algorithms can readily be parallelised

though, enabling quicker computation if a GPU can be used [56].

One of the large computational burdens for direct SLAM algorithms is in updating and maintaining

a dense reconstruction of the environment. To address this issue, the map is often represented in a

pose-graph, as with indirect methods, where a set of keyframes are stored, along with their point cloud

observations. To further improve the computational efficiency, approaches are taken to reduce the

number of pixels considered to only the most useful: the pixels with high gradients. These algorithms

are called semi-dense direct SLAM. The map produced by semi-dense algorithms is also semi-dense,

providing a more compact representation. Sparse maps can also be used, by using patches of pixels

around image features (extracted with similar methods to indirect SLAM) and running an algorithm to

minimise the photometric error between these patches.

The semi-dense map representation can be visually impressive (see Fig. 2.6) and can enable strong

performance for localisation [19, 41, 55, 56, 166], but the map is not suitable for trajectory planning,

being a highly detailed representation that can be slow to query and can have many gaps between

points. The representation is as a large set of points, rather than volumetric entities such as voxels,

which is the type of representation needed for trajectory planning to adequately identify collisions.

FIGURE 2.6. Example maps produced by semi-dense and sparse visual SLAM algorithms. (a)
Map from a semi-dense algorithm, LSD-SLAM [57], with camera pose in blue, connected
by green lines. (b) Map from a sparse algorithm, DSO [55] with poses in black and
trajectory in red. Images are from the respective publications.

Direct SLAM estimation methods are similar to that for indirect SLAM, utilising the data structure

of a pose-graph, with full pose-graph optimisation [57], or sliding window optimisation [55]. Another

estimation approach particular to direct algorithms is an energy minimisation formulation [41, 166]. All

27

CHAPTER 2. BACKGROUND AND RELATED WORK

these methods minimise the photometric errors between observations and the predicted observations

from the map.

The leading direct algorithms, to date, operate with a monocular camera and generate the depth

from the motion of the camera. LSD-SLAM [56] is one such leading algorithm that performs full

graph optimisation with a semi-dense representation and is capable of performing loop closures.

LSD-SLAM can also operate with stereo cameras [57]. An example map produced by LSD-SLAM is

shown in Fig. 2.6.a. DTAM [166] is an earlier dense method that uses energy minimisation for the

estimation. DPP-TAM [41] is a semi-dense method that also uses energy minimisation and exploits

planar structures in the environment to provide a more complete map. Both DTAM and DPP-TAM are

designed with a goal for 3D dense reconstruction, rather than robotic navigation. This is in contrast to

Direct Sparse Odometry (DSO) [55], a sparse method using sliding window optimisation, that is tailored

towards providing VO information for robotics. An example map from DSO is shown in Fig. 2.6.b. The

strong performance of each of the algorithms in a variety of environments (see Table 2.4) shows the

effectiveness of direct methods.

All of the direct algorithms described above operate without an IMU, which highlights the difficulty

in fusing an IMU into direct VSLAM. The challenge is due to the complex mapping from the space of

physical camera movement to the image space, which makes it difficult to formulate in an estimation

algorithm. Nonetheless, Robust Visual Inertial Odometry (ROVIO) [19], is a sparse direct SLAM algo-

rithm that uses BRISK and FREAK detectors to extract image features and minimises the photometric

error of patches around these features in the update step of an EKF. The EKF enables the integration

with the IMU, which allows ROVIO to operate with a constant depth initial model, making it a useful

algorithm for mobile robots.

2.1.6 Semi-Direct Visual SLAM

Semi-direct VSLAM algorithms aim to take the strengths from both classes of SLAM by using the

indirect elements of: sparse features, low computation time, minimisation of geometric errors in a

joint estimation; combined with the direct SLAM characteristic of robust data association using pixel

intensities. A summary of the differences between indirect and direct VSLAM algorithms is presented

in Table 2.1. Semi-direct approaches first extract visual features, using feature detectors similarly to

indirect algorithms but then use a patch of pixels around the feature for data association, with the aim

to minimise photometric error as with direct algorithms. Once matched, though, the location of the

features are used in a joint estimation of the map and robot state to minimise geometric error, by using

similar methods to indirect VSLAM. The photometric error is minimised in matching features, and

geometric error is minimised in the estimation of robot and map state.

The map representation for semi-direct approaches is similar to both direct and indirect methods:

pose-graphs with observed features but with the features being image patches and their centres. As

with direct and indirect methods, the map enables effective localisation but is not a representation

of the physical obstructions in the environment (see Fig. 2.5.b). Estimation methods likewise take

similar forms, with Kalman filter approaches and pose-graph optimisations. Semi-direct methods have

shown strong performance and are becoming more and more popular as a VSLAM algorithm of choice,

particularly for robotic navigation in 3D.

28

2.1. SIMULTANEOUS LOCALISATION AND MAPPING (SLAM)

TABLE 2.1. Comparison of key factors for indirect and direct visual SLAM.

Semi-direct Visual Odometry (SVO) [67, 68] is a semi-direct algorithm that has seen wide, successful

use, in particular for flying robots, with the use of monocular cameras [61, 68, 147]. SVO uses FAST

corners and image edgelets as the feature detectors and performs a Bayesian depth estimation to resolve

the 3D locations of features from motion. As a visual odometry algorithm, SVO operates without an

IMU and is best for tracking movement in a relatively small environment. SVO can be combined with a

back end EKF or pose-graph SLAM framework to enable operation in large environments, fusing IMU

information and performing loop closures [48].

Work by Ait-Jellal at al. [4] has recently extended ORB-SLAM2 to be a semi-direct method by

extracting image patches around ORB features and using the pixels in those patches to match features.

These modifications are shown to be very effective for SLAM with quadrotors.

2.1.7 Appearance-Based Visual SLAM

A separate class of VSLAM algorithms utilises appearance descriptors to give identification of locations

throughout an environment. The goal is for large scale, persistent navigation, to emulate how animals,

such as rats, explore environments. In RatSLAM [143], a set of experiences are stored that consist of

a robot pose and a view of the environment. A set of experiences are linked together with odometry

information on the motion between them to form a semi-metric, topological, experience map. The

features in RatSLAM are the appearance descriptors for a given view of the environment. When an

appearance is observed, it can be matched back to an experience stored in the map to give information

on the location of the robot. RatSLAM has been demonstrated with online, real-time SLAM for long

term navigation of ground-based robots. The algorithm can operate in dynamic and unstructured

environments and is robust to being moved from a known to an unknown location. The algorithm is not

designed, though, to track fast dynamics or provide visual odometry information that could be used

by a flying robot. The map is purely for long term navigation and gives no information on the physical

obstructions in the environment (see Fig. 2.7).

29

CHAPTER 2. BACKGROUND AND RELATED WORK

FIGURE 2.7. Example map from RatSLAM: an experience map. Nodes indicate particular
experiences, with robot pose and view appearance information. Nodes are connected by
odometry information. (a) Map over a large environment. (b) Close-up of map section
highlighted in the grey box in (a). Image from [143].

2.1.8 Geometric-Feature-Based Visual SLAM

The concept of using features of an image for SLAM, as in direct methods, can be extended further to

utilise the structure of the environment and extract extended geometric features. Sola et al. [209], for

example, presents an analysis of EKF-SLAM with line features, that could be computed to fit distinct

edges in the environment. Alternatively, features can take the form of splines, giving the advantage of

fitting to non-straight edges. For aerial navigation purposes, when looking down on the environment,

the splines can be fit to features such as roads, the edges of bodies of water or a combination of such

features, as in Terrain Aided SLAM (TASLAM) [42, 221, 225]. On the ground, the spline could be fitted

to the edges of paths, or roads, such as in Curve-SLAM [137, 190]. These algorithms involve fitting a

spline to observed features and matching the shape of the spline to a previously observed spline. The

shape of the spline provides a more richly detailed feature than 3D points, which can provide more

information to inform the estimate of the robot pose.

The map that is produced is a set of spline features that are primarily for navigation. The map can

also provide information on the structure of the environment, such as the boundaries of a path, that

could be used for path planning. For example, maps using spline features, see Fig. 2.8.

CurveSLAM has only been demonstrated for 2D navigation of ground-based robots, and the aerial

algorithms are best suited to Terrain Aided Navigation (TAN), where a map of the spline features is

available before flight. Nonetheless, the concepts used in these algorithms may apply to 3D contexts.

2.1.9 Summary and Assessment

The VSLAM algorithms discussed here are summarised in Table 2.3, where the features, the map

representation, the sensors and the estimation approach are highlighted. Table 2.4 presents the

environments in which the algorithms have been successfully demonstrated. The focus of this thesis is

the application of SLAM algorithms to small flying aerial or space-based robots, with power and weight

constraints as well as limited computational capacity. Out of those reviewed, there are a number of

leading algorithms that are suitable for small flying robots. ORB-SLAM2 [163] stands out as state-of-

the-art for a SLAM algorithm without an IMU, with S-MSCKF [213] being the leading approach with

IMU integration. Out of the direct VSLAM methods, DSO [55] shows strong performance but only as

30

2.1. SIMULTANEOUS LOCALISATION AND MAPPING (SLAM)

FIGURE 2.8. Example maps from geometric-feature-based SLAM, overlayed on Google Earth
imagery. (a) Map from CurveSLAM [137], with spline features in blue with the end-
points of the splines in red. The splines follow the structure of the path. (b) Map from
TASLAM [225], with spline features in red matching the edge of a body of water. The
SLAM trajectory is in blue and the GPS tracked trajectory is in black. Images are from
the respective publications.

an odometry algorithm. Recent developments with semi-direct algorithms appear to give competitive

performance, with both SVO (with a SLAM back-end) [48] and a modified ORB-SLAM2 [4] providing

robust VSLAM that can readily be applied to small flying robots.

While there are a range of suitable algorithms for tracking the location of a flying robot, what can be

seen in Table 2.3 and Figs. 2.5, 2.6, 2.7 and 2.8 is that none of these algorithms generate a map that is a

physical representation of the environment: a representation that can be used for trajectory planning.

Some of the dense, direct methods do produce a dense point cloud, but as noted above, the point cloud is

not a volumetric representation of the obstructions; hence another algorithm is needed to produce such

a representation from the point cloud. The geometric-feature-based SLAM algorithms can provide a

representation of some physical restrictions, but these are not a representation of obstacles that need

to be avoided. The point cloud SLAM methods do utilise a map that represents physical obstructions,

but these algorithms either require a VIO algorithm and use a pre-generated map [63, 177], or require

lidar as a sensor [52]. None of the point cloud algorithms, in isolation, enable SLAM in an unknown

environment with sensors suitable for a small flying robot.

Because the maps generated by the leading SLAM algorithms for small flying robots do not produce

maps of the physical obstacles in the environment, the state-of-the-art for having the full navigation

stack of localisation, mapping and trajectory planning, is to have a completely separate mapping

algorithm to generate a map of the physical environment. These mapping algorithms will be explored

in the next section.

What is proposed in this work is to develop one algorithm to perform SLAM with RGBD sensors,

where the map that is produced is immediately a physical representation of the environment that can be

directly used in trajectory planning. The challenge in this approach is in determining what features to

use. The features need to satisfy the requirements for SLAM: robust extraction, robust data association

and integration into an estimation approach, as well as the requirements for trajectory planning: an

31

CHAPTER 2. BACKGROUND AND RELATED WORK

appropriate volumetric representation of obstructions. The next section discusses 3D mapping methods

and the different types of possible 3D representations that could be suitable for both SLAM and obstacle

representation.

TABLE 2.2. Datasets for SLAM testing

Dataset What Sensors Link
1 EuRoC [28] UAV datasets. Indoors, industrial. Stereo, IMU EuRoC
2 Kitti [76] Driving. City, rural, highway. Stereo, lidar Kitti
3 ICL-NUIM [86] Simulated hand carried camera. Indoors. RGBD ICL-NUIM
4 TUM RGBD [212] Hand carried and ground robot. Indoors. RGBD RGBD
5 TUM MonoVO [58] Hand carried. Indoors, outdoor park Mono MonoVO
6 NewCollege [208] Ground robot. Outdoor campus. Stereo, lidar NewCollege
7 FastFlight [213] High speed quadrotor flight on runway. Stereo, IMU FastFlight

32

2
.1

.
S

IM
U

L
T

A
N

E
O

U
S

L
O

C
A

L
IS

A
T

IO
N

A
N

D
M

A
P

P
IN

G
(S

L
A

M
)

TABLE 2.3. Summary of SLAM algorithms

Class Algorithm Sensors Features* Map Representation Estimation Algorithm

Point Cloud OctoMap Localisa-
tion [63]

RGBD 3D points OctoMap (pre-mapped) Particle filter

MCL with Probabil-
ity grid [177]

RGBD 3D points Probability grid (generated from
pre-mapped OctoMap)

Monte-Carlo Localisation

Surfel Grid
SLAM [52]

Lidar 3D points Surfel grid Local: Optimisation with Gaus-
sian Mixture Model. Global:
Pose-graph optimisation.

Indirect ORB-SLAM2 [161,
163]

Mono,
Stereo,
RGBD

ORB Global pose graph with features Pose-graph optimisation

S-MSCKF [213] Stereo, IMU FAST Feature map Muli-State Constraint Kalman
Filter

OKVIS [119] Mono, IMU Harris Corner detec-
tor, BRISK descriptor

Local pose graph with features Sliding window non-linear opti-
misation

VINS-Mono [183] Mono, IMU Corner Features Local pose graph with features Sliding window non-linear opt.
PTAM [104] Mono FAST Local pose graph with features Pose-graph optimisation

Direct LSD-SLAM [56, 57] Mono,
Stereo

Semi-dense pixels Pose-graph with semi-dense re-
construction

Pose-graph optimisation

DSO [55] Mono Sparse pixels Pose-graph with sparse recon-
struction

Sliding window joint optimisa-
tion

DTAM [166] Mono Dense pixels 3D dense reconstruction Energy minimisation
DPP-TAM [41] Mono Semi-dense pixels 3D dense reconstruction Energy minimisation
ROVIO [19] Mono, IMU Patches of pixels

around FAST fea-
tures

Pose-graph with pixels Extended Kalman Filter

Semi-direct SVO [67, 68] Mono Patches of pixels
(FAST and edglets as
detectors)

Sparse map of image patches Non-linear least squares. SLAM
back-end EKF or pose-graph op-
timisation

Appearance RatSLAM [142] Mono Appearance Experience map (semi-metric
topological map)

Neural network model

Geometric TASLAM [221, 225] Mono Splines Feature Map Extended Kalman filter
CurveSLAM[137,
190]

Stereo Splines Feature Map Extended Kalman filter

* Visual features are used both for detection and description unless otherwise stated.

33

C
H

A
P

T
E

R
2

.
B

A
C

K
G

R
O

U
N

D
A

N
D

R
E

L
A

T
E

D
W

O
R

K

TABLE 2.4. Demonstrations and tests of SLAM algorithms

Environment Dataset UAV
Class Algorithm Extra tests∗ A B C D E F G H I J K 1 2 3 4 5 6 7 Hardware

Point Cloud
OctoMap Localisa-
tion [63]

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

MCL with Probabil-
ity grid [177]

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Surfel Grid
SLAM [52]

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Indirect

ORB-SLAM2 [161,
163]

[39, 68, 120] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 [4]

S-MSCKF [213] [48] 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1
OKVIS [119] [48, 213] 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0
VINS-Mono [183] [48, 213] 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1
PTAM [104] [120] 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

Direct

LSD-SLAM [56, 57] [68, 120] 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0
DSO [55] [68] 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0
DTAM [166] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DPP-TAM [41] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROVIO [19] [48] 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1

Semi-direct SVO [67, 68] [48, 120] 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 [61, 68, 147]
Appearance RatSLAM [142] [120] 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0

Geometric
TASLAM [221, 225] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
CurveSLAM [137,
190]

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∗This column contains references where additional tests on the algorithm have been performed. 1s indicate the algorithm has been
demonstrated in that environment, dataset or system. 0s indicate the algorithm has not been demonstrated, to the author’s knowledge
Environments are A: Desktop, B: Office, C: Industrial, D: Outdoors around buildings, E: Outdoors around nature, F: UAV carried camera,
G: UAV high speed flight, H: Highway on car, I Suburbs on a car, J: Underwater, K: Around a comet.
Datasets are detailed in Table 2.2.
UAV Hardware are cases where the algorithm has been demonstrated in flight onboard a UAV system doing online, onboard SLAM.

34

2.2. 3D MAPPING

2.2 3D Mapping

As outlined in the SLAM section, the current state-of-the-art for the autonomous navigation stack

on small mobile robots is to have a separate 3D mapping algorithm to the SLAM algorithm. The 3D

mapping algorithms assume an accurate pose estimate is given from SLAM to then project observations

into a 3D map of the world. The SLAM maps are designed to aid localisation, whereas separate 3D

mapping algorithms can be designed for producing a detailed map of the environment to visualise, or

for representing obstacles in the environment for trajectory planning and obstacle avoidance. It is the

latter application that is of most interest here. Additionally, the goal in this work is to have a map

representation that is applicable both as an obstacle representation and for SLAM.

Existing approaches to 3D mapping will first be reviewed in this section, highlighting the current

capabilities. The review is intended to reveal the gaps in being able to use low power sensors to

generate a 3D map, online, that is useful for both localisation and trajectory planning. To fill the gap,

it is identified that a potential approach is modelling 3D objects as features for SLAM and obstacle

representations. Modelling objects in the environment also has the benefit of producing a representation

that can be used for grasping, object classification, and dynamic obstacles. Therefore a review of 3D

object-modelling algorithms is presented to explore different possibilities to achieve both localisation

and trajectory planning goals.

2.2.1 3D Mapping Algorithms

There are many successful demonstrations of 3D mapping, the leading examples of which are reviewed

here. Some of the factors that differentiate 3D mapping algorithms are: the map representation, how

the map is built, if the map can be built online, the required sensors and the intended purpose of the

map. The ideal 3D mapping algorithm for the goals in this work would be able to generate a compact

3D representation that has volumetric obstacle information for trajectory planning, using sensors that

could be carried on a small mobile robot. This representation would ideally be high in detail, to be useful

for a localisation task and would be able to be produced incrementally with computations onboard the

robot.

2.2.1.1 Point Clouds

A point cloud map representation is a collection of 3D points representing the physical objects in the

environment. These maps are often referred to as dense 3D reconstructions. The point cloud is built by

projecting observed 3D points into a global frame of reference, given the pose of the sensor when the

observation was made. With accurate pose estimates and direct 3D measurements from a laser scanner,

this method of mapping is prevalent for generating detailed maps of environments (e.g. [103]). If lidar

is not possible, such as on small flying robots, then 3D measurements from stereo or RGBD can be used

in a similar fashion. For example, the depth measurements from stereo or RGBD in ORB-SLAM2 can

be stored for each keyframe and then be projected from the keyframes into a common map, giving a

result such as Fig. 2.9.

The projection of 3D observations from keyframes, such as with ORB-SLAM2, requires direct

3D observations in each frame, hence is not applicable for using monocular cameras. However, the

35

CHAPTER 2. BACKGROUND AND RELATED WORK

FIGURE 2.9. Dense 3D reconstruction from ORB-SLAM2. The coloured point cloud is con-
structed by projecting 3D observations from each keyframe (blue icons) in the ORB-
SLAM2 map. The 3D observations come directly from stereo or RGBD cameras. Image
from [163].

depth of pixels with monocular cameras can be estimated by using multiple observations, such as

with direct VSLAM techniques, where the map generated is a semi-dense or sparse 3D reconstruction

(e.g. Fig. 2.6). There are also specific tools for dense 3D reconstruction for monocular images. These

tools take a sequence of images from localised poses and estimate the depths of the observed pixels to

produce the point cloud. Maplab [206] is one open-source tool that uses a technique called Multi-View

Stereo (MVS) [73] to combine sets of monocular images into virtual stereo pairs to estimate the depth.

The depth generation from MVS is similar in concept to monocular direct SLAM but with the goal for

generating point clouds. Another open source tool, REMODE [182], uses a probabilistic depth estimation

algorithm that determines the depth for each pixel separately. Both Maplab and REMODE require

aligned sets of poses to perform the mapping, hence both come integrated with a VSLAM algorithm:

ROVIO and SVO respectively. The algorithms are generally designed for off-line processing with a

large set of images, but REMODE can run at speeds that may be suitable for online mapping, with

parallelisation on a GPU [182]. The two tools can also do further processing of the map to fill holes and

generate complete meshes for visualisation. Example results can be seen in Fig 2.10. One important

consideration for monocular mapping is that there will be a scale ambiguity if there are no other

measurements, such as from an IMU.

Point cloud maps can be used for localisation by matching an observed set of 3D points to the

point cloud map. Algorithms such as ICP can be used for this step, as is done for point cloud SLAM

(Section 2.1.2). Alternatively, pixel intensities could be matched, as in direct VSLAM (Section 2.1.5).

The point cloud representations are visually impressive (see Fig. 2.10), can produce high detail for

mapping and can be used for localisation, but they are are not a suitable representation for trajectory

planning. The point cloud only gives information on obstacles at each individual point and provides no

information on the obstructions between points: i.e. there is no volumetric representation of obstructions,

which is what is needed for trajectory planning. Additionally, point cloud maps are difficult to quickly

query to determine if a point on a trajectory is near an obstacle. Finally, point clouds are not a compact

representation, making storage of the map a potential issue on resource constrained systems. Therefore

36

2.2. 3D MAPPING

FIGURE 2.10. Example points cloud dense 3D reconstructions. (a) From Maplab [206]. (b)
From REMODE with filtering to fill gaps [182]. Images are from the respective publica-
tions.

to generate a map that is suitable for trajectory planning, a volumetric representation is needed.

2.2.1.2 Occupancy Maps

The most commonly used volumetric representation of an environment is an occupancy grid, where 3D

space is divided up into cubic cells that are either occupied, free or unknown. Observations of 3D points

are projected into 3D space, as with point cloud methods, but instead of being grouped together to form

a conglomerate point cloud, the observations are used to update the probability of occupancy for the

cells in the grid. The occupancy probability is updated both at the location of a 3D point and at all the

cells on the ray from the 3D point to the sensor, where the observation is that these cells are free. These

updates of occupancy probability are combined from many observations to build up the occupancy map.

For the purposes of trajectory planning, thresholds on the occupancy probability can be used to

categorise cells into free, occupied and unknown. With this categorisation, the feasibility of a point

on a trajectory can be determined by checking the occupancy of the cell within which it lies. Another

benefit of an occupancy grid over point clouds is that the representation combines information from

multiple observations by updating the probability of occupancy. This combination of observations allows

noisy measurements to be averaged out and can allow the map to update if there are changes in the

environment.

Occupancy maps have been shown to be effective for trajectory planning, with online updates and

relatively inexpensive computations. They have been widely used in 2D applications (such as [203])

as well as in 3D applications [4, 52, 63, 89, 147, 177]. One commonly used algorithm for generating

and storing occupancy maps is OctoMap [91]. OctoMap represents an occupancy grid with an octree:

a tree data structure where each node has eight children. For OctoMap, nodes are 3D cells and the

children represent the spatial division of that cell into eight sub-cells. The parent cell has an occupancy

probability based on the occupancy probabilities of its children (see [91] for details). What this data

structure allows is a variable resolution representation by using different levels of the octree: the

highest level gives a coarse representation and the lowest level gives a detailed representation. The

choice of the number of levels used affects the range of resolutions that can be represented. Having

the ability to adjust the resolution can be very useful for robotic navigation: to use a low resolution for

37

CHAPTER 2. BACKGROUND AND RELATED WORK

quick collision checking in trajectory planning, or to have low resolutions far from the robot and higher

resolutions close to the robot. The octree data structure also allows efficient storage and accessing of

cells at a given 3D location by progressing down the octree, rather than searching the whole 3D space.

Occupancy maps require depth observations and are commonly used with laser scanners, RGBD

cameras and stereo cameras. The maps can be used for different purposes, depending on the application.

Heng et al [89], for instance, uses stereo cameras on a quadrotor to create a robot-centric, local OctoMap,

to provide information for obstacle avoidance and trajectory planning. Ait-Jellal et al. [4] also use stereo

cameras to build an OctoMap for trajectory planning but build a global map, rather than a local map.

The state-of-the-art for autonomous navigation tend to use two occupancy grids: a global occupancy grid

that is pre-mapped and a local occupancy map that is centred around the robot and is generated with

observations from the robot. The global map is used for planning the long term path of the robot and

the local map is used, in addition to the global map, for short term trajectory planning and obstacle

avoidance. The local map uses the most recent observations, allowing the robot to react to changes in the

environment, dynamic obstacles, or errors in the estimate of the robot pose relative to the global map.

Fang et al. [63], for instance, use a pre-mapped 2D occupancy grid of a naval ship for quadrotor path

planning and combine this with a 3D local occupancy map for obstacle avoidance. Mohta et al. [147]

similarly uses a 2D global map with a 3D local map for autonomous navigation of a quadrotor (see

Fig. 2.11), but they generate the 2D map online by updating it with slices from the 3D local map. A

combination of 3D global and 3D local maps is also possible, as used by Perez-Grau et al. [177] with a

pre-mapped 3D OctoMap that is fused with a local OctoMap for quadrotor trajectory planning.

FIGURE 2.11. Example combination of global and local occupancy maps from Mohta et
al. [147]. (a) Local point cloud observations. (b) Global 2D map in grey and black, with
local map bound in the yellow box. (c) A trajectory planned in a combination of the lcocal
and global map. Images from [147].

The occupancy mapping algorithms presented above are very effective for representing the obstruc-

tions in the environment for trajectory planning. Occupancy grids can also be used for localisation, as

described in Section 2.1.2, by matching a set of 3D observations to occupied cells to inform the state

of the robot. One example of this is the approach from Gil et al. [79] that uses a hybrid combination

38

2.2. 3D MAPPING

between an occupancy grid for mapping and localisation. The lidar-based technique builds a local

occupancy grid and uses scan matching for short term odometry. In addition to the scan matching, a

distance transform to the 2D occupancy grid is then used to extract visual features (SURF) for matching

adjacent sub-maps in a pose-graph, and for loop closures for global SLAM. Their approach requires

lidar, however, and is restricted to 2D applications. Hence, occupancy mapping algorithms can achieve

the desired dual use of SLAM and obstacle representation but to date, only in 2D with lidar.

Occupancy maps have been shown to work purely for localisation in 3D pre-mapped environments

with RGBD cameras [63, 177]. Using occupancy maps for online SLAM in 3D is more difficult, as the

resolution of an occupancy map that can be produced online tends to be low, providing limited detail for

localisation. Higher detail grids can be used, approaching the level of detail that has been shown to be

effective with point clouds but this then increases the computational load.

2.2.1.3 Surfel Grids

One occupancy mapping variant that has been successfully used for 3D SLAM is Surfel Grids [52].

This representation is a slight modification to occupancy maps where each cell contains a surfel: a

mean and covariance of the points contained within that cell (for example, see Fig. 2.12.a). While the

representation does not provide a more detailed 3D representation, it captures more information on

the observations in each surfel, which can aid in localisation. The SLAM approach using surfel grids is

described in Section 2.1.2, where surfels are matched for local tracking and surfel maps are fused for

global SLAM in a pose-graph. Surfel to surfel matching, using the mean and covariance information,

rather than just matching a point to an occupied cell, means that the localisation can be performed

without having high resolution. The surfel map used is also multi-resolution, using high detail near the

robot and low detail further from it, to match with the concentration and accuracy of observations. For

trajectory planning, the surfel grids can be used similarly to occupancy maps.

The surfel grid algorithm has been successfully demonstrated for online mapping, localisation and

trajectory planning for a quadrotor by Droeschel et al. [52]. The demonstration used a suite of sensors

including stereo cameras, ultrasonic sensors and a lidar on a gimbal. The lidar provides the majority of

the 3D observations needed for the surfel grid mapping with a wide field for view. It is not clear if this

approach would be equally effective without the use of a lidar, where point cloud observations are less

accurate and have a lesser field of view.

2.2.1.4 Signed Distance Fields

Another variation on a grid-based representation is to store a signed distance in each grid point. A

signed distance is the distance to the nearest surface, with the sign being negative if the grid point is

inside an object. Such a representation is called a Signed Distance Field (SDF) and is ideal for trajectory

planning as it effectively provides a potential field to inform trajectory planning algorithms on how to

move the trajectory to avoid obstacles.

To generate and update SDFs online, a representation called a Truncated Signed Distance Field

(TSDF) is used, where the signed distance values are only defined for a small distance from the

surface (the truncated region). The TSDF representation allows more efficient updates because any

39

CHAPTER 2. BACKGROUND AND RELATED WORK

FIGURE 2.12. Example map representations. (a) Surfel map from [52]. Ellipsoids represent
mean and covariance of points in a 3D grid and are coloured by orientation. (b) ESDF
(coloured cells) and mesh from TSDF with Voxblox [171]. One slice of the ESDF is shown,
with purple colours being closer to obstacles and green further from obstacles. The grey
and white objects are the surfaces extracted from the TSDF. A trajectory is planned
through the ESDF and is depicted in yellow. Images are from the respective references.

change to the observation of a surface only requires the update of a small number of points within the

neighbourhood of the observation, rather than having to propagate out changes to the SDF throughout

an entire volume. New scans can be quickly integrated into the TSDF because they are able to use the

projective distance: the distance along the ray from the camera to a 3D point, rather than the absolute

Euclidean distance, which would require extra computations.

TSDFs are able to be generated and updated online and can produce strong visualisations by

taking the level set of a TSDF through zero distance to create a continuous surface mesh. However,

by truncating the region in which the distances are defined, TSDFs are no longer as useful as an

obstacle representation for trajectory planning. A Euclidean Signed Distance Field (ESDF) represents

the signed distances throughout a 3D volume and uses the Euclidean distance to the nearest surface.

Such a representation is what is desired for trajectory planning. An ESDF cannot be built efficiently

online, though, because the update of one observation can potentially require updates throughout a

large portion of the map. A solution is to efficiently generate an approximate ESDF from a TSDF, as

performed in the open source tool: Voxblox [171]. By generating a TSDF map online and using the TSDF

map to generate the ESDF map, Voxblox is able to produce, online, a suitable 3D representation for

trajectory planning. For efficient mapping and planning in large environments, Voxblox uses a spatial

hashing approach [167] to store the map in different blocks of volume and only access those blocks

when the robot is within the corresponding volume. See Fig. 2.12.b for an ESDF from a TSDF produced

by Voxblox. The capability of Voxblox has been demonstrated with online mapping and planning on a

quadrotor with stereo cameras for depth measurements [170, 172].

To enable the online conversion from a TSDF to an ESDF, there is a trade-off in accuracy, with the

potential for small errors in the ESDF and limitations on the resolution possible. The TSDF or ESDF

could potentially be used for localisation by matching 3D observations to grid values of zero distance,

40

2.2. 3D MAPPING

but it is unclear whether the level of detail possible would make such an approach effective.

2.2.1.5 Continuous Occupancy Maps

In grid-based map representations, there is some information lost in discretising the space. For instance,

in occupancy grids, each cell is an independent measure of probability; there is no correlation to

neighbouring cells, or use of the inherent structure in the environment to inform the map generation.

SDFs do propagate information to nearby cells to have linked structures, but they are not a probabilistic

representation of the correlations between points. Continuous occupancy methods, in contrast, use the

inherent structure of the environment and the correlations between the occupancy of nearby cells, with

a probability of occupancy that expands throughout the whole space. What this continuous occupancy

representation provides is:

• Contextual information with a correlation between points to better represent the environment.

• Modelling of occupancy between observations to:

– Make inferences on unobserved space.

– Enable sampling of the occupancy at any resolution.

• Variance information to provide uncertainty measures for trajectory planning and exploration.

To use continuous occupancy maps for trajectory planning, the final representation is still an

occupancy grid, but this grid is generated from an underlying continuous representation.

The continuous representation is generated from a statistical regression on observed 3D points and

query 3D points (referred to as training points and test points, respectively, in the literature). The query

points are where it is desired to determine the value of the representation, and in the case of occupancy

mapping, the query points are the occupancy grid points. The query points can then be classified into

occupied, free, or unclear, by applying thresholds to the occupancy probability.

Gaussian Process Occupancy Mapping (GPOM)

One approach to continuous occupancy mapping is Gaussian Process Occupancy Mapping (GPOM) [169],

where the continuous function is generated from a Gaussian Process (GP). A GP is a method to fit a

parameter-free function to data, where this fit is informed by a prior covariance between all observation

points and query points. The prior covariance is defined by a kernel function, the nature of which

affects the functional fits that are generated. The kernel functions can be optimised by training

hyperparameters [169]. A regression is performed to find the mean and variance of the functional value

at the query points, using the prior covariance and observations points. For GPOM, the functional

value is the occupancy probability. The functional fit does not give an explicit equation but instead is

represented by a combination of the prior covariance and the observation points. The functional fit can

only be evaluated by performing the regression on a query point. Any scale of query can be performed,

though, and in any part of the environment by selecting the query points accordingly.

A challenge for GPOM is the large computational expense in performing the regression, that scales at

O (n3), where n is the number of test points. Without any modifications to GPOM, this computational load

limits the application to small 2D environments and offline demonstrations. Therefore, developments

have been made to GPOM to tackle the computational complexity with a variety of techniques to

41

CHAPTER 2. BACKGROUND AND RELATED WORK

break-up the problem. These techniques mainly using the observation that distant parts of the map

have minimal correlations and hence can be treated separately. One technique uses localised regional

regressions, where a small set of observation points around a query point are used, with each query

point running a regression independently [169]. It is more efficient to perform the regression on a

batch of query points, through, hence the regional regression concept is expanded to process all query

points contained in a 3D cell. The batch regression with these test points uses the observation points

in adjacent 3D cells [223]. Another, similar, technique to break up the computations it to perform

regressions on different regions of the map and then merge the results together with a Bayesian

Committee Machines (BCM) [223]. The test points can also be organised in an octree to allow test

points to be pruned (moving to a lower resolution level of the octree) and for quick access of data. The

combination of regional regressions, BCMs and test data octrees can enable the use of GPOM in 3D

environments with a computation time that is suitable for online operation [223].

Hilbert Maps

Hilbert maps [187] are a similar concept to GPOM, using kernels and regressions to extract the mean

and variance at test points from an underlying continuous representation. They are designed to address

some of the computational challenges of GPOM and the scaling issues [187]. The formulation of Hilbert

maps allows for linear time update of the map and the use of stochastic gradient descent (SGD) to enable

quick regressions. Hilbert maps are an order of magnitude quicker to update than GPOMs if there are

no modifications to either algorithm to break up the problem [187]. Similarly to GPOM, techniques can

be applied to Hilbert maps to split a problem into smaller Hilbert maps which are then fused together,

resulting in a speed increase and the ability to apply Hilbert maps to 3D problems [50, 83].The current,

state-of-the-art for GPOM and Hilbert maps shows that for 3D environments, GPOM is quicker [50, 223].

Continuous occupancy mapping algorithms have shown the ability to produce more accurate maps

than OctoMap at a similar computational load [223] and have the advantages of modelling unobserved

space as well as providing variance information. However, all demonstrations have been with ground-

based robots using laser scanners and it is unclear how effective the algorithms would be with noisier

sensors. The probabilistic framework lends itself well to including sensor noise and the algorithms have

been successfully demonstrated with simulated and real noise on laser scans. Nonetheless, the tolerance

of continuous occupancy mapping algorithms to the increased noise from stereo or RGBD is unclear.

2.2.1.6 Confidence Rich Maps

A recent method that has been demonstrated with stereo cameras and considers correlations between

cells is Confidence Rich Mapping (CRM) [3], which is a variant on occupancy maps. The assumption

of cell independence in occupancy maps is relaxed in CRM by storing both a probability of occupancy

and a covariance in each cell. When a new observation is made, all of the cells in the view cone are

correlated. The view cone is the volume of space from which the camera observations come. Every cell

in this cone has been observed as either free or occupied with the same sensor scan, with common noise

and common uncertainty in camera pose. Therefore the occupancy values are correlated and this is

42

2.2. 3D MAPPING

included in CRM to build up the covariance of occupancy in each cell. The result is that the mean and

covariance in the cells are a representation of continuous occupancy.

CRM has been shown to run at speeds suitable for online operation with stereo cameras and produce

more accurate maps than OctoMap and GPOM in 2D test cases [3]. The representation produced

by CRM is of high utility to trajectory planning, in particular for risk-aware planning, where the

uncertainty represented in the covariance is used for planning safe trajectories [88]. There have yet to

be 3D demonstrations of CRM, but the algorithm shows potential for such applications.

The variance information stored in CRM cells could also aid localisation, by giving the measure

of the uncertainty of an object at a given location. The map representation produced by CRM is an

occupancy map, though, hence for localisation, the same challenges are present in being able to generate

a sufficiently detailed map for localisation.

2.2.1.7 Summary and Assessment

There are numerous 3D mapping algorithms that can produce a map online that is useful for trajectory

planning, with a volumetric representation. Some of the representations provide richer information for

trajectory planning, with distance fields in ESDFs [171], or measures of uncertainty in GPOM [169],

Hilbert maps [187] and CRM [3].

All of the techniques, other than surfel maps [52], require the pose of the robot to be known and rely

on a separate localisation algorithm. The surfel map localisation uses a large set of sensors, including a

lidar: a sensor that is difficult to carry for small flying robots.

Many of the map representations could potentially be used for localisation by matching newly

observed 3D points to surfaces or occupied cells in the map, but the maps are generally low in detail to

enable online mapping and the point-to-environment matching can be difficult without the accuracy

of lidar. 3D modelling algorithms that could produce a more detailed representation to be useful for

localisation, such as GPOM and Hilbert maps, have only been demonstrated in 3D with the use of lidar.

None of the algorithms presented give the full desired capability: to use light, low powered sensors

to produce a map, online, that is suitable for trajectory planning and detailed enough to be used for

localisation. Therefore, a review of 3D modelling algorithms is presented below to explore what other

options there are for 3D mapping to achieve the desired capability.

2.2.2 3D Modelling

Attribution: Part of this section has previously been presented in [156]. All is the work of the

author of this thesis.

There are many ways in which 3D objects and structures can be represented and each representation is

produced with a different algorithm. The representation is referred to as the 3D model and the method

of producing the representation as 3D modelling. The 3D mapping algorithms described in the previous

section use a range of 3D models, from point clouds, to grid maps, signed distance fields and Gaussian

Processes.

43

CHAPTER 2. BACKGROUND AND RELATED WORK

The focus in this review is on producing a 3D model that is of utility to localisation, as well as for an

obstacle representation.

In particular, the focus here is on modelling 3D objects, rather than a 3D map of the entire

environment. The motivations for such an approach are as follows:

• To split the mapping problem into sub-problems to simplify the problem, taking inspiration from

GPOM and Hilbert Maps.

• To investigate an alternative approach to 3D mapping with occupancy grids, having identified the

challenges with achieving localisation and mapping goals with existing 3D mapping algorithms.

• To have a representation that can include dynamic obstacles, by giving dynamics to a 3D object.

• To produce representations that have future utility for interaction tasks, such as grasping [22,

144].

• To produce representations that could be used for classification of objects to support decision-

making autonomy.

Following this direction of investigation, algorithms for modelling 3D objects are reviewed here. For

this discussion, it is assumed that segmentation of an observed point cloud into separate objects has

been performed.

The goal for the 3D modelling algorithm is to be effective in the following tasks:

1. Generation and update of a 3D model from point cloud observations.

2. Localisation for matching point cloud observations to a previously mapped 3D object.

3. Computing the distance of a 3D point to the 3D object and the gradient of the distance, for use as

an obstacle in trajectory planning.

4. Storage in a database of many 3D objects.

In performing these tasks, the algorithm should balance the requirements to:

• Generate an accurate representation of the true physical object.

• Provide useful and accurate information in localisation.

• Run quickly enough for real-time implementation.

• Have a compact description for storage in a database of 3D objects.

There are many algorithms for generating 3D models, as reviewed by Chang et al. [37]. A subset of

these algorithms is reviewed here to assess the potential in achieving the criteria listed above.

2.2.2.1 Ellipsoids from Point Clouds

Ellipsoids are a convenient obstacle representation for trajectory optimisation, especially for the

algorithm presented in this work [35, 155]. Therefore, there is a strong benefit is representing objects

in the map as ellipsoids. Ellipsoids can be modelled from a point cloud observation of an object, by

computing a centroid and performing a principal component analysis [97] to find a set of three orthogonal

axes along the directions of most variance and the corresponding variance in those directions. These

properties are used to define the primary axes and size of the ellipsoid (setting the size along each axis

as 3σ). The ellipsoid is then described by its centroid, axes magnitudes and orientation (in quaternions).

44

2.2. 3D MAPPING

This process is very quick and simple but is a strong approximation of the true shape (see Kuether et

al. [109] for examples of this technique being applied).

2.2.2.2 Gaussian Process Implicit Surfaces (GPIS)

Gaussian Process Implicit Surfaces (GPIS) [51, 226] is a technique similar to GPOM that utilises GPs

to model 3D structure [191] . GPIS is designed to model 3D objects, though, rather than an entire 3D

environment. As with GPOM, the GP represents a fit of a function to the data and the querying of the

function requires a regression process with observation points and query points. In contrast to GPOM,

the functional value in GPIS is a non-dimensional signed distance: i.e. increasing positive numbers

when moving away from a surface, zero at a surface and negative inside an object. The implicit surface

in GPIS is the level set through the test points where the functional value is zero.

GPIS can produce very detailed models (see [226]) but with the use of many observation points

and many query points, which lead to large computation times. As with GPOM, the representation of

the functional fit is stored in the observation points and prior covariance, which needs to be evaluated

by performing a regression at query points. A mesh could be fit to the implicit surface to give a more

compact representation and an ellipsoid could be fit around such a mesh for a representation designed

for trajectory planning but such representations lose the ability to maintain and update the underlying

GP functional fit. The advantage of maintaining the GPIS representation is that it can easily be updated

with new measurements and take into account the uncertainty in measurements. Maintaining the

variance information is beneficial if GPIS was to be used for localisation. Achieving sufficient detail for

localisation has to be balanced with computational cost, though, as the complexity scales with O(n3), as

for GPOM. Even though the scale of modelling a single object is smaller than for GPOM, the desired

accuracy can still lead to a large number of query points.

2.2.2.3 Non-Uniform Rational B-Splines (NURBS)

Non-Uniform Rational B-Splines (NURBS) are a common way to generate and represent 3D curves

and surfaces, in particular in CAD programs [180]. The strength in NURBS comes in their ability to

represent a large range of objects, with a relatively small set of control points, where the control points

can be moved to have local control of the curve or surface [179]. The formulation can be used to fit

surfaces to point clouds of data and has seen use in applications such as reverse engineering [127].

The textbook by Piegel et al. [181] is an excellent reference for the basics and a detailed overviews of

NURBS.

The level of detail possible with NURBS comes with the same trade-off between computational speed

and detail. At one end of the scale, highly detailed models for reverse engineering can be produced but at

large computational expense. At low computation times, NURBS can still produce good, representative

models but without small scale detail.

To include multiple observations, a NURBS surface can be efficiently updated by adding or modifying

control points but without a probabilistic representation. Localisation could potentially be performed

with NURBS by matching observations to the surface and using surface curvature information to help

with data association. For obstacle representation, the distance from a point to the surface would need

45

CHAPTER 2. BACKGROUND AND RELATED WORK

to be computed, or alternatively an ellipsoid could be fit around the surface for a more efficient obstacle

representation.

2.2.2.4 Sphere Meshes

Instead of a single ellipsoid, a large set of overlapping spheres can be used to describe a 3D object; a

method called sphere meshes [215]. The spheres can vary in radius to both represent large volumes

of an object and smaller details. The number of spheres can become large when there is a lot of detail

to represent, hence to make the representation more efficient, the spheres can be combined connected

with edges and triangular patches. Additionally, the trade-off between accuracy and computational

speed can be tuned by adjusting the minimum size of the spheres. The spheres provide a convenient

representation as a set of obstacles for trajectory planning, but it is not clear that sufficient detail could

be produced to be useful for localisation, with a computation time that is feasible for online operation.

2.2.2.5 Medial Axis Transform

Medial Axis Transforms [7, 38] use a similar concept of overlapping spheres but using a core represen-

tation of a set of axes. These axes represent a skeleton through the centre of the object and are medial

axes: meaning they are equidistant to more than one point on the surface. The distance from the medial

axis to the boundary of the object can be used to set the radii of a set of overlapping spheres, centred on

the axis. The Scale Axis Transform [78] is a modification to the Medial Axis Transform, allowing the

resolution of the representation to be reduced to produce a more simplified medial axis but with less

accuracy. Representing the object with its medial axis can provide a more compact representation than

a set of spheres, but the challenges remain for providing enough detail to be useful for localisation.

2.2.2.6 Polygon Mesh

3D computer graphics is a field that has driven many areas of 3D modelling and from that field a

dominant representation is using polygons to represent the surface. Triangles are the polygons normally

used and they are meshed together to produce the surface of an object. The higher the detail, the smaller

and more numerous the polygons. The polygons are represented by their corners, stored in order to

denote the inside and outside directions. This approach of modelling a 3D object can be viewed as a

method of simplifying a point cloud by grouping points into a smaller set of polygon corners.

Being a surface representation, the utility of polygon meshes for localisation is similar to that

for NURBS, with observed 3D points matching to surface points and surface normals and a trade-off

between computation time and the level of detail. For obstacle representation distances would need

to be sampled to the polygon surface, as with NURBS. It is not clear, though, how the polygon mesh

would be efficiently updated with new observations. The field of computer graphics could be further

investigated to see what techniques may be transferable to the problem of 3D mapping.

2.2.2.7 Summary and Assessment

Table 2.5 presents an assessment of each of the algorithms discussed above. No one algorithm strongly

satisfies all criteria, with each algorithm having particular strengths and weaknesses. OctoMap is one

46

2.2. 3D MAPPING

algorithm that stands out but has the limitations described in previous sections for use in localisation.

GPIS shows strong potential but with high computational load. NURBS presents a balance across all

criteria that may make it suitable for the intended application.

Three algorithms are selected for further investigation in Chapter 3. Firstly the ellipsoids from

points clouds algorithm is selected, for its simplicity and speed and immediate suitability for trajectory

planning. A limitation of generating ellipsoids from points clouds is the accuracy of the generated rigid

body. GPIS is the second algorithm investigated, aiming to maximise the accuracy of representation

and have a strong update capability. Finally a NURBS algorithm is developed, with the goal to have

a suitable compromise between accuracy and speed. The OctoMap method[91], while also presenting

a good compromise of performance, was not investigated due to the limited potential for localisation

utility when not using lidar.

47

C
H

A
P

T
E

R
2

.
B

A
C

K
G

R
O

U
N

D
A

N
D

R
E

L
A

T
E

D
W

O
R

K

TABLE 2.5. Assessment of algorithms for 3D modelling: generation, update, localisation utility and trajectory planning utility

48

2.3. TRAJECTORY OPTIMISATION

2.3 Trajectory Optimisation

With a physical representation of the obstacles in the environment, there is now sufficient information

to optimise obstacle-free trajectories through the environment, for a given optimisation goal such as

smoothness. In generating optimal trajectories there are a number of competing goals that need to be

balanced:

• Optimising for a trajectory cost (e.g. minimum length, time or acceleration)

• Ensuring clearance from obstacles

• Ensuring dynamic-feasibility

• Having moderate computation cost

Balancing these goals becomes more challenging in 3D environments with complex obstacle fields

and dynamic obstacles. Reviewed below are a range of trajectory optimisation approaches to deal with

obstacles. First a general overview of trajectory optimisation approaches is presented. Then, approaches

to account for obstacles are reviewed, followed by a discussion on approaches for handling dynamic

obstacles. Consideration of dynamic-feasibility depends on the hardware system that is being used. A

quadrotor UAV is a capable example of a small flying robot, hence the algorithms used for planning

quadrotor trajectories are reviewed, focusing on how to achieve dynamic-feasibility for high-acceleration

trajectories.

2.3.1 Optimisation Approaches

Optimisation of trajectories, with consideration for obstacle and performance constraints, can be done

in a range of ways, such as sampling-based algorithms, non-linear programs with inequality constraints

and collocation methods. Each of these are direct optimisation methods, using simplification techniques

to directly solve the optimisation problem. Direct optimisation methods are in contrast to indirect

optimisation methods which solve the problem with Lagrange multipliers and Hamiltonians. This

section will briefly outline the different categories of direct optimisation, being the category of methods

focused on in this work.

The first category of direct optimisation approaches is sampling-based algorithms, These algorithms

include: Rapidly expanding Random Trees (RRT) [110], Fast Marching Trees (FMT) [95] and Probabilis-

tic Road Maps (PRM) [40]. These algorithms take samples in the problem space and connect the new

samples to past samples if such a connection is feasible with regards to constraints. Genetic evolutionary

algorithms also fit in this category, with numerous generations tested and culled if they are found to

be infeasible[43]. The second group of methods is Mixed-Integer Linear or Non-Linear Programming

(MILP or MINLP), where a set of inequality constraints are imposed on an optimisation problem. Binary

variables are used to turn linear inequality constraints on and off for a given obstacle or performance

constraint to have only the closest sides to the trajectory active. The binary variables become part of the

larger optimisation problem that is solved. The final group of methods is collocation, also referred to

here as polynomial optimisation. In these methods the trajectory is approximated with a set of basis

polynomials, controlled by coefficients to shape the polynomial to the desired trajectory. The coefficients

are optimised to minimise a trajectory-based cost function and satisfy constraints. The term collocation

49

CHAPTER 2. BACKGROUND AND RELATED WORK

relates to the steps of forcing the polynomial to match (collocate) the state as described by the full,

non-simplified dynamics, at discrete points along the trajectory. There is a wide range of such methods

and readily available tools (such as GPOPS on MATLAB [189]). Refer to references [43, 188, 197] for a

review of the different collocation optimisation methods and associated advantages and disadvantages.

In the following discussion, it is important to differentiate between the terms path and trajectory. A

path is a sequence of positions, without any consideration of time or dynamics. A trajectory, in contrast,

is a sequence of positions and associated times. Therefore, trajectories define velocity, acceleration, and

higher derivatives in addition to the positions. Some algorithms produce only a path but generally flying

robots required velocity and acceleration information, and therefore a trajectory is needed.

2.3.2 Planning with Obstacles

Attribution: The review in this section combines parts of work that have been presented in

[35] and [154]. All is the work of the author of this thesis.

There is a range of techniques to deal with the challenge of trajectory optimisation with obstacle

constraints; a problem that is inherently non-convex and hence is difficult to solve. These techniques

can directly tackle the full problem with the complete representation of the obstacles, simplify the

problem into convex sub-problems, or modify the problem to plan within convex, free-space regions.

In addition to the method of handling obstacles, the method of representing obstacles is an important

consideration that will be discussed.

2.3.2.1 Mixed-Integer Approaches

One common approach is to represent obstacles as convex polygons and use binary variables in a MINLP

or MILP. The binary variables turn each side of the polygon on and off as an inequality constraint to

have only the closest sides to the path active [6, 10, 14, 20, 30, 173, 175]. Richard et al. [10] for example

uses MILP to solve for a minimum-fuel path for microsatellites manoeuvring around obstacles outside of

the International Space Station. The techniques use branch and bound algorithms [10, 173] to improve

the efficiency of the algorithm but with more and more complex environments, the problem becomes

more difficult to solve.

2.3.2.2 Sampling-based Approaches

Sampling-based techniques, such as genetic algorithms [125, 174] and RRT [110] can successfully plan

paths around obstacles. Luo et al. [125] use genetic algorithms with spheres of safety and cones around

lines of approach as obstacle constraints. Different branches, or generations of solutions are culled if

they violate the obstacles. Generally these techniques have been demonstrated for static obstacles only

[25, 125].

50

2.3. TRAJECTORY OPTIMISATION

Branching and tree-based sampling planners have shown impressive results in complex obstacle-rich

environments. Earlier sampling-based planners, such as RRT generated obstacle-free paths, without

optimisation of the path or consideration of vehicle dynamics. There have been a large number of

extensions to RRT though, such as RRT* [102], MRRT-S [123, 124] and a host of planners in the

Open Motion Planning Library [94], that do include optimisation of the path and some of which

include dynamics considerations in linking samples (Kino-FMT* [95]). These planners provide all the

components desired in the trajectory optimisation, yet the optimisation is asymptotic, meaning the

algorithm takes longer to achieve an optimised trajectory, in contrast to algorithms that are immediately

solving an optimisation problem.

2.3.2.3 Hierarchical Approaches

Sampling planners do often play a large role in the first stage of a hierarchical planner, when a

dynamically optimised solution is not required. In hierarchical planers, an algorithm like RRT generates

a global, collision-free path, from which waypoints are extracted for a lower level trajectory optimiser,

such as in [5, 26, 63]. In these approaches, the lower level optimiser is a polynomial optimisation

approach that solves for the polynomial coefficients to minimise a trajectory cost such as minimum

acceleration or minimum snap (the fourth derivative of position with respect to time), while complying

with the boundary conditions at the waypoints. A separate polynomial is used for each segment between

waypoints, with continuity constraints enforced. These techniques are discussed in more detail in

Section 2.3.4. Sampled points along the global path and trajectory are checked for violations against an

obstacle representation, commonly an occupancy grid such as OctoMap [91]. If an optimised solution is

found to be in a collision, an extra waypoint from the collision-free global path is added in the middle

of the segment that has a collision and the trajectory is planned again in an iterative process. While

effective, this approach does not consider the dynamic-optimality of the overall problem.

2.3.2.4 Polynomial Optimisation Approaches

Polynomial optimisation algorithms can optimise the overall problem to have dynamically smooth

trajectories that are also collision-free. These algorithms can work for a range of obstacle representations,

and the choice of representation has a large impact on the performance and capability of the algorithm.

Therefore, a range of different obstacle representations that have been used for trajectory optimisation

is reviewed here. Oleynikova et al. [170] utilise and ESDF in a polynomial optimisation by adding

a collision cost to the trajectory cost and using gradient descent to optimise. The collision cost is a

discretised path-integral that samples the obstacle distance and gradient from the ESDF. This has been

shown to run effectively and online, for short indoor and outdoor trajectories.

Potential fields, as employed by Munoz and Fitz-Coy[160] are another obstacle representation,

similar to ESDFs, that have been used in a variety of forms to plan trajectories around obstacles

[36, 113, 116, 131, 135, 196, 227]. The goal location is given an attractive potential and obstacles

present repulsive potentials. Most of the techniques that have been demonstrated are limited to

two-dimensional problems with a static obstacle field.

51

CHAPTER 2. BACKGROUND AND RELATED WORK

Primitive shapes can also be used to represent obstacles in the environment, such as a collection

of spheres, ellipsoids, cylinders and cubes, as will be described in this work. The obstacles can be

considered in a similar way to an ESDF, by sampling collisions, computing a gradient of cost and

including the cost of collision in combination with the trajectory cost for the overall optimisation. With

this approach, a mix of obstacle representations can be considered, such as combining a pre-mapped

ESDF with ellipsoid obstacles for newly added obstacles in the environment.

Polynomial optimisation algorithms can be effective in solving collision-free, dynamically-feasible

trajectories, yet there can be challenges in solving what is inherently a non-convex problem. Solutions

can take a lot of time to compute and may not be successful in every scenario.

2.3.2.5 Simplification Approaches

Instead of solving the complete non-convex problem with full obstacle representation, simplification

methods can be used. Blackmore et al. [18] use a disjunctive convex program, where the overall non-

convex problem is split into convex sub-problems. These sub-problems gradually build up to the complete

constraint set, through branch and bound algorithms. Other techniques have been applied to similarly

break up and simplify the problem and then gradually build up the complexity, such as Lu and Liu

[122] with Second-Order Cone Programming (SOCP) and Eren et al. [60] where the problem is modified

in numerous ways to overcome each source of non-convexity. Another example by Kobilarov et al. [105]

uses a technique they term homotopy, where the initial solution is obstacle-free and then the problem is

iteratively deformed to the final orientation by growing the size of obstacle constraints, keeping the

trajectory in the same homotopic class.

2.3.2.6 Free-Space Planning Approaches

Another approach to deal with the non-convexity of planning with obstacles is to restrict planning to be

within free-space and hence within sets of convex regions. Landry [114] uses a set of hyperplanes to

define the convex regions, using an iterative region inflation algorithm. Semi-Definite Programming is

then used to produce optimal trajectories, where each segment is restricted to stay within one convex

region. The region assigned to each segment is selected with a mixed integer algorithm. This approach

can plan through dense obstacle fields but takes more than 10 minutes to solve on a commodity computer.

Lioanno et al. [121] similarly use inequality constraints on individual segments. The constraints force

the trajectory to remain in a corridor and are included in a constrained quadratic program.

Another free-space representation is with overlapping sets of spheres. Baldini et al. [11] generate

an initial plan with Spherical Expansion giving to give a collision-free path. Spheres are expanded

around sampled points to grow to the maximum radius available in free-space. Sequential Convex

Programming is then used to optimise the trajectory with the constraint to stay within the spheres. The

algorithm that will be described in this work can also include convex position constraints, to force the

trajectory to stay within ellipsoidal or cylindrical regions, with the same approach as used for obstacle

constraints.

One limitation of all of the approaches described above is that the trajectory is discretised for

collision or constraint checking, hence there is a chance of a collision occurring in-between sample

52

2.3. TRAJECTORY OPTIMISATION

points. This risk can especially be an issue for environments with thin obstacles or flights of high velocity

and acceleration. The trajectory discretisation is in time, rather than in space, which potentially leaves

large regions of unsampled trajectory with large changes in direction or large velocities. The approach

by Campos-Macias et al. [32] provides a way to avoid this time-discretisation limitation by sampling in

space for collisions. The technique starts with a globally planned, high clearance path, represented by a

set of waypoints and computes the minimum distance to each straight-line segment between waypoints,

with spatially discretised sampling. Subwaypoints are then created along the straight-line segments

with inequality constraints on position, velocity and acceleration. The constraint values, location of the

subwaypoints and time allocations to subsegments are computed to ensure that the optimised trajectory

will stay within cylindrical bounds. By setting the constraint values so that the cylindrical bound for

each segment is below the computed minimum distance to the nearest obstacle, a collision-free path

can be assured. The spatially discretised sampling only occurs once, so it is possible to have a fine

discretisation to ensure accurate computation of the minimum distance. Another approach to ensure

collisions are not missed is to sample in arc-length increments that are equal to the resolution of the

obstacle representation, as done by Oleynikova et al. [170].

2.3.2.7 Summary and Assessment

Of the range of techniques discussed above, the best approach depends on the given application and the

nature of obstacles, vehicle dynamics and computational resources. In general though, for navigating

through medium to large areas that are dense with obstacles, a combination of the best of sampling-

based planners with polynomial optimisation algorithms is most suitable: to efficiently generate an

obstacle-free global path and then efficiently optimise the trajectory along it to be dynamically smooth.

The trajectory optimisation algorithm described in this work takes a middle ground between sampling-

based planners that can produce non-optimised paths efficiently through very complex obstacle fields

and trajectory optimisers that can operate over a small distance with few or no obstacles. The algorithm

produces dynamically-optimised trajectories through complex obstacle fields, allowing either a single

stage planner, or a reduced set of waypoints from the globally planned path.

2.3.3 Planning with Dynamic Obstacles

Attribution: The work in this section has previously been presented in [155]. All is the work of

the author of this thesis.

Many of the algorithms described above are not able to handle dynamic obstacles as they are designed

for static obstacle fields. There are three main themes of considering dynamic obstacles in existing work:

reactive local planning or control, rapid replanning and modelling the dynamics of the obstacles in the

generation of a trajectory. With each of these approaches there are perception requirements to be able

to detect obstacles and potentially model their dynamics.

53

CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.3.1 Reactive Local Control

Reactive planning algorithms adjust a trajectory over a short time window to adapt to changes in the

environment, such as a dynamic window approach [69] which selects from a tree of short term control

inputs to ensure clearance of obstacles. Forcing functions could also be placed in the position controller,

to have short term obstacle avoidance in the control loop [75]. These reactive approaches require the

efficient detection of new obstacles and the ability to model the obstacles in a method that is efficient

for collision checking or as a forcing function.

2.3.3.2 Rapid Replanning

Rapid replanning approaches work on similar principles of updating a plan to adapt to changes but plan

longer-term trajectories and work at a slower rate. The techniques rely on quick planning times, along

with an efficient method to update the obstacle representation in the whole environment. Some of the

approaches described below are designed to enable high-speed flight through unknown static obstacle

fields: a capability that can similarly apply to lower speed flight through dynamic obstacle fields. A

common approach to quickly generate trajectories is to use motion primitives: a small set of simple

trajectory pieces that can efficiently be combined together to form a complete trajectory [158, 176]. Such

techniques have shown rapid replanning capability, including a quadrotor reacting to return a ping

pong ball [158] (Fig. 2.13.b) and fast flight around obstacles [176] (Fig. 2.13.b).

FIGURE 2.13. Rapid replanning examples. (a) Sets of candidate trajectories to intercept
a ping-pong ball from [158]. (b) Candidate trajectories taking obstacles into account
from [176]. Images are from the respective publications.

A similar approach to using motion primitives is pre-computing a library of potential trajectories

and selecting from the library in flight. Barry et al. [13] use this approach, along with an efficient way

to detect obstacles, called push-broom stereo. A trajectory library is generated for a fixed-wing UAV

with off-line optimisation and flying by hand. When replanning online, the trajectories in the library

54

2.3. TRAJECTORY OPTIMISATION

are transformed to the current position and yaw, then the trajectory that maximises the minimum

obstacle clearance is selected. Push-broom stereo only considers obstacles at one depth and uses the

forward motion of the vehicle to scan through the environment. While shown to be very effective for

online, high-speed flight, the approach has some limitations if applied to dynamic obstacles that aren’t

detected at the push-broom depth, being closer or passing through the detection region too quickly.

Another set of approaches to efficiently update the obstacle representation for path planning are to

operate in the image space [21, 134]. Matthies et al. [134] detect obstacles from stereo images in the

disparity space (disparity between pixels in a stereo image pair) and also plan trajectories in that space,

giving a computationally efficient approach. Brockers et al. [21] similarly use stereo vision but project

observations onto an egocylindical space. This egocylindrical space gives a 2.5D representation that

allows for efficient collision checking and motion planning. The demonstrations show 2 Hz update and

planning rates on a quadrotor, enough to react to obstacles in some environments.

ESDFs can also be rapidly updated to use for online dynamic obstacle avoidance, such as with

Voxblox [171], which has been demonstrated to be able to update at 4 Hz. With an environment

representation that can be updated to changes in the environment, Oleynikova et al. [170] replan

trajectories with a polynomial optimisation algorithm. This approach has not yet been demonstrated

with dynamic obstacles but has the potential to do so for slow-moving obstacles.

To enable robust performance with a range of obstacle dynamics, a hybrid approach can be taken:

combining a reactive controller with a rapid trajectory planner, as done by Allen et al. [5]. The reactive

controller [75] provides position adjustment for fast moving obstacles and reduces how often a trajectory

needs to be replanned. A pre-computed roadmap around the static obstacles is then used for quick

replanning of trajectories. This has shown to be effective with high-speed obstacles such as a fencing

blade, using a Vicon motion tracking system to detect the obstacles.

The need for a hybrid system can be waived if the full trajectory planning can be done at a high

enough speed to quickly react to obstacles in the control loop. Potential for such capability has been

shown with Group Marching Trees (GMT*) [93], which modifies FMT* to expand groups of state samples

in parallel. By implementing GMT* with GPUs, paths can be planned through complex obstacle fields

at up to 100 Hz.

2.3.3.3 Modelling Obstacle Dynamics

If the motion of dynamic obstacles can be predicted, with some uncertainty characterisation, then there

is less need for reactive, rapid replanning and a full trajectory can be generated that considers the

likely motion of the obstacle. The method of detection and modelling dynamics obstacles is itself a large

topic of research, but for the purposes of looking at trajectory planning approaches, if knowledge of

the dynamic obstacles is assumed, generally with constant velocity models, then there are a variety of

techniques to consider.

The constant velocity motion of an obstacle could be used to define collision cones, where the axis

of the cone extends in the velocity direction and the radius of the cross section grows as a function of

uncertainty or likely deviation from constant velocity. Collision cones have been integrated into potential

field approaches [113] and with genetic algorithms [36]. The collision cones can be quite conservative

though, blocking more physical space than what is actually occupied by an obstacle at any given moment.

55

CHAPTER 2. BACKGROUND AND RELATED WORK

By instead defining a collision cone in the velocity space, a less conservative representation can be used,

called a Velocity Obstacle [64]. Tree-based searches with such obstacle representations can allow for

quick planning, which can be required as the Velocity Obstacles assume constant velocities for both

the robot and obstacles. In the case of general motion of a dynamic obstacle, any technique that uses

a constant velocity assumption will need to regularly replan but at a lesser rate than reactive, rapid

replanning approaches.

For considering more complex obstacle dynamics, techniques that plan trajectories for multiple

vehicles could be adapted to the problem, as other vehicles represent dynamic obstacles. Many of these

approaches are inspired by the flocking behaviour of birds and schools of fish. Xue et al. [227] includes

both dynamic obstacles and planning for multiple vehicles, where an avoidance strategy is implemented

on top of a potential field only once an obstacle is within close proximity. A potential field could instead

be modified using gyroscopic forcing, as demonstrated by Chang et al. [36] to maintain separation

between pairs of vehicles in a swarm of many vehicles. These approaches have only been demonstrated

in 2D and are reactionary during close encounters, rather than planning a complete, obstacle-free

trajectory. Other approaches that also plan trajectories for all vehicles have been demonstrated with

MINLP and binary variables [6, 14, 30, 173, 175, 194], combinations of probabilistic roadmaps [214] and

resource allocation systems [193]. These techniques centrally coordinate the trajectories of all vehicles

in 2D. More recent demonstrations have shown real-world demonstrations of multi-robot planning for

in 3D, such as the 1000 quadrotors from Intel [101] and Ehang [54], which use pre-planned, centrally

controlled trajectories. The Mixed Integer approach has also been extended to Mixed Integer Quadratic

Programs to coordinate the trajectories of swarms of 16 quadrotors flying through windows [112]. In

contrast to these centralised approaches, Vasarhelyi et al. [220] demonstrate a decentralised approach

for quadrotors with 30 vehicles flying collision-free trajectories around obstacles, based on principles of

repulsion and alignment of velocities. The principles in these algorithms could potentially be adapted

to apply to a single robot avoiding dynamic obstacles, with centralised approaches requiring the other

vehicles to have known, fixed trajectories.

There are fewer approaches that are designed for a single robot and motion models of the dynamic

obstacles. One example by Ousingsawat et al. [174] models the estimated trajectory of dynamic obstacles

along with position uncertainty to use in evolutionary optimisation. The work described here looks to

account for a range of motion models of dynamics obstacles, along with the uncertainty of their position,

to use in a polynomial optimisation of a complete trajectory.

2.3.3.4 Summary and Assessment

Different perceptual and computational challenges come when comparing approaches to update the

complete obstacle environment, with approaches to detect and model the dynamics of obstacles. It can

be more costly to efficiently update a full environment with highly dynamic obstacles, yet detecting

and tracking the movement of such obstacles can also be a large challenge. Preference is given here

to modelling obstacle dynamics as it allows for a more optimal complete path, can nicely capture

uncertainty and may require less frequent replanning.

For trajectory planning, a combination of techniques described above gives the most reliable system.

The recommended approach is to use constant velocity models with a planner that considers the

56

2.3. TRAJECTORY OPTIMISATION

obstacles in the complete trajectory, rather than in pair-wise interactions. The obstacle representation

should account for uncertainty and be time-dependent, i.e. the space that the obstacle no longer occupies

should be free. The planner should be relatively quick as well, to enable frequent updates in the case

of obstacle deviation from constant velocity. An additional, reactive controller may also be required

to safely avoid nearby and high-speed obstacles and to enable the planner to run at a lower rate.

Components of such a system are present in the techniques discussed above. This work looks to develop

a trajectory optimiser that can fill the role of the planner in the dynamic obstacle avoidance system.

2.3.4 Trajectory Planning for Quadrotor UAVs

Attribution: Parts of this section have been presented in [154] and [192] and is the work of the

author of this thesis.

Two critical components of achieving autonomous flight of quadrotors are 1) trajectory planning, to

produce dynamically-feasible, collision-free trajectories and 2) trajectory tracking controllers to closely

follow the planned trajectory.

Most approaches for trajectory planning and control for quadrotors utilises a differential flatness

transform [164, 219], which allows direct mapping from the flat outputs of x, y, z and ψ, (where ψ is

yaw), plus their derivatives, through the full quadrotor state to the flat inputs: the input RPM-squared

(Revolutions Per Minute, squared) for each motor. A continuous trajectory planned in the flat output

space transforms to a continuous trajectory in the flat input space, providing a convenient method to

ensure a dynamically-feasible trajectory (given the RPM magnitudes are within their limits). A detailed

overview of the differential flatness transformation is presented in Chapter 5.

Existing methods used for trajectory optimisation with quadrotors will be discussed, describing

in more detail some of the techniques mentioned in the previous section. The discussion will include:

approaches to generate waypoints and methods to achieve aggressive (high-accelerations) flight. The

controllers to track such trajectories will then be described.

2.3.4.1 Trajectory Planning

The state-of-the-art in trajectory planning for quadrotors take a polynomial optimisation approach:

they optimise the coefficients of piecewise polynomials to minimise the integral of snap squared (the
4th derivative of position with respect to time) over multiple segments. These segments are planned

between a set of waypoints, with an outer loop optimisation run to reassign the time allocated to each

segment to minimise a weighted cost function combining snap and time. There have been numerous

impressive demonstrations using this approach, such as by Mellinger et al. [139] and Lioanno et

al. [121] flying through a narrow vertical window (Fig. 2.14.a), Allen et al. [5] flying through tight indoor

constraints, Thomas et al. [216] achieving perching type orientations, Fang et al. [63] demonstrating

onboard autonomous navigation through a naval ship (Fig. 2.14.b) and Bry et al. [26] achieving fast

flight through crowded indoor environments (Fig. 2.14.c).

57

CHAPTER 2. BACKGROUND AND RELATED WORK

FIGURE 2.14. Demonstrated applications of quadrotor trajectory planning. (a) Flight through
a narrow vertical window [121]. (b) Autonomous navigation through a naval ship [63].
(c) Flight through crowded indoor environments [26]. Images are from the respective
publications.

The optimisation problem can be solved in a number of ways, in particular, the optimisation of snap,

which is initially posed as a quadratic program constrained by the boundary conditions. A key step is in

the inversion of a matrix incorporating the boundary conditions and cost function, a matrix that can

become ill-conditioned and difficult to invert. Here, Fang et al. [63] make adjustments to the matrix

to make it invertible. In contrast, Bry et al. [26] modify the problem via substitution to solve for the

free derivatives at the waypoints, instead of the polynomial coefficients. This substitution inherently

enforces the boundary conditions translating the problem into an unconstrained optimisation. Other

approaches, such as by Thomas et al. [216] use commercial optimisers to generate solutions. Work

presented here has found that the approach of Bry is quick, robust and does not require access to

software licenses.

Gradient descent is used by Bry et al. [26] and Fang et al. [63] to perform the outer loop time

optimisation, with the segment times as the decision variables. Another approach used by Allen et

al. [5] is to incorporate the optimal time in the selection of the waypoints between which the trajectory

is planned. They pre-plan a roadmap with RRT* [102] and then use Kino-FMT* [95] to plan on the map,

producing waypoints with optimal times between them.

Snap is minimised in the trajectory optimisation algorithms because snap maps directly to motor

RPM squared, in the quadrotor differential flatness transformation, as elaborated in Chapter 5. Hence by

minimising snap, the control effort is minimised, giving a trajectory that is easier to track. Nonetheless,

other cost functions could be more appropriate for a given application, for instance minimising time, with

constraints on controls to ensure feasibility. Hehn et al. [87] formulate a minimum time problem and

plan the jerk (the 3rd derivative with respect to time) of the trajectory. The result is bang-singular paths

(segments of full control and no control), where control constraints are accommodated by decoupled

constraints on jerk and acceleration, which are included in the optimisation. While very quick to

compute, the formulation is designed for low speed, close to hover. Spedicato et al. [210] similarly

minimises time in a gradient descent approach with the trajectory parameterised about a reference

trajectory with transverse coordinates. These approaches have only been demonstrated in simulation.

58

2.3. TRAJECTORY OPTIMISATION

2.3.4.2 Generating Waypoints

Each of the algorithms mentioned above requires a set of waypoints between which to plan. The

waypoints could be manually determined, or a sampling-based planner could generate feasible paths,

such as with RRT, which can then be reduced to a minimum set of waypoints, such as in [26, 32, 170].

Fang et al. [63] plan candidate 2D paths and then use an optimiser to select the best 4D path (position

and yaw), after which waypoints are down-sampled. As discussed above, Allen et al. [5] generates

waypoints with a combination of RRT* and Kino-FMT* to get the waypoints.

If the trajectory optimisation algorithms perform better with a sparse set of waypoints, then a line

simplification algorithm can be employed to reduce the number of waypoints used, while maintaining

a similar shape. The Ramer–Douglas–Peucker algorithm is one common method that will reduce the

number of waypoints with the magnitude of reduction being controlled by a user input setting [90].

This approach of using line simplification is useful in a teach-and-repeat scenario where a pre-flown

trajectory has a dense set of positions recorded.

2.3.4.3 Aggressive Manoeuvres

As quadrotors can fly at higher speeds in obstacle-rich environments, there comes challenges in planning

and executing high-acceleration manoeuvres, which are referred to as aggressive manoeuvres. Such

capabilities are of use for changing direction in confined spaces and for dynamic obstacle avoidance.

Aggressive manoeuvres for quadrotors can be achieved with several different approaches. Switching

controllers is one such approach, where a sequence of distinct control stages is used in sequence to

complete a particular manoeuvre. These stages tend to include a trajectory-following launch stage, a

ballistic coasting phase and a recovery phase. Lupashin et al. [126] used a 5 step bang-bang manoeuvre

sequence, with learned tuning parameters to achieve multiple flips (Fig. 2.15.a). Mellinger et al. [140]

similarly learned parameters and employed a 3 stage controller, that was used to perform flips, flights

through windows and flights through moving hoops. Both of these approaches designed custom PID

controllers for each control stage. Falanga et al. [62] more recently used a 3 stage sequence for high-

speed flight through windows (Fig. 2.15.b), utilising the auto-recovery work from Faessler et al. [61] in

the final stage. The recovery approach of Faessler et al., itself, is a multi-stage control algorithm, going

through 5 stages of control to recover from a large range of orientations (including being hand thrown),

to eventually hold position. The recovery sequence uses a range-finder and down-facing camera.

Some of the most aggressive manoeuvres demonstrated, including a split-S have been with au-

tonomous helicopters, where the specific control sequence for a manoeuvre is learned from an expert

pilot by matching a model to the flight data [1, 74]. The helicopters have higher control authority than

quadrotors though, with reverse thrust capability from controlling the blade pitch.

While effective, the approaches mentioned above are custom solutions for particular sets of ma-

noeuvres. For general operation, it is advantageous to have a single control scheme for a range of

manoeuvres, including non-aggressive flight. This capability can be achieved with a trajectory planner,

a capable trajectory tracking controller and the use of waypoints to constrain the flight to achieve

given manoeuvres. Thomas et al. [216] use the trajectory planning approach from Mellinger et al. [139],

with a specification of final states to perch vertically, or inverted. The demonstrations show successful

59

CHAPTER 2. BACKGROUND AND RELATED WORK

FIGURE 2.15. Examples of aggressive manoeuvres for quadrotors. (a) A sequence of flips
that are planned (i), initially flown (ii), and then flown after learning parameters for a 5
step manoeuvre (iii) [126]. (b) Three stage control sequence for flight through a narrow
window [62]. (c) Execution of a planned trajectory to perch vertically [216]. Images are
from the respective publications.

manoeuvres operating about a single axes(Fig. 2.15.c). Loianno et al. [121] use a similar approach

to fly through vertical narrow window slots, with waypoints used to force the flight through the gap

(Fig. 2.14.a). Constraints on control and position are included in the planning to achieve a dynamically-

feasible trajectory. Neunert et al. [165] also constrains the trajectory with waypoints for flight through

windows, incorporated in a Model Predictive Control framework.

2.3.4.4 Controls

A hierarchical control architecture is the most commonly used for tracking a planned trajectory. This

architecture consists of an outer-loop position controller and an inner-loop attitude controller, as

depicted in Fig. 2.16. The differential flatness transformation again plays a key role: the outer loop

controller gives a desired thrust vector (Tsp); this vector is transformed, through part of the differential

flatness transformation, to a desired attitude (qsp) and thrust magnitude (T) for the inner loop attitude

controller to track. The output from the attitude controller is the torques (τ) and net thrust for the

motor controller to track.

Despite the frequent and successful use of the differential flatness transform, there are known

singularities: 1) occurring when there is zero desired thrust (when the desired acceleration is fully

achieved by gravity) and 2) when the desired thrust vector is in the xy plane and aligned with the

60

2.3. TRAJECTORY OPTIMISATION

FIGURE 2.16. Hierarchical controller, with the differential flatness transform a key link
between the outer position controller and inner attitude controller. Subscript sp denotes
Set Point, ψsp is the yaw set point. The thrust set point Tsp is transformed to the attitude
set point: the quaternion qsp

desired direction of travel (e.g. pitched forward at 90◦). The first singularity is a fundamental limitation

of the transformation, which is founded on the notion that the desired thrust direction sets the quadrotor

attitude. The second singularity and the sensitivity of states near this singularity is something that can

be managed. The differential flatness transformation will be analysed in detail in Chapter 5.

The controller by Lee et al. [118] is widely implemented to strong success [5, 26, 121, 139, 216] and

uses a PD controller with feedforward acceleration in the position controller and a PD controller with

feedforward angular acceleration and gyroscopic correction in the attitude controller. Variations and

simplifications to the controller by Lee et al. [118] are also used, such as removing the feedforward

terms in the attitude controller [139]. Other controllers use mixes of PID controllers. The PX4 flight

software (used by [52, 63]) has an independent PD for x, y and z position tracking, then a PID for each

of the rotational axes [138].

Another approach is to use Sequential Linear Quadratic problems in a Model Predictive Control

framework to compute time-varying feedback gains for the position controller [165]. Alternatively, a

Linear Quadratic Regulator (LQR) approach can be taken, which still results in PD controllers but has

the advantage of tuning of the Q and R matrices to solve for the feedback gains, rather than tuning the

gains directly [61, 114]. In addition to the LQR controller, Faessler et al. [61] add feedforward terms in

the attitude controller and employ iterative thrust mixing to solve for the propeller torque coefficients,

which are modelled as functions of propeller rotational speed.

To further improve trajectory tracking, a feedback controller can be placed around the motor RPM, to

be run on the Electronic Speed Controllers (ESCs). Bangura [12] takes this approach and also includes

aerodynamics modelling of the propellers in the position controller.

2.3.4.5 Summary and Assessment

For high-speed flight in a range of cluttered environments, it is desirable to have one planner that

can produce dynamically-feasible trajectories, consider obstacles and can plan aggressive manoeuvres

without the need for a switching controller. The literature suggests that a minimum snap trajectory

optimiser, with considerations for obstacles, is a strong candidate for such applications. For tracking the

trajectory, the frequent and successful use of the controller by Lee et al. [118], makes it stand out as the

best approach for agile flight.

61

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Complete Systems

This section reviews examples of complete systems that demonstrate the desired capability: online

mapping and trajectory planning in 3D to enable autonomous navigation in unknown environments.

While there are many ground-based systems, the focus will be on systems that navigate in 3D, with most

examples from quadrotor systems, due to the recent strong research interest in the flying platforms.

A key trend in systems capable of online mapping and planning is heterogeneous algorithms: a

split of different algorithms and environment representations for mapping as well as a hierarchy of

algorithms for planning.

The state-of-the-art for mapping, planning and obstacle avoidance on quadrotors is the same as

has been described in previous sections. The combination of approaches on particular systems varies

though, as will be explored here for a range of state-of-the-art systems.

2.4.1 Software

The different algorithms for localisation, local mapping, global mapping, local planning, global planning

and control, all tend to run as different processes, with only the minimum required information

exchanged between them. With similarly defined input and output, each component could potentially

be exchanged with another, similarly capable algorithm. This type of architecture is at the core of the

Robot Operating System (ROS) [186], a middle-ware for handling standard communications between

different robotic processes, such as is used by Perez-Grau et al. [177] and Jung et al. [99].

2.4.2 System Examples

Examples of complete systems are summarised here to highlight the combination of localisation,

mapping and planning that is possible.

Mohta et al. [147] demonstrate high-speed autonomous flight of a quadrotor both indoors and

outdoors. They use forward facing stereo cameras for VIO, using the SVO algorithm and fuse with

a dedicated accelerometer and gyro and a laser altimeter. There is no global localisation. A 2D laser

scanner on a 1D gimbal is used to build a local occupancy map, which is gradually used, online, to build

a 2D global occupancy map. A* is used to produce a global path on a hybrid of a local 3D occupancy

grid and a global 2D occupancy grid. They then use a region inflation approach to produce convex

regions for planning obstacle-free trajectories in the local planner (similar to techniques described in

section 2.3.2.6). Weightings are applied to the trajectory to push it away from obstacles in the local

map. All algorithms run online and with impressive high-speed results (up to 4 m/s indoors amongst

obstacles). A photograph of their system can be seen in Fig. 2.17.a.

Perez-Grau et al. [177] use an integrated stereo and IMU sensor for VIO and also have an RGBD

sensor which they use for localisation and mapping. The localisation is with point cloud matching to a

pre-mapped 3D probability grid, to include in a Monte Carlo localisation approach. They use a global

occupancy grid and a local occupancy grid built in real time around the drone with the RGBD point

cloud. For global planning, they use Lazy Theta* on a combination of local and global maps, and for

local planning, they also use Lazy Theta* but over a shorter time horizon. They demonstrate obstacle

avoidance indoors at speeds of up to 1.5 m/s.

62

2.4. COMPLETE SYSTEMS

FIGURE 2.17. Example quadrotor systems. (a) Photograph of the quadrotor from Mohta et
al. [147]. (b) Diagram of the quadrotor from Droeschel et al. [52]. Images are from the
respective publications.

Droeschel et al. [52] use a large sensor suite, with GPS, a down facing optical flow camera, a spinning

lidar, two fish-eye stereo pairs and eight ultrasonic sensors, as depicted in Fig. 2.17.b. Despite all the

sensors, similar algorithms to the systems above are used. The stereo cameras are used for VIO, and the

laser scan is matched with a multi-resolution surfel grid for localisation. The surfel grid is also the local

map representation, centred around the robot. SLAM with Pose-graph optimisation is used to combine

local maps to produce a global occupancy map. Four layers of planners are used, with first a mission

planner to get sparse waypoints, then a global plan with A* at 0.2 Hz in the global, static environment,

then a local plan in the obstacle grid with the generation of a graph and an A* search on the graph.

Reactive obstacle avoidance with forcing potential fields are then used to push the trajectory away from

newly observed obstacles. The system shows the capability to explore and map unknown areas.

Fang et al. [63] also use an obstacle map for localisation. Their localisation routine fuses information

from multiple sensors: a down facing optical flow sensor, a laser altimeter, VIO with RGBD cameras,

then matching the RGBD point cloud to a known global OctoMap. A local occupancy grid is created

around the robot with the RGBD point cloud. For planning, a 2D slice of the global OctoMap is used

to produce a Voronoi diagram, on which A* is used to generate the global plan. Local planning uses

CHOMP to produce waypoints between which polynomials are optimised and local path library used in

a receding horizon control for reactive obstacle avoidance. They show autonomous navigation within a

naval ship, through tight confines.

Oleynikova et al. [172] use forward facing stereo cameras and IMUs for VIO and have no global

localisation. RGBD point clouds are used to build TSDFs online and then quickly convert them to

ESDFs for use in motion planning. Global planning is done with informed RRT* and local planning

with polynomial optimisation (as in [26]) to a given planning horizon, with the addition of obstacle costs

from the ESDF in the optimisation. They also have a higher level of exploration planning, to select the

next goal for moving in an unknown environment. Their demonstrations show successful flight through

unknown indoor and outdoor environments.

63

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4.3 Current State-of-The-Art

The state-of-the-art from the systems presented above is to take a heterogeneous approach to both

mapping and planning. The particular combination of components can affect the performance of the

overall system, but for comparisons later in this work, ORB-SLAM2 [163] is considered as the leading

VIO algorithm with Voxblox [171] as the leading 3D mapping algorithm. For trajectory optimisation,

the approach of Bry et al. [26] is considered the leading algorithm, with control from a controller similar

to that described by Lee et al. [118].

2.5 Summary and Identification of Gaps

From the review of the components of the navigation stack, there were a number of gaps identified

in the capability for small flying robots, in particular with restrictions for onboard computation and

light-weight, low-powered sensors. These gaps are summarised below:

1. The state-of-the-art in SLAM algorithms that are applicable for 3D navigation of small flying

robots, with light and low-power sensors, do not produce a map that is a suitable representation

of the 3D environment for trajectory planning.

• For algorithms that do not require lidar:

– The state-of-the-art in 3D mapping algorithms require localisation.

– 3D mapping algorithms do not provide sufficient detail to create a map that can be used

for localisation in addition to obstacle avoidance.

2. Leading planning approaches are heterogeneous, splitting global path planning and trajectory

optimisation. There is a gap in algorithms that can provide the middle-ground: to produce a global,

dynamically-optimised trajectory.

3. There is a limited capability in trajectory optimisation algorithms to consider motion models of

dynamic obstacles in 3D. Doing so could produce more informed and less conservative trajectories.

4. There has not been an in-depth analysis of the impact of the singularities in the differential

flatness transformation and the different strategies to address them.

5. There has not been an analysis of the impact of obstacle avoidance strategies on the dynamic-

feasibility of trajectory optimisation algorithms.

In contrast to the leading, complete systems that take a heterogeneous approach to both mapping

and planning, the system proposed here aims to take a homogeneous approach. First, the aim is to

have one map representation that can be used in SLAM as well as for representation of obstacles. The

goal in this approach is to have a more efficient system with less duplication of processes, as well as a

representation with future applicability. Secondly, the trajectory planning algorithm proposed looks to

provide a similar capability to both a global planner and a trajectory optimiser, by enabling obstacle-free

planning over a large horizon and with the ability to include information about dynamic obstacles.

For operation in large environments, a separate global planner may still be required. Similarly, in

highly dynamic, uncertain or crowded environments, a reactive collision avoidance planner may also be

required but only for a sparse set of waypoints. Specifically, the work in this thesis addresses the gaps

identified above in the following ways:

64

2.5. SUMMARY AND IDENTIFICATION OF GAPS

Gap 1 A SLAM algorithm is developed that models 3D objects with NURBS to use as both landmarks

for localisation and as obstacles for trajectory planning. Distinct objects are modelled, rather than

the whole environment, providing a balance between computational load and detail, while also

being a representation with future applicability to dynamic obstacles, object grasping and object

classification. Additionally, surfaces are modelled, allowing objects to be represented at multiple

resolutions to suit the purposes of localisation and trajectory planning. The approach is designed

to use 3D observations of the environment from RGBD cameras.

Gap 2 A trajectory optimisation algorithm is presented here that is capable of planning in complex

obstacle fields over large horizons while optimising dynamics.

Gap 3 The trajectory optimisation algorithm considers dynamic obstacles with a motion model and

propagation of uncertainty.

Gap 4 The range of methods for handling the singularities in the differential flatness transformation

are analysed in detail to highlight where problems occur. More robust methods are proposed and

tested in flight.

Gap 5 A review is performed of trajectory optimisation for quadrotors flying near obstacles. This review

includes flight tests to assess the dynamic-feasibility of trajectories and how different strategies

of considering obstacles affects the dynamic-feasibility.

The remaining chapters in this thesis present the work outlined above. The proposed SLAM

algorithm is first described in Chapter 3. Next, the trajectory optimisation algorithm is described and

analysed in Chapter 4. Applications of the algorithm to quadrotors are described in Chapter 5, including

an analysis of the differential flatness transformation. Flight tests assessing dynamic-feasibility and

differential flatness transformations are then presented in Chapter 6. Each component of the system is

brought together in Chapter 7 to show a complete autonomous navigation system and compare to the

state-of-the-art in a novel simulation framework.

65

C
H

A
P

T
E

R

3
LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

T
he goal of the work in this chapter is to combine the odometry, localisation and mapping layers

of the autonomous navigation stack by developing a SLAM algorithm that produces a map of

3D obstacles. Modelling 3D obstacles, in contrast to the complete environment, provides a way

to divide the mapping problem, as well as producing a representation with uses beyond localisation

and mapping: for dynamic obstacles, object interaction and object classification. The central part of this

goal is the method of representing the 3D objects in the environment. The one 3D representation needs

to be useful for mapping, localisation, and obstacle representation. This chapter first reviews three

candidates for 3D object representation. The review includes analysis of a complete implementation

of ellipsoid models for SLAM and obstacle representation, followed by an assessment of the potential

for Gaussian Process Implicit Surfaces (GPIS). Non-Uniform Rational B-Splines (NURBS) are then

reviewed as a 3D object representation. The review justifies the selection of NURBS to apply to SLAM

and trajectory planning. The method of applying NURBS to these problems is described in detail, in

an algorithm defined as NURBS Localisation And Mapping (NURBSLAM). The chapter ends with

test results on simulated data that demonstrate the concept of using NURBS objects for mapping,

localisation and trajectory planning.

67

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

3.1 Review of Candidate 3D Object Representations

The literature review in Section 2.2 presents a range of algorithms to model 3D objects and assesses

their applicability for use in autonomous navigation. Three candidate algorithms were identified:

Ellipsoids, GPIS and NURBS. This section will describe how these 3D modelling algorithms can be

applied to autonomous navigation, specifically to perform the tasks of:

• Data association

• Mapping

– Modelling 3D objects from point clouds

– Updating 3D objects from multiple observations

• Localisation

• Obstacle representation for trajectory planning

The desired capabilities of the 3D modelling algorithm are to:

1. Accurately model a 3D object with multiple observations.

2. Provide a representation that is useful for localisation.

a) Enable reliable and accurate matching from multiple observations to give information on

the movement of the robot.

3. Provide a representation that is suitable as an obstacle representation.

a) Geometric paths through the 3D shape should be correctly detected as being in a collision.

b) The query of collisions for a geometric path should be quick.

c) Ideally the representation provides a gradient of collision violation.

4. Have minimal computation load.

Each algorithm will be assessed with regards to these capabilities, and the strengths and weaknesses

highlighted. The analysis of the three algorithms will justify the selection of one algorithm, NURBS, for

further development in Section 3.2. For each algorithm, it is assumed that the input is a segmented

point cloud, with each object identified in different segments. The algorithms then operate on one object

at a time. The segmentation approach is not described in detail in this work, but more information can

be found in Kuether et al. [109].

3.1.1 Ellipsoids - Full Application to SLAM and Trajectory Planning

Attribution: The theory and results in this sub-section were previously presented in [109] and

[156]. The components of those publications that are presented here are the work of the author of

this thesis unless otherwise stated.

The primary motivation for using ellipsoids in SLAM, herein referred to as Ellipsoid-SLAM, is the

suitability of ellipsoids for obstacle representation in trajectory planning algorithms and the ability

to quickly generate the objects. This section describes how ellipsoids are used for modelling, and

obstacle representation as well as how they can be used in SLAM. Simulated test cases demonstrate the

68

3.1. REVIEW OF CANDIDATE 3D OBJECT REPRESENTATIONS

approach, before assessing performance with real-world data. These tests provide a thorough evaluation

of Ellipsoid-SLAM, allowing the limitations to be elaborated, and an overall assessment made.

3.1.1.1 Ellipsoid Modelling

Ellipsoids are fit around a point cloud of an object by first finding the centroid, then by using principal

component analysis (PCA) to find the orientation and size of the ellipsoid axes. The size of the axes is

set by the PCA variance, σ2, along each axis, which is used to compute a 3σ value as the axis size. The

resulting 3D body is represented by the centroid, xc, the orientation, q and the axes sizes, [a1,a2,a3],

as depicted in Fig. 3.1. A significant limitation of this approach is that the 3σ ellipsoid from PCA is

not assured to capture all points. This property allows outliers from the segmentation to be rejected;

however there can also be points remaining outside of the 3D model, as shown in Fig. 3.2 with an

example extraction from a point cloud. Further inflating the ellipsoid could capture these points, but

would also occupy more free-space, giving a highly conservative representation.

FIGURE 3.1. Ellipsiod model described by centroid, xc, orientation with respect to the global
frame, and axes sizes, a1,a2,a3

FIGURE 3.2. Example of ellipsoids being extracted from a segment of a point cloud. (a)
Full point cloud, with one segment highlighted and the corresponding ellipsoid. (b) The
segment of the point cloud and ellipsoid in isolation.

69

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

3.1.1.2 SLAM with Ellipsoids

For data association, the centroid, size and orientation are used as descriptors to match different

ellipsoids. Once matched, localisation is performed by using both the centroid and quaternion orientation.

The error between an observation and a stored ellipsoid (i.e. the errors use to update the state estimate

in SLAM) is both a translational error: the distance between centroids, and an orientation error: the

angular error between orientations. By using the orientation, the 3D rigid body ellipsoid features

provide more information for the SLAM process than point features.

An Unscented Kalman Filter (UKF) is used to fuse the observations and estimate the state. The

UKF is chosen to handle the non-linearities in both the process model for the attitude dynamics and

the observation model for computing the orientation error of the ellipsoids. The orientation errors of the

ellipsoids is computed with quaternions in the global frame by evaluating the quaternion difference

between the observed orientation, q̂c, and the stored orientation, qc. This quaternion error, qe is

converted to rotation vector format, ve, to be considered in the UKF update. The conversion to rotation

vector format uses the quaternion logarithm (see Appendix C for details):

qe =q−1
c ⊗ q̂c (3.1)

ve = 2ln(qe) (3.2)

An approach outlined in [108] is then used to average the attitude from the unscented sample

points after the UKF update step. See [222] for more details. Through this update, the orientation of an

ellipsoid provides what is effectively another observation to fix the attitude of the robot.

3.1.1.3 Ellipsoid-SLAM Simulations

A set of simulations were run to isolate the concept of using ellipsoid features for SLAM. Observations

are made directly of ellipsoids, with added noise. Two such test cases are shown in Fig. 3.3.a (Small test

case) and Fig. 3.4 (Large test case). SLAM is performed with no prior knowledge of the environment,

and the robot travels on a pre-set trajectory through a simulated environment of ellipsoids. Zero-mean

random noise was added to the observations with maximum deviations of 5cm in position and axes

magnitudes as well as 0.05 radians in attitude. The Small test case, in Fig. 3.3.a, uses a polynomial

trajectory as the path of the robot, along with a regular yawing motion back and forth. A double

integrator, constant velocity motion model is used to propagate dynamics in the update step of the UKF.

The Large test case, in Fig. 3.3, uses a trajectory of a hand-carried camera to give simulated force and

torque commands to the double integrator motion model. While the trajectory is hand carried, the map

of ellipsoids and observations are simulated. A top-down view of the Large test case is shown in Fig. 3.5

with the orientation of the camera view direction displayed.

The SLAM paths generally tracks the true trajectory well, as presented in Table 3.1 with the Root

Mean Square (RMS) and maximum errors.

The simulations show the approach can successfully track the state of the robot through a 3D

trajectory, but with sensitivity to noise decreasing accuracy, and an accumulation of drift towards

the end of a trajectory. Mapping is also successfully demonstrated but with substantial drifts in the

70

3.1. REVIEW OF CANDIDATE 3D OBJECT REPRESENTATIONS

FIGURE 3.3. Ellipsoid SLAM simulated examples. (a) Small simulated Ellipsoid-SLAM test
case. The blue path is the true path, and red is the tracked path. Blue ellipsoids are the
true map, and black ellipsoids are the mapped estimates. A polynomial trajectory is used
with regular yawing of the camera back and forth. (b) Trajectory planning around the
obstacles (grey ellipsoids) that were mapped in the SLAM process. The black rectangle is
the bounds in which to consider ellipsoids. In both, the trajectory progresses from the
bottom of the image to the top.

TABLE 3.1. Tracking and mapping errors for simulated Ellipsoid SLAM examples.

Small test case Large test case
Parameter RMSE Max Error RMSE Max Eror

Robot State

Position (m)* 0.044 0.090 0.054 0.205
Velocity (m/s)* 0.011 0.051 0.066 0.272
Attitude (deg)+ 0.980 4.930 3.070 15.977

Angular Velocity (deg/s)* 1.187 2.2922 1.270 7.638

Features
Position (m)* 0.058 0.103 0.071 0.184

Orientation (deg)+ 1.422 1.680 3.039 11.647
Axes Magnitude (m)* 0.003 0.008 0.003 0.012

*Position, velocity and angular velocity errors are taken as the magnitude of the associated 3D vectors.
+The attitude and orientation error is taken as the rotation magnitude for the quaternion representing

the rotation from the true attitude to the estimated attitude

positions of the ellipsoids. These errors in ellipsoid positions can be problematic when using the map for

trajectory planning.

3.1.1.4 Trajectory Planning with Ellipsoid Objects

Ellipsoids are the ideal representation for trajectory planning, as elaborated in Chapter 4, allowing

trajectory optimisation algorithms to use the map of ellipsoids directly. To limit the number of ellipsoids

71

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

FIGURE 3.4. Large simulated Ellipsoid-SLAM test case. The blue path is the true path,
and red is the tracked path. Blue ellipsoids are the true map, black ellipsoids are the
mapped estimates. The trajectory is from a hand carried camera, but all observations
are simulated as direct observations of ellipsoids.

FIGURE 3.5. Top-down view of Large simulated Ellipsoid-SLAM test case. The blue path
is the true path, and red is the tracked path, with the arrows indicating the view
direction of the camera. Blue ellipsoids are the true map and black ellipsoids are the
mapped estimates. The trajectory is from a hand carried camera, but all observations
are simulated as direct observations of ellipsoids.

72

3.1. REVIEW OF CANDIDATE 3D OBJECT REPRESENTATIONS

that need to be considered, a volume of operation is defined, from the starting and goal location.

Only ellipsoids within that volume are considered in trajectory optimisation. An example of trajectory

planning with ellipsoids is shown in Fig. 3.3.b.

3.1.1.5 Ellipsoid-SLAM with Real-World Data

The simulation results demonstrated above use direct observations of ellipsoids. A critical part of using

3D objects for SLAM, though, is accurately extracting objects from the point cloud scans that can

reliably be matched across multiple observations. Therefore, point cloud observations were recorded

with a real RGBD camera to assess SLAM integrated with feature extraction. A hand-carried Asus

Xtion Pro RGBD camera was used to record a data set around the Texas A&M Land Air and Space

Robotics Lab. Ground truth was provided by a Vicon tracking system, which was also used to give

simulated IMU information by differentiating the tracked position and attitude. The RGBD data

was processed to first segment the image; then segments were extracted as regions of interest to be

modelled as ellipsoids. These segmentation steps are work from the primary author in [109] but are

depicted in Fig. 3.6 for context. The image processing, demonstrated on a video stream, is available at

https://www.youtube.com/watch?v=jA-yeVXIbG4.

FIGURE 3.6. Image processing pipline to extract and model ellipsoid objects from RGBD
images. Work by primary author in [109]

The link, https://www.youtube.com/watch?v=wH86OTOjB7A, presents a video of Ellipsoid-SLAM

running on the dataset. The UKF integrates only angular information from the simulated IMU data,

i.e. no simulated accelerometer data is used. Additionally, only the centroid of the ellipsoids was used

in the UKF state, as the inclusion of ellipsoid orientation led to inferior results, the reasons for which

are discussed below. Fig. 3.7 shows the final trajectory and map. While the path returns correctly to

the starting position, the error is substantial throughout the trajectory, especially at the corners. The

tracking error is displayed in Fig. 3.8, where the mean error is 0.18 m in position and 7.1◦ in attitude,

despite the angular velocity information from the simulated IMU data. There are also many more

ellipsoids than true physical objects, with multiple ellipsoids sometimes representing one object. The

poor performance of the algorithm highlights some important limitations of using ellipsoids as 3D

objects for SLAM.

73

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

FIGURE 3.7. Ellipsoid-SLAM trajectory and map with real data from a hand carried RGBD
camera and simulated IMU information. True trajectory is in blue from a Vicon tracking
system. SLAM trajectory is in red. The arrows indicate the view direction of the camera.
The black ellipsoids are the mapped features. The trajectory starts at the green dot near
x = 0, y=−1.7 and travels anti-clockwise.

FIGURE 3.8. Tracking errors from the Ellipsoid-SLAM test on real data. The attitude error
is the angular component of the quaternion difference between the true and estimated
orientation.

74

3.1. REVIEW OF CANDIDATE 3D OBJECT REPRESENTATIONS

3.1.1.6 Limitations with Ellipsoids for Localisation and Mapping

The main limitation with using ellipsoids for mapping and localisation is that when observing multiple

faces of an object, only the surface is ever observed; hence the ellipsoids are only ever surface ellipsoids

(e.g. see Fig. 3.9.a). When trying to match multiple observations of the same object, different parts of

the surface are being compared; hence there should not be an expectation that either the centroid or

the orientation is the same. Taken to the extreme, for a rectangular prism in Fig. 3.9.b-d the centroids

and orientations of adjacent faces are completely different. The outcome is a low quality of localisation

update and the generation of many more ellipsoids than there are physical objects. This inconsistency

in ellipsoid orientation is what caused the tracking results to be inferior when orientation was included

in the UKF state. These results, along with the poor representation accuracy are the main components

that limit the effectiveness of using ellipsoids as 3D objects for localisation and mapping. An insight

from these investigations is that it is always the surface of 3D objects that is observed; hence there

should be a focus on 3D surface modelling methods.

FIGURE 3.9. Illustration of issues with Ellipsoid-SLAM. (a) An ellipsoid is only a surface

ellipsoid (an ellipsoid representing just the points on the surface and not the full volume
of an object), red is the true object, blue dots are the simulated observations and black is
the modeled ellipsoid. (b)-(c) Possible observations of a prism, associated axes intersecting
at the observed centroid. (d) A third view of the prism, showing the centroid and axes
from (b) and (c) are very different, despite being from the same object.

3.1.1.7 Assessment - Ellipsoids for SLAM and Trajectory Planning

Ellipsoids provide an ideal 3D representation of obstacles for trajectory planning, can be quickly

modelled from a point cloud observation and can be effectively used as landmarks in a SLAM algorithm.

However, ellipsoids do not provide a consistent representation of observed 3D objects, as observations

are always of the surface, hence do not capture the full shape of an object. The inconsistency in

representation means that the ellipsoids are not reliable features for SLAM. This limitation makes

ellipsoids unsuitable as a representation for combining SLAM and 3D mapping of obstacles.

75

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

3.1.2 Gaussian Process Implicit Surfaces - Assessment of Potential for SLAM and

Trajectory Planning

Attribution: A majority of this section was previously presented in [156] and is the work of

the author of this thesis.

An approach that does model surfaces of objects, and can make inferences about the unseen part of a

3D object, is Gaussian Process Implicit Surfaces (GPIS). GPIS is a technique that utilises Gaussian

Processes[191] to model the surfaces of 3D objects. Refer to Williams[226] and Dragiev[51] for detailed

overviews of GPIS. In this section, the theory behind GPIS is summarised to provide the context to

assess the potential of GPIS for use in SLAM, 3D mapping and obstacle representation.

3.1.2.1 Surface Modelling with GPIS

For 3D objects, the goal of GPIS is to represent the object with an implicit surface: a level set of a three

dimensional function, f (x, y, z). The function is modeled by a Gaussian Process and represents where

an (x, y, z) location is with respect to the object:

f (x, y, z)

> 0, inside object

= 0, on surface

< 0, outside object

(3.3)

The process for GPIS is depicted in Fig. 3.10, where a series of observations are made of a simplified

object, and are assigned f (x, y, z)= 0 (Fig. 3.10.a). Next an internal control point is created in a location

known to be inside the object and is assigned f (x, y, z)= 1. A spread of external control points are then

placed around the object, with f (x, y, z)=−1 (Fig. 3.10.b). The intention is to fit the function to the set

of observation points, external control points and the internal control point, using Gaussian Processes.

The level set at f (x, y, z)= 0 will represent the fit to the surface of the 3D object (Fig. 3.10.c). Care needs

to be taken in ensuring the placement of the internal and external control points are correctly inside

and outside the object.

The main step of the Gaussian Processes fit, is to evaluate a covariance function for the pairing of

each point where we want to query the value of the resulting function. A kernel function is used to

compute the covariance. The selection for the kernel function is important in controlling the nature of

the resulting function. Refer to Gerardo-Castro[77] for some examples on different kernel functions,

their use and their importance. One example kernel function is[226]:

k(x1, x2)= 2||x2 − x1||3 +3κ||x2 − x1||2 +κ3 (3.4)

where x2 and x1 are two of the query points, and κ is a tuning parameter, set to be near the largest

value of ||x2 − x1||, the two-norm of the vector difference [226]. The kernels are used to compute the

covariance between every pair of points.

76

3.1. REVIEW OF CANDIDATE 3D OBJECT REPRESENTATIONS

FIGURE 3.10. GPIS surface generation for a sphere. The true sphere is in black, and observa-
tions are the red triangles. The internal control point is black and the external control
points are blue. (a) Observations of the object, and the internal control point. (b) Setting
of external control points around the observations. (c) Extracted implicit surface from
GP fit, as the red mesh. [156]

If we want to get a good representation of the surface in the level set, we need to have a sufficient

number of the query points. For example, in Fig. 3.10 a grid of 10 by 10 by 10 query points is used

to generate the surface. The kernel function (Eqn. 3.4) needs to be evaluated for every pairing of a

combined set of 1000 query points, plus the observation points and control points to give the upper-

diagonal of a covariance matrix Σ. The example in Fig. 3.10 has 50 observation points, 52 external

control points, and 1 internal control point, making Σ of dimensions 1103×1103. The output of the

Gaussian Process fit is the predicted functional values at the query points, fpred, and the associated

covariance, Σ̂pred:

fpred(u)=Σ
T
uxΣ

−1
xx [x] (3.5)

Σ̂pred =Σuu −Σ
T
uxΣ

−1
xxΣux (3.6)

Here u represents the query points, and x the set of observation points and control points. Σuu,Σux, and Σxx

are components of the Σ covariance matrix:

Σ=
[

Σxx Σ
T
ux

Σux Σuu

]

(3.7)

The implicit surface is then extracted from the level set of the query points and fpred functional

values1, and is shown in Fig. 3.10.c.

1Using the isosurface function from Matlab® [132].

77

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

3.1.2.2 Strengths and Limitations of GPIS

One of the strengths of GPIS over the ellipsoid method is that the algorithm produces a prediction on

the object beyond what is observed, to give a full 3D object (Fig. 3.10.c). The prediction is beneficial

as there will never be a single observation of the complete object and the predicted surface presents

possible obstructions (with an uncertainty) for the trajectory planner.

Another strength of the GPIS method is that the final representation is probabilistic: a covariance

Σ̂pred is defined over the queried space. The probabilistic representation is useful for having an informed

update of the object and providing an uncertainty measure to fuse into both the localisation updates and

the trajectory planner. This probabilistic information is lost, though, if it is desired to have a compact

representation of the surface that is useful as an obstacle (i.e. by storing the implicit surface vertices or

fitting an ellipsoid to the vertices).

A useful trait of GPIS is that it can form surfaces around generic objects, enabling it to have an

accurate representation of the object. An accurate object model is important for both localization, to

match observations to a stored model, and to correctly represent an obstruction for the trajectory

planner. The accuracy comes at a considerable computational cost though, with the number of kernel

evaluations (Eqn. 3.4) requiring a substantial number of operations (108,356 evaluations in the example

in Fig. 3.10). The time to perform the computations is prohibitively large, and in the current form renders

the technique unsuitable for the intended purposes. Future developments could be made to increase the

computational speed of the technique, such as by taking inspiration from the methods employed with

GPOM to divide the computations into many sub-problems. These avenues of investigation are left as

future work.

3.1.2.3 Assessment - GPIS for SLAM and Trajectory Planning

GPIS has the benefits of being able to make predictions about unknown space and provides a continuous

representation of the environment. The algorithm incorporates uncertainty information as well as

providing a measure of uncertainty for the output map: useful traits for both mapping and localisation.

The challenge with GPIS though, is that there is a large computational load to generate surfaces, and

there is not a compact method of storing information from the fitted surface. These traits make GPIS,

in its current state, difficult to implement for the desired combination of SLAM and 3D mapping of

obstacles.

78

3.1. REVIEW OF CANDIDATE 3D OBJECT REPRESENTATIONS

3.1.3 Non-Uniform Rational B-Splines - Assessment of Potential for SLAM and

Trajectory Planning

Another method to represent the surface of an object, which is quicker to generate than GPIS, is

using Non-Uniform Rational B-Splines (NURBS). This section describes the theory behind NURBS

for modelling and manipulating surfaces of 3D objects, before an assessment of the potential for the

algorithm for use in SLAM and trajectory planning. The details of NURBS relevant to the discussion

are presented. Refer to [181] for an in-depth description of NURBS.

3.1.3.1 NURBS Background Theory

The main components of NURBS for modelling of surfaces are:

Parametric Mesh This is a set of 2D parametric values (s, t) ranging from 0 to 1, as depicted in

Fig. 3.11. The number of points in the mesh (ms ×mt) is the number of points that will be used

for fitting a surface.

Control Points These points, ρ, define the shape of the surface, and are ordered in a grid similar

to Fig. 3.11, with ns and nt control points in each direction of the grid. The locations of these

points affect the shape of the surface in a neighbouring area. Each control point has an associated

weighting with it, scaling how influential it is on the surface.

Knot Vectors The set of knots control the locations where polynomial segments merge together in

each parametric direction. The distribution of these knots affects where the surface can accurately

capture large curvature. The degree of the polynomial segments, p, and the number of control

points affects the number of knots: ns + p+1, and nt + p+1 for each parametric direction.

FIGURE 3.11. Parametric mesh required for NURBS input data points and control points. In
this case ms = 10 and mt = 15.

79

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

NURBS curves are the basis from which NURBS surfaces are built. A NURBS curve is defined with

a single parametric value, s, with each point defined by:

C(s)=
∑ns−1

i=0 wiρ iB
p

i
(s)

∑ns−1
i=0 wiB

p

i
(s)

(3.8)

Here, i denotes the indices stepping along control points, (ρ i) in the parametric direction, s. The

weighting for each control point is wi, and the B
p

i
terms are the basis blending functions of degree

p. These basis functions are polynomials that are defined for each s value using the knot vector ū:

ui, i = 0, ...,ns + p as below:

B
p

i
(s)=

s−ui

ui+p −ui

B
p−1
i

(s)+
ui+p+1 − s

ui+p+1 −ui+1
B

p−1
i+1 (s) (3.9)

B0
i (s)=

1, if ui ≤ s ≤ ui+1

0, otherwise
(3.10)

For NURBS surfaces, this concept is expanded to two parametric directions, s and t and is given by:

S(s, t)=

∑ns−1
i=0

∑nt−1
j=0 wi jρ i jB

p

i
(s)Bp

j
(t)

∑ns−1
i=0

∑nt−1
j=0 wi jB

p

i
(s)Bp

j
(t)

(3.11)

where j is the index for the second parametric direction. There are ns control points in the s parametric

direction and nt in the t parametric direction. The basis functions B
p

j
(t) are defined as in Eqn. 3.9, but

evaluate a given t parameter and use the knot vector for the t parametric direction, v̄.

A surface is entirely defined by the control points, weighting and knot vectors. To evaluate the

points on a surface, a set of parametric coordinates, in s and t are selected and used in Eqn. 3.11. This

evaluation is performed point by point, where the process starts with determining the knot span in

which the parametric point lies. The knot span informs which control points need to be considered. Next,

the basis-blending functions in the vicinity are evaluated (only a small set of local blending functions

are non-zero). Finally, Eqn. 3.11 is used to get the point on the NURBS surface. Refer to [181] for more

details on these steps. By evaluating a set of points in a parametric mesh, a whole surface can be

represented. This surface evaluation method is a strength of NURBS: the underlying representation

can be sampled at any resolution. The sampling could be at a low resolution for trajectory planning and

a high resolution for use in localisation.

80

3.1. REVIEW OF CANDIDATE 3D OBJECT REPRESENTATIONS

3.1.3.2 NURBS Surface Fitting

The goal for fitting NURBS surfaces is to solve the system of equations in Eqn. 3.11 to determine the

ns × nt control points, ρ i j, to best fit the ms ×mt data points Dkl . The approach taken to do the fit

employs a succession of NURBS curve fits, as outlined in [181]. The main steps, as implemented in

this work will be outlined here. The first step for surface fitting is to ensure the data is organised in a

parametric mesh (Fig. 3.11). Given data, Dkl , the desired number of control points (ns,nt) and desired

degree (p), the steps to fit a surface are [181]:

1. Determine the parametric values to assign to each data mesh-point based on the average spacing

between the points.

2. Determine the knot vectors, based on the data parametric values (to have at least one data point

between each knot).

3. Perform least-squares fits of NURBS curves to rows of data.

4. Perform least-squares fits of NURBS curves to columns of control points from the curves computed

in step 3.

The results is a mesh of control points and two knot vectors that define the NURBS surface. For

simplicity, uniform weighting is used, at a value of 1. First, the process for curve fitting will be explained,

to give the foundation for surface fitting.

Curve Fitting

In solving the system of equations, there are two more unknowns to add to the control points, the

parameter vectors, s̄, t̄, and the knot vectors, ū, v̄, which are required to compute the basis functions in

Eqn. 3.8. The parameter vectors and knot vectors need to be determined first, based on the given data.

For a curve, the discrete set of parameters, s̄ = [s0, s1, ..., sms−1], for sk ∈ [0,1] are determined to

represent the parametric coordinates for each of the ms data points, Dk, that are being fit. This

parameter set could be computed to be uniform, with equal spacing, yet by computing the spacing

with respect to the cumulative chord length of the data, the parameters can give a more accurate

representation. Setting first s0 = 0 and sms−1 = 1, each internal parameter is computed with:

sk = sk−1 +
|Dk −Dk−1|

d
k = 1, · · · ,ms −2 (3.12)

where d is the total chord length:

d =
ms−1
∑

k=1
|Dk −Dk−1| (3.13)

The next step is to compute the knot vector, ū, with the desire to have every knot span (the

parametric span between adjacent knot values) to include at least one parametric value, to ensure the

curve fitting problem is not singular. The number of control points desired, ns, and the degree of curves,

p, need to be selected here, as there are ns + p+1 values in the knot vector. First, values of 0 and 1 are

repeated p+1 times at the starts and ends, respectively.

81

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

u0 = u1 = ·· · = up = 0 (3.14)

uns−p−1 = uns−p = ·· · = uns−1 = 1 (3.15)

A knot repeated p+1 times is referred to as having multiplicity p+1. Having p+1 multiplicity at

the start and the ends forces the curve ends to match the end control points. The internal control points,

from p+1 to ns − p−2 are defined with consideration of s̄:

d̂ =
ms

ns − p
(3.16)

i = floor(jd̂) (3.17)

α= jd̂− i (3.18)

up+ j = (1−α)si−1 +αsi j = 1, · · · ,ns − p−2 (3.19)

For solving the least squares fit, the two end control points are first made equal to the end data

points, ensuring the fitted curve will start and end at those points, ρ0 =D0, ρn =Dn. For the remaining

internal control and data points, Eq. 3.8 is rearranged into matrix form:

(BTB)ρ =Y (3.20)

where B is a matrix of the NURBS basis functions, evaluated at the different parametric values:

B =

B1,p(s1) · · · Bns−2,p(s1)
...

. . .
...

B1,p(sms−2) · · · Bns−2,p(sms−2)

(3.21)

The matrix has dimensions (ms −2)× (ns −2), i.e. the length of the internal data in the first dimensions

and the internal control points in the second dimension. The matrix Y is a grouping of the weighted

data points, each adjusted by the end points:

Y k =Dk −B0,p(sk)D0 −Bns−1,p(sk)Dms−1 k = 1, ...,ms −2 (3.22)

Y =

B1,p(s1)Y 1 +·· ·+B1,p(sms−2)Y ms−2
...

Bns−2,p(s1)Y 1 +·· ·+Bns−2,p(sms−2)Y ms−2

(3.23)

The matrix ρ groups the internal control points and is the result of solving the system of equations

presented in Eqn. 3.20. Given that BTB is square, this can be solved by taking the inverse of that

matrix (although more advanced solution methods, taking advantage of the sparsity of the matrix could

be used):

ρ = (BTB)−1Y (3.24)

82

3.1. REVIEW OF CANDIDATE 3D OBJECT REPRESENTATIONS

FIGURE 3.12. NURBS curve fitting examples. A NURBS curve is fit to data points with p = 3
and ns = 5. The control polygon is defined by straight lines between control points.

With the control points and knot vectors, the curve is then fully defined. Some example curve fittings

are shown in Fig. 3.12.

Surface Fitting

For surfaces, the challenge is in extending the curve fitting problem into a second parametric direction.

For this, the data points, Dkl , need to be ordered in a 2D grid (see Fig. 3.11), so when an index, k or

l, is increased, there is a continuous and logical progression along the surface. The result of such an

organisation is that a mesh plotted for Dkl would represent a grid pattern, such as depicted in Fig. 3.13.

A parameter vector and a knot vector is computed for each parametric direction, s and t, correspond-

ing to the index directions k and l, respectively. There are ms data points in the s direction and mt data

points in the t direction. The number of control points needs to be selected for each dimension as well:

ns and nt, and the polynomial degrees, p.

The parameterisation for surfaces works in a similar manner to that of curves, using Eqns. 3.12

and 3.13. Each column of data (a line along s with constant t), is treated as a curve to compute the

parameterisation, then the average taken across all columns to give the s̄ vector, of length ms. The

same is then done for the rows of the data (a line along t with constant s) to give the second dimension

of parameterisation, t̄, of length mt.

With the parameter vectors computed, the knot vectors are then determined in exactly the same

way as for curves, using Eqn. 3.19 for each each parametric direction. In the s direction, ū, of length

ns + p+1 is computed using s̄ and in the t direction, v̄, of length nt + p+1 is computed using t̄. The

implication in this process is that the parametric spacing and knot spacing is the same for every column

(s̄, ū) and likewise the same for every row (t̄, v̄).

83

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

FIGURE 3.13. Mesh requirements for NURBS surface fitting. (a) The 3D surface to be
measured, which could be sampled in any way. (b) Observations of the surface that are
organised in a structured mesh, which is what is needed for NURBS surface fitting.

When performing the fit of the surface, the process is followed as outlined below:

1. For each ith row of the ms rows of data, fit a curve through Dil , l = 0, ...,mt −1 to get temporary

control points Ti, j, j = 0, ...,nt −1

2. For each jth column of the nt columns of temporary control points, fit a curve through

Tk, j, k = 0, ...,ms −1 to get ρ i, j, i = 1, ...,ns −1

Each of the curve fitting steps is the same process as outlined for the curves above. For the row curve

fits, v̄ and t̄ are used, and for the column fits, ū and s̄ are used. The resulting matrix of ns ×nt control

points, ρ, has each of the corner points matched to the corners of the data points. In the implementation

of the process outlined above, the computation of the B matrices and in particular, (BTB)−1 only needs to

be performed once for the rows, and once for the columns, as it is a function of only the knot vectors and

parameter vectors. This fact allows the surface fitting procedure to be rapidly processed. An example

of surface fitting is shown in Fig. 3.14). The number of control points and polynomial degree are the

parameters that can be tuned to balance the accuracy and speed of computation for the surface fitting.

3.1.3.3 NURBS Surface Manipulation

There is a range of methods to manipulate surfaces once they have been generated. One that can be of

particular use is knot insertion. This process involves adding extra knots (and hence control points)

without changing the shape of the surface. Having extra control points can be of use to be able to

manipulate a surface by moving the control point. Refer to [181] for details on knot insertion.

84

3.1. REVIEW OF CANDIDATE 3D OBJECT REPRESENTATIONS

FIGURE 3.14. NURBS surface fitting example. (a) Data points of an observation of a surface.
(b) The data points organised into a structured mesh. (c) A NURBS surface fit to the
data, plotted with the data. (d) The NURBS surface in isolation showing contours at
evenly spaced parametric values.

85

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

3.1.3.4 Assessment - NURBS for SLAM and Trajectory Planning

NURBS surfaces present the middle-ground between the quick, simple but inaccurate ellipsoids and the

slow, complex and accurate GPIS. NURBS surfaces can be fitted to the data quickly, and the resulting

representation is compact: only the control points and knot vectors. The accuracy depends on the number

of control points used, enabling both high and low detail, depending on the needs of the representation.

Higher detail comes with higher computation time, but the flexibility enables the balance between

accuracy and computation time to be tuned. Another benefit for NURBS is the ability to sample the

surface at multiple resolutions: a strength when using the representation for both SLAM and trajectory

planning.

3.1.4 Selected 3D Object Representation

A summary of the pros and cons of the three different 3D modelling algorithms is presented in Table 3.2.

From the review, NURBS is selected for further investigation, providing the best trade-off between

computational speed and accuracy, with the flexibility to adapt the resolution for the given application.

NURBS surfaces have not been previously applied to SLAM or trajectory planning, only with NURBS

curves [225], or other forms of spline curves [137, 221]. The next section describes how NURBS are

used for SLAM and trajectory planning.

TABLE 3.2. Summary of strengths and limitations of 3D modelling algorithms for SLAM and
trajectory planning.

Method Strengths Limitations

Ellipsoids - Fast computation - Inaccurate representation
- Ideal obstacle representation - Inaccuracy for localization
- Simple representation for and update
storage

GPIS - Accurate representation - Very computationally expensive
- Models into unknown space - Need a different representation
- Probabilistic representation for storage and for

trajectory planning
NURBS - Fast computation - Limited accuracy

- Strong update capability in representation
- Relatively compact - Slower computations for
representation for storage trajectory planning

86

3.2. NURBSLAM: USING NURBS SURFACES FOR LOCALISATION, MAPPING AND TRAJECTORY
PLANNING

3.2 NURBSLAM: Using NURBS Surfaces for Localisation, Mapping

and Trajectory Planning

For use in autonomous navigation, a NURBS object representation needs to be useful in the following

tasks:

1. Data Association:

• To have a sufficient number of descriptors to match an observation to the appropriate object.

2. Mapping:

• Generating a surface from point cloud observations.

• Updating and extending a surface with new observations.

3. Localisation:

• Matching observations to a previously mapped object to give information on the robot’s pose.

4. Trajectory Planning:

• Providing an efficient way to determine the minimum distance from a point to the object and

the gradient of that distance for obstacle representation in a trajectory planning algorithm.

This section outlines how NURBS are applied to each of these tasks and is a presentation of

NURBSLAM (Non-Uniform Rational B-Spline Localisation And Mapping), a new algorithm that is a

contribution of this thesis.

3.2.1 Data Association

The task for data association is to match an observation of an object (a point cloud) to the correct

existing NURBS object stored in the map. A NURBS object is defined as a NURBS surface that has

been generated from observations and is stored in a global reference frame. The map is defined by

a set of NURBS objects, to which new observations are matched. One of the advantages of using 3D

objects as features for SLAM is that the data association challenge becomes simpler because there are

fewer features that are more spread out. These characteristics mean that using only a centroid of the

NURBS object gives an effective data association. The centroid of the data can be computed by taking

the average of a down-sampled set of the observed points. Additionally, a representative centroid of

the NURBS object can be computed by taking an average of the control points. Because observations

are only ever on the surface, it is unlikely there will be an exact alignment of centroids; hence high

thresholds are used to select candidate matches and the closest object selected as the correct match.

If the number of objects does become large, when operating in a large environment, then there is the

potential to use more information to describe an object, such as the colour, a visual or 3D appearance

descriptor, or surface texture metrics from the field of Geographic Information Systems, such as in [109].

3.2.2 Mapping - Object Generation

Mapping is the process of using point cloud observations to generate 3D models of the environment.

This process assumes that the input is a segment from a point cloud observation that is either flagged

87

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

as a new object, or a new observation of an existing object, from the data association step. The steps

required for mapping are:

1. Initial generation of an object.

2. Extension and update of an existing object.

The generation of an object follows the NURBS surface fitting steps outlined in Section 3.1.3.

One crucial requirement for surface fitting is that the observation data needs to be organised in a

structured mesh. This requirement is non-trivial and requires careful consideration. Although a point

cloud observation from an RGBD camera or stereo camera pair is organised thanks to the grid of the

image, the segmentation of that point cloud for a given object is unlikely to give an equal number of

points along each row or column.

The process taken to provide observations in a structured mesh is to utilise the structure from

the initial observation: the grid of the image. First, the assumption is that a segmented point cloud

for a given object is provided, with all pixels that are not part of the object set with values as NaN

(Not A Number). An approach is then taken to iteratively remove rows and columns of a scan until

a rectangular mesh is left that contains a large percentage of points from the object (e.g. 90%). An

average of neighbouring points replaces the remaining NaN points. The process of removing rows and

averaging NaN points is outlined in Algorithm 1. The first loop involves removing rows, and then

columns, from the mesh that have more NaN values than a threshold. That threshold changes with the

size of the mesh to be equal to the largest number of NaNs in any row or column minus a user-set buffer.

Once there are few enough NaNs, or a lower limit on the mesh size, the first loop exits. The second

loop averages all the remaining NaN values by taking the mean of the points in adjacent parametric

coordinates. This averaging process is in a loop in case all the neighbours of a NaN point are also NaN.

In Algorithm 1, the parameter buffer controls the update of the threshold thresh to determine which

rows and columns to remove in each iteration. A higher buffer will more aggressively remove rows and

columns, leading to fewer iterations, but a potentially higher loss of good data.

Following the removal of NaNs from the mesh, the number of rows and columns are reduced, if

required, to give the desired mesh dimensions, ms ×mt. The mesh is reduced by taking ms evenly

distributed rows and mt evenly distributed columns of the desired number. The output is an organised

mesh containing entirely valid 3D points. An example of the mesh generation from a point cloud is

presented in Fig. 3.15.

One limitation of this mesh reduction approach is the need to do averaging for the NaN points that

remain after the row and column removal. This averaging introduces artefacts into the data that are not

present in the observations, which can lead to irregularities in the surface generation. If the percentage

of points to average is low, these issues have minimal impact on performance.

88

3.2. NURBSLAM: USING NURBS SURFACES FOR LOCALISATION, MAPPING AND TRAJECTORY
PLANNING

Algorithm 1 Mesh Processing
1: mesh← segmented scan in structured mesh
2: nRows←NumberOfRows(mesh)
3: nCols←NumberOfColumns(mesh)
4: ms ← desired number of rows
5: mt ← desired number of columns
6: buffer← setting for how aggresively to remove rows and columns
7: NaNl im ←maximum allowable NaNs

8: procedure PROCESSMESH

9: mesh←RemoveRowsAndColumns(mesh)
10: mesh←AverageRemainingNaNs(mesh)
11: end procedure

12: procedure REMOVEROWSANDCOLUMNS

13: while nRows> ms and nCols> mt and nNaN>NaNl im do

14: thresh←UpdateThresh(mesh,doRow)
15: for row in mesh do

16: if NumberOfNaNs(row)> thresh then

17: mesh←RemoveRowFromMesh(row,mesh)
18: end if

19: end for

20: thresh←UpdateThresh(mesh,doCol)
21: for col in mesh do

22: if NumberOfNaNs(col)> thresh then

23: mesh←RemoveColFromMesh(col,mesh)
24: end if

25: end for

26: nNaN←NumberOfNans(mesh)
27: nRows←NumberOfRows(mesh)
28: nCols←NumberOfCols(mesh)
29: end while

30: function UPDATETHRESH(mesh,rowOrCol)
31: if RowOrCol is doRow then

32: thresh←MaxNanInRows(mesh)−1−buffer

33: else if RowOrCol is doCol then

34: thresh←MaxNanInCols(mesh)−1−buffer

35: end if

36: end function

37: end procedure

38: procedure AVERAGEREMAININGNANS

39: while nNaN> 0 do

40: for NaN_point in mesh do

41: mesh(NaN_point)←AverageFromNeighbours(NaN_point)
42: end for

43: nNaN←NumberOfNans(mesh)
44: end while

45: end procedure

89

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

FIGURE 3.15. Mesh generation example. A dense point cloud observation of an object is
shown in red, that is not organised in a rectangular mesh. Using the mesh processing
steps, this data is reduced to the rectangular mesh in black.

3.2.3 Mapping - Object Update

When a new observation is made of an existing surface, the surface is extended to grow the surface to

include newly observed parts of the object. The methods for doing this will first be explained for NURBS

curves, as it forms the basis for the explanation of NURBS surface extension. Curve extension consists

of 1) determining where to split the observations between overlapping and new data, and 2) joining the

new data to the existing curve.

3.2.3.1 Determining the Split Between Overlapping and New Data

Given an existing NURBS curve and new observations that overlap with this curve (Fig. 3.16.a), the

goal is to update the existing curve to take into account the observation data. The first step here is

determining the split of observation data between new points and overlapping points. This split is

determined by finding the closest point on the observation data to each of the ends of the existing curve.

The curve-end that has the smallest distance to the observation data is then selected as the end to

be extended. The closest observation data point to this curve-end is selected as the split point. The

overlapping data extends from the end data point that is closest to the curve, to the split point. The

remaining observation points are the new data. These steps are depicted in Fig. 3.16.b.

90

3.2. NURBSLAM: USING NURBS SURFACES FOR LOCALISATION, MAPPING AND TRAJECTORY
PLANNING

FIGURE 3.16. Steps to use new data to extend a NURBS curve. (a) Existing curve and
observation data. (b) Identificaiton of overlapping and new data, as well as the split point
(last overlapping data point). (c) Fitting a curve to the new data. (d) Control points on the
existing and the new curve, with knot insertion adding control points on the new curve.
(e) Combined control points and resulting curve. (f) Final curve with original curve and
observation data.

3.2.3.2 Joining New Data to a NURBS Curve

A NURBS curve is fit to the new data, with the number of control points being computed as the

default number of control points multiplied by the percentage of the observation data classified as new

(Fig. 3.16.c).

The next step is to combine the two curves, which involves joining control points and knot vectors.

When joining the knots vectors, it is desired to maintain a multiplicity of one for each internal knot, i.e.

there are no repeated knots except at the ends. Managing multiplicity in this way allows continuity to

be maintained (refer to [181] for more discussion on knot multiplicity and continuity). Because each

curve ends with p+1 repeated knots, there needs to be a removal of 2p+1 knots. This removal of knots

also requires removal of p−1 control points. The priority is given to the existing curve in this knot

91

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

removal; hence knots and control points are removed from the new curve. Knot insertion precedes this

knot removal to minimise the loss of the end part of the new curve. Knots are inserted at the end of the

new curve that will be joined, with an additional p knots and p−1 control points. An example of knot

insertion is shown in Fig. 3.16.d.

When the existing curve (with knot vector ū), is extending from the s = 1 parametric end, and the

new curve knot vector µ̄ starts from the s = 0 parametric end, the knot vector components taken are:

ūpart =
[

u0,u1, · · · ,un−p−1
]

(

ns,1

ns,1 +ns,2

)

(3.25)

µ̄part =
[

µp+1, · · · ,µn−1
]

(

ns,2

ns,1 +ns,2

)

+un−p−1

(

ns,1

ns,1 +ns,2

)

(3.26)

ūcombined =
[

ūpart, µ̄part

]

(3.27)

where ns,1 and ns,2 are the number of control points for the existing and new curve respectively. The

right-most term in Eqn. 3.26 sets µ̄part to start with values higher than the last value in ūpart. The

fraction that multiplies the vectors (the fraction with ns,1 and ns,2) scales the knot values so the

combined vector, ūcombined is monotonically increasing from 0 to 1 and so there is more parametric

range given to the curve with the greater number of control points. The control points are combined in a

similar manner (using ζ to denote the control points on the new curve):

ρpart =
[

ρ0, · · · ,ρns,1−1

]

(3.28)

ζpart =
[

ζp−1, · · · ,ζns,2−1

]

(3.29)

ρcombined =
[

ρpart,ζpart

]

(3.30)

The example outlined above is one of four scenarios for combining the existing curve with the new

curve. The existing curve can extend from either the s = 1 parametric end, or the s = 0 parametric

end. These two variations affect which curve comes first in the combined knot vector and control point

vector. Additionally, the new curve can be joined at either the s = 0 or s = 1 parametric end. These two

variations, combined with the direction that the existing curve is extending, determine whether the

parametric direction on the new curve needs to be flipped, µ̄= 1− µ̄, or not. The steps in determining

the split of data provide the information to select from the four permutations. Regardless of variation, p

knot vectors are removed from the existing curve at the end that is being extended. Then p+1 knots

and p−1 control points are removed from the end of the new curve that is being joined. Finally, the

steps to join the knot vectors are adjusted to ensure a monotonic increase from 0 to 1. The combined

control points and knot vectors define the combined curve (Fig. 3.16.e).

92

3.2. NURBSLAM: USING NURBS SURFACES FOR LOCALISATION, MAPPING AND TRAJECTORY
PLANNING

3.2.3.3 Steps for Surface Extension

The principles for extending and updating a surface are the same as for curves, but with the added

complication of the extra parametric dimension. The process can be summarised as:

1. Determining the direction to extend the surface: left, right, up or down.

2. Determining the split of data between new points and overlapping points. This step also deter-

mines the direction the new data will join the surface.

3. Fitting a surface to the new data, with an appropriate number of control points.

4. Extending the existing surface row-curve by row-curve or column-curve by column-curve to

the new surface (which could be regarded as sets of columns, or sets of rows) using the curve

combination method described above.

3.2.3.4 Surface Split Determination

Given successful completion of steps 1 and 2 for surface-extension, steps 3 and 4 are simple extensions

from the method with NURBS curves. Achieving steps 1 and 2 is challenging though, with difficulty

in determining the appropriate directions to extend the surface and split the data over the range of

all possible cases. In contrast to a curve, there are a large number of possible combinations to join two

surfaces, with 16 different combinations for extension directions of the existing surface, and joining

directions for the new data.

The steps to determine the split of data and extension direction for surfaces are:

1. Generate surface points from the stored NURBS object.

2. Classify observation points as new or overlapping.

3. Determine the join-edge for the observation data.

4. Determine the join-edge for the surface.

5. Compute the indices of new data to take from the observation data.

These steps are elaborated below. The first step is to generate a set of points from the stored surface

(Eqn. 3.11). The second step is to classify observation points as either overlapping or new. Normal-

shooting correspondence estimation [200] is used to classify the points by matching every observation

point to the closest map surface point. The normal-shooting correspondence returns the perpendicular

distance of each observation point to the normal from the matching surface point. These distances are

used with a threshold to classify observations points as either overlapping points, if the distance is

below the threshold, or new points, if not. The threshold is the average of the distance between adjacent

observation points, so when a distance exceeds this, it is likely to be past the edge of a surface. The

output from this step is a boolean array, boolNewArray, indicating whether the point in each mesh

coordinate is overlapping (false) or not (true).

The next step uses the boolean array to determine an initial split of the observation data. This

split is denoted by a join-edge and a far-edge of the observation data that are both either rows or

columns. The method to extract the far-edge on the observation data using boolNewArray is outlined in

Algorithm 2, with steps depicted in Fig. 3.17.a-c. The ID of the far-edge denotes which of the four edges

are the far-edge. The join-edge is the last row or column from the far-edge that is classified to be new.

93

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

Algorithm 2 Determining the far-edge of the observation data
1: boolNewArray← boolean array indicating new (true) or overlapping (false) observation points
2: newCountVector← vector storing the number of new rows or columns from each edge
3: newDataFarEdgeID← index of observation-data edge that is opposite the join-edge
4: ms ← number of rows in observation data
5: mt ← number of columns in observation data
6: newCountBuffer← number of overlapping points allowed to still be classified as a new row/col.

7: procedure DETERMINENEWDATAJOINEDGE

8: for edge in observationData do

9: newRowColCount← 0
10: if EdgeIsRow(edge) then

11: l im = mt −newCountBuffer

12: else

13: l im = ms −newCountBuffer

14: end if

15: while not exitFlag do

16: boolNewVector←GetRowOrCol(of boolNewArray, at (Index(edge)−newRowColCount))
17: nNew←CountTrue(boolNewVector)
18: if nNew> l im then

19: newRowColCount← newRowColCount+1
20: else

21: exitFlag← true

22: end if

23: end while

24: newCountVector←Append newRowColCount to newCountVector

25: end for

26: newDataFarEdgeID← IndexOfMaximum(newCountVector)
27: end procedure

The join-edge of the surface is then determined, using the far-edge of the observation data. The

mid-point of each edge of the surface is compared to the mid-point of the observation far-edge, as

outlined in Algorithm 3. The comparison checks the angle, θ, between a surface tangent to the surface

edge mid-point, vse and the vector from the surface mid-point to the observation far-edge mid-point, ved,

as depicted in Fig. 3.17.d. The angle, θ, needs to be less than 90◦ (ved · vse > 0) to pass, indicating an

appropriate extension direction. The closest edge that passes the criterion is the surface join-edge.

With the surface join-edge determined, the next step is to determine which observation data to

use for extending the surface. A simple approach is to use the rectangle of observation data from the

join-edge to the far-edge. This approach works well for rectangular surfaces, but when there are curves

in edges, such as in Fig. 3.18.a, there will be a large gap with no data. Instead, the surface join-edge is

used to compute a set of indices on the observation data, to be one boundary of the new data, with the

observation far-edge being the opposite boundary. This process is outlined in Algorithm 4 for the case

when surface rows are being extended into observation data rows. The algorithm changes slightly with

the other three variations of taking surface rows or columns, with observation data rows or columns.

Regardless of variation, the principle remains the same. The result is a rectangular mesh of data that

occupies the new region of the observation data.

94

3.2. NURBSLAM: USING NURBS SURFACES FOR LOCALISATION, MAPPING AND TRAJECTORY
PLANNING

Algorithm 3 Determining the surface join-edge from which to extend the surface
1: surface← the existing surface to be extended
2: farEdgeMid←midpoint of new data edge that is opposite the joining edge
3: vse ← vector along the surface to the midpoint of a surface edge
4: ved ← vector from the midpoint of a surface edge to farEdgeMid

5: edgeDistances← vector to store distances from each surface edge
6: surfaceJoinEdgeID← index of the edge on the surface to be extended

7: procedure DETERMINESURFACEEXTENSIONDIRECTION

8: for edge in surface do

9: edgeMidPoint←EdgeMidPointFromNURBS(surface,edge)
10: vse ←VectorToEdgeAlongSurface(surface,edge)
11: ved ← farEdgeMid−edgeMidPoint

12: if vse ·ved < 0 then

13: edgeDistances←Append Inf to edgeDistances

14: else

15: edgeDistances←Append |ved| to edgeDistances

16: end if

17: end for

18: surfaceJoinEdgeID← IndexOfMinimum(edgeDistances)
19: end procedure

Algorithm 4 Extracting new data (for the case when rows are extending to rows)
1: surface← existing surface
2: observationData←mesh of observations
3: ms ← number of points to sample along the surface join edge
4: newData← rectangular mesh of new data for surface extension

5: procedure EXTRACTNEWDATAROWSFROMSURFACEEDGE

6: surfaceEdgePoints←NPointsAlongNURBSEdge(surface,surfaceJoinEdgeID,ms)
7: dataJoinPoints←NormalShooting(match surfaceEdgePoints to observationData)
8: joinStartIndices←GetIndicesFromPoints(dataJoinPoints)
9: farEdgeIndices←GetIndicesFromEdgeID(newDataFarEdgeID)

10: nPoints←MinimumNumberOfIndicesBetween(joinStartIndices, farEdgeIndices)
11: for i = 0 : ms −1 do

12: tempRow← observationData(row(i)) from joinStartIndices to farEdgeIndices

13: newData(row(i))← nPoints from tempRow

14: end for

15: end procedure

95

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

FIGURE 3.17. Depiction of surface splitting steps. (a) Existing surface in blue and new
observation points in black. (b) Identificaiton of one new row above, and three new
columns to the right. (c) Extaction the new data join-edge in red, and the far-edge in blue.
(d) Vector from one surface edge to the new data far-edge (ved) and along the surface to
the edge (vse), used in the calculations to determine the surface join-edge.

3.2.3.5 Joining New Data to an Existing Surface

A surface is then fit to this new data, with the same number of control points along the parametric

direction of the join-edge as for the existing surface join-edge. The number of control points along the

other parametric direction is computed based on the number of data points and the default number

of control points for a new object. For example, when extending surface rows to rows of new data, the

number of control points nt,2 along the rows of the new surface are:

nt,2 =
(

mt,2

mt,d

)

nt,d (3.31)

where the subscript 2 is for the new surface, and d is for the default values for a newly observed object.

When columns are used for the surface or data, then the t subscript changes to the s subscript for the

corresponding terms. An example of fitting a surface to the extracted new data is shown in Fig. 3.18.b.

There is new observation data that is excluded from the surface extension, but this exclusion enables

the new surface to be efficiently joined to the existing surface.

The surfaces are joined by repeatedly performing the curve joining procedure to rows or columns of

control points, which, with the knot vectors, are treated as NURBS curves. When rows are extending

to rows, for instance, each row of the surface control points are treated as a curve that is joined to the

corresponding row of control points on the new surface. An example result is shown in Fig. 3.18.c.

This procedure to extend surfaces has 16 variations, with two binary parameters added to the two

from joining curves. These four parameters are:

1. Columns or rows to be added from the new data.

2. Columns or rows to be extended from the existing surface.

3. New data before old data (parametrically).

4. New data to reverse parameterisation or not.

The process to compute the observation data join-edge gives the first parameter. This parameter

sets whether rows or columns are used for extracting the new data and joining the new surface. The

second parameter is determined by the selection of the surface join-edge and sets all remaining steps

with the existing surface to use either rows or columns. The surface join-edge also determines the third

96

3.2. NURBSLAM: USING NURBS SURFACES FOR LOCALISATION, MAPPING AND TRAJECTORY
PLANNING

parameter: if the selected edge is towards the 0 end parametrically for the direction to be extended, then

the new surface is placed before the existing surface; otherwise, the new surface is after the existing

surface. The final parameter comes from a combination of the surface join-edge and the observation

data join-edge, with 8 out of the 16 combinations requiring parameters to be reversed. The third and

fourth parameters are used in the curve joining steps.

FIGURE 3.18. Example Surface extension. (a) Existing surface in blue and observation data
as black circles. (b) Surface fit to new data in pink. (c) The result from joining the existing
surface and the new surface.

3.2.4 Localisation

Using NURBS surfaces as the features for localisation provides more information than single 3D points.

This extra information is used by matching observations to surfaces. The surfaces are matched by

generating sampling points on the existing object and using methods similar to ICP to align the new

observations with the map object and compute the resulting transformation. For this process, the suite

of tools available in the Point Cloud Library (PCL) [200] is utilised. The alignment of surfaces for each

object returns the associated transformation, including both linear and angular components. The set of

transformations from the observed objects are used as observations to include in an Extended Kalman

Filter (EKF) that fuses observations to update the state estimate. The localisation process assumes that

data association has already been performed to match the observations to the appropriate map object.

3.2.4.1 3D Feature Descriptors for Point Correspondences

It is desired to use the shape of the object for aligning surfaces. Therefore, surface normals and 3D

features descriptors are extracted and used for finding correspondences and performing alignment. 3D

feature descriptors are similar in concept to visual feature descriptors, as described in Section 2.1.4, and

often the same algorithms are used. The difference is that 3D features focus on capturing unique shape

information, so are based on 3D locations and surface normals, rather than pixel intensities. There

are a large number of feature types implemented in PCL, including SHOT [217], NARF [211], Spin

Images [96], Point Feature Histograms (PFH) [199] and Fast Point Feature Histogram (FPFH) [198, 201].

Following a review from Guo et al. [84], FPFH is selected, as it was shown to give superior performance

to other descriptors, with lesser computational speed. FPFH captures information on the relationship

between normals around a sample point to give a view-point-independent curvature metric.

97

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

The computation of a PFH, which forms the basis of FPFH, starts by comparing all the points

within a set radius around the test point by computing the angles between their normal vectors. Three

angles are computed, and the value of these three angles for every pair of points are used to fill a

multi-dimensional histogram. There is one dimension for each angle and subdivisions into bins along

each dimension. A given point pair adds one count to the bin that matches the range of values for

the three angles. The result is a count for each bin that represents a feature descriptor. For example,

with five divisions there would be 53 = 125 parameters in the descriptor. This histogram is the Point

Feature Histogram, that is a rotational invariant descriptor. FPFH is a modification to the process

described above to improve the speed of the computation by approximating some of the computations

and produces a set of 33 parameters [198, 201].

3.2.4.2 Correspondences and Alignment of Observations

With the features for every point on the map and surface computed, the next step is to iteratively

determine the correspondences between observation points and map points as well as the transformation

to align corresponding points. A pre-rejective RANSAC algorithm is used to perform this step [27],

and was found to give better performance than Initial Alignment RANSAC [198] and ICP [228], all

implemented in PCL. Pre-rejective RANSAC proceeds as follows:

1. Randomly select a set of three observation points (and corresponding FPFH descriptors) and

match them to the closest FPFH features on the map object.

2. Reject the alignment set if the difference between the edge lengths of the polygon between map

points and the polygon between their corresponding observation points is above a threshold

(see [27] for details). If rejected, return to step 1. This is the pre-rejective step.

3. Compute the transformation to minimise the spatial distance between corresponding points using

a Singular Value Decomposition (SVD) algorithm [53] (refer to Appendix A for details).

4. Apply the transformation to all observation points and perform a nearest neighbour search to

determine the minimum distance from each observation point to a point on the map object.

5. Use the distances between corresponding points to determine the fraction of inliers (with a

distance below a given threshold). If the fraction is below a threshold, reject the alignment and

return to step 1.

6. Compute the mean nearest neighbour distance for all inlier points. Exit if this metric is below a

threshold.

7. Apply the transformation to all observation points and return to step 1 for another iteration if the

mean inlier distance is not below the threshold.

8. Repeat until the iteration limit or exit criteria are met.

The pre-rejection phase allows a quicker rejection of bad correspondences to improve the speed of

the overall algorithm. If the iteration limit is reached without a successful convergence, then the object

match is rejected, and the observation is deemed a new object. Examples of the alignment process are

shown in Fig. 3.19. The approach can work well for partial observation of an object (Fig. 3.19.a), for

localisation to a pre-mapped object, as well as for observations that extend beyond the current map of

the object (Fig. 3.19.b), as is relevant for SLAM.

98

3.2. NURBSLAM: USING NURBS SURFACES FOR LOCALISATION, MAPPING AND TRAJECTORY
PLANNING

FIGURE 3.19. Demonstration of alignment. The blue dots represent sample points on a pre-
mapped surface. The observations are the orange dots, and the aligned observations are
the black dots. (a) Alignment with a partial observation of a larger object. (b) Alignment
with the observation extending beyond the edge of the existing object.

3.2.4.3 Estimation and Filtering

The alignment of the observed data to a mapped object is used as an observation in an Extended

Kalman Filter (EKF) to estimate the state of the robot. An overview of an EKF can be found in [130].

The main steps are summarised here to provide context for the discussion. An EKF is an online

estimator that produces an estimated state, x and covariance Σ. The filtering consists of a prediction

step, which propagates forward the dynamics and grows the uncertainty, and an update step, which

fuses observations to reduce the uncertainty. A Kalman filter provides a least-squares optimal way to

update the estimation through these steps, given an accurate representation of the process noise, Qn,

and the measurement uncertainty Rn. The optimality assumes a linear system though, but it can be

applied to non-linear systems by linearising about each subsequent estimate, in what is the EKF.

99

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

EKF Background Theory

The process step updates the state estimate, adding noise:

x−
k = f (x+

k−1,µ) (3.32)

There is an assumed, zero mean Gaussian noise added, in the model, µ. The superscript − and +
indicate the state estimate before and after the observation update step, respectively. k indexes the

steps of the filter. The noise does not effect the computation of Eqn. 3.32, but rather represents the

process noise which causes the covariance to grow in the process step, Qn. The covariance of the state

estimate, Σ, is updated using Qn and the Jacobian of the process function J= ∂ f /∂x:

Σ
−
k =JΣ+

k−1JT +Qn (3.33)

The update step compares observations, zk with the predicted observations, ẑk = h(x−
k

)+ν, and uses

the error to update the state. The observations have assumed zero mean Gaussian noise, ν, which is

captured in the covariance matrix Rn. This matrix, along with the Jacobian of the observation model to

the state, Jh = ∂h/∂x, is used to compute the Kalman gain, K:

K=Σ
−
k JT

h (JhΣ
−
k JT

h +Rn)−1 (3.34)

The Kalman gain is used for updating the state and state covariance estimates:

xupdate = K(zk −h(x−
k)) (3.35)

x+
k = x−

k +xupdate (3.36)

Σ
+
k = (I−KJh)Σ−

k (3.37)

Handling Attitude Dynamics

Attitude dynamics are non-linear, hence Eqn. 3.36 is not valid for the attitude. Additionally, different

attitude parameterisations can have issues in maintaining an unbiased covariance through the Kalman

updates. Therefore a Multiplicative EKF (MEKF) [130] is used to address these issues to update the

attitude estimate. This variant of the Kalman filter is selected due to the common use for attitude

estimation. In an MEKF, the attitude state in the filter is a three parameter attitude error, represented

by Rodrigues parameters, ηe, where e is the axis of rotation, and η is the tangent of half the angle of

rotation, φ: η= tan(φ/2). The attitude error is defined as a rotation in the current body frame, using a

quaternion representation:

qtrue =∆q(ηe)⊗ q̂ (3.38)

where q̂ is the current attitude estimate. The quaternion product is represented with ⊗. Refer to

Appendix C for details on quaternion maths. This representation is chosen to have a suitable three-

parameter attitude representation to include in the state and covariance matrices, as described in [130].

Rodrigues parameters have a singularity at 180◦ rotation, but as they are being used to represent

100

3.2. NURBSLAM: USING NURBS SURFACES FOR LOCALISATION, MAPPING AND TRAJECTORY
PLANNING

error, the angle remains far from that singularity. The attitude error is not updated in Eqn. 3.36, but is

instead used to update a separately stored quaternion attitude state with Eqn. 3.38. After this update,

the attitude error is reset to zero in x+
k
. See [130] for more details on estimating attitude with the

MEKF.

NURBSLAM Process Model

The full state vector used here includes the linear position, velocity and acceleration as well as the

attitude error, ηe, giving: x= [x, ẋ, ẍ,ηe]. A constant acceleration motion model is used in the process

step to make the prediction for the linear states:

x−
k+1 = x+

k + ẋ+
k∆t+0.5ẍ+

k∆t2 (3.39)

ẋ−
k+1 = ẋ+

k + ẍ+
k∆t (3.40)

ẍ−
k+1 = ẍ+

k (3.41)

The attitude error is assumed to stay constant at zero through the process step.2 The process model

Jacobian is a function of the timestep between observations, ∆t:

J=

I3×3 ∆tI3×3 0.5∆t2I3×3 03×3

03×3 I3×3 ∆tI3×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

(3.42)

NURBSLAM Update Step

The matching and alignment of each observed object to a map object produces a linear and angular

transformation to the state. These transformations are taken as direct measurements of error from

the current state estimate, represented as a translational error and a rotational error, as Rodrigues

parameters. The observation of a single object is then:

zk =
[

xerr

ηeerr

]

(3.43)

The predicted measurements are for zero error, i.e. h(x)= 0, and the Jacobian is:

Jh =

I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 I3×3

(3.44)

Using the alignment transformations as direct observations makes the update step very simple3

but it becomes less clear how to represent the observation uncertainty, Rn. Nonetheless, Rn can be

2Further developments could include angular velocity to update the error covariance, if gyroscope information was
available.

3The simplicity of the observation function and Jacobian is the reason that an EKF was selected over an UKF, as one of
the main advantages of the UKF is the Jacobians do not need to be computed.

101

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

used to adjust how much to trust a given observation, based on metrics from the alignment. The inlier

fraction (the fraction of observed points within the inlier threshold), number of observed points and

the magnitude of the resulting transformation are used to scale the magnitude of Rn. These metrics

adjust an approximate standard deviation on each observation parameter, which is used to compute a

covariance in the Rn matrix:

σlinear =
1
3

(

σbase +w0
ninlier

npoints
+w1npoints +w2|xerr|4

)

(3.45)

σangular =
1
3

(

σbase +w3
ninlier

npoints
+w4npoints +w5φ

4
)

(3.46)

The weightings w0 −w5 are parameters that can be tuned to adjust how sensitive Rn is to the

different metrics. In the results presented here, it was found that the magnitude of the transformation

was the best indicator of a low quality alignment, hence w2 and w5 were the most important to tune.

The error values are raised to the power of 4 to have small penalty for low errors and rapidly increasing

penalties when the errors become large. The Rn matrix is then constructed with the σ values to give:

Rn =

σ2
linearI3×3 03×3

03×3 03×3

03×3 03×3

03×3 σ2
angularI3×3

(3.47)

With the Rn matrix, the Kalman gain, and EKF state, the Kalman update can then be computed.

Multiple observations are fused into the filter by iteratively applying the update step for each

observation. In each iteration, the observed alignment transformation from a single NURBS object,

qobs,tobs is adjusted to be defined from the latest state estimate, q̂, x̂.

qobs =qobs ⊗ q̂ (3.48)

tobs = x̂− q̂⊗ tobs ⊗ q̂c (3.49)

The map objects are not included in the filter and are instead updated as described in Section 3.2.3,

using the estimated state after the update step to project the observations into the global coordinate

frame. Future developments could look to include NURBS parameters of the observed features in the

filter state. Additionally, future work could look to integrate IMU measurements. The filter described

currently does not integrate an IMU but it is formulated such that this can easily be done, by including

IMU measurements and noise characteristics in the process step.

3.2.4.4 Localisation Discussion

While the localisation approach is point-based, it draws on the advantage of an underlying continuous

surface representation in being able to take point samples at varying resolutions, depending on the

trade-off between accuracy and computational speed desired. Additionally, the surface representation

can be efficiently updated, and points re-sampled, rather than storing a growing set of points.

102

3.2. NURBSLAM: USING NURBS SURFACES FOR LOCALISATION, MAPPING AND TRAJECTORY
PLANNING

The number of points to sample on a surface is just one of the tuning parameters available for the

localisation steps. Other parameters include the number of points to take from the scan, the radius to

use for computing the normals, the radius to use for computing the features, the number of RANSAC

iterations, and the inlier threshold. The parameters do need to be tuned to suit a given data-set but can

also provide an ability to adjust the trade-off between computational speed and accuracy, as analysed in

Section 3.3.3.1.

3.2.5 SLAM

SLAM combines the mapping and localisation steps described above and is outlined in Fig. 3.20. For the

theory described here, it is assumed that there is no IMU information. The initial observation of an

object is used to create a new NURBS object, that is stored in the map. Subsequent observations then

go through the data association step. If there is no match, a new NURBS object is created; otherwise,

the match is used to perform localisation. The EKF in the localisation step is used to update the state

estimate and covariance. The new state estimate is used to transform the current observations into the

global frame, which are then used to update the NURBS objects to which they have been matched. If an

alignment is rejected, then a new NURBS object is created. Any new objects are created after updating

the state estimate, to use the latest, best estimate for transforming the observations into the global

frame.

The current implementation does not include the map state in the EKF; hence the combined joint

optimisation common in SLAM is not present. This approach is taken to reduce the computational

complexity of storing many parameters of a NURBS object in an EKF state.

103

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

FIGURE 3.20. Flow diagram for the SLAM algorithm. Solid lines indicate the steps in the
process, with a description of the criteria for that step. Dashed lines indicate both the
transfer of data and the steps in the process. Each box indicates one step of the SLAM
algorithm.

3.2.6 Trajectory Optimisation

To represent an obstacle for trajectory planning, a NURBS object needs to take a set of query points

(the points along a trajectory), and return a collision cost, as well as a gradient of that cost with respect

to x, y and z, i.e. it should represent a cost function, g(xi), where xi is the ith 3D position sample on

a trajectory. The cost should be positive when in a collision and negative outside of a collision. For

informing a gradient descent trajectory optimisation algorithm, the gradient should be returned as:

g′(xi)=

∂g

∂xi
∂g

∂yi

∂g

∂zi

(3.50)

For more details on requirements of obstacle representations for trajectory optimisation, see Sec-

tion 4.3.3. For a NURBS object, the cost function uses the negative of the signed distance from a point

to the surface. The signed distance is positive when away from the surface and negative inside it. The

distance to the surface is found by using correspondence tools in PCL to find matches between the

set of points along a trajectory and the closest points from a set of sample points on the surface. The

correspondence algorithm returns the distance between matched points to provide the signed distance

magnitude. To determine the sign, the vector from the matched surface point to the trajectory point, vst

104

3.2. NURBSLAM: USING NURBS SURFACES FOR LOCALISATION, MAPPING AND TRAJECTORY
PLANNING

is compared with the outward-facing surface normal at the matched surface point nst, which can be

directly sampled from the NURBS object. If the dot product is negative, the angle is greater than 90◦,

hence the point is inside the surface:

sign=
{

+ if vst ·nst ≥ 0

− if vst ·nst < 0
(3.51)

The vector, vst, can be used as an approximate cost gradient when multiplied by the computed

sign in Eqn. 3.51. Using this vector requires no extra computation, in contrast to using numerical

differentiation as can be required for other obstacle representations, such as ESDFs.

In the case where a surface does not fully enclose an object, a cap is placed on the maximum negative

distances that are returned, so that there is not a restriction on all space behind the surface. Trajectory

points that are past that maximum distance are given zero distance and gradient so that they do not

contribute to the overall cost and gradient that is used by the trajectory optimisation algorithm.

The advantage of using NURBS objects to represent obstacles over occupancy grids is that there is

an underlying continuous surface representation. This representation means that the surface can be

sampled at varying resolutions. Additionally, low sampling resolutions are possible because surface

normals can be used to detect when a point is in a collision.

105

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

3.3 NURBSLAM Demonstration, Testing and Analysis

Tests are performed with NURBSLAM on a simulated dataset generated with Blensor [82], a 3D sensor

simulation tool. The implementation of NURBSLAM utilises the NURBS++ library [117] and PCL [200].

A simplified test case is developed to analyse the performance of NURBSLAM. This scenario involves

an RGBD camera following a circular path around one central object. The camera’s gaze is constantly

fixed on this object, and 100 observations are made in one complete rotation. Three configurations are

tested to isolate each component of the NURBSLAM algorithm:

Mapping: Generating and updating an object with perfect knowledge of the camera state.

Localisation: Starting with a known map and estimating the state of the camera.

SLAM: Generating and updating a map of objects while using those objects to localise.

For a majority of the simulations, the central object is a highly distorted spheroid. The true camera

state comes from the simulation, and the only observation inputs are point clouds (there is no IMU

information included). There are no other objects in view so that the performance of NURBSLAM can

be isolated from segmentation algorithms. To further simplify the problem, and demonstrate what is

possible with NURBS, the point cloud observations have no noise applied. Presented below are the

results and analysis from tests with each configuration, followed by an example of trajectory planning

with the mapped NURBS objects.

3.3.1 Mapping

The sequence of map generation and update are depicted in Fig. 3.21, with three updates to the NURBS

object. The mesh reduction steps mean that the top and the bottom of the object are not mapped but the

resulting surface provides an accurate representation of a majority of the object, as shown in Fig. 3.22.

Fig. 3.23 shows the results from mapping a sphere and a cube, showing that continuous curvature,

as well as sharp corners, can be handled. Table 3.3 presents the Root Mean Square Error (RMSE) for

each of these mapped objects, plus a scenario of going vertically over the cube. The RMSE is computed

by using the minimum distance from a set of points on the NURBS surface to the true object.

TABLE 3.3. RSME errors for mapping tests

Test Case RMSE (mm)
Distorted spheroid 4.9

Cube 4.1
Cube Vertical 2.9

Sphere 4.3

Each of the mapping examples has a gap in the surface when completing the loop. This gap is

because the method of selecting the new data to use for extending the surface returns no extension

when all edges of the new data are overlapping the existing surface. A complete map can be generated,

though, by creating a new NURBS object when there have been too many consecutive observations with

no extension of the surface. The results from using multiple NURBS objects are shown in Fig. 3.24.

106

3.3. NURBSLAM DEMONSTRATION, TESTING AND ANALYSIS

FIGURE 3.21. Mapping sequence for the distorted spheroid object. The blue surface is the true
object and the black mesh is the NURBS object. (a) Initial surface. (b) First extension. (c)
Second extension. (d) Third extension.

107

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

FIGURE 3.22. Final mapping result from a single orbit of the distorted spheroid object. The
blue surface is the true object and the black mesh is the NURBS object. (a)-(d) are
different view angles of the same object and mesh.

108

3.3. NURBSLAM DEMONSTRATION, TESTING AND ANALYSIS

FIGURE 3.23. Mapping results for different objects. The blue surface is the true object and
the black mesh is the NURBS object. (a) Sphere object. (b) Cube object.

FIGURE 3.24. Mapping result for the distorted spheroid object when using multiple NURBS
surfaces. The blue surface is the true object and the black mesh is the NURBS object. (a)
Result with a single NURBS object. (b) Result with multiple NURBS objects.

109

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

3.3.2 Localisation

The localisation tests use the map of NUBRS objects that results from a multi-surface mapping of the

distorted spheroid object. The state is initialised with the true state and a large covariance. To compute

the tracking error for the attitude, an angular error is computed using the difference between the true

rotation matrix, Rt and the estimated rotation matrix, Re:

φeatt =
1
2

(RT
e Rt −RT

t Re)V (3.52)

The vee operator, ·V , is the inverse of a hat operator: it maps a skew symmetric matrix to a vector:

GV =

0 −g3 g2

g3 0 −g1

−g2 g1 0

V

=

g1

g2

g3

(3.53)

This operator can be used because (RT
e Rt −RT

t Re) is skew-symmetric. The angular error vector,

φeatt is a rotation vector; hence the vector components represent errors about the x, y and z axes. The

magnitude of the vector, φ, represents the single angular error to rotate from the estimated attitude to

the true attitude.

The tracking results from an orbit of localisation are shown in Fig. 3.25, with the linear and angular

error along the trajectory shown in Fig. 3.26. There are several large spikes of error visible in Fig. 3.26,

yet the localisation quickly recovers after these errors. The source of the errors is due to bad alignments

in specific observations, which are filtered by the EKF but still have a negative impact on tracking

performance.

FIGURE 3.25. 3D track of localisation testing. The true path is in orange and the SLAM
tracked path is in blue. Camera frame axes are plotted at even intervals along each
trajectory. The trajectory starts near x = 0, y=−4 and travels anti-clockwise.

An analysis of the odometry error can give further insight into the fact that the main errors are from

a small set of bad alignments. Odometry error is computed by taking small segments of the tracked

trajectory, aligning the start with the true state, and then computing the linear and angular error at

110

3.3. NURBSLAM DEMONSTRATION, TESTING AND ANALYSIS

FIGURE 3.26. Error plots for localisation test. (a) Linear error plots. (b) Angular error plots.

the end of the segment. By taking segments starting at each point along the trajectory, the variation in

odometry error can be analysed. A depiction of a small set of the odometry error segments is shown in

Fig. 3.27.b. The localisation test is analysed with a segment size of 10 steps, producing the result in

Fig. 3.27.a.

FIGURE 3.27. Localisation odometry error. (a) Linear and angular odometry error from
localisation tests. (b) Depiction of how odometry error is computed. The blue trajectory
is the truth, each other line is a segment of the localisation tracking that has had the
starting pose aligned with the truth. The odometry error for a given step is the error of
the pose at the end of the aligned segment.

The odometry error results confirm that the tracking is generally low in error, with a small set of

spikes in error, after which tracking quickly recovers to a low odometry error. Fig. 3.27.a also shows that

the position and attitude errors are coupled, with errors due to inaccurate transformations, including

both position and orientation.

111

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

The RSME for the localisation track is 0.138 m for position and 3.6◦ for attitude (using φ as the

error for each step). These low errors are despite only using a single object. Additionally, the trajectory

is challenging for a constant acceleration model, as the acceleration is never constant.

3.3.3 SLAM

For the SLAM tests, the initial pose is given, and then the only information provided is the point cloud

observations. The resulting trajectory and map are shown in Fig. 3.28. The trajectory starts to lose

track towards the last quarter of the circle, and as a result, generates two new NURBS objects that

are not near the true object. The plots of the linear and angular error in Fig. 3.29 give more insight

into the tracking performance, where there are relatively small errors until after observation 70, where

there is a large jump in orientation error. Such a jump can occur when there is a succession of failed

alignments, followed by an inaccurate, but accepted, alignment. The failed alignments increase the size

of the covariance, to result in a large Kalman gain for the angular update, even though the observation

uncertainty may be large. The velocity builds up over the failed alignments and leads to drifting of

the trajectory away from the circle. This drift leads to the need to generate new NURBS objects. The

bad alignments occur because the observations are in a difficult region for localisation on the true

object, with a largely spherical region being observed. This geometric ambiguity makes the alignment

susceptible to incorrect results.

FIGURE 3.28. SLAM Tracking and Mapping. The true trajectory is orange and the SLAM
tracked trajectory is blue. Camera frame axes are plotted at even intervals along each
trajectory. The true object is blue and the NURBS objects are black. The trajectory starts
near x = 0, y=−4 and travels anti-clockwise.

Other than the one region of lost tracking, the performance is strong throughout the trajectory, as

shown in the odometry error analysis in Fig. 3.30. The odometry error is consistently low, with a set

of spikes to higher error, after which odometry tracking returns to being low. Fig. 3.30.b provides a

112

3.3. NURBSLAM DEMONSTRATION, TESTING AND ANALYSIS

FIGURE 3.29. Error plots for NURBSLAM tracking. (a) Linear error. (b) Angular error.

visualisation for where the larger tracking errors occur, and how there are only a small set of locations

where the aligned segments of the trajectory diverge from the true path. While the new objects that are

generated are far from the true surface, they allow the drift to be limited, and to continue tracking the

odometry accurately.

FIGURE 3.30. SLAM odometry error analysis. (a) Linear and angular odometry errors across
the trajectory. (b) 3D plot of aligned segments that are used to compute the odometry
error. A circular trajectory starting near x = 0, y=−4 and travelling anti-clockwise is the
truth.

If the results are extracted up until observation 70, then the tracking is accurate throughout, and

the three objects that are generated are close to the true object (Fig. 3.31). The RMSE for tracking

and mapping for the full loop, and up to observation 70 are shown in Table 3.4, which highlight how

113

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

accurate the mapping is before the trajectory drifts away. Despite the momentary loss of tracking, the

RSME for the full loop is within 2% of the total path length, in a challenging trajectory with only a

single object to observe.

FIGURE 3.31. Mapped object from SLAM test case for 70% of the trajectory. The blue surface
is the true object and the black meshes are the NURBS objects. Three NURBS objects
are generated. (a)-(d) are different view angles of the same object and meshes.

TABLE 3.4. Tracking and mapping errors for SLAM test case

RMSE Full loop 70% of loop
Position (m) 0.57 0.33

Angular (deg) 9.77 6.07
Mapping (m) 0.47 0.02

114

3.3. NURBSLAM DEMONSTRATION, TESTING AND ANALYSIS

3.3.3.1 Parameter Sensitivity and Timing Analysis

An analysis is performed to assess the sensitivity of the computation time and accuracy of NURBSLAM

to varying parameters. This analysis also provides insight into the trade-off between computation time

and accuracy by exploring different configurations.

The parameters varied are:

Number of RANSAC Iterations: The maximum number of iterations in the pre-rejective RANSAC

algorithm. The baseline is 5000.

Number of Rows and Columns for Mesh Generation: Controls the size of the observation data

that is then used for localisation and update. The baseline is 95.

Surface Points Multiplier: Sets the number of surface points to generate for localisation (multiplies

the number of control points). The baseline is 5.0

Number of Control Points: The default number of control points in each parametric direction that

is used when generating a new NURBS surface. The baseline is 17.

The same test scenario as presented for the SLAM result above is repeated multiple times, each

with a variation in a single parameter. The average computation time per observation is recorded for

each test, and the errors computed. The tests are run on an Intel i7-7820 2.90 GHz 8 core processor

with 16GB RAM on 64 bit Ubuntu 16.04.

A line is fit through the results for single parameter variations, and the gradient used to assess the

sensitivity of NURBSLAM to the parameter. The sensitivities are weighted by multiplying the gradient

by the baseline parameter setting to enable a comparison between parameters. The resulting scaled

sensitivities are presented in Table. 3.5. A combined error metric is defined to have a single parameter

of comparison. This combined error is computed by first normalising the RMSE for position, angular

and mapping errors by dividing by the maximum value across the test cases. Then the RMS of the

normalised values is computed to give the combined error metric.

TABLE 3.5. Scaled sensitivity of errors and computation time to NURBSLAM parameters

Sensitivity of RANSAC Iter. # Rows & Cols Surf. Pnt Multiplier # Ctrl Pnts
Position RMSE -0.14 0.14 1.26 -1.99

Angular RMSE -0.05 -0.09 0.30 -0.29

Mapping RMSE 0.25 -0.22 0.49 -0.71

Total RMSE 0.04 -0.19 0.72 -1.00

Mean Comp. Time (s) 1.90 1.70 2.16 -0.28

The most sensitive parameter with a negative gradient is in bold. The most sensitive parameters with a
positive gradient is in italics.

The variation in the default number of control points has the most significant impact on the

results, with more control points leading to a significant reduction in both tracking and mapping error.

Interestingly, the changes also have minimal impact on computation time.

Increasing RANSAC iterations, the number of rows and columns, and the surface points multiplier

increases computation time, as expected. The primary source of the computation time increase is in

the RANSAC alignment, where increasing the number of points increases the time to check for inliers

and outliers. Increasing the RANSAC iterations, surprisingly, has a minimal beneficial impact on

115

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

performance. Similarly, changing the number of rows and columns does not have a significant impact

on the tracking or mapping error.

The surface points multiplier has a negative impact on tracking and mapping performance when

increased. This result may seem counter-intuitive but is because there is an increased possibility of

having false positives in the RANSAC alignment.

Plotting the RSME against the computation time for all the tests, as in Fig. 3.32, provides an insight

into the trade-offs that are possible. While the baseline case has the lowest tracking error, a similar

amount of error, at a much-reduced computation time can be obtained by reducing the number of

RANSAC iterations. Fewer iterations are less robust though, due to the random nature of the sampling

approach. The trends for the mapping error are less clear, as the errors can vary substantially depending

on when new objects are created and what the tracking error is at the time. There is some randomness

in the alignment process, from RANSAC; hence a large set of tests would be beneficial in future work to

characterise trends in more detail.

FIGURE 3.32. Accuracy/computation time trade-off analysis. Colored dots represent test cases,
with coloring indicating variations in different NURBSLAM parameters. (a) Position
error. (b) Angular error. (c) Mapping error. (d) Combined error.

116

3.3. NURBSLAM DEMONSTRATION, TESTING AND ANALYSIS

With the current implementation, there is, in general, a long computation time per scan, at an

average of 2.7 s from the tests in Fig. 3.32. A majority of this time is spent in the alignment step, as

outlined in the timing analysis in Table 3.6. The mesh processing is very quick, taking at most 0.5%

of the computation time for a scan. The map update can take up to 54.6% of the computation time for

a given step, but only when there is an extension to the surface, which happens infrequently. Data

association is of negligible computation load due to the small number of features considered.

TABLE 3.6. Percentage of computation time for a single scan for steps of the NURBSLAM
process.

Step Mean Time (% of total) Max % of total
Mesh Processing 0.3 0.5

Alignment 82.4 95.2
Map Update 17.2 54.6

Other 0.1 0.1

117

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

3.3.4 Trajectory Optimisation

A trajectory is planned using the mapped NURBS objects as obstacles in the Admissible Subspace

TRajectory Optimizer (ASTRO), an algorithm that is described in the next chapter. The trajectory is

planned with a buffer for the vehicle size of 0.3 m. Fig. 3.33.a shows the successfully planned trajectory

around the object. The initial plan is a straight line between the start and end locations that passes

through the middle of the object. The signed distance for 500 samples along the initial plan, plotted in

Fig. 3.33.b, shows that the distance and distance gradient are appropriate measures to push a trajectory

out of a collision: there is a peak negative distance at the most violating point, and monotonically

increasing distances on either side. While a sharp peak is not desired for a cost function, the signed

distance is summed across the whole trajectory, and then squared, smoothing the cost function for

trajectory planning (see Section 4.3.3 for more details on the desired traits of cost functions).

FIGURE 3.33. Trajectory planning with NURBS objects. (a) Trajectory planned from the red
circle to the black circle with a 0.3m buffer. The true obstacle is blue and the NURBS
objects are the black meshes. (b) Signed distance along a straight-line trajectory from
the start to the end, passing through the middle of the obstacle. Negative distances are
inside the object, and a 0.3 m buffer is used. There are 500 samples in time along the
trajectory.

118

3.4. CONCLUSION

3.4 Conclusion

This chapter has demonstrated the concept of using 3D objects as the features for SLAM and as obstacles

for trajectory planning. An analysis of different methods for modelling 3D objects was presented, includ-

ing a full implementation and tests of Ellipsoid-SLAM: using ellipsoids as the 3D object representation.

These tests showed ellipsoids to be inadequate for mapping and localisation. Gaussian Process Implicit

Surfaces were also analysed and shown to have restrictively high computation times. Non-Uniform

Rational B-Splines (NURBS) were identified as providing the best trade-off between computational

speed and accuracy.

The theory for NURBS-based Localisation and Mapping (NURBSLAM), was developed, including

surface-fitting to data, extending surfaces from multiple observations, performing surface alignment

with 3D feature descriptors for localisation information, and using a Multiplicative Extended Kalman

Filter for state estimation. NURBS are used for obstacle representation by utilising surface normals to

help computation of a signed distance from a trajectory sample point to the surface.

Tests of NURBSLAM on simulated data successfully demonstrate the concept of using NURBS

surfaces for mapping, localisation, SLAM, and trajectory planning. Compared to other approaches to

using a 3D representation for SLAM and trajectory planning, NURBS provides the benefits of:

• A continuous 3D representation that can be sampled at multiple resolutions.

• The ability to have an accurate surface representation of an object.

• Quick generation and update of surfaces.

• Rich information for localisation by aligning surfaces.

• A method to compute a signed distance for use as an obstacle in trajectory planning.

The limitations of NURBS compared to other approaches are:

• Slow computation for alignment.

• Susceptibility to bad alignments, especially for uniform shapes.

Using NURBS objects as the features for SLAM means that the SLAM map is immediately useful

for trajectory planning. Additionally, with 3D objects modelled in the map, there is object shape

information that could be used to represent dynamic objects, for object interaction tasks and to aid

object classification in future work.

Further work is needed to develop the concept of NURBSLAM that has been demonstrated here.

Computation time could be improved with the use of keypoints in the alignment step. Additionally, the

mapping approaches could include an update of the existing surface with overlapping observations,

to improve the surface estimate and handle noisy observations. The tests demonstrated here are for

simulated, noiseless data with a single object. The method of estimation in SLAM could also be further

developed by looking into pose-graph optimisation approaches (e.g. using GTSAM [47]), in contrast to

Kalman filters, to obtain more accurate results by optimising of a whole history of poses.

Further testing and development should look to apply NURBSLAM to real data and to test the

algorithm with multiple objects.

Nonetheless, the capability of NURBSLAM presented here is sufficient to assess the benefit that

comes from having a single 3D representation for SLAM and trajectory planning. The full integration of

119

CHAPTER 3. LOCALISATION AND MAPPING WITH 3D OBJECT REPRESENTATIONS

NURBSLAM into the autonomous navigation stack is presented in Chapter 7, including a comparison

to the standard, heterogeneous approach to SLAM and mapping. The next layers in the autonomous

navigation stack are investigated next, in Chapters 4-6, to build up to the full system demonstration.

120

C
H

A
P

T
E

R

4
TRAJECTORY OPTIMISATION

Attributions:

The core theory behind the algorithm that will be presented comes from Chamitoff et al. [35]. The

author of the work presented here contributed to [35] in: a) clarifying and developing the theory

from an earlier publication [34]; b) analysing results from on-orbit experiments and extracting

lessons learned, in particular, the dynamic obstacle cases; and c) expanded and enhanced simulated

test cases. These contributions from [35] are included in this chapter. The section on on-orbit testing

is adapted from [35], and is presented to give context to a presentation of the analysis of results.

The theory presented here adapts and expands from what is presented in [35].

A number of the results with static obstacles, dynamic obstacles, and computation time analysis

have been presented in [35, 151, 155]. All of these results, unless otherwise stated, are work of the

author of this thesis. One set of results on randomised perturbations, and work on fitting trajectories

for replanning come from a collaboration with Rigter [195] as is noted in the text. Citations and

further statements clarify these contributions throughout the chapter.

T
he planning layer of the autonomous navigation stack is addressed in this chapter, with goals

to enhance the capability to produce dynamically-optimal trajectories with static and dynamic

121

CHAPTER 4. TRAJECTORY OPTIMISATION

obstacles. These goals are realised through the Admissible Subspace TRajectory Optimizer (AS-

TRO), first introduced by Chamitoff et al. [33]. ASTRO solves a trajectory optimisation problem between

boundary conditions with obstacle constraints, restrictions on the volume of operation, and limitations

on performance. The optimisation objective can be to minimise path-length, velocity, acceleration, and

snap (4th derivative with respect to time). The key components of ASTRO are a parameterisation of the

trajectory with Legendre polynomials, a subspace-projection to enforce boundary conditions in every

step of a gradient-descent optimisation, and a consideration of a broad range of constraints. Compared

to the current state-of-the-art, the key differentiating factors of ASTRO are:

1. The flexibility of constraint descriptions, with the ability to include obstacles, performance

limitations and free-space restrictions all in the same framework. This flexibility of representation

allows the algorithm to be applied to a range of different scenarios, such as representing a small

set of discrete obstacles or restricting free-space to navigate through a large cluttered building.

2. The method of considering dynamic obstacle constraints, to predict their position and adjust their

size given the uncertainty in position.

3. Optimisation techniques to enable the generation of feasible solutions to complex, non-convex

problems with many constraints. These techniques make it feasible to include many constraints

together in the one optimisation.

4. The algorithm has been demonstrated on a robotic free-floating satellite in orbit.

This work expands and enhances an early version of ASTRO, as will be described in detail in this

chapter. The main contributions in this work will first be presented, before a thorough description

of the theory behind the current version of the algorithm. The theory includes: the core formulation;

constraints to represent static obstacles, dynamic obstacles and performance limitations; optimisation

methods; replanning and multiple robot considerations; and multi-segment optimisation. A set of

simulated test cases then demonstrate the capability of ASTRO and analyse the performance of the

algorithm. Finally, the application of ASTRO to free-flying satellites is described, and analysis presented

of the on-orbit testing of an early version of the algorithm.

4.1 Contributions

The work of this author expanded from an early version of ASTRO [34], starting with an analysis of

results from on-orbit testing. The key contributions made in this work are:

Core algorithm:

1. The generalisation of ASTRO to have a trajectory cost operating on any derivative, including

changes to the subspace-projection.

2. Modification of how the trajectory is parameterised to take full advantage of the cost formulation:

the Legendre polynomials represent the derivative that is used by the cost function.

3. Application of the subspace-projection step to full coefficient sets: a capability useful for replanning

applications.

4. A detailed analysis of the convexity of the problems solved by the algorithm, plus clear descriptions

of when problems are non-convex.

122

4.1. CONTRIBUTIONS

Constraint Formulations:

1. Proofs of convexity of constraint formulations, and explanations of non-convexity where applicable.

2. Expansion of constraint formulations to include an approximate path-integral cost method.

3. Addition of new constraint types: rectangular prisms and Euclidean Signed Distance Fields.

4. Introduction of a class of dynamic obstacles that have consideration of predicted location and

orientation, enabling more efficient trajectories than previous approaches.

5. Development of an approach to grow the size of an obstacle based on the uncertainty in position.

Optimisation Techniques:

1. Formulation of a quadratic line-search on projected gradient steps for convex problems, to enable

rapid optimisation.

2. Introduction of iterative optimisation on simplified sub-problems, to increase computational speed

and enable solutions to problems with many constraints.

3. Adapting constraint weights based on initial trajectory costs and constraint costs, to automatically

compute an appropriate weight for a range of scenarios.

4. Inflation of obstacle constraint sizes to have a stronger forcing of solutions into feasible space. The

coupling of this inflation with a criterion to exit when the trajectory is feasible (collision-free),

enables rapid generation of feasible trajectories.

5. Extension of work by Marc Rigter [195] to apply randomised initial seeding of trajectories to

help the algorithm find better local minima in non-convex scenarios. This concept is extended

to formulate random perturbations of a solution when it is detected to have converged in an

infeasible local minimum. The perturbations serve to jump the trajectory out of the infeasible

local minima.

6. Expanding ASTRO to multi-segment optimisation, with an application of principles from [26],

including an outer-loop optimisation of time. This formulation expands the possible applications

of ASTRO to large, and more complex environments.

Multiple Robot Applications:

1. Specification of a replanning framework to take into account limited knowledge of the environment

and computation delays.

2. Demonstration of multi-robot applications of ASTRO, including adversarial and cooperative

approaches.

Analysis:

1. Extracting lessons learned from on-orbit testing to inform future development, including analysis

of the algorithm for online planning with real dynamic obstacles.

2. Simulated test cases to demonstrate the performance of the algorithm on a wide range of scenarios.

3. Computation time analysis, including discussion on the potential for the algorithm for use in

real-time applications.

123

CHAPTER 4. TRAJECTORY OPTIMISATION

FIGURE 4.1. The ASTRO algorithm optimises the path between boundary conditions x(t0)
and x(t f), with constraints along the path, such as obstacles.

4.2 Preliminaries

For clarity in the descriptions in this chapter, some definitions and notation conventions are presented

here.

The term path is used to describe a purely physical sequence of positions, e.g. a set of x, y, z

coordinates. A trajectory is a time-dependent path, where each state along the path has an associated

time. A trajectory, therefore, has time derivatives and can be described by any of these trajectories, such

as a velocity trajectory.

The use of bold font represents vector variables: x is a vector, whereas x is a scalar.

Trajectory optimisation is the process of planning a trajectory while minimising a cost function.

Trajectories can be planned without being optimised, but in this chapter the terms plan and optimise are

used interchangeably because ASTRO is always planning trajectories that are optimising an objective.

Other terms are defined throughout the document.

4.3 Algorithm Description

The core of ASTRO is designed to optimise a polynomial trajectory between two boundary conditions, i.e.

a starting state to an end state, in a fixed time, as illustrated in Fig. 4.1. The optimisation minimises

an integral of a property of the trajectory, such as acceleration or snap, to have a dynamically-smooth

trajectory. The boundary conditions can include position, velocity, and higher derivatives, as well as

orientation. Between the boundary conditions are constraints on the trajectory, including obstacles,

performance constraints and limits to the volume of operation. Each dimension of the trajectory is

represented by a sum of basis polynomials multiplied by coefficients. The coefficients are the optimisation

parameters that are adjusted to minimise a cost function that includes a trajectory cost and constraint

cost.

The trajectory cost is the integral of a state derivative squared, such as the integral of velocity

squared, integral of acceleration squared, or the integral of snap, the fourth derivative with respect

to time, squared. The selection provides different qualities of optimised trajectories. The integral of

124

4.3. ALGORITHM DESCRIPTION

velocity squared, for instance, is a combination of minimising the path length and minimising the

variations in velocity along the path. The integral of snap squared can help to minimise control input

for quadrotors, as described in Chapter 5. The trajectory cost is expressed, for d dimensions, operating

on the ξth derivative, as:

fs =
∫t f

t0

(

d
∑

i=1
x

(ξ)
i

(t)
2
)

dt (4.1)

Time is fixed to be from t0 to t f . The trajectory of the ξth derivative for the ith dimension is given

by x
(ξ)
i

(t), where the zeroth derivative, x
(0)
i

(t) is simply xi(t) . Each x
(ξ)
i

(t) is represented by a sum of

Legendre polynomials Pk, up to order Ni −1, multiplied by coefficients Cik for each dimension i:

x
(ξ)
i

(t′)=
Ni
∑

k=0
CikPk(t′) (4.2)

The coefficients, Cik, are the free parameters that are modified to optimise the trajectory, and comply

with constraints. Time is normalised to be between −1 and 1:

t′ = 2
[

t− t0

t f − t0

]

−1 (4.3)

Because the ξth derivative is represented with the Legendre polynomials, lower derivatives are at-

tained through integration, and higher derivatives through differentiation. In general, an rth derivative,

if r < ξ is given by:

x
(r)
i

(t′)=
1

aξ−r

Ni
∑

k=0
Cik

[

∫

· · ·
∫

(ξ−r)

Pk(t′)dt · · ·dt(ξ−r)

]

if: r < ξ (4.4)

=
1

aξ−r

Ni
∑

k=0
Cik

[

P

∫

(ξ−r)

k
(t′)

]

The notation P

∫

(ξ−r)

k
(t′) is introduced here to represent (ξ− r) nested integrals, for ease of notation.

The term a is a weighting to account for the normalised time scaling:

a =
2

t f − t0
(4.5)

The constant of integration for the Legendre polynomials is set so that the P

∫

(ξ−r)

k
(t′) = 1. An rth

derivative where r ≥ ξ is given by:

x
(r)
i

(t′)= ar−ξ
Ni
∑

k=0
CikP

(r−ξ)
k

(t′) if: r ≥ ξ (4.6)

There are a total of d×Ni optimisation coefficients, Cik, Ni per dimension. The derivative chosen

for the cost function is directly parameterised by Legendre polynomials (Eq. 4.2) to take advantage of

the orthogonality property of Legendre polynomials, that is defined as:

125

CHAPTER 4. TRAJECTORY OPTIMISATION

∫1

−1
Pi(t)P j(t) dt = 0 if i 6= j (4.7)

Rescaling time from −1 to 1 allows the orthogonality property to be used to simplify the cost function,

Eq. 4.1, to only consider the squared terms:

[fs]i =
Ni
∑

k=0

{

C2
ik

∫1

−1

[

Pk(t′)
]2 dt′

}

(4.8)

The Pk integral components are standard Legendre polynomials and hence can be computed off-line,

reducing the cost function calculation to a simple matrix multiplication for a given dimension:

[fs]i =CT
i P intCi (4.9)

where the coefficients are stacked in a vector C i for a the ith dimension:

C i =

Ci1
...

CiNi

(4.10)

All the basis polynomial integrals can be pre-computed and are placed in a diagonal matrix P int.

P int =

∫1
−1

[

P1dt′
]2 0 · · · 0

0
∫1
−1

[

P2dt′
]2 · · · 0

...
...

. . .
...

0 0 · · ·
∫1
−1

[

PNi
dt′

]2

(4.11)

The costs are added together for each dimension to give the total trajectory cost: fs =
∑d

i=1 [fs]i. This

trajectory cost is then added to weighted constraint costs in an augmented cost function 1.

J =
d
∑

i=1
[fs]i +

no
∑

j=1
K j fc j

(4.12)

The coefficients K j represent the relative weights for each constraint function, fc j
. There is flexibility in

the nature of the constraint functions, as will be discussed in Section 4.3.3, nonetheless their general

form is an inequality on the derivatives of a trajectory:

fc j
(x(t), ẋ(t), ẍ(t), · · · , x(ξ)(t))= fc j

(x̄(t))≤ 0, ∀t ∈
[

t0, t f

]

(4.13)

where x represents the a vector of all d dimensions, and x̄ groups all derivatives for each dimension, for

ease of notation. The dimensions are grouped together for constraints because some constraints, such

as obstacles and acceleration limits, will mix dimensions. For standard constraints, there is only a cost

when the inequality is violated, as captured in the coefficients K j:

1This formulation has changed slightly from previous formulations [35] which had the fs and fc terms squared. The costs
are not squared here to take advantage of the quadratic nature of cost functions, as described in Section 4.3.6.1

126

4.3. ALGORITHM DESCRIPTION

K j =
{

0, if fc j
≤ 0

Wj, if fc j
> 0

(4.14)

where Wj is the weighting for each constraint. The trajectory and all constraints can be expressed as

functions of x(t) and higher derivatives (Eqs. 4.8, 4.13), that can be represented by the coefficients Cik

(Eqs. 4.2 4.4 and 4.6); therefore, the full cost function in Eq. 4.12 can be written as:

J =
no+1
∑

j=1

[

f j(C1,C2, · · · ,Cd)
]

(4.15)

=
no+1
∑

j=1

[

f j(C̄)
]

The f j represent the cost for each of the no constraint functions. The no+1 term represents the sum

of the path length cost terms fno+1 =
∑d

i=1 [fs]i. The vector C̄ is a combination of the coefficients for each

dimension.

4.3.1 Convexity of the Cost Function

For problems without any obstacle constraints, the formulation provides a convex search space, allowing

for rapid optimisation in a gradient-descent approach. This convexity is demonstrated here. For the cost

function to be convex, the following must hold:

∂2J

∂C̄
2 =

no+1
∑

j=1

∂2 f j

∂C̄
2 ≥ 0 (4.16)

Therefore each f j must be convex to ensure the total cost function is convex, i.e. the Hessian has to

be positive semi-definite:

∂2 f j

∂C̄
2 ≥ 0 (4.17)

The first derivative of the trajectory cost with respect to a given Cik is given by:

∂ [fs]i

∂Cik

= 2Cik

∫1

−1

[

Pk(t′)
]2 dt′ (4.18)

This derivative is independent of all other Cik terms, hence all the off-diagonals in the Hessian for

the trajectory cost are all zero. The diagonals of the Hessian are given by the second derivative with

respect to each Cik. These second derivatives are integrals of the basis polynomials squared; hence they

are all positive, giving a positive definite Hessian:

∂2 [fs]i

∂C2
ik

= 2
∫1

−1

[

Pk(t′)
]2 dt′ ≥ 0 (4.19)

Only performance constraints and keep-in constraints are convex, as will be described in Sec-

tion 4.3.3. If the problem is defined with purely convex constraints, then a gradient-descent method will

converge on the global optimal, C∗
ik

. More specifically, for any Cik 6= C∗
ik

, J can be reduced by a discrete

step in Cik:

127

CHAPTER 4. TRAJECTORY OPTIMISATION

[Cik]new = [Cik]old +δCik (4.20)

where

δCik =−α
[

∂J

∂Cik

]

(4.21)

with step length α> 0. In a convex search space, the gradient-descent approach will converge to C∗
ik

. If

the search space is not convex, such as if the problem includes obstacles, then convergence to a global

optimal is not assured, but local optima can be found. Techniques for optimising in non-convex search

spaces will be explained in Section 4.3.6.2. ASTRO uses gradient-descent optimisation method, the

details of which are elaborated in Section 4.3.6.

4.3.2 Boundary Conditions

For an optimal and feasible solution, it is required that the boundary conditions are complied with. The

boundary conditions are equality constraints on a subset of the end positions and their derivatives for

each dimension:

[

fBC1

(

γi,0xi(t0),γi,1 ẋi(t0),γi,2 ẍi(t0), · · · ,γi,qx
q

i
(t0)

)]

i
= 0 (4.22)

[

fBC2

(

λi,0xi(t f),λi,1 ẋi(t f),λi,2 ẍi(t f), · · · ,λi,qx
q

i
(t f)

)]

i
= 0

The parameters γi,r and λi,r are binary flags to make the constraints active or inactive, for dimensions

i = [1,2, · · · ,d], and derivatives r = [0,1,2, · · ·q], with q (q ≥ ξ) being the highest derivative considered in

the boundary conditions. This formulation gives the flexibility to specify a range of configurations, such

as: fixing position, velocity and acceleration for all dimensions at the start and the end; leaving the z

dimension free; or leaving the final state free. The particular configuration depends on the application.

From the trajectory parameterization in Eq. 4.2, 4.4 and 4.6, the boundary conditions, for dimension

i can be written as follows

[XBC]i = [PBC]i C i =
[

PL(−1)

PL(1)

]

i

C i (4.23)

The active boundary conditions, i.e. the states that need to be matched at the start and end, are

in the vector [XBC]i . The matrix [PBC]i stores the basis Legendre polynomials corresponding to the

given boundary condition, that is directly computable (with integrals for all derivatives below ξ and

derivatives for all above ξ). This matrix can be constructed with the PL matrix, that represents the

basis polynomials across each derivative for a given normalised time t′. The start and end times are −1

and 1 respectively for the normalised time. The PL matrices are given by:

128

4.3. ALGORITHM DESCRIPTION

PL(t′)=

1
aξ P

∫

ξ

1 (t′) 1
aξ P

∫

ξ

2 (t′) · · · 1
aξ P

∫

ξ

Ni
(t′)

...
...

. . .
...

1
a

∫

P1(t′)dt 1
a

∫

P2(t′)dt · · · 1
a

∫

PNi
(t′)dt

P1(t′) P2(t′) · · · PNi
(t′)

aP
(1)
1 (t′) aP

(1)
2 (t′) · · · aP

(1)
Ni

(t′)
...

...
. . .

...

aq−pP
(q−ξ)
1 (t′) aq−pP

(q−ξ)
2 (t′) · · · aq−pP

(q−ξ)
Ni

(t′)

(4.24)

The first row corresponds to position and the last row the highest derivative. When constraints

are not active (i.e. γi,r = 0 or λi,r = 0), then the corresponding rows in PL(−1), PL(1) and XBC are

removed in Eq. 4.23. For example, when the cost function is the integral of velocity squared (ξ= 1) and

all boundary conditions up to acceleration are considered (q = 2), the boundary conditions equation is:

xi(t0)

ẋi(t0)

ẍi(t0)

xi(t f)

ẋi(t f)

ẍi(t f)

=

1
a

∫

P1(−1)dt 1
a

∫

P2(−1)dt · · · 1
a

∫

PNi
(−1)dt

P1(−1) P2(−1) · · · PNi
(−1)

aP
(1)
1 (−1) aP

(1)
2 (−1) · · · aP

(1)
Ni

(−1)

1
a

∫

P1(1)dt 1
a

∫

P2(1)dt · · · 1
a

∫

PNi
(1)dt

P1(1) P2(1) · · · PNi
(1)

aP
(1)
1 (1) aP

(1)
2 (1) · · · aP

(1)
Ni

(1)

C i (4.25)

The dimensions of [PBC]i are nci ×Ni, where nci is the number of active constraints for dimension

i, and hence the number of equations in 4.23. Ni is the number of unknowns for each dimension (the

number of coefficients) and is also equal to the order of the polynomials plus 1. If we set Ni = nci, then

[PBC]i becomes square and we can uniquely determine C i to satisfy the boundary conditions. More

coefficients are needed to have the degrees of freedom to optimise, and comply with constraints, but this

lower order solution provides a strong initial guess, which can be used to set the lower order terms of a

polynomial, leaving the higher order coefficients to zero; that is:

Cstarti
= [PBC]−1

starti
[XBC]i (4.26)

From this initial guess, it is possible to assure that all future optimisation steps maintain the

boundary conditions by projecting the gradient used for the steps in such a way that it does not span

the space of the nci degrees of freedom already determined by the boundary conditions. The gradient

projection involves partitioning the C i vector into components as C i = C⊥i +C||i, that are defined such

that

[PBC]i C⊥i = 0 (4.27)

In other words, C⊥i has no influence on the result of Eq. 4.23, which is instead all controlled by C||i.

Given an arbitrary gradient step in the coefficient vector δC i = δC||i +δC⊥i, the desired component

129

CHAPTER 4. TRAJECTORY OPTIMISATION

of that step is δC⊥i, since it won’t change the boundary conditions. This step can be derived from the

boundary condition matrix and the step in the coefficient vector:

δC⊥i =
[

I − [PBC]+i [PBC]i

]

δC i (4.28)

=
[

I − [PBC]T
i

(

[PBC]i [PBC]T
i

)−1
[PBC]i

]

δC i

[PBC]+i is the Moore-Penrose pseudo-inverse, which, for the optimisation, can be pre-computed for

computational efficiency. A full derivation of this projection is presented in Appendix B. Eq. 4.28 gives a

method to project an arbitrary gradient onto the subspace that assures the boundary conditions are

met. In a gradient-descent optimisation this projection can be used on the computed step, ∂C i, to give

∂C⊥i. Each iteration of the optimisation uses δC⊥i and hence complies with the boundary conditions.

Using this subspace-projection method the parameter adjustments for dimension i are now limited to

the (Ni −nci) degrees of freedom remaining.

In selecting the boundary conditions and the order of the polynomials for a given problem, the

degrees of freedom left available to optimise should be considered. There needs to be at at least one

more coefficient than the number of boundary conditions to have any freedom to optimise (Ni > nci).

For example, if all constraints are active at the start and the end of a trajectory, up to acceleration, then

nci = 6, meaning 9th order polynomials (Ni = 10) will give four degrees of freedom to optimise. Higher

order polynomials could be used, yet there is a trade-off between having degrees of freedom to help find

an optimal solution and the complexity of the search space when working with many coefficients.

The same projection method can be applied to a set of coefficients to project them onto the subspace

of feasible solutions. Similarly to the projection for gradient steps, this uses the concept of splitting C

into parts: C =C⊥+C||, where [PBC]i C⊥i = [XBC]i, i.e. C⊥i is the component of C i that complies with

the boundary conditions. This projected component can be computed with:

C⊥i =C i − [PBC]+i
(

[PBC]i C i − [XBC]i

)

(4.29)

A derivation for the coefficient projection is presented in Appendix B. Projecting the coefficient set,

rather than the gradient, comes into use when replanning trajectories. When there are changes to the

start or end states, or the trajectory time is updated, an existing solution can be modified to comply with

the new boundary conditions, giving a feasible initial seed for the replanning that is close to the current

trajectory. The projection is also useful when perturbing a solution to explore a different homotopy: a

random coefficient set can have the boundary conditions enforced. See Section 4.3.7 for more details on

replanning and Section 4.3.6.2 for details on randomised perturbations.

By parameterising the trajectory with Legendre polynomials, starting the optimisation with an

initial guess that meets the boundary conditions, and enforcing those conditions by a projected gradient,

the ASTRO algorithm is capable of quickly finding solutions that optimise the trajectory cost and meet

all boundary conditions. The algorithm can also quickly find solutions that satisfy constraints, the

nature of which will be discussed in the next section.

130

4.3. ALGORITHM DESCRIPTION

4.3.3 Obstacles and Performance Constraints

The core requirements for the constraint cost functions, fc j
, are to:

• Provide a cost for a given trajectory, x(t) and its derivatives.

• Provide a cost gradient for the trajectory states.

• Have a convex cost profile, i.e. the maximum cost is with the greatest violation, and the cost

decreases all around to the boundary of the constraint.

Ideally, the gradient can be computed analytically for fast computation. It is also useful if the

curvature can be computed analytically, to help inform the gradient step (discussed in Section 4.3.6.1).

As outlined in Eq. 4.13, constraints can operate on any or all of the derivatives, allowing geometric

constraints, such as obstacles, or corridors, as well as performance constraints, such as limits on velocity

and acceleration, to be specified within the same framework.

There are two classes of constraints: keep-in and keep-out. Keep-in constraints, such as cylindrical,

physical corridors, or spherical bounds on maximum acceleration, will push the trajectory to remain

inside the constraint. Keep-out constraints, primarily, are obstacles and push the trajectory outside

of the constraint. The formulations of these two classes differ by a change in the sign of the cost and

gradient.

The gradient of a constraint function with respect to the optimisation coefficients, Cik, is computed

with the chain rule:

∂ fc j

∂Cik

=
∂ fc j

∂x
(r)
i

∂x
(r)
i

∂Cik

(4.30)

The derivative of the state with respect to the coefficients comes from the parameterization of the

trajectory with Legendre polynomials (Eqs. 4.2, 4.4 and 4.6), and is given by:

∂x
(r)
i

∂Cik

=

1
a(ξ−r) P

∫

(ξ−r)

k
(t′) if: r < ξ

ar−1P
(r−1)
k

(t′) if: r ≥ ξ

(4.31)

where P(0) is the zeroth derivative, simply P. The other term in Eq. 4.30,
∂ fc j

∂x(r)
i

, is the cost function

gradient with respect to a given derivative of the trajectory. This gradient needs to be computed, ideally

analytically, from the given constraint cost function. These cost functions can operate separately on

individual dimensions or can mix dimensions, such as for a spherical obstacle constraint, and a spherical

bound on acceleration. Examples will be presented for a range of constraints in Section 4.3.4.

131

CHAPTER 4. TRAJECTORY OPTIMISATION

4.3.3.1 Convexity of Constraint Functions

Convex constraint functions require
∂2 fc j

∂C̄
2 ≥ 0, which, expanding with the chain rule to consider deriva-

tives with respect to the trajectory, gives:

∂2 fc j

∂C̄
2 =

(

∂

∂C̄

∂ fc j

∂x(r)

)T
∂x(r)

∂C̄
+

(

∂ fc j

∂x(r)

)T
∂2x(r)

∂C̄
2 (4.32)

=
∂2 fc j

∂x(r) 2

(

∂x(r)

∂C̄

)2

(4.33)

where the simplification to get Eqn. 4.33 uses the fact that ∂2x(r)

∂C̄
2 = 0, which can be seen by observing

that Eq. 4.31 is not a function of Cik. Given that the right term in Eq. 4.33 is squared (hence ≥ 0), the

only remaining requirement is that
∂2 fc j

∂ x(r) 2 ≥ 0: that the constraint function is convex with respect to the

trajectory.

Satisfying the convexity requirements will be explored with some examples here. A simple keep-out

constraint is a spherical obstacle, which can be represented by:

fc(x(t′))= 1−
‖x(t′)− xsphere‖2

r2
sphere

(4.34)

The sphere is defined by radius rsphere and centre xsphere. The second derivative of this function for

each dimension is:

∂2 fc

∂xi(t′)2 =−
2

r2
sphere

< 0 (4.35)

with all off-diagonals in the Hessian being zero: ∂2 fc

∂xi∂x j
= 0, i 6= j. Therefore, with a diagonal matrix for a

Hessian, and all diagonal terms negative; hence the constraint is non-convex. This Hessian conditioning

is a similar situation for all keep-out constraints (obstacles): the cost functions are non-convex and will

cause the search space to be non-convex. Nonetheless, the optimisation can still be run effectively to

quickly find local minima, as described in Section 4.3.6.2.

In contrast, keep-in constraints can be convex, such as a limit on maximum acceleration:

fc(ẍ(t′))=
‖ẍ(t′)‖2

r2
sphere

−1 (4.36)

∂2 fc

∂ẍi(t′)2 =
2

r2
sphere

≥ 0 (4.37)

The off-diagonals in the Hessian are again zero, giving a diagonal matrix with all diagonal terms

positive: a positive-definite Hessian. Therefore the cost function is convex.

For problems with only keep-in constraints, additional techniques can be used to speed-up optimisa-

tion, as explored in Section 4.3.6.1.

132

4.3. ALGORITHM DESCRIPTION

4.3.3.2 Constraint Function Methods

To assess the cost of violation of a constraint, the trajectory is discretised in time, t′
i
∈ [−1,1], and

the constraint function evaluated at each sample. There are nsamp samples evenly from −1 to 1, that

is, using MATLAB notation, t′
i
= linspace(−1,1,nsamp). Two different methods can be used to extract

the final cost from these samples: maximum violation, or approximate-path-integral. The maximum

violation method uses only the sample point with the largest cost for both the cost and the gradient, i.e.:

[

fc j
(x̄(t′))

]

max = max
t′

i
∈[−1,1]

fc j
(x̄(t′i)) (4.38)

x̄(t) is used again here to represent all derivatives of the trajectory. The second method is to use an

approximate path-integral by adding together cost and gradient components from each sample point,

giving:

[

fc j
(x̄(t′))

]

path =
1

∑

t′
i
=−1

fc j
(x̄(t′i)) (4.39)

with the gradient also requiring a summation:

∂ fc j

∂Cik

=
1

∑

t′
i
=−1

[

∂ fc j

∂x
(r)
i

(t′
i
)

∂x
(r)
i

(t′
i
)

∂Cik

]

(4.40)

The maximum violation method is quick, simple and effective, but does not consider constraint

influence on the entire trajectory, which the approximate-path-integral does. The better method depends

on the problem. For problems with simple keep-out constraints, the maximum violation method is

preferred. For more complex scenarios with many local minima, and where more of the trajectory could

be in violation, the approximate-path-integral method is preferred. Results comparing the two methods

are presented in Section 4.4.4.4.

4.3.3.3 Constraint Cost Weighting

Each of the constraint functions for a given problem has an associated weighting (Eq. 4.14). The

weighting on the obstacle constraint has a large influence on the optimisation performance, with too

large a weighting causing unstable large jumps in the solution and too small a weighting causing a

slow convergence.

For problems with simple obstacle constraints, using the maximum violation cost method, a fixed

weighting at a high value (e.g. 105) works well to encourage rapid progression to a feasible (violation

free) solution. This approach works because a large jump is permissible, to push the trajectory out of

any violations. For problems with many constraints, the approximate-path-integral cost method, such

an approach is not suitable. Instead, a low weight (e.g. 10−5), or more controlled tuning, is required.

Techniques to automatically tune the weighting are presented in Section 4.3.6.4.

As outlined in Eq. 4.14, the weighting, and hence the constraint cost are zero when there is no

violation. This behaviour can be modified to have a different performance with the cost functions. For

keep-in constraints, a negative cost could be allowed to continue to push a trajectory towards the middle

of the constraint, e.g. the middle of a corridor, or to zero acceleration. The benefit of allowing negative

133

CHAPTER 4. TRAJECTORY OPTIMISATION

costs is that the cost functions remain continuous throughout, rather than having discontinuous

transitions to zero cost. A downside is that it is possible for the cost to be negative when there is still a

violation, for example, if one part of the trajectory is in a slight violation, but the rest of the trajectory is

feasible. In this case, the sign of the cost cannot be used to indicate the feasibility, and a separate check

is required.

For tests cases using a maximum violation cost method, the approach is taken to switch to zero cost

when there is no violation. When using the approximate-path-integral cost method, negative costs are

included, with separate feasibility checks.

4.3.4 Example Constraint Cost Functions

Four example constraint functions are presented here. These are the constraint functions that will be

used throughout the work presented here, yet ASTRO is not limited to just these functions. Each of the

constraints presented is designed to work on a mix of x, y and z dimensions.

4.3.4.1 Ellipsoid Constraints

The first constraint function is an ellipsoid, which can be use as a general obstacle, or as a keep-in

constraint on velocity and acceleration. The ellipsoid is defined by centre, xc and a shape matrix, A,

that incorporates information on the size of each of the three axes and the orientation of the ellipsoid.

The shape matrix can be intuitively defined from a rotation matrix, R, giving the orientation, and a

diagonal matrix of inverse square of the axes, r1, r2, r3:

A=RT

1
r2

1
0 0

0 1
r2

2
0

0 0 1
r2

3

R (4.41)

Note here that A≥ 0, as it is a rotation of a diagonal matrix of squared terms. A sphere would have

r1 = r2 = r3, and R as an identity matrix, making A a uniform diagonal matrix. Using the shape matrix,

an ellipsoid, centred around the origin is defined as:

xTAx= 1 (4.42)

An example ellipsoid is in Fig. 4.2. To evaluate the cost for an ellipsoid constraint, the trajectory

point being evaluated, x(r)(ti), is adjusted to be relative to the centre of the ellipsoid, to give x̃(r)(ti)=
x(r)(ti)− xc. The cost is then computed with:

[fc]ellip = wio

(

x̃(r)(ti)
TAx̃(r)(ti)−1

)

(4.43)

wio =
{

1, for keep-in constraints

−1, for keep-out constraints
(4.44)

where wio sets the constraint class as keep-in or keep-out, so that a positive fc denotes a violation. This

cost function needs to be evaluated for each sample point. The gradient for the ellipsoid is then:

134

4.3. ALGORITHM DESCRIPTION

FIGURE 4.2. An example general ellipsoid with centroid, axes lengths, and a rotation from
the coordinate axes

[

∂ fc

∂x(ti)

]

ellip
= 2wioAx̃(r)(ti) (4.45)

and the curvature:

[

∂2 fc

∂x(ti)2

]

ellip
= 2wioA (4.46)

Eq. 4.46 shows that the ellipsoid constraint function is convex for keep in constraints, when wio = 1,

and non-convex for keep-out constraints, when wio =−1.

In addition to being used as obstacles and performance constraints, ellipsoid constraints could also

be specified for a specific point on the trajectory, such as a keep-in constraint on the final position. Such

a capability is useful when the final position is free from boundary constraints.

4.3.4.2 Cylindrical Constraints

Cylindrical constraints are used to represent corridors of free-space, and as an obstacle representation

for long slender objects, such as poles, trees and components of a space station. A cylinder is defined with

three different sections: a cylindrical body and two end-caps. The end-caps are defined as half-ellipsoids,

fitting the circular end of the cylinder, and extending out a user-defined distance: lcyl. The cylinder is

defined by its radius rcyl and the location of the end-points of the central axis, x1 and x2.

For a given trajectory point, x(ξ)(ti) (we will now drop the time argument and possible derivatives

here for simplicity), the first step is to determine which segment it is in. Referring to Fig. 4.3, this is

done by taking the dot product of the vector from x to the end-points: x1x = x−x1, and x1x = x−x1, with

the vector between the end-points: x12 = x2 − x1:

x12 · x1x = |x12||x1x|cos(θ1) (4.47)

−x12 · x2x = |x12||x2x|cos(θ2) (4.48)

135

CHAPTER 4. TRAJECTORY OPTIMISATION

FIGURE 4.3. Cylinder constraint in blue and elements used to assess the cost for point x,
including determining the distance dcyl. x1 and x2 define the end-points of the cylinder,
and x1x and x2x are the vectors from the end-points to the point of interest. x12 is the
vector between the end-points. The radius of the cylinder is rcyl.

If the sign of the dot product is less than zero then the corresponding angle, θ1 or θ2 is greater than

90◦, which can be used to determine which region the point is in:

region=

end ellipsoid 1, if : θ1 < 90◦
end ellipsoid 2 if : θ2 > 90◦
cylinder otherwise

(4.49)

If the point is in the region for the end-caps then the cost is computed as described above for

ellipsoids, with the shape matrix specified as:

Acap =RT

1
r2

cyl
0 0

0 1
r2

cyl
0

0 0 1
l2
cyl

R (4.50)

R is the rotation of the cylinder from being aligned with the global z axis and is extracted from the

locations x1 and x2 using Rodrigues’ rotation formula [15]:

R= I −sin(φ)ê+ (1−cos(φ))êê (4.51)

where ê is a cross product matrix of the unit vector e about which x12 is rotated by angle φ. ê is defined

by the hat operator:

a×b= âb=

0 −a3 a2

a3 0 −a1

−a2 a1 0

b (4.52)

This vector of rotation, e and the rotation angle φ are given by:

e=
x12 × zg

|x12 × zg|
(4.53)

φ= arctan
(|x12 × zg|

x12·

)

= arctan
(|x12|sin(φ)
|x12|cos(φ)

)

(4.54)

136

4.3. ALGORITHM DESCRIPTION

For the cylindrical section, the cost function is based on the perpendicular distance from the axis of

the cylinder, dcyl:

[fc(x)]cyl = wio

(

d2
cyl − r2

cyl

)

(4.55)

with wio the same as defined for ellipsoids in Eq. 4.44. Referring again to Fig. 4.3, dcyl = |x1x|sin(θ1). To

compute d2
cyl, the magnitude of the cross product |x12 × x1x| = |x12||x1x|sin(θ1) is used:

d2
cyl = |x1x|2 sin2(θ1)=

|x12 × x1x|2

|x12|2
(4.56)

To give a more compact expression, the cross product can be represented by the hat operator, giving:

|x12 × x1x|2 = (x̂12x1x)T (x̂12x1x)= xT
1x x̂T

12 x̂12x1x = xT
1xAcylx1x (4.57)

where the term Acyl = x̂T
12 x̂12 is introduced here. The cost function is then given by:

[fc(x)]cyl = wio

(

xT
1x

Acylx1x

|x12|2
− r2

cyl

)

(4.58)

The gradient is:

[

∂ fc

∂x(ti)

]

cyl
=

(

2wio

|x12|2

)

Acylx1x (4.59)

and the curvature is:

[

∂2 fc

∂x(ti)2

]

cyl
=

2wio

|x12|2
Acyl (4.60)

For a positive wio (keep-in constraints), the curvature of the cylinder constraint satisfies the

requirements for a convex function, with the matrix Acyl being positive semi-definite, coming from the

transpose self-multiplication of a real valued matrix: x̂T
12 x̂12 [178].

Cylinders, as keep-in corridors, provide a convex method of restricting a trajectory to free-space.

For complex environments, there can be much benefit in representing free-space with these convex

constraints, rather than with obstacles, which make the problem non-convex.

4.3.4.3 Rectangular Prism Constraints

Rectangular prism constraints are defined by a centroid, xc and the length of each side, r i. In the

simplest form this can be independent inequalities on each dimension, each with separate cost, gradient

and curvature:

[fc(xi)]rect = wio

(

(xi − xci
)2

r2
i

−1

)

(4.61)

[

∂ fc

∂xi

]

rect
= 2wio

(

(xi − xci
)

r2
i

)

(4.62)

[

∂2 fc

∂x2
i

]

rect

=
2wio

r2
i

(4.63)

137

CHAPTER 4. TRAJECTORY OPTIMISATION

The cost is only active if all dimensions are in violation. This formulation gives a convex function for

keep-in constraints and can be used to define bounds on the region of operation, to define walls, or as

obstacles from an occupancy grid.

FIGURE 4.4. An example rectangular prism constraint, with centroid, xc, side lengths, r i and
a general rotation from the coordinate axes.

If the rectangular prism is able to rotate, defined by rotation matrix R, then the dimensions become

mixed (for example, see Fig. 4.4). In this case, when evaluating the cost for a point on the trajectory, that

point is first rotated from a global frame, g, into the body frame, b, of the prism: xb = Rxg. Working

in the body frame, each dimension is independently checked for violation, with all required to be in

violation for the constraint to be active. If there are violations, then the cost is computed as a product of

each individual costs:

[fc(xi)]rect = wio

3
∏

i=1

(

(xi − xci)2

r2
i

−1

)

= wio (x̆ y̆z̆) (4.64)

The notation x̆ is used here to represent the cost component for dimension x. The function is designed

so that, from anywhere in the prism, the cost smoothly decreases (for a keep-out constraint) to zero cost

at the boundary. The gradient of this cost function needs to take into account the rotation, hence it is

computed in the body frame then transformed back into the global frame:

[

∂ fc

∂x

]

rect
= 2wioRT

(x− xc) y̆z̆

(y− yc)x̆z̆

(z− zc)x̆ y̆

(4.65)

The curvature does not provide a convex constraint in general, but is presented here for reference.

Further developments could look to find a convex formulation for a general rectangular prism constraint.

[

∂2 fc

∂x2

]

rect
= 2wioRT

y̆z̆ 2(x− xc)(y− yc)z̆ 2(x− xc)(z− zc) y̆

2(x− xc)(y− yc)z̆ x̆z̆ 2(y− yc)(z− zc)x̆

2(x− xc)(z− zc) y̆ 2(y− yc)(z− zc)x̆ x̆ y̆

(4.66)

A rectangular prism obstacle could be used to represent a physical obstacle more accurately and

could be combined with cylinders and ellipsoids to make a composite shape to represent a physical

obstruction.

138

4.3. ALGORITHM DESCRIPTION

4.3.4.4 Euclidean Signed Distance Field Constraints

Each of the constraints mentioned above, if used to represent obstacles, are for a distinct object, with

multiple such objects needed to represent a complete environment. If instead it is desired to have a

single representation, then a Euclidean Signed Distance Field (ESDF) can be used. An ESDF is a voxel

grid representation of an environment where each voxel in the grid gives the Euclidean signed distance

to the nearest obstacle (see Fig. 4.5). The distance is negative inside an obstacle, zero on the surface

and positive in free-space. By using the negative of the signed distance as the cost, the ESDF gives a

natural gradient of cost to push a trajectory away from collisions. By taking distance samples in the

vicinity of a query location, the cost gradient can be evaluated numerically.

FIGURE 4.5. Example of a slice of an ESDF (coloured cells) in with a 3D mesh (grey). Red
blocks are inside obstacles, purple blocks are near the surface in free-space and blue
blocks are further into free-space.

An advantage of the ESDF representation is that the maximum cost for a point on the trajectory

can be sampled directly, rather than having to search through a large set of objects to find the object

that is being violated.

An ESDF represents obstacles, and hence is inherently non-convex, can have many corners and

many local minima. Costs are allowed to go to negative values, and the approximate-path-integral cost

method is used, to help push a trajectory into free-space.

For efficient ESDF representation and querying, the open source Voxblox library [171] is used. When

working with ESDF constraints, the spacing of the trajectory samples needs to be small enough to

ensure that all voxels along a trajectory are queried when checking the constraint.

4.3.4.5 Discussion - Constraint Formulations

A benefit of ASTRO is the ability to mix the range of constraints discussed above, e.g. to have an ESDF

to represent the obstacle presented by the environment, with the addition of ellipsoids, cylinders or

prisms to represent newly observed or dynamic obstacles, and spherical ellipsoids to limit acceleration

and velocity. Adding many constraints, though, makes the optimisation problem more difficult to solve

efficiently. Techniques to aid in optimisation with multiple constraints are discussed in Section 4.3.6.

139

CHAPTER 4. TRAJECTORY OPTIMISATION

4.3.5 Dynamic Obstacles

Attribution: Theory presented in this paper is adapted from that presented in [155] by the

author of the work presented here.

Dynamic obstacles can be represented in the same constraint formulation by taking advantage of the

fact that the algorithm checks constraints at discrete values of time along the trajectory. To make a

constraint dynamic, the parameters that describe the constraint can be represented as functions of time,

changing where the constraint lies for different points in time along the trajectory. The use of dynamic

constraints is most applicable to keep-out, obstacle constraints. For example, the centre of an ellipsoid,

xc would become a function of time, xc(t). The function could be a pre-defined trajectory, in the case

where the path of an obstacle is known. Alternatively, a motion model could define the function, such as

a constant velocity model, where observations of a moving obstacle define the model parameters. An

example, constant velocity model is:

xc(t)= xc(tobs)+vc(t− tobs) (4.67)

where vc is an observed velocity at time tobs. When computing the cost for a constraint at time t,

Eq. 4.67 is used to compute centre, to then be used in the cost function, such as Eq. 4.43 for ellipsoids.

This motion model can then be updated when replanning, for instance after the robot makes a new

observation of the obstacle.

The orientation of the obstacles can also be a function of time, by defining an attitude trajectory

with quaternions, qc(t). The quaternion at the given time is used to generate the rotation matrix R, to

be used in defining the A matrix for ellipsoids (Eq. 4.41), and in the cost functions for prisms (Eq. 4.64).

See Appendix C.10 for details on methods to propagate forward quaternion attitude dynamics if an

initial observation of angular rates was made.

For cylinders, the end-points need to be transformed with the rotation as well as the translation. To

have a dynamic cylinder, a centroid (xc = (x1 +x2)/2) and rotation matrix are needed, and made to be

functions of time as above. The end-points are then computed from these values, by rotating the vector

from the centre to the end points:

x1(t)= xc(t)+R (x1(t0)− xc(t0)) (4.68)

and similarly for x2. The cylinder cost can then be evaluated as in Eq. 4.58. For the end-caps, the shape

matrix, A, also needs to be transformed, in the same manner as for rotating ellipsoids (Eq. 4.41).

Dynamic Uncertainty

If observations are used to model the dynamics of an obstacle, then there is an advantage in being

able to account for uncertainty in the predicted motion. The uncertainty can be modelled by having the

radii or axes sizes, r i, as increasing functions of time. The growth in the radii increases the volume

of occupied space to encompass all likely positions, given the uncertainty in the motion model and

observations (see Fig. 4.6).

140

4.3. ALGORITHM DESCRIPTION

With the use of a constant velocity model, the growth of the radius of an obstacle would be repre-

sented with 3σ values of uncertainty on position, xu, velocity, vu, and acceleration, au (as a deviation

from the model predicted zero). A example of the radius growth with this uncertainty model for a sphere

is:

r(t)= robs + xu + (t− tobs)vu +0.5(t− tobs)
2au (4.69)

where xu, vu and au are all positive scalar values giving the maximum magnitude of uncertainty across

dimensions, and robs is the observed radius.

FIGURE 4.6. Obstacle prediction given a constant velocity model, with velocity vobs and
radius growth with uncertainty in position xu, velocity vu and acceleration au.

For a more general uncertainty representation, the position, velocity and acceleration uncertainties

can be represented by their 3x3 covariance matrices Σ, which can be combined to grow in magnitude

over time (assuming the different sources of uncertainty are uncorrelated):

Σ=Σ0 + (t− tobs)
2
Σv +

1
4

(t− tobs)
4
Σa (4.70)

where Σ, Σv and Σa are the covariance matrices for position, velocity and acceleration respectively. The

concept of the probability ellipsoid can then be used to grow a constraint to encompass the uncertain

region. A probability ellipsoid is defined as:

xT
Σ
−1x= l2 (4.71)

The value of l can be set to 1,2, or 3 to set the ellipsoid to be at the 1σ,2σ or 3σ bounds respectively.

The covariance matrix can be represented as a shape matrix: Ap = 1
l2 Σ

−1, or inversely, the shape matrix

141

CHAPTER 4. TRAJECTORY OPTIMISATION

of the physical ellipsoid obstacle could be represented as a covariance matrix: Σs = 1
l2 A−1. In covariance

matrix form the obstacle physical shape and the position uncertainty can be combined to get a final

shape matrix that represents the region to be constrained:

Σc =Σ+Σs (4.72)

A=
1

l2Σ
−1
c (4.73)

The shape matrix A is then used in the ellipsoid obstacle cost function, Eq. 4.43.

For highly conservative trajectory planning, the maximum assumed acceleration the obstacle is

capable of could be used in place of the acceleration uncertainty. In the case where the obstacle is

another vehicle, then this could be linked to knowledge of that vehicle’s performance.

A consideration when growing the radius is that the obstacle can take up a significant amount

of free-space when planning over a long time interval; therefore the method of growing the radius

is designed to operate with regular observations of the obstacles, and subsequent replanning (see

Section 4.3.7). The observations provide an update on the position of the obstacle, to collapse the radius

down and provide more free-space in which to plan.

4.3.6 Optimisation Techniques

To take advantage of the convex nature of the path and keep-in constraints, ASTRO uses gradient-

descent optimisation. The subspace-projection (Eq. 4.28) is a key part of the gradient-descent optimisa-

tion in ASTRO, where any step in the optimisation coefficients, δC, is projected onto the subspace that

always complies with the boundary conditions.

In each iteration of the optimisation, the gradient is computed for each cost component, and combined

in the augmented cost function gradient:

∂J

∂C̄
=

d
∑

i=1

∂ [fs]i

∂C i

+
2

∑

j=1
K j

∂ fc j

∂C̄
(4.74)

The different dimensions can not be optimised independently because constraints, such as ellipsoid

obstacles, or spherical acceleration bounds, mix dimensions, hence the optimisation acts on the stacked

vector of all coefficients for each dimension, C̄. A Quasi-Newton gradient-descent optimisation is used

on these coefficients, where a local quadratic approximation is made: represented by an approximate

Hessian H. The inverse of the Hessian is used along with the gradient to get the optimisation step:

δC̄ =−H−1 ∂J

∂C̄
(4.75)

This step, δC̄, is then split into each dimension, δC i, for projection onto the subspace that ensures

the boundary conditions (Eq. 4.28). The coefficients are updated with the projected step, δC̄⊥, that is

scaled by the step size: α:

C̄new = C̄old +αδC̄⊥ (4.76)

142

4.3. ALGORITHM DESCRIPTION

The step size α is determined in a one dimensional optimisation called a line-search. A backtracking

Armijo line-search is used: starting at 1, α decreases by a constant factor β, (0 ≤ β < 1), until the

Armijo-Goldstein condition [9] is met:

J(C̄new)− J(C̄old)<σ1αC̄old

∂J

∂C̄
(4.77)

The variable σ1 is a user setting for convergence tolerance, normally chosen at 1×10−8. A value of

0.85 for β is commonly used. The line-search also exits if an iteration limit reached.

The Hessian is approximated with the BFGS method [24, 66, 80, 207], supplemented with the

Sherman-Morrison-Woodbury formula to update and track H−1 through each optimisation [29]. H−1 is

initialised as an identity matrix, and then updated at the end of each iteration, k, with:

H−1
k+1 = H−1

k +
(sT

k
yk + yT

k
H−1

k
yk)(sksT

k
)

(sT
k

yk)2
−

(H−1
k

yksT
k
+sk yT

k
H−1

k
)

(sT
k

yk)
(4.78)

yk =Proj
([

∂J

∂C̄

]

new

−
[

∂J

∂C̄

]

old

)

(4.79)

sk =αδC̄⊥ (4.80)

The function Proj is projecting the change in gradient onto the subspace of feasible solutions:

Eq. 4.28.

If a positive curvature is detected, with sT
k

yk <= 0, then the inverse Hessian is reset to an identity

matrix.

The optimisation is deemed to have converged when one of several criteria have been met: a first

order decrease condition, when the predicted step reduction in cost is sufficiently small:

δC̄⊥
∂J

∂C̄
<σ2 (4.81)

or a sufficient decrease check, when the change in cost is sufficiently small:

|Jk+1 − Jk|
Jk

<σ3 (4.82)

The convergence tolerances σ2 and σ3 can be tuned. Values of 1×10−10 and 1×10−12, respectively,

are generally used in this work.

Using this customised method for optimisation rather than existing optimisation tools enables the

use of the subspace-projection method to comply with the boundary conditions on every iteration, and

leads to much-improved computation times. An example comparison with MATLAB’s fmincon function

is presented in Section 4.4.7.

Several techniques are combined with the gradient-descent approach to assist optimisation in

different scenarios: quadratic line-search for entirely convex problems; randomised initial seeding and

perturbations for non-convex problems; and custom constraint weighting for complex constraint sets.

143

CHAPTER 4. TRAJECTORY OPTIMISATION

4.3.6.1 Convex, Quadratic Optimisation Steps and Line Search

For scenarios with only convex constraints, such as the trajectory cost, corridors and performance

constraints, the convex nature of the resulting augmented cost function can be used to speed-up the

optimisation. In addition to being convex, the cost functions described in Eqs. 4.8, 4.43 and 4.58 are

quadratic, with constant second derivatives, enabling a computation of the optimal step size and

direction using Newton’s method:

δC̄
∗ =

[

∂2J

∂C̄
2

]−1 [

∂J

∂C̄

]

(4.83)

Without any other factors, a single step will give the optimal solution, but the subspace-projection

selects the component of the step that does not violate the boundary conditions; hence the full step is

not taken, but instead a component of the step that will be sub-optimal and require multiple iterations

to converge. Depending on the scenario, the projected step using the curvature may be worse than with

the projected gradient step. The result of using convex, quadratic steps is analysed in Section 4.4.6.

While using Newtons method before projection is not immediately beneficial, the projection of a

convex and quadratic search space is still convex and quadratic, allowing Newton’s method to be used in

the line-search. The one-dimensional optimisation of the step size can be directly solved by numerically

approximating the gradient and curvature with respect to the step size at a starting value of 1. The

optimal step size, α∗, can then be computed with:

α∗ = 1−
[

∂2J

∂α2

]−1 [

∂J

∂α

]

(4.84)

The use of the quadratic line-search provides more optimal step sizes as well as taking away the

need for multiple iterations in the line-search, as analysed in Section 4.4.6.

While there is some limitation in what problems are fully convex, a complex obstacle field a can

be represented with free-space by a set of convex, keep-in corridor constraints. This approach is

demonstrated in Section 4.4.1.

4.3.6.2 Randomised Initial Seeding and Perturbations

If the optimisation is not convex, such as when including obstacles, then the optimisation is susceptible

to converging in local minima, especially for complex, obstacle-rich environments. Taking inspiration

of sampling-based methods such as RRT*, this issue can be addressed by generating a set of random

initial seed trajectories2.

The seed trajectories are produced by randomised perturbations of the coefficients, C̄, from the initial,

straight line estimate between boundary conditions, or from an existing trajectory when replanning.

The coefficient perturbations are then projected onto the subspace that ensures the boundary conditions,

using Eq. 4.29.

Each random seed is optimised for a set number of iterations, and the lowest cost solution is taken

to continue the optimisation. The selection of the amount of perturbation, the number of initial seeds,

2The randomised seeding work is predominantly by Marc Rigter [195], with whom this author collaborated, and is
presented here for a complete presentation of ASTRO.

144

4.3. ALGORITHM DESCRIPTION

and the number of iterations to run, all affect the performance of the method, and provide an ability to

tune. For instance, if running on a multi-core processor, it might be desired to run, in parallel, a number

of samples equal to the number of cores. For demonstrations presented here, four initial seeds are run,

with four iterations until the winning solution is selected. For more details and analysis of this method,

see the work of Rigter [195].

An alternative approach is to randomly perturb the trajectory once it has been detected that

the solution is converging in an infeasible local minimum. For many scenarios, such as with ESDF

representations of real environments, only 3-4 iterations are required to converge; hence if the solution

is still infeasible after four iterations, it is likely caught in an infeasible local minimum. At this stage

the coefficients are randomly perturbed, then forced to comply with the boundary conditions (Eq. 4.29)

before continuing the optimisation. Such an approach aims to jump the solution out of local minima

to eventually converge on a feasible solution. Demonstrations with this approach are presented in

Section 4.4.2.

4.3.6.3 Iterative Sub-problems

For problems with many constraints, the search-space becomes very complex, and the optimisation

takes a long time to solve. A relaxed sub-problem can be solved first, with only the trajectory cost, to

improve the performance in such scenarios. The solution to this sub-problem provides a dynamically

smooth, or low distance trajectory (depending on the trajectory cost function). This initial trajectory

is used as a seed for a second optimisation with the addition of constraints. The second optimisation

effectively perturbs the trajectory to satisfy the constraints, e.g. adjusting sideways to go around an

obstacle. If there are multiple constraints then this sub-problem approach can be performed iteratively,

first adding obstacle constraints, then corridors, then performance constraints in multiple optimisations.

This approach is similar to that described in [105].

The iterative sub-problem approach gives a high-quality seed trajectory to each successive optimisa-

tion as well as giving a simpler problem for the complex non-convex optimisation with obstacles. The

result is a quicker overall optimisation. For example, when running the optimisation with obstacle

constraints, early iterations of the trajectory would have strong violations of performance constraints,

before settling on a smoother final trajectory. Therefore, if additional constraints are present for these

iterations, they would give a large gradient step in the opposite direction. The result is that the tra-

jectory bounces between infeasible solutions, and is slow to convergence. Additionally, the solution to

the sub-problem with obstacles can often give a solution that already complies with the corridor and

acceleration constraints, providing a suitable final solution with a simpler optimisation.

145

CHAPTER 4. TRAJECTORY OPTIMISATION

4.3.6.4 Customised Weighting

The weighting on the obstacle constraint has a large influence on the optimisation performance, with

too large a weighting causing unstable large jumps in the solution and too small a weighting causing a

slow convergence. To address this sensitivity, the weighting, Wj, for a constraint can be computed from

the starting trajectory cost fs and starting constraint cost [fc] j:

Wj = 10χ (4.85)

χ= round
[

ν log10(fs)
]

−round
[

µ log10(fc)
]

(4.86)

The parameters ν and µ are tuning coefficients that use the starting costs to scale the order of

magnitude of the constraint cost. For example, tests in this paper set ν and µ near to 3.0 and 1.0

respectively, which effectively scales the obstacle cost to be approximately two orders of magnitude

higher than the trajectory cost, to be of sufficient influence to force a feasible trajectory in early

iterations.

4.3.6.5 Obstacle Inflation and Exiting When Feasible

For highly complex obstacle fields, such as an ESDF of a cluttered environment, it can take a long time

to produce the optimal solution, but a feasible solution (collision-free) can be generated more quickly.

Therefore a new exit criterion is used in the optimisation to exit when the solution is first feasible.

While not fully optimal, by using the iterative sub-problem approach, the starting solution will be

near optimal, and small adjustments to become feasible will retain a high quality (low trajectory cost

function) trajectory. This new exit criterion is combined with an inflation of the obstacles, in addition to

the inflation to account for the robot size. The inflation provides a larger and more uniform gradients to

push the trajectory into free-space and is ignored when checking for feasibility. For keep-in constraints,

this translates to a decrease in their size. Examples successfully demonstrating this approach are

presented in Section 4.4.1, and an analysis in Section 4.4.4.

4.3.7 Replanning and Multiple Robots

For continuous operations in dynamic environments, replanning a trajectory becomes a key capability.

ASTRO can be used for replanning in a similar manner to many other planners, by repeatedly optimising

a trajectory from a predicted position shortly in the future to a goal position. The goal position may be

static or could be moving in a receding horizon approach based on a long-term path or an exploration

goal. The required rate of replanning depends on the speed of the algorithm, the computational resources

and how dynamic the environment is.

The approach taken for ASTRO is to replan, if possible, when there is an observed change, such

as a new observation of a dynamic obstacle that updates the motion estimate. With this approach, the

replanning timeline is as depicted in Fig. 4.7. There is a delay from the time of an observation to having

the processed result of the observation. Then there is a fixed time allocated for trajectory optimisation,

with the updated trajectory acted on at the end of the fixed computation time. If the optimisation does

not converge in time, a sub-optimal solution is returned, if feasible. If dynamic obstacles are considered,

146

4.3. ALGORITHM DESCRIPTION

their motion is predicted forward from the time of observation, tobs, and the trajectory is planned from

the predicted robot position at the end of the computation time: treplan. The robot position at treplan is

predicted by assuming the robot is following a previously planned trajectory.

FIGURE 4.7. Timeline of delays and fixed replanning computation time.

In a very restrictive scenario, there is the possibility that the path generated at the end of the time

limit could violate constraints (if there was insufficient time to reach a feasible solution). Alternate

strategies could be employed in this case, such as a stop command.

4.3.7.1 Seeding a Trajectory for Replanning

To speed-up replanning when the goal location remains constant, the remaining segment of the previ-

ously planned trajectory is used as a seed to the next optimisation problem3. The remaining trajectory

is sampled to give the positions points X ′
i
, and is fit to solve for the coefficients C′

i
:

C′
i = P+

i X ′
i (4.87)

The matrix P i is an n f ×Ni matrix of the Legendre polynomial basis functions for position, evaluated

at n f samples of normalised time, t′0, · · · t′
n f −1 ranging from −1 to 1:

P i =

1
aξ P

∫

ξ

1 (t′0) 1
aξ P

∫

ξ

2 (t′0) · · · 1
aξ P

∫

ξ

Ni
(t′0)

1
aξ P

∫

ξ

1 (t′1) 1
aξ P

∫

ξ

2 (t′1) · · · 1
aξ P

∫

ξ

Ni
(t′1)

...
...

. . .
...

1
aξ P

∫

ξ

1 (t′
n f −1) 1

aξ P

∫

ξ

2 (t′
n f −1) · · · 1

aξ P

∫

ξ

Ni
(t′

n f −1)

(4.88)

Eq. 4.87 amounts to a least squares fit of the polynomial to the sample points. To perform the fit,

time has to be has to be normalised again for the new time interval (Eq. 4.3), with the same final

time, t f , and an updated initial time, t0 = treplan. The boundary conditions, XBC are also updated,

and the boundary conditions matrix [PBC]i rescaled for the new times, by adjusting the a values (see

Section 4.3.8.1 for details). After evaluating Eq. 4.87, the fitted coefficients C′ have the boundary

conditions enforced with Eq. 4.29 to then be ready as the seed for the replanning optimisation.

3This section is work in collaboration with Marc Rigter [195] and is presented for a complete description of ASTRO.

147

CHAPTER 4. TRAJECTORY OPTIMISATION

When replanning, there are options to either keep the same number of sample points in each

planning instance or reduce the number of samples as the robot gets closer to the goal. If the number of

sample points is fixed, then P+
i

can be pre-computed.

4.3.7.2 Multiple Robots

A challenging application of replanning with dynamic obstacles is to coordinate the motion of multiple

robots. A decentralised process is used to individually solve the trajectories for each robot using ASTRO,

with every other robot considered as a dynamic obstacle. Two levels of coordination are considered: one

with detailed communication (cooperative) and one with complete independence (adversarial).

In the cooperative case, it is assumed that the current position and the entire planned trajectory

is communicated between each robot. The adversarial case provides greater autonomous capability,

obtaining information on the positions and velocities of the other robots as would be possible through

onboard sensors, and treating the other robots purely as unknown dynamic obstacles.

4.3.8 Multi-Segment Optimisation

For planning trajectories over large spaces, the optimisation can be made more efficient by splitting

the trajectory into multiple segments. In an approach frequently used [26, 32, 63, 121, 139, 170] these

segments can be divided between waypoints that come from a global, sampling-based planner such as

RRT* [102]. Unless all derivatives are fixed at these waypoints, it is not optimal to plan each segment

individually, as the velocity and acceleration at the end of one segment will impact what trajectories are

possible in the next. Therefore the set of segments are optimised in one batch, stacking the coefficients,

C i, for each segment, and enforcing continuity between each segment. The stacked coefficients for the

ith dimension for nseg segments is given by:

C i =

C i1

C i2
...

C i,nseg

(4.89)

The cost function, Eq. 4.8 remains the same, but the matrix P int (Eq. 4.11) is repeated nseg times in

a block diagonal matrix:

[fs]m =
d
∑

i=1
CT

i

P int 0 · · · 0

0 P int · · · 0

...
...

. . .
...

0 0 · · · P int

C i (4.90)

In addition to the boundary conditions, constraints need to be included to enforce continuity at

waypoints. The first segment has no continuity conditions enforced and instead has boundary conditions

for both the start and the end. All subsequent segments have continuity constraints on all derivatives

at the start of the segment, which enforces both continuity and any fixed boundary conditions. The end

148

4.3. ALGORITHM DESCRIPTION

of the segments then have boundary conditions applied. This organisation of constraints means that

any derivative that is not specified at a waypoint is left free, but with continuity enforced.

First, the PBC matrices are formed for each segment with the active boundary conditions. The

values in each PBC will be different for each segment as the value of a from Eq. 4.5 and 4.24 changes as

a function of time. The combined boundary condition matrix and boundary condition vector becomes:

P̄BC =

[PBC]1 0 · · · 0

0 [PBC]2 · · · 0

...
...

. . .
...

0 0 · · · [PBC]nseg

[

X̄BC

]

i =

[XBC]i,1

[XBC]i,2
...

[XBC]i,nseg

(4.91)

For the continuity constraints, there are effectively a new set of boundary constraints is a similar

form to Eq. 4.23, that is:

[0]= [PCC]i C i (4.92)

The matrix PCC subtracts the end state of segment k from the starting state of segment k+1, with the

constraints that the result is equal to zero4. An example of this matrix for three segments (using the

definition for PL in Eq. 4.24) is:

[PCC]i =
[

PL(1) −PL(−1) 0

0 PL(1) −PL(−1)

]

i

C i (4.93)

For the continuity constraints, all rows of PL are active for derivatives where it is desired to

maintain continuity between segments. If all derivatives up to acceleration are constrained, and there

are three segments, then [PCC]i will be of dimensions 6×3Ni. The boundary conditions and continuity

conditions stack to give the overall, multi-segment boundary conditions for dimension i:

[

X̄BC

0

]

i

=
[

P̄BC

PCC

]

i

C i (4.94)

this expression is grouped together to write as:

[

XC

]

i
=

[

PC

]

i
C i (4.95)

The grouped boundary conditions vector, XBC, and basis polynomial matrix, PC, can then be used

in exactly the same way as XBC and PBC. First, an initial guess is generated with Eq. 4.26. Then, in

the optimisation, the gradient steps are projected onto the subspace that ensures compliance with the

boundary conditions by using Eq. 4.28 and Eq. 4.29.

The consideration of degrees of freedom is the same for the multi-segment case, as for the single

segment case, noting that the continuity conditions constrain the starting degrees of freedom. The

number of continuity constraints depends on the number of derivatives being considered. If constraints

4The variable k is being reused here to represent iterations through segments, and will represent this for the rest of this
section

149

CHAPTER 4. TRAJECTORY OPTIMISATION

are placed on all derivatives up to snap for the start and end of a segment, then 10 degrees of freedom

are taken up for each dimension. If 9th order polynomials are used, there is a sufficient number of terms

to provide a solution (Ni = 10), but then there are no degrees of freedom available to optimise. Generally,

only the start and end have all derivatives fixed, and all internal waypoints only have position fixed. In

this case, each segment has q+1 constrained degrees of freedom, where q is the number of derivatives

considered.

Constraints are handled separately for each segment, with the resulting costs and gradients added

to the overall augmented cost function and augmented gradient:

Jm = [fs]m +
nseg
∑

k=1

no
∑

j=1
K j fc j

(4.96)

4.3.8.1 Time Optimisation

The relative time allocated to each segment is another factor that affects the quality of a trajectory. For

example, if segment 1 has a small allocated time, it will have high velocities coming into segment 2,

which will limit how smooth that segment can be while still reaching its end waypoint. The relative

segment times are therefore parameters to be optimised. An approach similar to that of Bry et al. [26]

is taken: an outer-loop, gradient-descent optimisation is performed on the segments times with an

augmented cost function of total time:

Jt =Wt

nseg
∑

k=1

[

t f

]

k
+ Jm (4.97)

The snap cost, Jm is also a function of the segment times,
[

t f

]

k
; hence the weighting, Wt controls

the trade-off between quick trajectories (a high Wt) and smooth trajectories, with low Jm (low Wt). An

optimisation toolbox5 is used to perform the optimisation, with the inner-loop snap optimisation being

run for each evaluation of Jm with a different set of segment times.

When changing segment times, a rescaling can be performed to get an inner-loop initial solution

close to the optimal as an initial seed to the optimisation. The time scaling parameter, a from Eq. 4.5 is

rescaled by the factor Γ, based on the change in time for a given segment:

anew = aoldΓ= aold

[

t f

]

new
[

t f

]

old

(4.98)

The rescaling is then used to modify the relevant rows in the existing PC matrices by multiplying

the values in the row by an appropriate power of Γ. This can be broken down into multiplying the rows

in the PL matrices (Eq. 4.24), from top to bottom, by [Γ−p, ...,Γ−1,1,Γ, ...,Γq−p], for the active boundary

conditions in a given segment. For the continuity constraints, the same process follows but noting that

different rows of PL are active.

The change in the boundary condition matrix, PC represents a change in the boundary conditions;

hence these new conditions need to be enforced on the existing set of coefficients, C. The conditions are

enforced through the subspace-projection method, Eq. 4.29.

5SciPy optimisation toolbox [98].

150

4.3. ALGORITHM DESCRIPTION

After enforcing the boundary and continuity conditions, the coefficients provide an initial guess

to run the inner-loop snap optimisation. Because of the considerable computation time when running

the inner-loop optimisation many times, the time optimisation is generally performed without any

performance or obstacle constraints. The time-optimal solution is then used as a seed for optimisation

with the inclusion of constraints, similarly to what is described in Section 4.3.6.3.

The time-rescaling process can also be used to modify all segment times equally, to scale the entire

trajectory without changing relative times. This capability provides a rapid method to change the

overall trajectory time. The resulting solution will no longer be the optimal solution, though, for the

given time penalty, Wt. Rescaling the whole trajectory could be used as an initial, one-dimensional

search in the time optimisation, to get a total trajectory time near to the optimal, before changing time

allocation between segments.

4.3.9 Summary of ASTRO

This section has presented a thorough overview of the ASTRO algorithm. The key differentiating

elements from the state-of-the-art are:

• The flexibility to optimise for any derivative.

• The range of obstacle representations that can be included in the same optimisation, including:

– Performance constraints.

– Free-space bounds.

– Static obstacles and dynamic obstacles.

• The method of considering dynamic obstacles to allow more exploitation of free-space than many

existing methods while accounting for uncertainty to ensure safe trajectories.

A set of techniques aid the projected gradient-descent optimisation to solve complex and non-convex

problems involving many constraints.

The following section will demonstrate the capabilities of the algorithm in a set of simulated test

cases.

151

CHAPTER 4. TRAJECTORY OPTIMISATION

4.4 Simulation Results

The different features of ASTRO are demonstrated in a set of simulated test cases in this section.

Trajectories are being planned for a spherical robot with the freedom to move in any direction.

4.4.1 Static Demonstrations

Fig. 4.8 shows a simple example that represents the capability of ASTRO to plan trajectories with static

obstacles (from [35]). Boundary conditions are active for the position and velocity, with the velocity

constrained to zero at start and end. The cost function used is the integral of velocity squared. There

is a fixed time of 100 seconds to complete the trajectory. A mix of ellipsoid and cylindrical obstacle

constraints are set up to provide a challenging scenario, where there is an infeasible local minimum in

between the central sphere obstacle and the outer torus shape made of the four cylinders.

As shown in Fig. 4.8, the initial guess is a straight line between two points and passes through both

spherical constraints as well as the enclosed (but admissible) region between the four cylinders, hence

is potentially susceptible to the infeasible local minima. The high weighting on the constraints causes a

substantial jump in the early iterations though, allowing the trajectory to settle on the outside in one of

the four global minima (given the symmetry of the problem).

152

4.4. SIMULATION RESULTS

FIGURE 4.8. A single trajectory planned by ASTRO from the black circle to the open circle.
The grey shapes are obstacles. Successive iterations of the optimisation are shown from
initial guess to the final solution. This result was initially presented in Chamitoff et
al. [35].

Fig. 4.9.a presents a simple example with a single cubic rectangular prism constraint, showing

how the cost function allows traversal close to the cube face. One possible application of rectangular

prisms is to represent voxel-based occupancy, as demonstrated in the example in Fig. 4.9.b, with cubic

constraints representing the occupied cells. While effective, the optimisation is slow, and a more efficient

representation of the environment such as an ESDF is recommended.

153

CHAPTER 4. TRAJECTORY OPTIMISATION

FIGURE 4.9. ASTRO planning a single segment with cubic prism obstacle constraints. (a)
A single cube obstacle with the trajectory going over the top face. (b) Multiple cube
constraints from an octomap.

An example using an ESDF as an obstacle representation is shown in Fig. 4.10, where a multi-

segment trajectory is optimised between five waypoints in a large warehouse, and the cost function is

the integral of snap squared. The use of the ESDF enables a large, complex environment to be efficiently

represented, with the maximum violation for a given point immediately sampled, rather than searched

for through a large set of obstacles. The impact of optimising multiple segments together can be seen in

how the trajectory adjusts. The second segment from the left is the segment that needs to change to

avoid any collisions, but in doing so, the acceleration into and out of the segment changes, affecting all

other segments. While more complicated than planning a single segment, the combined optimisation

provides a dynamically superior overall trajectory with these adjustments throughout the segments.

The ESDF can instead be used to define a cylindrical keep-in corridor constraint for each segment,

which makes the problem convex. Fig. 4.11 presents an example of using these corridor constraints, with

ten waypoints through the same large warehouse environment. An optimisation without constraints is

first performed to be the seed for optimisation with constraints. The approximate-path-integral cost

method is used when the constraints are added, in addition to constraint inflation and a flag to exit

when feasible. The trajectory is successfully able to be pushed to remain inside the very conservative

free-space bounds.

154

4.4. SIMULATION RESULTS

FIGURE 4.10. Multi-segment trajectory optimisation with ASTRO using an ESDF repre-
sentation of the obstacles in a large warehouse environment. The trajectory is planned
between waypoints represented by the small quadrotor figures, starting at the green
quadrotor and ending at the red quadrotor. A slice of the ESDF is shown, where the
colours represent the distance to obstacles: red indicates a collision, shades of purple
are close to obstacles, and blue is clear in free-space. The grey mesh is the physical
environment. (a) The initial planned trajectory without considering the ESDF: there is a
collision near the middle of the trajectory. (b) The final trajectory, successfully avoiding
all obstacles.

155

CHAPTER 4. TRAJECTORY OPTIMISATION

FIGURE 4.11. Example of trajectory optimisation with keep-in corridor constraints on each
segment (red opaque cylinders). The grey mesh represents the physical environment. The
seed trajectory in black is planned without any constraints and the green trajectory is
the result from optimisation with the corridor constraints. The inset shows the seed path
violating the cylindrical bounds and the solution correcting to stay within the bounds.

156

4.4. SIMULATION RESULTS

4.4.2 Randomised Seeding and Perturbations

The primary motivation of the randomised initial seeding is to reduce the chances of a trajectory getting

caught in a local minimum, something that is especially important for applications with numerous

obstacles, providing a large number of local minima. An example is presented here from Rigter [195]

to demonstrate the concept. The effect of varying the strength of the randomised initial perturbation

is shown in Fig. 4.12.a. With regular randomised seeding when replanning, the planned trajectory

can escape from a local minimum to achieve a more optimal solution, as shown in Fig. 4.12.b, in a

complex obstacle environment consisting of many ellipsoid obstacles. There is a balance though between

performing randomised seeding and computation time, with more iterations of the optimisation required

to process each random seed, before proceeding with the best option.

FIGURE 4.12. Demonstration of randomised initial seeding. (a) Perturbations of a seed path
with different perturbation strengths. (b) Trajectory planning with a set of randomised
ellipsoids. Strategy 1 is a single trajectory plan. Strategy 2 uses randomised initial seed-
ing with replanning and achieves a more optimal local minima. Images are from [195].

An example of ASTRO with randomised perturbations is shown in Fig. 4.13 in an ESDF of an indoor

environment with three waypoints. The solution is successfully able to jump out of a local minimum to

converge on a feasible solution.

157

CHAPTER 4. TRAJECTORY OPTIMISATION

FIGURE 4.13. Effect of random perturbations to escape from infeasible local minima with
an ESDF constraint. Grey objects represent the physical environment, and small icons
represent the waypoints. (a) The solution converges in an infeasible local minima with
the trajectory in a collision, as outlined with the red ellipse in the inset. (b) With a
randomised perturbation, the solution can escape the local minima and converge on a
feasible solution.

4.4.3 Dynamic Obstacles and Multi-Robot Planning

Attributions: The results in this section, other than the dynamic cylinder results, were presented

in Morrell et al. [155], and are the work of this author.

Moving cylinders can be used to represent a variety of possible obstacles. One obstacle of particular

interest is moving solar panels on satellites or the International Space Station. Fig. 4.14 presents an

example using a rotating cylinder, where the trajectory successfully deviates to pass behind the moving

obstacle. The algorithm was run with a single segment and a single planning instance. The integral of

velocity squared is the trajectory cost function, which is also used for all dynamic obstacle test cases

presented here.

Presented in Fig. 4.15 is a challenging test case where a dynamic obstacle is incorporated in addition

to keep-in corridor constraints. The obstacle is adversarial and adjusts its trajectory to block the path

of the robot. Therefore, replanning is performed multiple times to adapt to changes in the velocity of

the obstacle. The constraints are added to the problem sequentially: first, only the dynamic obstacle is

considered, then the corridor constraint is added. The trajectory consistently updates to move around

the obstacle and give a safe trajectory to the destination.

158

4.4. SIMULATION RESULTS

FIGURE 4.14. Snapshots of a robot (red dot) moving along a planned trajectory from black
circle to blue circle to avoid the moving grey cylindrical obstacle constraint.

FIGURE 4.15. Adversarial dynamic obstacle with keep-in corridor constraints. The dynamic
obstacle (the light grey sphere) repeatedly changes direction to obstruct the path from
the robot (black sphere) to the goal location. In the top three images, the solid line is
the trajectory taken, and the dot-dash lines are interim planned trajectories before the
trajectory is replanned. The black circles represent the location where the trajectories
are replanned. The bottom three images show three stages of trajectory updates, where
the dashed black line is the current, planned trajectory.

159

CHAPTER 4. TRAJECTORY OPTIMISATION

4.4.3.1 Multiple Robots

Problems with two spherical objects can be extended to the case where both objects are robots running

ASTRO. The example presented in Fig. 4.16, has two independent robots, each running ASTRO, which

are required to exchange positions around a corner of a junction of corridors in a fixed time of 100 s. In

this problem, replanning is performed with simulated delays (as depicted in Fig. 4.7) and performance

constraints on acceleration are added. The iterative sub-problem approach is used, starting with all

dynamic obstacles, then adding the corridor constraints, and then the performance constraints. The

robots replan with simulated time delays: 2 s for image processing and 4 s for trajectory planning. Each

robot models the other as an unknown dynamic object, assuming a constant velocity model from the

time of observation. The uncertainty in the obstacle position accounted for with obstacle growth, using

an assumed maximum acceleration (Eq. 4.69).

Observing Fig. 4.16, there is a significant margin between the two robots due to the modelled

uncertainty that grows the radius of the obstacle that ASTRO considers. The modelling of the dynamics

of the other robot and the growth in uncertainty allows the trajectories to be completed despite the

simulated planning delay.

FIGURE 4.16. Two robot dynamic replanning example. Two spherical robots using ASTRO to
exchange positions around the corner of a corridor junction. Dashed lines are interim
planned paths, and solid lines are the trajectories followed. (a) Initial paths are planned
with no knowledge of the other spacecraft, leading to overlapping trajectories. (b) After
25 seconds it is modelled that the two spacecraft observe each other. The spacecraft
represented by the dark sphere observes first, and diverts around the path of the other,
with a large margin to account for uncertainty. (c) 5 seconds later the second spacecraft
replans, observing the new dynamics of the first, and hence continues on the same path.

A consideration in coordinating the paths of multiple robots is the replanning dynamics. If multiple

robots are replanning their paths at the same time, it is possible that they could update their paths

to travel through the same location and hence collide, having no other information on the new path

of the other robots. Such dynamics can lead to limit cycle behaviour, such as is observed in Fig. 4.17.a

where the two robots repeatedly replan paths that obstruct each other, before generating what is

160

4.4. SIMULATION RESULTS

an infeasible trajectory to avoid a collision. In the cooperative case, priority assignment that sets

an order of replanning can overcome the impasse issue (Fig. 4.17.b). The priority assignment can be

arbitrarily chosen or could be linked to other coordination logic, such as the importance of robot goals.

For the adversarial case, this issue cannot be avoided entirely but could be addressed with a dampening

component in the replanning dynamics. For example, one robot could wait and observe instead of acting

on a new path, so the replanning times of the two robots move out of phase. The sequencing of one robot

to replan before the other enables convenient coordination of trajectories in the example depicted in

Fig. 4.16.

FIGURE 4.17. Cooperative planning impasse example. Two spherical robots are using ASTRO
to plan trajectories to exchange position. Trajectories are replanned at the red circles
in regular intervals of time. The plotted lines are the trajectories taken, combined over
each replan. (a) When replanning is done at the same time the trajectories come to an
impasse, requiring a dynamically infeasible trajectory. The final part of the trajectory is
black. (b) When replanning is offset in time, the robots pass efficiently. Final paths in
light blue and blue.

More robots can be introduced into the problem to present yet more of a challenge with dynamic

obstacles. Fig. 4.18 demonstrates ASTRO successfully working in such a scenario, where six robots are

required to exchange positions in pairs along each coordinate axis in a fixed time of 100 s. Performance

constraints, constant velocity models and radius growth are the same as for the two robot case above.

Simulated observations are made: each robot directly observes the position and velocity of all other

robots, before replanning. This observe-and-replan process is done three times per robot, starting at 25 s

(t f = 100 s). Time delays of 2 s for image processing and 5 s for trajectory planning are implemented.

Replanning is manually offset, to avoid the impasse scenario, using a gap of 5 s between each replan

and 1 s between each robot. With similar dynamics to the two robot case, the six robots can successfully

navigate through the junction, changing paths in all dimensions to avoid collisions (Fig. 4.18).

161

CHAPTER 4. TRAJECTORY OPTIMISATION

FIGURE 4.18. Six robot trajectory planning example, without cooperation. Robots are the
spheres, each running ASTRO multiple times, with other robots considered as dynamic
obstacles with radius growth to account for uncertainty. Pairs are required to exchange
positions along one axis of the corridors in a fixed time of 100 s. Grey corridors are
keep-in constraints, and the spheres represent the robots. Plotted lines represent only
the trajectories that each of the robots follows, through three planning instances. The
bold arrows indicate the direction of travel.

An alternative to using a constant velocity model for dynamic obstacles, and growing the size of the

constraints, is to have a more accurate prediction for the path of the dynamic obstacle. If the multiple

robots cooperate, then an entire planned trajectory for each robot could be shared. This approach allows

for navigation under much tighter constraints, as shown in Fig. 4.19. Trajectories are still planned in a

decentralised fashion, but with complete knowledge of the planned paths of the other robots.

162

4.4. SIMULATION RESULTS

Replanning is still required as a robot needs to have planned a trajectory to be able to communicate

it to another robot. Therefore, if each robot initially plans without any communication, then plans need

to be updated when they do receive information from the others.

Each of the robots successfully navigates through the crowded junction, with some of the spacecraft

passing through earlier (the dark sphere with the triangle in the centre), while some wait and pass

through later (spacecraft marked with a +).

FIGURE 4.19. Animation sequence for six robots navigating through a junction with coop-
eration in sharing planned trajectories. Robots are the spheres, each running ASTRO
multiple times, with other robots considered as dynamic obstacles with radius growth to
account for uncertainty. Pairs are required to exchange positions along a corridor in a
fixed time of 100 s. Grey corridors are keep-in constraints, and the spheres represent
the robots. Plotted lines represent only the trajectories that are followed through three
planning instances per robot.

163

CHAPTER 4. TRAJECTORY OPTIMISATION

4.4.4 Analysis of Optimisation Techniques

A batch of 100 trajectory planning instances is run inside a map of a real warehouse environment

to assess the impact of the different optimisation features employed. An ESDF of the environment

represents the physical obstructions and is used either as an obstacle constraint or to set the radii

of free-space corridors. Trajectories are planned between sets of waypoints which are determined by

randomly selecting a start and end goal, then using RRT* [102] to plan a feasible path between them.

The path from RRT* provides the set of waypoints with collision-free straight-line paths between them

for setting free-space corridors. The number of waypoints can be reduced to provide a less constrained

problem when planning with ESDF obstacles. The cost function used is the integral of snap squared6.

Planning instances are deemed a failure if the resulting trajectory has a collision, a time limit of 50 s is

exceeded, continuity constraints are violated or if snap exceeds 10.0 (indicating a degenerate solution).

Example trajectories in the environment are showing in Fig. 4.10, and Fig. 4.20.

ASTRO is run on all cases using the ESDF as an obstacle, then using free-space corridors. Each

batch of optimisations for each obstacle representation is then repeated with variations in a range of

optimisation features. The baseline set of features used in ASTRO is:

• Iterative sub-problem solutions

• Criteria to exit when feasible

• Inflation of constraints

• Approximate-path-integral cost function

• Custom weighting (when using the ESDF obstacle)

• Quadratic line-search (when using the free-space corridors)

• Randomised perturbations after three iterations if not feasible (when using ESDF obstacles)

Tests are run with individual features removed, to isolate the impact of each feature: no iterative

sub-problems, exiting only when converged, no inflation of constraints, using the maximum cost function

method, fixed weighting (when using the ESDF as an obstacle), and a standard line-search (corridors

case only). The baseline results also capture how frequently the perturbations were required. The

success rate (feasibility) and computation time are presented in Table 4.1. All computations are run

with a Python 2.7 implementation of ASTRO running on an Intel Core i7-7500U, 2.70 GHz processor.

The failed cases for the baseline with ESDF obstacles are due to the time limit being exceeded: the

optimisation gets stuck in local minima, and successive randomised perturbations are unable to free

the solution within the allocated time. The failed cases with free-space corridors are due to slight errors

in the ESDF. The generation of the ESDF is approximate [171], allowing for small errors where a voxel

represents an obstacle, but surrounding cells do not have their signed distances adjusted to indicate

proximity to a surface collision. The result is that some trajectories can converge inside the free-space

corridors, but still be in a collision. Using free-space corridors is susceptible to these errors, whereas

ESDF obstacles are not. If the ESDF is used for checking feasibility with corridor constraints, the ESDF

errors can be detected and, in most cases, avoided (see analysis in Section 4.4.5).

6The integral of snap squared is a cost function that helps to produce dynamically feasible trajectories, as elaborated in
Chapter 5

164

4.4. SIMULATION RESULTS

TABLE 4.1. Comparison of optimisation configurations: feasibility and computation time

Constr. Case Optim. Variant % Feas. tcomp*
ESDF Baseline 91 3.11

Exit when converged 27 13.19
Max cost method 75 8.04
No inflation 78 5.81
Static weight 1e-4 70 5.82
Static weight 1e-7 80 4.00
No sub-problems 50 1.43

Corridors Baseline 88 6.46
Exit when converged 88 25.59
Max cost method 88 2.97
No inflation 87 5.62
No sub-problems 57 19.87
Backtracking line-search 82 10.17

*tcomp is the average computation time for all feasible cases

Each optimisation feature is discussed below, highlighting what the results in Table 4.1 reveal about

the importance of each feature.

4.4.4.1 Iterative Sub-Problems

In these scenarios, the iterative sub-problem approach involves first generating a solution with only the

trajectory cost, before solving the full problem. Using this approach can be seen to have a substantial

impact on the frequency of success of ASTRO for both ESDF obstacles and free-space corridors: there is a

substantial drop in feasibility percentage from the baseline when no sub-problems are used (Table. 4.1).

The failures in the ESDF obstacle case are due to the solution becoming stuck in an infeasible

local minimum that pushes the solution towards a degenerate case, where the velocity is so high that

sample points on the trajectory jump to either side of an obstacle, from free-space into unknown space.

Unknown space is modelled as free to accommodate gaps in the generated ESDF that can occur in the

middle of free-space. This degenerate case is reached in only a few iterations; hence the computation

time is low. Without first optimising with only trajectory cost, the seed to the optimisation with ESDF

obstacles violates many constraints, making it more likely for the degenerate case to occur, or for the

seed to be in the homotopy of an infeasible local minimum. Several cases time-out, with the randomised

perturbations not able to release the trajectory from such an infeasible local minimum.

With the keep-in corridors, there are similar issues where a degenerate solution is produced, but in

this case, the cause is a large gradient step from large violations of the seed trajectory. The degenerate

solution is an artificial local minimum that is possible because of the discrete trajectory sampling. The

non-optimised seed for planning with the corridor constraints has large violations all along a trajectory.

For the cases that succeed, the large violations can be strongly violating boundary conditions, meaning

the projected gradient will be small. These small steps avoid the degenerate solution but lead to long

optimisation times.

In summary, the results show the substantial benefit in utilising iterative sub-problems.

165

CHAPTER 4. TRAJECTORY OPTIMISATION

4.4.4.2 Exiting When Feasible and Randomised Perturbations

The difficulty of optimising in a highly non-convex search space with many local minima becomes

apparent when removing the criteria to exit when the first feasible solution is obtained. Removing

this criterion also requires removing the randomised perturbations, which use the feasibility criteria

to flag a required perturbation. The result of removing these features is that the optimisation is very

susceptible to both local minima and oscillations between obstacles in the non-convex search space.

With ESDF obstacles and the option to exit only when converged, 46 out of 100 converge in an infeasible

local minimum, with the remaining failures exceeding the allocated time. Randomised perturbations

are required in 13% of the baseline cases; hence the majority of the failures are because of changing the

exit criteria.

By contrast, in a convex search space, with free-space corridors, optimising with a flag to exit when

converged will still generate a feasible solution. The differences in computation time between exiting on

convergence and the baseline show that ASTRO quickly generates a feasible solution (baseline), after

which the trajectory can be further optimised (exit on convergence).

For non-convex problems, it is shown to be very important to exit on the first feasible trajectory.

This approach loses optimality, but by seeding the process with an optimal trajectory from the reduced

sub-problem, the resulting trajectory can be near-optimal.

4.4.4.3 Constraint Inflation

The results in Table 4.1 show inflation to be an important factor when using obstacle constraints,

allowing reduced computation time and more successful trajectories. Most of the trajectories that fail

without inflated obstacles run out of the allocated computation time, highlighting how the inflation

of obstacles is important to give a sufficiently large gradient across the whole trajectory to push

it from obstacle boundaries. Without inflation, there is a larger difference between the gradient at

obstacle boundaries compared to gradients when in a collision. The difference in gradient is because

the boundaries are closer to the minimum of a quadratic function. Inflation effectively shifts all points

up a quadratic curve, resulting in a lower relative difference in gradient. The outcome is that, without

inflation, optimisation steps are slower to bring the whole trajectory sufficiently into free-space for a

feasible solution.

For convex problems, inflation is less critical, as lesser gradients near boundaries are permissible in

a convex problem, and can sometimes result in a better-projected gradient, leading to faster computation

times.

4.4.4.4 Cost Function Methods

For trajectory planning in a complex obstacle-rich environment, the approximate-path-integral cost

method gives superior performance to the maximum violation cost method. All of the failures with the

maximum cost method are due to the algorithm exceeding the allocated computation time. This result

suggests that adjusting a trajectory with a gradient from a single point per segment (the maximum

violating point), in a problem with a very cluttered ESDF. The slow optimisation can be due to a number

of reasons, depending on the scenario. A small step can keep the maximum violating point in the same

166

4.4. SIMULATION RESULTS

ESDF cell, leading to yet another small step. Alternatively, the gradient at the maximum violating

point could force an update that strongly violates boundary conditions, resulting in a small projected

step. Another scenario is that the update from the single point could be in a direction that does not

help the overall trajectory move away from a collision (e.g. an update along the trajectory, rather than

transverse to it).

For cases where the obstacles are convex shapes, such as an ellipsoid, or if there is a single large

violation in an ESDF, the maximum cost function can be superior, as the step from the most violating

point will not be small and will be in the right direction to move the trajectory into free-space.

For convex problems, the maximum cost method is the better approach, as it performs equally to

the approximate-path-integral approach and is quicker to evaluate the cost and gradient.

4.4.4.5 Custom Constraint Weighting

The test cases with a static weighting highlight the sensitivity of the optimisation to the weighting for

non-convex cases. Hand tuning to a value of 1e-7 gives good results, but with 11 more failures than the

baseline, all of which exceed the time limit. Too low a weighting gives very small update steps, whereas

too large a weighting leads to long line-searches, as is the result with a weighting of 1e-4, where failures

are also due to the time limit being exceeded. The custom weighting allows adaptability across different

scenarios to require less tuning of the algorithm.

4.4.4.6 Quadratic Line Search

The quadratic line-search provides quicker solution times and can be the difference between finding

a solution or not within the allocated time. The differences between a quadratic line-search and a

standard backtracking line-search are analysed in more detail in Section 4.4.6.

4.4.4.7 Summary of Optimisation Analysis

The analysis of the optimisation techniques demonstrates the most important features for efficient

optimisation in complex environments. The use of iterative sub-problems is critical to successful

performance for both convex and non-convex cases. Correctly handling constraints is also critical in non-

convex scenarios, where the approximate-path-integral is shown to be valuable, as well as constraint

inflation and custom weighting. In cases with numerous local minima, ASTRO is best used to find

a feasible solution, with randomised perturbations applied when the solution becomes stuck in an

infeasible local minimum. Convex scenarios are less sensitive to settings for producing a feasible result,

but using the maximum cost function, quadratic line-search, inflating the constraints and exiting when

feasible give the quickest results.

4.4.5 Constraint Type Comparison

Three different constraint types could be used to represent the obstacles in an environment: ESDF

obstacles, corridor constraints, and corridor constraints with ESDF feasibility checks. The performance

of each of these methods is compared here qualitatively and quantitatively using the same batch of

167

CHAPTER 4. TRAJECTORY OPTIMISATION

test cases as in the previous section. The tests used the baseline configuration for ASTRO with ESDF

obstacles and the maximum violation cost method for the two corridor constraint types.

Fig. 4.20 shows a specific test case where using corridor constraints provides the most conservative

solution. If the ESDF is used to check for feasibility rather than the cylinders when using a corridor

constraint, the result is identical, because the first iteration gives a trajectory that is feasible for both

the corridors and the ESDF. Using the ESDF as an obstacle representation allows more freedom to

move the path, and because there is not a requirement of an obstacle-free straight-line path between

the waypoints, fewer waypoints can be used.

FIGURE 4.20. Comparison of different methods of trajectory optimisation through obstacles.
The grey mesh represents the physical environment. Red opaque cylinders are free-space
bounds on each segment. The seed path is optimised with no constraints. The CYL
trajectory uses corridor constraints, and exits when those constraints are satisfied. The
ESDF trajectory is using an ESDF as an obstacle constraint.

The resulting trajectory, when using the ESDF as an obstacle, is less conservative though, with less

clearance to obstacles (Table 4.2). The computation times in Table 4.2 show that there is a trade-off

between providing more freedom to explore the available free-space and computational efficiency.

TABLE 4.2. Trajectory planning results for a single trajectory in a large warehouse environ-
ment.

Constraint Type tcomp (s) dmin (m)
ESDF Obstacle 6.42 0.091
Corridors 3.66 0.124
Corridors ESDF check 10.20 0.124

Extending the comparison to the full batch of 100 test cases (Table 4.3), the same trends are

observed. The entirely convex method of using corridor constraints is quicker, but more conservative,

being restricted to be close to the path between waypoints. The use of corridor constraints and ESDF

checks takes a long time because of the additional tasks of checking the ESDF for collisions. The

168

4.4. SIMULATION RESULTS

TABLE 4.3. Comparison of constraint types for batch of 100 test cases in a large warehouse
environment

Constraint Type % Feas. tcomp (s)* dmin (m)*
ESDF Obstacle 91 3.11 0.10
Corridors 88 2.97 0.14
Corridors ESDF Check 97 5.11 0.12
* Characteristics are averages for the feasible trajectories.

time penalty buys the capability to use more free-space, though, giving less conservative trajectories

and enabling feasible solutions more frequently. In particular, using ESDF checks produces feasible

solutions in cases where errors in the ESDF result in an infeasible voxel inside a free-space corridor. An

additional benefit for the corridor constraint types is that if more time is available, the trajectories can

be further optimised (Section 4.4.4.2).

The non-convex optimisation with ESDF obstacles gives the most freedom to explore free-space, and

allows fewer waypoints, reducing the number of optimisation coefficients, but it is slower due to the

difficulty of the non-convex optimisation and can fail to find solutions within a set computation time.

The best constraint type depends on the goals of the application, be it having the safest trajectories,

maximising the percentage of success or maximum exploitation of free-space. Other factors to consider

are the available computation time and the complexity of the environment. The ESDF obstacle provides

greatest use of free space, but can have slower computation times, and can fail to find a solution. The

more complex the environment, the slower the algorithm will be. Using corridor constraints can give

quicker, more conservative results that can be further optimised, but is susceptible to ESDF errors, and

is overly restrictive in simple environments with ample free-space. Adding ESDF checks to the corridor

constraints provides the highest percentage of success and less conservative trajectories, but comes

with increased computation time.

4.4.6 Convex, Quadratic Steps and Line Search

Fig. 4.21 demonstrates what occurs when using the convex quadratic step for a scenario with 6 segments

and only the trajectory cost active (the resulting trajectory is shown in Fig. 4.24.a). When using convex

quadratic steps, the result correctly gives the optimal step (Fig. 4.21.a), but the component of that step

on the subspace of feasible solutions is not optimal in size or direction (Fig. 4.21.b). The minimum

cost of this projected step over the range of step sizes represents the step size that the backtracking

line-search will aim to find. In this case a step size of 1.0. The projected cost function is still convex

though, meaning a step size greater than 1.0 can give the optimal step size. The quadratic line-search

gives the optimal step size: 1.35 in this case (Fig. 4.21.c). The step direction is still not optimal in the

projected subspace, so 27 iterations are needed to converge. Nonetheless, by implementing the quadratic

line-search instead of the standard line-search, the number of iterations is reduced from 79 to 27.

The challenge with using convex quadratic steps is that the projected component of the step will

likely not be optimal. For example, if gradient steps are used, the pre-projection step is shown in

Fig. 4.21.d. This step is not as optimal as the convex quadratic step, with less cost reduction at the

minimum of the parabola, and too large a step with a step-size of 1. Nonetheless, the projection of this

169

CHAPTER 4. TRAJECTORY OPTIMISATION

FIGURE 4.21. Cost step results at different stages of optimisation in the first iteration, for a
scenario with only trajectory cost and six segments. This scenario is shown in Fig 4.24.a.
The far right of each plot is the full step size that is intended to optimise the cost; ideally
reaching the minimum on a parabola. Top: Using convex quadratic steps. Bottom: using
gradient steps. Left: before subspace-projection. Middle: after subspace-projection. Right:
after quadratic line-search

step onto the feasible subspace happens to be superior, giving a greater reduction in cost, as depicted in

Fig. 4.21.e. This improved performance is not necessarily the case for every iteration though, as shown

for later iterations in Fig. 4.22. Whichever step method is used, the quadratic line-search can reduce the

number of iterations required, giving a better step in Fig. 4.21.f and reducing the number of iterations

from 19 to 12. Fig. 4.22 shows examples in another iteration, where the projected step is far from the

optimal step size for both the convex quadratic step and the gradient step, demonstrating that the

quadratic line-search can give a substantially higher reduction in cost.

Because the convex quadratic step is to zero cost (Fig. 4.21.a, Fig. 4.22.a), which represents a zero

length trajectory, the step tends to have a very large component that violates the boundary constraints.

Therefore the projection of that step onto the subspace that adheres to the boundary conditions is small

and sub-optimal. Tests presented here use the gradient step method rather than the convex quadratic

step, as it has shown to give a better-projected step more consistently.

170

4.4. SIMULATION RESULTS

FIGURE 4.22. Cost step results at different stages of optimisation in the third iteration in a
scenarion with only trajectory cost and six segments, Fig 4.24.a. The far right of each plot
is the full step size that is intended to optimise the cost; ideally reaching the minimum on
a parabola. Top: Using convex quadratic steps. Bottom: using gradient steps. Left: before
subspace-projection. Middle: after subspace-projection. Right: after quadratic line-search

Examples of the quadratic line-search with corridor constraints is shown in Fig. 4.23, for the

trajectory in Fig. 4.24. The initial projected step coming out of the gradient-descent is large, increasing

the cost for all but a very small step size (Fig. 4.23.a). The standard line-search requires many iterations

to get to a step size that is suitably small, whereas the quadratic line-search computes the optimal

step directly without searching (Fig. 4.23.b). The step is not exactly at the optimal in this case due to

inaccuracies in the numerical computation of the gradient and curvature. In this scenario, the step size

from the quadratic line-search is 0.036, from 5 cost evaluations (to compute the gradient and curvature).

In contrast, the standard line-search computes a step size of 0.0536 with 18 cost function evaluations.

For initial iterations, the quadratic line-search is quicker and gives a superior step size.

In the second iteration, the step post-projection is smaller (Fig. 4.23.c); hence the standard line-

search takes fewer iterations, converging in three iterations to a step size of 0.615. This step size is

still double the optimal that is computed by the quadratic line-search: 0.325. Fig. 4.24.b and Fig. 4.24.c,

highlight the difference in the trajectories from the different line-search methods by showing how the

quadratic line-search gives a step to get the trajectory closer to the middle of free-space. For outer-loop

iterations when the solution is closer to the optimal, the quadratic line-search provides a more optimal

step, though it may require more evaluations of the cost function.

The results presented here show the substantial benefit of using the quadratic line-search: enabling

the use of a step size above 1, computing the optimal step size, and determining the step size in fewer

iterations than the standard line-search. The result is a quicker optimisation, as demonstrated in

Table 4.1. For convex problems, the quadratic lines search is the superior method to use.

171

CHAPTER 4. TRAJECTORY OPTIMISATION

FIGURE 4.23. Cost step results showing benefit of quadratic line-search. Results are from
optimisation with trajectory cost and keep-in corridor constraints with six segments,
Fig 4.24. Far right of each plot is the full step size that is intended to optimise the cost;
ideally reaching the minimum on a parabola. Top: cost steps after subspace-projection
that is used in a standard line-search. Bottom: cost step from quadratic line-search. Left:
first iteration. Right: second iteration.

172

4.4. SIMULATION RESULTS

FIGURE 4.24. Convex trajectory optimisation between seven waypoints (quadrotor models),
with cylindrical keep-in constraints (red opaque cylinders). Grey mesh represents the
physical environment. (a) Initially optimised trajectory with no constraints considered.
(b) Result after optimising with keep-in constraints using the standard line-search. (c)
Result after optimising with keep-in constraints using the quadratic line-search.

4.4.7 Computation Time Analysis

Attributions: Results in this section were presented in Morrell et al. [155] and are the work of this

author.

Table 4.4 presents comparative computation times for six test cases. Also highlighted is the improvement

in computation that comes by moving from a fmincon SQP implementation to utilise the full subspace

descent projected gradient implementation. The test cases listed are variations to the those presented

above that include static obstacles, dynamic obstacles and performance constraints. All planning

instances are with a single segment. The timing comparisons were run with 64-bit MATLAB R2014a on

an Intel Core i7-3520M, 2.9 GHz processor.

The simulation examples with two robots and six robots included modelling of time delays and

restrictions in computation times to simulate how the algorithm might be used for online planning.

Table 4.5 shows the minimum, maximum and mean computation times for those cases. The ASTRO

computations completed within the allocated time for a majority of the path plans, with only 7.4%

exceeding the limit, and all by less than 1 second. With the limited computation time and the associated

time delay modelled in the simulations, ASTRO was successfully able to plan safe trajectories through

the environment. These results suggest that there is potential for ASTRO to be used in real-time on-line

173

CHAPTER 4. TRAJECTORY OPTIMISATION

TABLE 4.4. Trajectory planning computation times and improvement.

ASTRO Average times to plan trajectory (seconds) × Speed
Test Case Runs fmincon SQP Subspace Gradient Increase
1. Static 1 3.84 0.40 9.59
2. Dynamic Obstacle 10 41.04 1.58 26.00
3. 2 Robot 6 43.36 0.41 106.7
4. 6 Robot 24 35.65 1.45 24.63
5. 2 Robot - R 24 43.36 0.39 111.2
6. 6 Robot - R 24 35.65 1.22 29.22

R - restricted computation time used in gradient method

planning operations.

TABLE 4.5. Trajectory planning computation times

Test No. path Min Max Ave.

Case plans time (s) time (s) time (s)

Adversarial 9 0.58 5.33 1.58
2 robot 6 0.03 1.58 0.39

6 independent 24 0.55 5.85 2.48
6 cooperative 24 0.03 5.97 1.22

4.4.8 Summary of Simulation Tests

The set of simulated test cases have demonstrated the capability of ASTRO. The algorithm can success-

fully optimise trajectories with a range of constraints: static obstacles, dynamic obstacles, free-space

restrictions and performance constraints. Predicting the motion and uncertainty of dynamic obstacles

enables successful planning in highly dynamic and confined scenarios. Continuous trajectories can

be planned between multiple waypoints to traverse through complex environments. The subspace-

projection gradient-descent, aided with a set of optimisation features, including iterative sub-problems,

quadratic line-searches, and randomised perturbations, enables quick generation of feasible solutions in

complex, obstacle-rich environments. These solutions can be generated for both convex and non-convex

constraint types. The computation time of the algorithm shows potential for online trajectory planning,

with successful results obtained when simulating computational delays.

One factor that has not been explored in detail here is the influence of different numbers of

coefficients, and the trade-off between complex trajectories and simpler optimisations. Preliminary

testing showed a minimal impact of varying the number of coefficients. However, this factor should be

investigated at greater depth in future work.

The next section describes an implementation of ASTRO for online trajectory planning with space-

based robots. Chapter 5 then presents how ASTRO can be applied to quadrotors before hardware

demonstrations are presented in Chapter 6 for tracking trajectories that are planned off-line for

complex environments. These hardware tests include comparisons against state-of-the-art trajectory

optimisation algorithms.

174

4.5. TRAJECTORY OPTIMISATION FOR SPACE-BASED ROBOTICS

4.5 Trajectory Optimisation for Space-Based Robotics

Attributions: Details about the on-orbit tests were presented in Chamitoff et al. [35]. The con-

tributions from this thesis that have been presented in [35] include: analysis of dynamic obstacle

test cases, analysis of lessons learned from the tests, and a discussion on how the results informed

future developments of the algorithm.

Trajectory planning in three dimensions through a range of obstacles is a valuable capability for

free-flying spacecraft in applications such as satellite servicing, satellite inspection, monitoring of the

outside of a space station, or a range of operations inside a space station: checking inventory, filming, or

checking air quality.

There is a test-bed on the International Space Station (ISS) designed to test the algorithms required

for such applications: the Synchronized Position Hold, Engage, Reorient Experimental Satellites

(SPHERES) [202]. These free-floating robots operate inside the ISS as a resource for researchers around

the world to test autonomous navigation algorithms in micro-gravity.

An earlier version of ASTRO was tested on the SPHERES, prior to this thesis, to demonstrate the

capability of the algorithm for online planning of three-dimensional trajectories in the presence of static

and dynamic obstacles. The contributions in this work are the analysis of the results of the testing, and

the application of the lessons learned to improve ASTRO.

First, an overview of SPHERES is presented, followed by a summary of the on-orbit testing. Analysis

of the results will be presented, particularly highlighting the analysis of the dynamic obstacle results,

which was performed as part of this work. Finally, there is a discussion on how the lessons learned have

been applied to algorithm development.

From this analysis, the fundamental contributions are: describing the successful use of ASTRO,

on-orbit, for dynamic obstacles, highlighting improvements that can be made in how dynamic obstacles

are considered, compiling lessons learned from the experiment, and using these lessons to guide future

development.

4.5.1 SPHERES

The Massachusetts Institute of Technology (MIT) Space Systems Laboratory (SSL) developed the

SPHERES, which have been on the International Space Station since 2006 [145]. An image of the robots

is in Fig. 4.25. There is a set of three robotic spacecraft to enable formation flying testing. The SPHERES

operate within a restricted 2 m cubed volume on the ISS, where they translate and rotate with the use

of 12 compressed CO2 thrusters. The robots use an ultrasonic beacon system for localisation, consisting

of a set of 5 static beacon stations and 24 receivers on the SPHERES. The time-of-flight of ultrasonic

signals from each of the beacons is used to determine the position of the robots in the ISS reference

frame. An onboard IMU provides estimates of orientation.

The robots are connected wirelessly to a ground station laptop that controls upload and download of

software as well as executing the commands for a given test case. A Guest Scientist Program provides a

175

CHAPTER 4. TRAJECTORY OPTIMISATION

FIGURE 4.25. The Synchonized Position Hold, Engage, Reorient Experimental Satellites
(SPHERES). (a) Three SPHERES on board the International Space Station. (b) A diagram
of the main SPHERES components. Credit MIT SSL [145]

software interface that allows researchers to upload their code onto the SPHERES to control the higher

level navigation functions.

The robots have been used for a range of research including: formation flying, visual navigation,

mapping of small bodies, docking, electromagnetic relative position control and fluid slosh investiga-

tions [145]. The SPHERES system is designed to be robust and error tolerant, allowing one of the

tremendous successes of the SPHERES program: Zero Robotics [146], a high school outreach program

where students have the opportunity for their code to control the SPHERES [152].

4.5.2 On-Orbit Testing

The testing of ASTRO on the SPHERES was unique in that the Principal Investigator (PI) was himself

on the ISS. To support this, MATLAB [133] was installed on the ground station laptop and linked with

the SPHERES communication architecture to enable it to send planned trajectories to the SPHERES.

Having MATLAB on the ground station enabled the PI to quickly and easily make modifications to the

settings for the algorithm and test cases based on initial results. The setup is described in detail in [35].

Unfortunately, due to time restrictions for implementation, there were some limitations in the

architecture, with only one set-point for a given trajectory being able to be sent to the SPHERES at

a time, i.e. each planned trajectory resulted in one set-point being sent to the SPHERES, with the

next set-point only available after replanning. Additionally, ASTRO was only able to be implemented

with the MATLAB optimisation tool fmincon, rather than the full projected subspace gradient-descent,

leading to longer computation times.

The goal of the tests was to demonstrate how ASTRO could be used for online trajectory planning for

free-floating spacecraft, navigating around static and dynamic obstacles. Trajectories were replanned in

regular intervals to a fixed goal location. Virtual static obstacles were modelled in the environment,

and the dynamic obstacles were other SPHERES, physically moving in a set path.

176

4.5. TRAJECTORY OPTIMISATION FOR SPACE-BASED ROBOTICS

Four test scenarios with a single goal location where executed:

1. A single static spherical obstacle.

2. Multiple static ellipsoid obstacles.

3. A single, dynamic obstacle moving on a fixed path.

4. Multiple static ellipsoid obstacles plus a dynamic obstacle moving in a circular path.

4.5.3 Results From On-Orbit Testing

The performance on a static spherical obstacle was successful. However, in a more complicated scenario

with multiple ellipsoid obstacles, a vital issue became evident. With the transmission of only a single

waypoint, the location of the waypoint needs to be set far enough along the trajectory so that the

next planned trajectory will be ready before the SPHERES reaches that waypoint, as depicted in

Fig 4.26.a. With large computation times (10-20 seconds), this meant that the set-point was so far

along the trajectory that the SPHERES traversed through a modelled obstacle (Fig. 4.26.b). With

long computation times, the satellites also drift, potentially making the path to the transmitted set-

point invalid. This issue implied that the SPHERES was not able to accurately track a planned

trajectory. Nonetheless, the subsequent tests provided valuable information on how the trajectory

planning performed in the range of scenarios in which the SPHERES operated. The focus here is the

analysis of the dynamic obstacle results, being work performed by the author, and of significance to the

developments of ASTRO.

FIGURE 4.26. Implementation limitations. (a) Intended result of computational lag compen-
sation: to select a target along the trajectory to be ahead of the robot position when the
next replanned trajectory is ready. (b) Example of the transmitted single target (open,
white circles) oscillating back and forth across obstacle at each solver iteration, planned
from the black circles. Grey ellipsoids are the simulated obstacles. Images are from [35].

In the first dynamic obstacle case, the obstacle robot (SPHERES 2) was commanded to move between

fixed start points and end points. SPHERES 1, using ASTRO as an online planner was tasked with

moving from a starting point before SPHERES 2 to a final point past the end point of SPHERES 2 (i.e.

overtaking the second robot). In each optimisation cycle, the true state of SPHERES 2 was communicated

177

CHAPTER 4. TRAJECTORY OPTIMISATION

to MATLAB to create multiple a spherical obstacle constraints that effectively represented a cylinder

extending from the current position along the velocity vector to a predicted final position (assuming

constant velocity). Each of these constraints is modelled with a radius equal to double the radius of the

SPHERES. This radius is to represent the obstruction one SPHERES robot would present to another.

The results from this test case, while still affected by the implementation limitations discussed

above, did show that the planner could consider dynamic obstacles and adjust plans accordingly. For

instance in Fig. 4.27 the planned trajectory has adjusted to curve around the constraint represented by

the obstacle.

FIGURE 4.27. Planned trajectory (bold line) in one time instance around a real dynamic
obstacle (red sphere), with history of estimated robot states (blue line for SPHERE 1 and
red line for SPHERE 2) and transmitted targets (black stars). The trajectory is planned
from the closed black circle to the open black circle. Target points are spread due to
implementation limitations, but the planned trajectory is successful.

The second dynamic obstacle test case introduces a mix of virtual static obstacles and real dynamic

obstacles. In this case, SPHERE 2 was set to orbit a central, virtual spherical obstacle; a trajectory

that calls for more change in the velocity vector than the previous case, and hence presents a more

significant challenge as a dynamic obstacle. SPHERE 1 was tasked to move diagonally through the

permissible volume (a cube assigned inside the ISS), then traverse one of the sides of the permissible

volume before moving back along the other diagonal (i.e. a set of three different goal locations). The test

results demonstrate that the algorithm can handle complex scenarios with significant changes in the

motion of dynamic obstacles. In Fig. 4.28 it can be seen that the trajectory adjusts to curve around the

dynamic constraint successfully in the two different positions of the dynamic obstacle. Note that the

actual trajectory did not follow the sequence of planned paths and waypoints due to the single target

issues discussed above.

178

4.5. TRAJECTORY OPTIMISATION FOR SPACE-BASED ROBOTICS

FIGURE 4.28. Planned trajectory (bold line) at a two time instances around a real dynamic
obstacle (red shape) and simulated static obstacles (grey), with history of estimated robot
states (blue line for SPHERE 1 and red line for SPHERE 2). The trajectory is planned
from closed black circle to open black circle.

179

CHAPTER 4. TRAJECTORY OPTIMISATION

4.5.4 Lessons Learned

Despite the limitations in the implementation, the investigations were still able to demonstrate the

use of ASTRO in planning on-line from arbitrary locations, in a manner that could deal with dynamic

obstacles. There were also some important implementation lessons learned for on-line trajectory

planning, particularly:

• It is recommended not to use infrequent single waypoint communication. A full trajectory or a

section of a trajectory should be sent to the robot for it to follow.

• Careful consideration is required for designing the replanning strategy, in particular for:

– Selecting the commanded target along the trajectory to avoid potential oscillations in the

commanded path.

– Selecting where to initiate a new planning cycle.

• Uncertainty in the computational lag makes designing the replanning strategy very challenging.

• A suitably tuned inner-loop feedback controller to closely track the trajectory is critical to have a

reliable prediction of where the vehicle will be at a point in the future, to have smooth transitions

to newly planned trajectories.

Relatively simple measures could address many of the issues experienced: implementing the full

ASTRO algorithm and utilising the more modern hardware now available to enable the communication

of a full trajectory and a reduced computation time. Nonetheless, the lessons learned are still valuable

for implementation of on-line trajectory planning for other systems where the computation times are

slow compared to the vehicle dynamics.

To address the computation time issues, development work on ASTRO following the on-orbit tests

have looked to improve the optimisation efficiency, as presented in section 4.4.7. Alternatively, very

long planning times could be accommodated by sending a whole trajectory and having highly accurate

trajectory tracking, as described in the application to quadrotors in the Chapter 4.

The test results showed successful handling of dynamic obstacles, but they also identified areas for

improvement. One observation was that the method of representing the dynamic obstacle constraint

over time was too conservative, taking up too much of the feasible space that in reality was free to

traverse. Additionally, the modelling of the dynamic constraints by many spherical obstacles resulted in

a large number of constraints to check, slowing the optimisation computation. These observations have

informed the development of the dynamic obstacles presented in section 4.3.5, which represent only

where the obstacle is predicted to be, along with an increase in obstacle size to account for uncertainty.

The simulation test cases presented in section 4.4 are representative of scenarios similar to what might

be experienced for future applications of a SPHERES-like robot onboard the ISS.

180

4.6. CONCLUSION

4.6 Conclusion

On-orbit testing of an early version of the ASTRO algorithm demonstrated a capability for trajectory

optimisation with real dynamic obstacles and simulated static obstacles. Analysis of these results and

lessons learned informed further developments of ASTRO to enhance performance and expand the

capability of the algorithm to the current state presented in this chapter. By parameterising a trajectory

with Legendre polynomials, ASTRO can use a convex cost function that enables rapid optimisation of

feasible trajectories when used with a subspace-projection approach to enforce boundary conditions.

Adaptive constraint weighting along with iterative solutions to relaxed sub-problems allows for quick

optimisation even in problems with many constraints. When the problem is non-convex, a random

perturbation technique aids solutions by jumping trajectories out of infeasible local minima. ASTRO can

include a broad range of constraints, making it applicable to many scenarios. Performance constraints

can limit acceleration, both discrete obstacles and whole environments can be represented, or planning

can be restricted to free-space bounds and an entirely convex problem. Dynamic obstacles have their

location predicted, and size grown based on position uncertainty. This formulation opens more feasible

space to plan a trajectory, compared to previous methods, while remaining safe.

The set of simulated test cases presented in this chapter demonstrate the capability of the algorithm

in fulfilling the needs for the planning layer of the autonomous navigation stack. The application of

this capability will be expanded to quadrotors in the next chapter, including considerations of the

robot dynamics in the control layer. ASTRO is compared to the state-of-the-art in quadrotor trajectory

planning with a batch of simulated test cases. Flight demonstrations of ASTRO running on autonomous

quadrotors are then presented in Chapter 6, and the performance analysed. Chapter 7 describes the

application of ASTRO in an autonomous navigation system by combining the algorithm with localisation

and mapping layers from NURBSLAM.

181

C
H

A
P

T
E

R

5
TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

Attributions:

The majority of this chapter has been presented in two publications, [153] and [154], that are

primarily the work of the author of this thesis. In particular, [153] presents the work on differential

flatness transformations, and [154] covers the comparison of trajectory optimisation algorithms.

Co-authors for the papers contributed to idea development, coding implementation of existing

planning algorithms, and discussion of results.

This chapter expands from what is presented in the two publications; providing more details

on the theory of the differential flatness transformation and a more substantial comparison of

trajectory optimisation algorithms.

A
combination of the planning and control layers of the autonomous navigation stack are ad-

dressed in this chapter for a particular robotic system: quadrotors. With the increasing capability

of UAVs, in particular, quadrotors, there and many more use cases emerging, many of which

demand higher levels of autonomy, a crucial part of which is trajectory planning.

Trajectory planning for quadrotors can take advantage of the differential flatness transformation

that maps from a 3D position x, y, z, and heading, ψ, plus their derivatives through the full quadrotor

state to the revolutions per minute (RPM) of the motors. The transformation provides a convenient way

183

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

to consider orientation and the full dynamics of the quadrotor, while enabling a wide range of trajectory

optimisation techniques (such as ASTRO, the algorithm described in Chapter 4) to be applied.

The differential flatness transformation is a crucial part to quadrotor planning and control; hence the

transformation is analysed in detail in this chapter, highlighting sensitivities with existing techniques,

where they fail, and proposing new techniques to handle the sensitivities.

This chapter will then outline how ASTRO can be applied to quadrotor trajectory planning, extending

from and applying the theory in Chapter 4, with consideration of quadrotor dynamics. ASTRO will then

be compared against the state-of-the-art in theory and with simulations in obstacle-rich environments.

5.1 The Differential Flatness Transformation for Quadrotors

Attribution: The majority of this section has been presented in [153], which is the work of the

author of this thesis. More detail is presented here on the theory, and as well as analysis of more

methods of performing the differential flatness transformation.

For autonomous navigation, two key components are a trajectory planner and a trajectory tracking

controller. These components introduce many challenges when striving high-speed flight close to static

and dynamic obstacles. This type of flight requires an ability to fly with high linear and angular

accelerations, and is often referred to as aggressive flight [140]. For quadrotors, both trajectory planning

and control can utilise a property called differential flatness [164, 219]. Differential flatness allows

direct mapping from the flat-outputs of x, y, z and ψ (where ψ is yaw), plus their derivatives, through

the full quadrotor state to the flat-inputs: the revolutions per minute (RPM) squared for each motor.

A continuous trajectory planned in the flat-output space gives continuous motor RPMs in the flat-

input space, providing a convenient method to ensure a dynamically-feasible trajectory (given RPM

magnitudes are within limits).

For trajectory tracking controllers, a hierarchical architecture is often used with an outer-loop

position controller, and an inner-loop attitude controller [111, 118, 128], as depicted in Fig. 5.1. The

outer-loop controller gives a desired thrust vector (Tsp) that is transformed through the differential

flatness transformation to the desired attitude (qsp) and thrust magnitude (T). The inner-loop attitude

controller tracks this attitude, outputting torques (τ) that are mixed with T to compute target RPMs

for each motor controller.

This planning and control architecture utilising differential flatness has been widely employed to

great effect [5, 26, 61, 63, 121, 139, 165, 216]. Additionally, the differential flatness transformation is

commonly discussed as a key part for trajectory planning [111, 128] and is a core part of the controller

by Lee [118].

Despite the frequent and successful use of the differential flatness transformation, there are

known singularities that occur: 1) when there is zero thrust (when gravity fully achieves the desired

acceleration), and 2) when the desired thrust vector is in the xy plane and aligned with the desired

direction of travel (e.g. pitched forward at 90◦). The first singularity is a fundamental limitation of the

transformation, founded on the notion that the desired thrust direction sets the quadrotor attitude. The

184

5.1. THE DIFFERENTIAL FLATNESS TRANSFORMATION FOR QUADROTORS

second singularity and the sensitivity of states near this singularity are because of the use of yaw to set

the desired heading and is something that can be managed with a range of methods.

In this section, the differential flatness transform for quadrotors will be described, and the singulari-

ties highlighted. Existing methods to address the singularity are reviewed, and then a combined method

is proposed that is designed to be robust through all orientations. An assessment of these methods is

then made to demonstrate where issues can occur.

5.1.1 Description of the Transformation

A thorough description of the differential flatness transformation can be found in references such as

[118] and [139]; the main steps are repeated here. The states, x, y, and z and their derivatives up to snap,

along with ψ and its derivatives up to acceleration, are required to perform the full transformation.

FIGURE 5.1. Block diagram of the hierarchical tracking controller considered in this work.
Here, xsp and ψsp are the position and yaw set points for the outer position controller,
which outputs the thrust set point Tsp. The differential flatness transformation provides
the attitude set point qsp to the inner attitude controller. The attitude controller outputs
torques (τ) that are mixed with thrust magnitude T to compute motor RPMs.

FIGURE 5.2. Quadrotor body-axes (subscript b), global axes (subscript g), interim yaw axes
(subscript c), and second angle axes (subscript csa, with angle γ). East, North, Up (ENU)
convention.

185

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

5.1.1.1 Orientation

The starting assumption is that the thrust vector of the quadrotor sets the direction of the z body-axis,

zb (see Fig. 5.2). Hence, from a planned trajectory that gives the desired acceleration ẍsp, the thrust

vector, T, is defined, that sets the direction of the z body-axis, zb:

T= ẍsp − zg g̃ (5.1)

zb =
T

||T||
(5.2)

where g̃ is the acceleration due to gravity, and zg the global z unit vector. The subscript g denotes the

global axes. The first type of singularity occurs in Eq. 5.2 when the thrust magnitude is zero.

The desired yaw angle, ψsp sets the vector xc: a unit vector in the xy plane pointing in the desired

heading direction. The cross product of zb with xc gives an orthogonal vector, yb, that represents the

y body-axis direction. The cross product of this vector with zb gives a third orthogonal vector xb; this

provides the x body-axis, giving the overall orientation R:

xc =
[

cos(ψsp), sin(ψsp), 0
]T

(5.3)

yb =
zb × xc

||zb × xc||
(5.4)

xb = yb × zb (5.5)

R=
[

xb, yb, zb

]

(5.6)

The second source of singularities occurs in Eq. 5.4, when zb × xc = 0, i.e. when zb is parallel with

xc.

5.1.1.2 Angular Rates

The angular rates, ω, are computed using both jerk, x(3), and the z body-axis. The pitch and roll rates

(ω1 and ω2) can be extracted using:

hw =
m

T
(x(3) − (zb · x(3))zb) (5.7)

ω1 =−hw · yb (5.8)

ω2 =hw · xb (5.9)

The yaw rate, ω3, is then extracted by projecting the rate of change of yaw, ψ̇, onto the z body-axis,

zb.

ω3 = ψ̇zg · zb (5.10)

186

5.1. THE DIFFERENTIAL FLATNESS TRANSFORMATION FOR QUADROTORS

5.1.1.3 Angular acceleration

Angular acceleration, ω̇ proceeds similarly to angular velocity, using snap, x(4), with a utility vector hα

first being computed:

hα =
m

T

[

x(4) − (zb · x(4))zb (5.11)

+
T

m
(zb · (ω×ω× zb))zb

−
T

m
ω×ω× zb

−2ω× (zb · x(3))zb)
]

that then gives the first two rotational accelerations:

ω̇1 =−hα · yb (5.12)

ω̇2 =hα · xb (5.13)

Deriving the third angular acceleration uses the yaw acceleration:

ω̇3 = ψ̈zw · zb (5.14)

5.1.1.4 Controls

The extraction of the torques, τ, uses the angular accelerations and moments of inertia Ī:

τ= Īω̇+ω× Īω (5.15)

The torques, along with the thrust magnitude (length of thrust vector in Eqn. 5.1), gives the control

inputs, which can be mapped back to the required RPM, Ω, through:

Ω1
2

Ω2
2

Ω3
2

Ω4
2

=

k f k f k f k f

0 k f L 0 −k f L

−k f L 0 k f L 0

km −km km −km

−1

||T||
τ1

τ2

τ3

(5.16)

The variables k f and km are the thrust and torque coefficients respectively (i.e. Force1 = k f Ω1
2),

and L is the moment arm of the rotors about the centre of mass.

5.1.1.5 Differential Flatness and Optimisation of Snap

The transformation progresses from the flat-outputs, of x, y, z and ψ through to the flat-inputs, of

the RPM squared, Ω
2. These steps also compute the full quadrotor state, including the attitude,

angular rates, angular accelerations, force and torques. The reason for minimising snap in trajectory

optimisation is now more clear with the full explanation of transformation. The RPM squared, Ω2, is

187

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

directly proportional to the torques, τ (Eqn. 5.16), which in turn are directly proportional to the angular

acceleration, ω̇ (Eqn. 5.15). The angular accelerations for pitch and roll are then directly proportional to

the hα vector (Eqn. 5.12). hα is is a linear function of snap, x(4), (Eqn. 5.11). Hence snap has a linear

relationship to the RPM squared, x(4) ∝Ω
2. This relationship means that by minimising snap, there is

a direct minimisation of the RPM squared. Similarly, the yaw torque is directly proportional to the yaw

acceleration; this is why it is desired to minimise the yaw acceleration in trajectory optimisation.

5.1.2 Singularities

There are two singularities in the transformation, which were identified above. Firstly, in Eqn. 5.2 when

there is zero desired thrust (when gravity fully achieves the desired acceleration). Secondly, in Eqn. 5.4

when the desired thrust vector is in the xy plane and aligned with the desired direction of travel (e.g.

pitched forward at 90◦).

The first singularity is a fundamental limitation of the transformation, which is founded on the

notion that the desired thrust direction sets the quadrotor attitude. This singularity can be avoided

though by setting a constraint on the minimum thrust in both the planning algorithms and controllers.

The second singularity, when zb is parallel with xc, can occur in two orientations, with both positive

xc and negative xc. While it is not likely that a quadrotor will exactly reach this singularity, the

transformation is highly sensitive at states near this singularity, when ||zb × xc|| is small. Manoeuvres

that have the quadrotor thrust vector passing through the horizontal plane have a chance of experience

the sensitivity in the transform, resulting in erroneous or rapidly changing output transformations,

as will be shown in the following sections and flight tests in Chapter 6. Therefore, the sensitivity of

states near this second singularity is something that needs to be managed carefully. Methods to address

the second singularity will be explored here, assessing existing methods, and proposing new methods,

with the goal of supporting flight through all range of orientations. Throughout the rest of this thesis,

singularity refers to this second type.

5.1.3 Existing Methods to Address the Singularity

In this section, a range of methods to address the singularity in the differential flatness transform

are reviewed. In the subsequent subsection, each of these approaches will be analysed to assess their

limitations.

5.1.3.1 Standard Method

The transformation described in the previous section is referred to as the Standard transformation.

Many quadrotor systems use the Standard transformation without any modifications [5, 62, 118, 165]

and it is the transformation that is described in review papers [111, 128]. Numerous quadrotor systems

applications have used the controller by Lee et al. [118], which assumes the singularity is not met.

These applications have been very effective, such as Allen et al. [5] navigating through crowded indoor

environments, and deal with the singularity by operating in a regime far from it: flying with relatively

small deviations from the hover state. Falanga et al. [62] and Neunert et al. [165] push the dynamics up

188

5.1. THE DIFFERENTIAL FLATNESS TRANSFORMATION FOR QUADROTORS

to 45◦ and 30◦ of roll respectively, using the Standard transformation, however, their demonstrations

are far from the singularity at 90◦.

5.1.3.2 Negative Check Method

Mellinger et al. [139] demonstrate more aggressive flight, with up to 90◦ of roll through a window,

operating in states that could be approaching the singularity in the transformation (also subsequently

demonstrated by Loianno et al. [121]). They note that the negative x and y body-axes can be consistent

with the desired yaw angle and desired zb, and check which of (xb, yb, zb) or (−xb,−yb, zb) are closest

to the current orientation. The closest axes-set is then used as the output of the transformation.

The approach of [139] has been used very effectively for autonomous navigation in ships [63], and

through indoor environments [26], however only with moderate roll or pitch angles. [139] and [121] only

demonstrate roll in isolation and do not exceed 90◦; therefore they do not operate near the sensitive

regions of the transformation.

5.1.3.3 Second Angle Method

Thomas et al. [216] use a method that enables orientations holding at 90◦ for an extended period, and

extending past 90◦, with flight demonstrations of a quadrotor perching on both vertical surfaces and the

underside of inclined surfaces. To move away from the singularity their approach employs an additional

working angle, γ, to rotate the xc vector in the vertical plane:

xc =
[

cos(ψ)cos(γ), sin(ψ)sin(γ), sin(γ)
]

(5.17)

This second angle moves xc away from the xy plane to avoid being parallel with zb. Fig. 5.2

illustrates the movement of an axes-set from γ. While their approach moves the location of singularity,

it does not remove it. The demonstrations in [216] show the effectiveness of their approach; however, the

examples only operate with one axis of rotation (pitch), rather than the full range of quadrotor motion.

5.1.3.4 Angular Rates

Another approach to the differential flatness transformation is described in [87, 157]. They take the

flat-outputs of x, y, z, and their derivatives up to jerk, to get inputs of the x and y angular rates (ωx

and ωy) and thrust. The z angular rate (ωz) is user set, normally to a constant 0. Their transformation

avoids the singularity but relies on the assumption that the current attitude is already in the correct

direction for the planned acceleration. This approach is shown to be sufficient for agile manoeuvres, but

in cases with highly accurate state estimation (with external tracking systems), and low tracking error.

In systems with lower quality estimates of attitude, more significant disturbances and more substantial

tracking errors, the core assumption: that the desired acceleration is aligned with the current attitude,

is likely to break down.

189

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

5.1.3.5 Inverted flight

None of the previous work described above has demonstrated highly-aggressive flight with 360◦

rotations through inversion. Some examples demonstrate such flight, but these tend to employ switching

controllers that split the trajectory into simplified segments including launch, ballistic trajectory,

constant roll rates, and recovery. These methods either learn a set of parameters for the simplified

manoeuvre, such as multiple flips [126, 140], or fit a model to the flight of an expert pilot [1, 71]. The

segmentation and simplification of the manoeuvres avoid any singularities; however, this approach is

restricted to a limited range of dynamics.

5.1.3.6 Recovery

One of the key components of aggressive manoeuvres, such as those mentioned above, is the recovery

phase. Faessler et al. [61] developed an autonomous recovery controller that manages the differential

flatness transformation effectively. Their approach splits control of the pitch and roll rates from the

control of the yaw rate. First, the angular error for pitch and roll is derived, independent of the

singularity, to give the correct zb. Multiplying the errors by a gain gives desired pitch and roll rates.

The additional rotation required due to yaw is computed using the standard differential flatness

transformation, but as the roll and pitch rates are already determined, the yaw rate can simply be set

to zero when the singularity is met. Additionally, if the zb axis is pointing down, then negative xc is

used, very similar to the default transformation in the PX4 flight controller [138]. This approach was

shown to be successful as part of aggressive manoeuvres in Falanga’s work [62], including from inverted

attitudes. However, these recoveries are to a commanded horizontal attitude, and hence the system is

never commanding 90◦ pitch or roll or inverted orientations, where the sensitivities occur.

5.1.3.7 Summary

Each of the differential flatness transformation methods described above has limitations that can

cause the transformation to fail in certain scenarios. While the singularity may be avoided, the next

section shows that there are still issues around the singularity and in transitions near it, where the

transformations give large changes in attitude with a small change in the acceleration vector.

5.1.4 Analysis of Differential Flatness Transformations

This section presents an analysis of the transformation methods described in the previous section,

highlighting where issues may arise. New methods are proposed that address these issues, which are

subsequently analysed. A summary of this analysis is presented in Table 5.1. The goal is to show the

limitations of each method and identify the best method for applying differential flatness throughout

the entire flight envelope of a quadrotor.

5.1.4.1 Standard

The Standard transformation suffers directly at the singularity, yet of greater concern, is the change in

attitude on either side of the singularity. For example; when the zb axis transitions from above the xy

190

5.1. THE DIFFERENTIAL FLATNESS TRANSFORMATION FOR QUADROTORS

plane to below in a pitching forward manoeuvre (Fig. 5.3), the direction of the yb axis coming out of

the cross product in Eq. 5.4 flips 180◦. This flip of the y-axis then flips the xb axis, giving a substantial

change in attitude.

FIGURE 5.3. Pitching forward by 10◦ through a 90◦ pitch angle, and the singularity. Desired
attitude is commanded through the z body-axis (acceleration) and desired yaw angle
(zero here). (a) Standard method failing. (b) Negative Check method succeeding. Axes
slightly before 90◦, are in blue, and axes slightly after 90◦ are in red. The black dashed
axes represent the global coordinate frame.

5.1.4.2 Negative Check

A solution to this issue is to take the Negative Check method proposed by Mellinger [139], or the PX4

method [138]. Negating xb and yb, maintains a similar attitude through the transition (see Fig. 5.3.b).

The Negative Check approach is still susceptible at the singularity though and is sensitive when

pitching through 90◦ near the singularity (Fig. 5.4.a). Both the Negative Check method and the PX4

method can have issues when there are fast dynamics near the singularity.

5.1.4.3 Second Angle

The Second Angle method described by Thomas et al. [216], is successfully able to avoid the singularity

by moving where it is encountered, but introduces challenges in controlling the second angle, γ, when

striving for robust performance through all orientations. Setting a constant angle only shifts the

singularity. Not controlling γ correctly could also lead to discontinuous jumps. If the approach is taken

to set γ so that xc is always chasing or leading zc, a 360◦ pitching manoeuvre can successfully be

described. Nevertheless, this same approach will fail when rolling through 90◦. If this approach is

combined with checking the negative set of the result, then the second angle approach can perform well

in most scenarios.

191

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

FIGURE 5.4. Pitching forward by 10◦ through a 90◦ pitch angle near the singularity (yaw at
5◦). Desired attitude is commanded through the z body-axis (acceleration) and desired
yaw angle. (a) Negative Check method failing. (b) Combined methods succeeding. Axes
before the transition are in blue and axes after the transition are in red. The black
dashed axes represent the global coordinate frame.

5.1.5 New Approaches to Address the Singularity

Continuing from the discussion on the limitations of methods to address the singularity, several methods

are proposed and analysed here, taking inspiration from other methods in the literature.

5.1.5.1 Using Other Axes

Another approach for dealing with the singularity is to recognise that it is possible to use both xc and

yc as the axis in the intermediate frame, when taking the problematic cross product in Eq. 5.4. i.e. the

body-axes could be equivalently determined by:

yc =
[

−sin(ψ), cos(ψ), 0
]T

(5.18)

xb =
yc × zb

||yc × zb||
(5.19)

yb = zb × xb (5.20)

Two methods can be used to select the best vector to use: 1) taking the vector that is closest to

90◦ from zb (the Check Furthest method) or 2) selecting the vector that gives a resulting xb closest to

the current xb (the Check Current xb method). These approaches can be quite effective, but still have

sensitive regions: when transitioning through the decision point for xc and yc (Fig. 5.5.b), and when the

body x-axis is moving through a vertical orientation (Fig. 5.5.a).

192

5.1. THE DIFFERENTIAL FLATNESS TRANSFORMATION FOR QUADROTORS

FIGURE 5.5. Two examples where the differential flatness transformations fail. The desired
attitude is commanded through the z body-axis (acceleration) and desired yaw angle.
(a) Pitching backward by over 100◦ through a −90◦ pitch angle with zero yaw: Negative
Check, Check Furthest and Check Current xb methods fail with a 180◦ flip in the y-axis.
The scenario comes from a split-S manoeuvre. (b) A small change in yaw with thrust in
the xy plane: Check Furthest and PX4 methods fail with 90◦ rotation in x and y axes.
The axes before the transition are in blue, and the axes after the transition are in red.
The black dashed axes represent the global coordinate frame.

Alternatively, the current body-axes, xb and yb can be used in place of xc and yc, ensuring that

the axes used in the cross products will always be nearly orthogonal to zb (referred to here as the Use

Current xb method). While effective, this approach sacrifices the ability to control yaw, instead simply

maintaining the previous orientation, or drifting with the current attitude estimate.

5.1.5.2 Quaternions

Recognising that some of the issues experienced are due to the use of Euler angles (as yaw is used to

describe orientation), quaternions could instead be used in the differential flatness transformation.

Rather than operating with the flat-outputs of x, y, z,ψ and their derivatives, this approach uses x, y, z,

and q3, the z component of the vector part of the quaternion. Details of this representation are presented

in Appendix D. Issues with a large invalid region around 180◦ yaw reduce the effectiveness of the

current version of this approach.

5.1.5.3 Pitch and Roll Only

If the application is agnostic to the yaw angle, then a method inspired by the angular error calculations

in [61] can be used. The required rotation from the global z-axis, zg, to the desired body z-axis, zb, can

be described by a quaternion (q), giving the attitude of the vehicle:

193

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

β= arctan2
(||zg × zb||

zg · zb

)

(5.21)

n=
zg × zb

||zg × zb||
(5.22)

q=
[

cos(β/2)

nsin(β/2)

]

(5.23)

where β is the angle of rotation and n is the axis of rotation. When zg is parallel to zb, the orientation

is known: the identity quaternion. This method avoids any issues with singularities or sensitive regions

but does not grant any control of yaw.

5.1.5.4 Combined Methods

The proposed methods to address the issues with the singularity, while maintaining the ability to set

yaw, is to combine methods. The underlying philosophy is to compute the transformation with multiple

different approaches, and then select the result giving the smallest change in orientation. The body-axes

can be computed with xc, yc and the second angle approach (using a constant, fixed γ= 15◦). These

computations give three possible solutions, plus another three from taking the negative xb and yb

of their results, giving a total of six axes-sets. Each of these axes-sets can be compared against the

previously computed orientation1 and the closest matching result selected.

Using just four axes-sets2, referred to as the Four Axes Combined method, can achieve good

performance for the scenarios above. However, issues can still be encountered, as depicted in Fig. 5.6.a

for a scenario of pitching when at 90◦ roll, a scenario that was experienced in flight.

1In a controller, the previous attitude set-point is used as the orientation to compare the axes-sets. Alternatively the
current attitude could be used; however, this was found to be inferior in flight tests.

2The result from using xc and yc as well as the negative xb and yb of their results.

194

5.1. THE DIFFERENTIAL FLATNESS TRANSFORMATION FOR QUADROTORS

FIGURE 5.6. Pitching by 5◦ while at 90◦ roll (yaw at 90◦). Desired attitude is commanded
through the z body-axis (acceleration) and desired yaw angle. (a) Four Axes Combined
method failing. (b) Six Axes Combined method succeeding. Axes before the transition
are in blue and axes after the transition are in red. The black dashed axes represent the
global coordinate frame.

Introducing more axes from the second angle method gives an orientation option of lower error in

the region of sensitivity. This combination is referred to as the Six Axes Combined method. Fig. 5.7

shows the selection of the closest axes result and the error for each axes-set throughout a trajectory. At

the point where 90◦ of roll is reached, there is a substantial change in the axes using xc, yc, as shown

by the large changes in the axes errors (Fig. 5.7.a centre). The second angle method is not as sensitive

in that same region and can maintain a feasible trajectory, (Fig. 5.7.b centre, purple line).

The Six-Axes Combined method is robust enough to cover the spread of possible dynamic transitions

tested without large discrete changes in orientation.

195

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

FIGURE 5.7. Closest axes selection and error between each axes-set and the current orienta-
tion. Values presented through an aggressive roll manoeuvre with pitching when at 90◦

roll. Two methods compared: (a) Four Axes Combined method, (b) Six Axes Combined
method. For (a) and (b), top: selected axes index, center: error for each axes-set and
bottom: resulting orientation as Euler angles. The Four Axes method results in 180◦

yaw rotation. The Six Axes method does not and has a smaller error throughout. Axes
order for errors is: 0: xc, 1: xc negated, 2: yc, 3: yc negated, 4: second angle, 5: second
angle negated.

5.1.6 Summary of Analysis

The performance of each of the approaches for a range of challenging scenarios is summarised in

Table 5.1. A method is deemed to have failed if there is a discontinuous jump or an extremely rapid, and

large, change in attitude. Across the full range of possible dynamics, the Six Axes Combined method is

the best approach, being the only method to succeed in all cases and still enable control of yaw.

The analysis of the different methods for dealing with the singularity is hoped to provide insight

into the limitations of the different approaches, to enable selection of the most appropriate method for a

given application.

While the Six Axes Combined method performs the best over the range of scenarios, it comes with

approximately three times greater computational expense than the Standard method. If the application

for a quadrotor will not have any large expected roll or pitch angles, then the Standard method may be

sufficient. If control of yaw is not essential in the application, then the Pitch-and-Roll-Only method is a

196

5.2. ASTRO FOR QUADROTORS

TABLE 5.1. Performance summary of differential flatness methods.

Test Case

Method Section A B C D E F G All

Standard (5.1.3.1) 0 0 0 0 1 0 1 0
Neg. Check[139] (5.1.3.2) 0 1 0 1 1 0 1 0
PX4 [61, 138] (5.1.3.2) 1 1 1 1 0 1 0 0
2nd Angle[216] (5.1.3.3) 1 1 1 1 1 1 0 0
Check Furthest (5.1.5.1) 1 1 1 1 0 0 1 0
Check Current xb (5.1.5.1) 1 1 0 1 1 0 0 0
Quaternions* (5.1.5.2) 1 1 1 0 0 0 1 0
Use Current xb* (5.1.5.1) 1 1 1 1 1 1 1 1
Pitch and Roll* (5.1.5.3) 1 1 1 1 1 1 1 1
4 Axes Comb. (5.1.5.4) 1 1 1 1 1 1 0 0
6 Axes Comb. (5.1.5.4) 1 1 1 1 1 1 1 1

For each Method and Test Case, 1 is pass and 0 is fail. Test Case A:
Singularity. B: Pitch 90◦ through singularity. C: Pitch 90◦ yaw 5◦

D: Roll through 90◦ with 180◦ yaw. E: Yaw with thrust in xy plane.
F: Pitch backwards through 90◦. G: Pitch at 90◦ roll, through x-axis.
*Full control of yaw not possible.

good selection, providing a quick and straightforward method for computing the required orientation.

For highly-aggressive trajectories through 90◦ and inversion, the Six Axes Combined method is

selected and demonstrated in both simulated and real-world flights in Chapter 6.

5.2 ASTRO for Quadrotors

The state-of-the-art algorithms for planning trajectories for quadrotors use polynomial optimisation of x,

y, z, and yaw (ψ) to minimise the integral of snap squared between a set of waypoints. As was described

in Section 5.1.1.5, snap is directly proportional to RPM squared, hence a smooth and minimised snap

trajectory gives smooth and minimised motor RPMs. A sampling-based planner, such as RRT* [102], is

most commonly used to generate the waypoints between which a trajectory is optimised. For obstacle

avoidance, the leading approaches either use a check-and-adjust approach, with the pre-planned, known

obstacle-free path [26, 63], an obstacle representation of the environment [170], or sets of convex regions

within which to plan [32, 114, 147].

The approach taken here for planing with quadrotors is similar to the state-of-the-art: using a

polynomial optimisation with separate polynomials for x, y, z and ψ, and the objective to minimise snap

for x, y, z and acceleration for ψ. The trajectory is planned in multiple segments between waypoints,

which could come from a sampling-based planner, by a flown and recorded trajectory, or by user input.

As will be described in this section, only minor modifications are required for ASTRO to be applied

to quadrotors. While similar to the state-of-the-art techniques, the key differences with ASTRO are how

the optimisation considers obstacles, the types of obstacle representations that are possible and the

method of optimisation.

197

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

5.2.1 Modifications to ASTRO for Application to Quadrotors

The first change for ASTRO is adding a dimension to the standard x, y, z, to include ψ. The second

change is to have the integral of snap squared as the cost function; this change involves choosing ξ= 4

in Eq. 4.1 and 4.2. The snap trajectory for dimension i is then represented by:

x
(4)
i

(t′)=
N
∑

k=0
CikPk(t′) (5.24)

With the cost function unchanged (Eq. 4.8). Boundary and continuity conditions are considered up

to snap (q = ξ= 4 in Eq. 4.24) and are implemented to have all derivatives fixed for the first and last

waypoints, and only the position fixed for inner waypoints. This configuration of boundary conditions,

along with the continuity conditions restricts six degrees-of-freedom per segment: five at the start of a

segment from continuity constraints and one at the end for the position boundary condition. The final

segment grants no additional degrees-of-freedom with continuity constraints at the start and boundary

conditions at the end.

In the differential flatness transformation, the yaw acceleration is directly proportional to the RPM

squared (see Section 5.1.1.5), similarly to how snap is for position, hence yaw is optimised with ξ= 2, i.e.,

the cost is the integral of acceleration squared, and the yaw acceleration is represented with Legendre

polynomials:

ψ(2)(t′)=
N
∑

k=0
CikPk(t′) (5.25)

5.2.2 Comparison with Existing Planners

The key areas of contrast between ASTRO and leading algorithms in literature are the method of

optimising snap and the method of considering obstacles. These areas will be expanded below. In the

discussion, ASTRO will be compared in particular to two leading algorithms from the literature: from

Bry et al. [26] and from Campos-Macias et al. [32]. These planners will further be compared with

simulations and flight tests in later sections and chapters.

5.2.2.1 Snap Optimisation

The changes in parameterisation to adapt ASTRO for quadrotors allows the subspace-projection

gradient-descent optimisation to be used for x, y and z to minimise snap, and for ψ to minimise

acceleration. This projected gradient-descent method of snap optimisation differentiates ASTRO from

the state-of-the-art. The review of literature in Section 2.3, outlined how the optimisation of snap is

proposed, for a single dimension, as a quadratic program that is constrained by boundary conditions:

min
Ci

CT
i WCi GCi =di (5.26)

where the W matrix encapsulates the snap squared cost, Ci are the polynomial coefficients to be

optimised, and GCi =di are the equality constraints representing the boundary conditions. A direct

solution can be computed using Lagrange multipliers if the number of coefficients (the order of the

198

5.2. ASTRO FOR QUADROTORS

polynomial) is equal to the maximum number of boundary conditions for a segment: e.g. 10 if boundary

conditions are included up to snap. This direction solution is [63]:

Ci =W−1GT (GW−1WT)−1di (5.27)

The W matrix can often be ill-conditioned though, making inversion problematic; hence adjustments

are made, such as by Fang et al. [63] who add a regularisation term: W =W + ǫI to make the matrix

invertible, where ǫ is a small number and I is the identity matrix. In contrast, Bry et al. [26] modify the

problem via substitution of the derivatives at the waypoints, Ci =G−1di, to give a cost function of:

min
di

dT
i G−TWG−1di (5.28)

where di includes all derivatives at each waypoint. Only the free-derivatives need to be solved for;

therefore the matrix G−TWG−1 is partitioned to simplify the problem. The substitution for the deriva-

tives inherently enforces the boundary conditions, translating the problem into an unconstrained

optimisation. Other approaches, such as by Thomas et al. [216], use commercial optimisers to generate

solutions, but for more complex scenarios with the inclusion of inequality constraints.

The subspace-projection gradient-descent optimisation of ASTRO has three main benefits over exist-

ing approaches. Firstly, higher order polynomials can be used to represent the trajectory. Additionally,

all dimensions can be considered together in the optimisation, rather than being optimised separately.

Finally, the formulation allows for incorporation of a range inequality constraints. These benefits are

elaborated below.

The order of the polynomial for ASTRO is flexible and can be increased as desired. In contrast, the

substitution approach of Bry et al. [26] fixes the order so that the number of coefficients is equal to the

number of free and fixed derivatives at the boundary conditions. Increasing the order of the polynomial

grants the capability to have more complex trajectories when other constraints are introduced. The

trade-off with having higher order polynomials is higher complexity in generating a solution because

there are more coefficients to optimise.

There is a similar trade-off in complexity by incorporating all dimensions in the same optimisation.

The problem becomes large, with many parameters to optimise when the coefficients from each dimen-

sion are included in the one optimisation. Combining dimensions, though, enables the use of constraints

that mix dimensions, such as obstacles, ellipsoidal performance constraints, free-space corridors, or

perception constraints. Without mixing dimensions, the constraints can only be specified independently

for each dimension, giving box type constraints. Dimensions can also be separated for ASTRO though,

such as planning yaw separately, if there are no constraints that mix yaw and position.

The minimum snap formulations of [63] and [26] assume that there are only the equality constraints

as boundary conditions, hence if it is desired to include additional constraints such as obstacles and

performance limitations, a more sophisticated optimisation tool is required, as done by Thomas et

al. [216]. ASTRO is capable of including obstacles, free-space bounds and performance constraints in

the snap optimisation, as outlined in the previous chapter. This enhanced capability brings in greater

complexity, though, and longer computation times.

199

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

5.2.2.2 Quadrotor Planning with Obstacles

The most robust existing algorithms for trajectory planning with obstacles use a combination of a

sampling-based planner to get an obstacle-free path, giving the waypoints for a trajectory optimisation

algorithm to produce a dynamically smooth trajectory, as explained in Chapter 2.

ASTRO provides the middle ground between a sampling-based planner that can produce paths in

geometrically complex obstacle fields and a trajectory optimisation algorithm that creates a dynamically

optimal trajectory but does not consider obstacles. The algorithm can produce dynamically optimal

trajectories through obstacle fields by using a mix of obstacle representations incorporated into the

trajectory optimisation, as described in Section 4.3.3. This capability allows fewer waypoints to be

specified, relaxes the requirements for a prior obstacle-free path and grants more freedom to where the

trajectory can move to optimise dynamics, e.g. minimising snap.

In contrast, Bry et al. [26] use a trajectory optimiser that does not consider obstacles in the

environment and relies on a prior collision-free path. Extra waypoints are added from the collision-free

path in segments that are found to be in a collision, and the trajectory re-optimised. This approach can

be over-constraining in environments with tight confines, as it forces the trajectory closer to the planned

path each time a waypoint is added. The planned path is not dynamically optimal; hence the resulting

trajectory will not be as dynamically smooth as otherwise possible. ASTRO takes away the need to add

waypoints, allowing smoother trajectories, but at the cost of increased computation time. For further

discussion, the approach of Bry et al. [26] is referred to as the UNConstraint Optimiser (UNCO).

The algorithm from of Campos-Macias et al. [32] plans in free-space rather than with consideration

of obstacles. Hypercube constraints (bounds separately on each dimension) are used on position, velocity

and acceleration at a set of sub-waypoints. The sub-waypoints have specified spacing and segment times

to assure the trajectory remains within sets of cylindrical, free-space bounds. Each segment between

waypoints is sampled to find the minimum distance to an obstacle for that segment. This minimum

distance sets the size of the free-space bounds: lmax, that is used to set the physical spacing, l, between

sub-waypoints along the straight-line paths in d dimensions:

l =
2lmax

3
p

d
(5.29)

This spacing, along with a user set maximum acceleration, Amax are used to define hypercube

constraints on position, velocity and acceleration. The bounds of these constraints are defined by l for

position, Vmax for velocity and Amax for acceleration. Vmax is given by:

Vmax =
√

lAmax (5.30)

The time for each sub-segment is fixed to h, based on the maximum acceleration and waypoint

spacing:

h =

√

4l

Amax
(5.31)

These bounds, sub-waypoint spacing and time specification assure the trajectory will remain within

lmax from the straight-line paths, hence restricting the trajectory to stay in free space. The resulting

200

5.2. ASTRO FOR QUADROTORS

constrained optimisation of a trajectory between the sub-waypoints could be performed in several ways.

Campos-Macias et al. [32] optimise polynomial coefficients to minimise acceleration in a constrained

quadratic program with both equality and inequality constraints. Alternatively, the formulation of Bry

et al. [26] could be used to comply with all fixed boundary conditions, and the inequality constraints

included in a convex optimisation with an available solver such as cvxopt [8], to minimise snap. For

further comparisons, the approach of Campos-Macias et al. [32] is referred to as the Tube And Cube

Optimiser (TACO). TACO gives an assured collision-free trajectory but does so with very conservative

cylindrical bounds around each segment.

ASTRO could also be used with representations of free-space by using cylindrical keep-in corridor

constraints around each segment, with a radius equal to lmax. This representation gives an entirely

convex problem to solve, enabling quicker solutions, but with the result of more conservative trajectories.

When using the criteria to exit when feasible, as outlined in Section 4.3.6.5, the full environment could

be used to check feasibility, instead of the corridor constraints. This method of feasibility checking

allows more use of free-space and less conservative trajectories, at the penalty of performing additional

collision checks. These two variants of ASTRO are referred to as ASTRO-C when using the corridors to

check feasibility, and ASTRO-CE when using the full environment to check feasibility.

Another advantage of ASTRO is that a mix of obstacle representations can be used in the one

optimisation, with no change to the formulation. For instance, an ESDF could be used to represent

the large-scale static environment, with ellipsoid obstacles added in for newly observed features, or

dynamic obstacles.

A comparison of ASTRO and the state-of-the-art techniques will be presented in Section 5.3, with a

particular focus on the differences in handling obstacles.

5.2.2.3 Performance Constraints

Dynamic-feasibility is already considered, to a large extent, by utilising the differential flatness trans-

formation and minimising snap. This approach gives continuous evolution of the states and controls

for the quadrotor. The remain dynamic-feasibility element to check is the control limits. Ideally, the

control limits could be checked directly with the RPM of the motors, where the physical restrictions

are. Many existing approaches use a check-and-adjust approach to observe the limit. These approaches

decrease the trajectory time until the controls exceed a limit, as done with UNCO. Alternatively, The

limits on RPM can be mapped back into constraints on velocity, acceleration, jerk and snap to include a

performance limitation directly in the optimisation, such as done by Thomas et al. [216]. For example, a

limit on acceleration could be used to represent a net thrust limit.

Performance constraints can be included in ASTRO by using keep-in spherical ellipsoid constraints

(Eqn 4.43) that operate on velocity, acceleration or higher derivatives. The inclusion of performance

constraints becomes another trade-off though, as it adds to the complexity of the search space, making

the problem slow to solve. Performance constraints are not used in the problems presented here; they

are a capability that could be explored in future work.

There may also be dynamic violations if the rate of change of RPM is too large, in which case more

detailed modelling of the rotor dynamics could be used. A simple proxy for this though is to minimise

the integral of snap squared, i.e. to minimise the variation in RPM, as is done here.

201

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

5.3 Quadrotor Trajectory Optimisation - Simulation Comparisons

Attributions:

The analysis and results presented in this chapter have been previously presented in [154], and are

the work of the author of this thesis.

In this section, ASTRO is compared to two algorithms from the literature to assess the relative perfor-

mance for planning high-speed trajectories for quadrotors near obstacles. The desired characteristics

for planned trajectories are:

1. Feasibility: to safely avoid all obstacles.

2. Low computation time.

3. Dynamic-feasibility: to accurately track the trajectory.

An assessment of the first and second criteria is currently presented here with a batch of planning

test-cases in representative environments. Flight tests presented in the next chapter assess the third

criteria. The batch of test cases run the algorithms over a broad range of scenarios, to assess how reliably

the algorithms can generate feasible trajectories, and the time taken to generate those trajectories.

First, the implementation of the algorithms will be presented, followed by details on the generation

of tests cases. Results will then be presented and discussed.

5.3.1 Algorithm Implementation

UNCO and TACO are compared with three variants of ASTRO. The algorithms are selected to have

the equivalent capability with a spread of approaches to optimising trajectories with obstacles. Each of

the algorithms plans x, y, z, and ψ, with ψ set to be along the trajectory. Euclidean Signed Distance

Fields (ESDFs) are the obstacle representation used, being a compact and effective way to model all

of an environment, and a representation that is suitable for each of the three planners assessed (see

Section 4.3.4.4 for details on ESDFs).

UNCO has no consideration of obstacles but is run iteratively, with an extra waypoint inserted from

a known obstacle-free path for segments with collisions. The algorithm requires an obstacle-free path

as input to be able to plan collision-free trajectories.

TACO also requires an obstacle-free path as input. The implementation of TACO uses optimisation

methods from UNCO to solve for free-derivatives, and inherently comply with all fixed boundary

conditions. The remaining inequality constraints (for position, velocity and acceleration) are added to

the free derivative formulation to be solved in a convex optimisation with the python library cvxopt [8],

taking advantage of the fact that all constraints are convex.

ASTRO is implemented with three variants:

1. Using the ESDF as an obstacle constraint, referred to as ASTRO-E.

2. Using free-space corridor constraints, referred to as ASTRO-C.

3. Using free-space corridor constraints with ESDF checks for feasibility, referred to as ASTRO-CE.

202

5.3. QUADROTOR TRAJECTORY OPTIMISATION - SIMULATION COMPARISONS

To clarify notation, when using the name ASTRO, the overall algorithm is being referred to,

regardless of the variation of the constraint type. The full set of optimisation techniques for ASTRO, as

described in Section 4.3.6, are used in the tests, including iterative sub-problem solutions starting with

an optimisation without obstacles, inflation of constraints, and the criteria to exit when the trajectory is

feasible. The approximate-path-integral cost method is used for all three variants. For the non-convex

optimisation of ASTRO-E, customised weighting is used, as well as randomised perturbations after

three iterations to escape from infeasible local minima. The convex optimisations with ASTRO-C and

ASTRO-CE use the quadratic line search.

The trajectory time is optimised with gradient-descent, using the segment times as the decision

variables. The cost function to be minimised is a weighted sum of the total time, and the snap cost,

as outlined in [26]. The same optimisation approach is used for UNCO and ASTRO and is performed

without any obstacles considered. TACO includes time specifications in the formulation hence has no

optimisation of time.

5.3.2 Test Case Generation

The two algorithms from the literature and the three variants of ASTRO are run on a batch of trajectory

planning scenarios in two real indoor environments: a small lab (9×13×2.5 m3) and a large warehouse

(17×22×2.2 m3). 100 sets of waypoints are generated in each environment. A given set of waypoints is

produced by first generating random start and goal locations, then using RRT* [102], in the Open Motion

Planning Library [94] to plan a set of waypoints with collision-free paths between them. Examples of

the waypoints used are shown in Fig. 5.8. With a common snap cost function, a single time optimisation

is run for UNCO and ASTRO, without any obstacles included. For the full set of waypoints (used by

ASTRO with corridor constraints) this optimisation takes on average 4.11 s and 4.39 s for the small and

large environments, respectively. A reduced set of waypoints3 can be used by UNCO and ASTRO-E, for

which the time optimisation takes on average 0.74 s and 1.32 s, for the two environments, respectively.

These times are included in the overall computation time results.

5.3.3 Results

Table 5.2 presents the results from the batch of test-cases. UNCO is the most successful planner, as the

algorithm will eventually converge to the known collision-free path. The algorithm only fails in two

cases, where the sampling of the trajectory is not fine enough to pick up a slight collision. These failures,

though, are when there are small errors in the ESDF that give a voxel in a collision, surrounded by

free voxels that do not properly indicate the correct Euclidean distance to the collision. While TACO

is designed to ensure no collisions, it is very susceptible to these ESDF errors when defining the

free-space bounds, and hence produces many solutions that are in collision. ASTRO with corridor

constraints (ASTRO-C) is similarly susceptible to ESDF errors, leading to the failed test-cases. Using

the ESDF to check for feasibility (ASTRO-CE) alleviates many of these failures, resulting in a high

feasibility percentage. ASTRO-E can succeed in all but 14 cases, even with the challenge of a non-convex

3A line simplification algorithm produces the reduced waypoints [90].

203

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

FIGURE 5.8. Environments used for trajectory planning. Not to scale. (a) small lab envi-
ronment (9×13×2.5 m3) with example seed path, (b) large wharehouse environment
(17×22×2.2 m3) with two example seed paths. Images are 2D but trajectories include
3D components.

optimisation. The randomised perturbations help to release the solution from a local minimum in 25%

of the tests, with the failures occurring when a feasible solution can not be found within the time limit.

UNCO is the quickest algorithm, with only unconstrained optimisations to solve. TACO is slower as

it is solving a constrained, convex optimisation with many sub-waypoints. TACO, though, is quicker

than the convex optimisations of ASTRO-C and ASTRO-CE as TACO requires no time optimisation,

and only has constraints active on the sub-waypoints rather than the entire trajectory. ASTRO-CE can

be slower than ASTRO-C because of the extra time to perform collisions checks on the ESDF, but can

also produce a solution more quickly if early iterations are found to be feasible with the ESDF but not

the corridor constraints. ASTRO-C and ASTRO-CE are also slow because of the time optimisation with

many waypoints. ASTRO-E has fewer waypoints and as a result has quicker overall computation times,

even though the computation time to optimise with constraints can be longer. For example, in the small

environment, the optimisation time with constraints takes on average 4.45 s for ASTRO-E compared to

2.67 s for ASTRO-C and 3.03 s for ASTRO-CE. ASTRO-E is slower than UNCO and TACO because it

is solving a non-convex optimisation which may require the randomised perturbations to escape from

local minima.

The minimum distances highlight how UNCO and ASTRO-E utilise more free-space, resulting

in less conservative trajectories than the algorithms with free-space bounds. The ESDF checks in

ASTRO-CE enables more use of free-space, resulting in slightly less conservative trajectories than

ASTRO-C.

The change from the small to the large environment tends to increase computation times for all

algorithms, as there are more waypoints involved. ASTRO-E, in contrast, has a decrease in computation

time, as fewer waypoints can be used, and the algorithm can exploit the greater amount of free-space

that is available in the large environment.

204

5.3. QUADROTOR TRAJECTORY OPTIMISATION - SIMULATION COMPARISONS

TABLE 5.2. Results from Simulation Batch Test

Values for Feasible Trajectories
Algorithm Env. % Feas. d (m) t (s) tm (s)

UNCO Small 98 0.15 0.92 1.50
TACO Small 72 0.17 2.77 8.06

ASTRO-C Small 94 0.19 6.78 20.92
ASTRO-CE Small 98 0.18 7.14 36.99
ASTRO-E Small 93 0.15 5.19 34.89

UNCO Large 100 0.10 1.51 2.08
TACO Large 96 0.15 5.57 22.41

ASTRO-C Large 86 0.13 10.78 51.91
ASTRO-CE Large 97 0.12 9.50 54.47
ASTRO-E Large 93 0.10 4.35 35.14

d is the mean minimum distance, t and tm are the mean
and min computation times, respectively. ASTRO
variants are: E: ESDF obstacles, C: free-space corridors,
CE: free-space corridors with ESDF feasibility checks.

5.3.4 Summary and Assessment of Simulation Comparisons

The simulation results highlight differences in feasibility and computation time. UNCO, an imple-

mentation of the work from [26], gives the best overall performance with a high success rate, and low

computation time. ASTRO also has a high success rate when using free-space corridor constraints

combined with an ESDF to check feasibility. ASTRO produces more conservative trajectories than

UNCO, but with longer computation times. TACO: a combination of the work from [32] and [26], also

produces conservative trajectories, and with lower computation time, but is susceptible to ESDF errors,

as is ASTRO when using only the corridor constraints to check for feasibility. All of the algorithms

require an initial collision-free path, except ASTRO with ESDF obstacles, which uses fewer waypoints

and utilises more of free space to successfully plan trajectories, despite the challenges of a non-convex

optimisation. Randomised perturbations assist ASTRO to solve the non-convex optimisation by jumping

a trajectory out of infeasible local minima. One point of comparison that could be explored more in

future work is how the performance of the algorithms change over a sliding scale of obstacle density.

Where the tests presented here focused on real environments, simulated environments could be used to

create specific stages of obstacle density to test the algorithms on.

205

CHAPTER 5. TRAJECTORY OPTIMISATION FOR QUADROTOR UAVS

5.4 Conclusion

A critical component for both the planning and control layers for quadrotors is the differential flatness

transformation, as described in this chapter. The transformation provides a convenient way to plan

dynamically-feasible trajectories for quadrotors and to combine position and attitude controllers. Of

concern are the singularities in the transformation and sensitivities near those singularities. An

analysis of existing and proposed methods to handle these sensitivities highlighted the scenarios in

which the methods have issues, and found that a combined method, proposed here, gives the most

robust performance. This transformation is demonstrated in aggressive flight in the next chapter.

This chapter also presented the adaptations of ASTRO to apply to quadrotors, by utilising the

differential flatness transformation and optimising snap for x, y and z to produce dynamically-feasible

trajectories. Compared to the state-of-the-art for planning quadrotor trajectories near obstacles, ASTRO

provides the ability to plan collision-free trajectories without a prior collision-free path. Additionally,

with ASTRO, obstructions in the environment can be represented by either free-space corridor con-

straints or as obstacles. When using free-space corridors, ASTRO has a high success rate, but with

conservative trajectories. When using obstacles, more free-space can be used, with fewer waypoints

than other algorithms, but the non-convex optimisation can lead to longer computation times. Using

obstacles, though, means that there is not a reliance on a known collision-free path. The next chapter

assesses the benefits of ASTRO in providing dynamically-feasible trajectories, by combining planning

and control layers to test the accuracy of trajectory-tracking in flight.

206

C
H

A
P

T
E

R

6
UAV FLIGHT DEMONSTRATIONS

Attributions:

The hardware system described in this chapter comes from [192] and is described in detail here

to give context to the flight tests. The author of this thesis contributed to [192] in writing the de-

scriptions of the system, developing components of the ground control station, developing trajectory

optimisation algorithms, performing tests and supporting hardware development and modifications.

These contributions will be mentioned in the chapter.

Flight test results have been presented in [153] for the testing of the differential flatness trans-

formation, and [154] for the comparison of trajectory optimisation algorithms. These publications

are primarily the work of the author of this thesis, with co-authors contributing to carrying out

tests, and discussion of results. The comparison of trajectory optimisation algorithms presented

here includes additional results that were not presented in [154].

T
he true test of the planning and control layers in the autonomous navigation stack is when

they are operating on a real hardware system. Such demonstrations provide validation that

the algorithms can achieve the desired purpose, as well as stress testing the algorithms by

introducing noise, disturbances and model uncertainties. This chapter presents results from test flights

with a quadrotor to assess the effectiveness of differential flatness transformations in aggressive flight

207

CHAPTER 6. UAV FLIGHT DEMONSTRATIONS

and the dynamic-feasibility of trajectory optimisation algorithms. The goal is to validate the proposed

algorithms described in previous chapters and highlight additional factors to consider when operating

real hardware.

The chapter starts with a description of the hardware system used for the tests, before presenting

tests of the differential flatness transformation, followed by the results from the assessment of the

dynamic-feasibility of trajectories.

6.1 Description of Hardware System

Attribution: Unless otherwise noted, the design and development of the hardware systems is

work from the authors of [192]. The descriptions of the system are the work of the author of this

thesis.

The hardware system on which testing is performed is a quadrotor developed by the NASA Jet Propulsion

Laboratory with support from Google and is designed to enable high-speed flight amongst obstacles

in a known environment with visual localisation. The system is demonstrated in this video: https:

//youtu.be/SrqrGweKQAU. For the context of the tests performed, the system is described here.

The concept of operations for the system is outlined in Fig. 6.1. The first step of operations is to map

the environment, collecting data from visual and depth cameras that is processed off-line to generate

several representations of the environment. These representations include an Area Descriptor File

(ADF) for localisation, a Euclidean Signed Distance Field (ESDF) for obstacle representation, and a

3D mesh for visualisation. With the ADF uploaded onto the quadrotor, localisation algorithms can be

run to give accurate state information on the quadrotor. This state information allows the position of

the quadrotor to be recorded as it is piloted or walked around the desired path, producing a dense set

of waypoints. These waypoints are simplified to a smaller set on the Ground Control Station (GCS)

and are then used to optimise a trajectory. To ensure these trajectories are collision-free the ESDF is

used to represent obstacles in the planning algorithms. An operator can view, check, edit and replan

these trajectories on the 3D graphical user interface on the GCS. The GCS also allows the ESDF to be

edited and provides a 3D mesh visualisation of the environment. Once the operator is satisfied with the

trajectory, it is sent to the quadrotor to be flown, with feedback on the position being sent back for the

GCS to display.

A high-level overview of the system will first be presented, before explaining each subsystem in

more detail.

6.1.1 High-Level Architecture

Fig. 6.2 outlines the key components of the system. The processors and sensors onboard the quadrotor

perform the tasks of localisation, estimation, control and interfacing with the GCS. Trajectories are

planned on the GCS and sent to the quadrotor over WiFi with ROS messages, a link that is also used to

send back state information from the localisation module for the GCS to display. The main components

outlined in Fig. 6.2 will be described below.

208

6.1. DESCRIPTION OF HARDWARE SYSTEM

FIGURE 6.1. Concept of operations. Purple boxes are processes run with the quadrotor, green
components are data collection, blue components are map processing and the white box
is trajectory optimisation. Arrows indicate sequence of steps and the data sent between
processes.

FIGURE 6.2. High-Level Architecture. Green boxes are inputs and outputs, blue boxes and
arrows are related to mapping processes, yellow boxes are communications and the purple
is the software and communications link between the two main on-board processors. All
components other than the Ground Control Station are on-board the quadrotor. Arrows
indicate the data sent between processes.

209

CHAPTER 6. UAV FLIGHT DEMONSTRATIONS

6.1.2 Airframe

The quadrotor (Fig. 6.3) is based on a 250 size frame (250 mm from the centre of the front-left rotor to

the centre of the back-right rotor) with a carbon base, in an X configuration. A custom, 3D printed frame

provides the housing for the electronics, with a vibration-isolated carriage for the processors, IMUs

and cameras. The cameras consist of one down-facing fish-eye camera and one front-facing fish-eye

camera. This airframe design enables the quadrotor to be very compact, while still having the required

capability.

FIGURE 6.3. Quadrotor used for flight tests (without battery). Image from [192].

6.1.3 On-Board Computing

The core component of the online computing architecture, as depicted in Fig. 6.2, is the Qualcomm

Snapdragon flight board [185]. The Snapdragon incorporates two different processor units: 1) the CPU

quad-core Krait1, running at 200 Hz and 2) the Digital Signal Processor (DSP), a Hexagon core2 running

at 1 kHz.

The Krait core runs a Linux Linaro distribution, with Linux Kernel 3.4, and serves as the primary

interface with the quadrotor, providing connection to the GCS over a WiFi link and communicating with

the Tango localisation module. The PX4 [138] flight software is run on both the Krait core and the DSP,

with all the real-time components running on the DSP. The DSP operates at 1 kHz and is designed

to support hard-real-time functions, specifically the position and attitude controllers, thrust mixers,

attitude estimator, and set-point evaluation (Poly. Eval. in Fig. 6.2).

A ROS bridge runs on the Krait core to exchange messages with the GCS over WiFi. Planned

trajectories are sent to the quadrotor from the GCS, and state information, consisting of position,

orientation and set-points are sent to the GCS from the quadrotor.

The localisation module, Tango3, has a separate, dedicated processor, which communicates with

the Krait processor, sending the position, velocity and attitude estimates. The two fish-eye cameras,

one front facing and one down facing, are connected directly to the Tango board, which, along with an

1Snapdragon 801, Quad-core 2.26 GHz
2Dedicated Apps DSP (QDSP6 V5A – 801 MHz+256KL2)
3a system developed by Google [129].

210

6.1. DESCRIPTION OF HARDWARE SYSTEM

integrated Inertial Measurement Unit (IMU) are used for localisation. The attitude estimator running

on the DSP utilises a different IMU that is integrated on the Snapdragon.

6.1.4 Actuation

Four Electronic Speed Controllers (ESCs) control the four motors, and each can get feedback to measure

the RPM. This feedback is used to close the loop around the RPM control, to track the commanded RPM

more accurately. For the demonstrations presented here, 2300 kV Luminier brushless motors were used

with DL45 bull-nose tri-blade props. See [192] for more details.

6.1.5 Control

Attribution: The author of this thesis contributed to controller development in the implemen-

tation of SI units and assisting implementation of aerodynamic drag compensation.

The control software builds from the PX4 flight software with modifications to the controller for high-

speed tracking of trajectories. Modifications are also made to incorporate SI units for more intuitive

gain tuning. The control architecture is outlined in Fig. 6.2. A polynomial evaluator computes set-points

from a trajectory to send to a position controller. The position controller computes an attitude set-point

for, which is used by an attitude controller to produce torque and force commands. These commands are

sent to a mixer to compute RPM commands for the ESCs.

The polynomial evaluator uses the piecewise polynomial trajectory generated by the planning

algorithms and frequently evaluates the polynomials at increasing points in time when the quadrotor

is commanded to follow the trajectory. The evaluated points give position, velocity, acceleration and

yaw set-points for the position controller to track. An important distinction here is that set-points are

generated and updated on the DSP at the same rate as the position controller, allowing close following

of aggressive trajectories.

The position and attitude controllers are modified from [118], to include aerodynamic drag compen-

sation and a simpler attitude controller.

6.1.5.1 Position Control

Using the set-points and current state estimate from Tango, the position controller has feedback

gains on position error and velocity error, along with a feed-forward gain on the desired acceleration,

giving a PDFF (Proportional, Derivative, Feed-Forward) controller. There is additionally feed-forward

compensation for the parasitic and propeller drag:

Tsp =−Kp(x− xsp)−Kd(ẋ− ẋsp)−mg̃zg +mK f f ẍsp +RDp(ẋ2)+RDh(T, ẋ) (6.1)

where all vectors are in the global frame, the sp subscript denotes the set-points, with other terms

being the state estimates. The K terms are the gains applied to the system, and m is the drone mass. zg

is the global z-axis that is used to give compensation for the acceleration due to gravity, g̃. The current

211

CHAPTER 6. UAV FLIGHT DEMONSTRATIONS

attitude is represented in the rotation matrix R, which is used to transform drag terms from the body

frame to the world frame. Dp is the parasitic drag vector, which is a function of the velocity squared

and Dh is the propeller drag vector, which is a function of rotor thrust and body velocity. The output

from the controller is the desired thrust vector, Tsp. The magnitude of this vector is the commanded

thrust, which is sent through to the thrust mixer.

The direction of the thrust vector combines with a yaw set-point to go through the differential

flatness transformation (as described in Section 5.1) to produce a quaternion set-point.

6.1.5.2 Attitude Control

The attitude controller uses the state information from the attitude estimator and the quaternion

set-point to compute the desired torques. The quaternions are converted to rotation matrices (see

Appendix C) to compute the angular error:

eq =
1
2

(RT
spR−RTRsp)V (6.2)

where Rsp is the desired attitude and R is the current attitude. The vee operator, ·V maps a skew-

symmetric matrix to a vector as described in Eqn. 4.52.

The angular rate error requires the desired angular rate, ωsp, which needs to be computed from the

derivative of the quaternion set-point from the past two set-point commands. Details of this derivative

computation are in Appendix C.9. The rate error is then computed with:

eω =ω−RTRspωsp (6.3)

The attitude and angular rate errors errors are then used in a PD controller4:

τ=−Kqeq −Kωeω (6.4)

The output, τ is the desired torques (about the x, y and z axes), which is sent to the mixer, along

with the desired thrust magnitude.

The desired moments and thrust are then sent to a mixer, where iterative thrust mixing solves for

the thrust coefficients, which are a function of velocity and RPM, to get the motor RPMs.

6.1.6 Localisation

Tango is the package developed by Google for visual localisation, which consists of a code stack, and

a dedicated processor, complete with on-board IMU [129]. Tango extracts visual features from the

environment and matches them to an Area Descriptor File (ADF), that stores a map of the same

visual features and is generated in the pre-mapping phase. The feature matching, along with the IMU

provides the framework for a localisation filter to update the estimated position and orientation of the

quadrotor. If observed features do not match to the ADF, then Tango can run in visual odometry mode,

4The PD controller is a simplification from [118] that removes the feedforward acceleration and gyroscopic compensation
terms. This simplification is done because of the difficulty in accurately characterising the desired feed-forward terms.

212

6.1. DESCRIPTION OF HARDWARE SYSTEM

simply tacking features frame to frame. A re-localisation algorithm is also running in this case, as a

loop closure algorithm to correct drift when sufficient numbers of observed features are matched to

the ADF. Full details of the algorithms are proprietary, but a similar type of system of visual navigation

is ORB-SLAM2 [163].

For this section, the Tango system can be regarded as providing highly robust and accurate localisa-

tion. Refer to [192] for an analysis of the localisation performance of the system.

6.1.7 Mapping

A key part of the operation of the system is the pre-mapping stage, where a Tango phone with a depth

sensor5 is walked around the environment, requiring the camera to be 1-5 metres from features in the

environment. Data from the colour camera, depth camera and IMU are recorded through this sequence

for off-line processing.

The recorded dataset is processed as a large bundle adjustment, including searching for loop closures

with a bag-of-words approach. The output from the computations are:

1. An Area Descriptor File (ADF)

2. A 3D textured mesh

3. A Truncated Signed Distance Field (TSDF)

The ADF is a collection of the visual landmarks in the environment and is the map loaded onto

the quadrotor to run map-based localisation. The 3D mesh is primarily for visualisation in the GCS

for user awareness of the environment. An example of the mesh is shown in Fig. 4.5 and Fig. 6.5. A

Signed Distance Field (SDF) is a gridded representation of an environment where each cell gives the

signed distance to the nearest obstacle, with negative distances being inside an obstacle. In a Truncated

SDF, cells are only defined in a small region around the surface of obstacles, to improve the efficiency of

representation and update.

The TSDF is converted to a Euclidean Signed Distance Field (ESDF) to represent the obstacles

throughout the environment for trajectory optimisation. The open source Voxblox library, with python

bindings, is used for generating and modifying both TSDFs and ESDFs [171]. Manual modifications are

made to the ESDF in the GCS as required, to clear free-space or add occupied space, such as a wall to

block a trajectory from going into a particular area.

3D point-based queries of the ESDF give the signed distance and the distance gradient to be used in

trajectory optimisation and for visualisation.

5Such as the Asus Zenphone AR

213

CHAPTER 6. UAV FLIGHT DEMONSTRATIONS

6.1.8 Planning

Attribution: The waypoint generation, and implementation of a base version of a trajectory

optimisation algorithm are contributions by co-authors from [192]. The author of this thesis ex-

tended from the base trajectory optimisation algorithm to include consideration of obstacles, and

also implemented two more obstacle-aware algorithms.

The planning for the quadrotor takes from the state-of-the-art described in Chapter 5. The waypoints,

which represent the desired path to be flown, are first generated and adjusted. Then, an optimal

trajectory is planned through the waypoints, taking the obstacles into considerations.

6.1.8.1 Waypoint Generation

The specification of waypoints can either be done manually, through the graphical interface, or through

a teach-and-repeat process. To “teach” the quadrotor, the localisation module is turned on, and the

quadrotor is flown (or hand carried) around the desired course. The location of the quadrotor is recorded

at discrete intervals (for instance every 10 cm) to be saved as waypoints. The resulting dense set of

waypoints provides a collision-free path through the desired locations.

For trajectory optimisation, it is desired to have a minimal number of waypoints, to enable smoother

trajectories and reduce computation time. Therefore, the number of waypoints is reduced using the

Ramer-Douglas-Peucker algorithm (RDP) [90]. RDP selects points to remove that cause the least

variation to the path. A user-defined setting, ǫ, controls how aggressively to remove points (higher ǫ

will remove more waypoints). The resulting reduced set of waypoints maintains the highest curvature

points, i.e. the corners of the trajectory. An example of RDP with varying values of epsilon is shown in

Fig. 6.4

Once reduced, the waypoints can be manually manipulated to achieve the desired path using

the GCS, including moving, adding, and deleting waypoints. Varying ǫ and manually modifying the

waypoints gives the flexibility to provide a suitable starting point for the trajectory optimisation

algorithms.

6.1.8.2 Planning Algorithms

Three different planners are implemented in the system: UNCO, an implementation of the work of

Bry et al. [26], TACO, a combination of the work of Campos-Macias [32] and Bry et al., and ASTRO

with ESDF obstacles, choosing the ASTRO variant that provides the greatest contrast in approaches to

considering obstacles. Chapter 5 describes these planners. The input to each of the planners is the set

of waypoints, with different ǫ settings used for each planner in the RDP algorithm. Each algorithm sets

the yaw at the waypoints to follow the trajectory. To achieve this, the position estimation is run first,

before computing the desired yaw at each waypoint to then running the yaw optimisation independently.

All trajectory optimisation is run offline on the GCS.

Piecewise polynomials represent the trajectories produced by each of the planners. The polynomial

coefficients and breakpoints of the trajectory are placed in a custom ROS message to be sent over WiFi

214

6.1. DESCRIPTION OF HARDWARE SYSTEM

FIGURE 6.4. Example of RDP reducing the number of waypoints (small quadrotor figures)
with varying values of the setting ǫ. (a) ǫ= 0.1, (b) ǫ= 0.3, (b) ǫ= 0.5, (b) ǫ= 0.7. The path
started with dense waypoints along the straight-line segments in (a).

to the quadrotor. The polynomial evaluator on the quadrotor then uses the coefficients and break-points

to compute the set-point at a given time.

6.1.9 Ground Control Station

Attribution: A base version of the Ground Control Station was created by co-authors from

[192]. The author of this thesis extended from this work to add functionality for manipulating

trajectories and giving feedback to the operator.

The Ground Control Station (GCS) is the human interface to control the operations of the quadrotor.

It is Python-based using QT4 and RViz [100]6. Communications between the GCS and the quadrotor

use WiFi, over which: a) the scripts running on the quadrotor are initialised and b) communications

occur between the ROS node on the quadrotor and ROS nodes on the GCS computer. A handheld

radio-controlled transmitter provides a link for the safety pilot, with a kill switch and manual override

capabilities.

The primary interface of the GCS is a 3D Graphical User Interface (GUI), the primary component of

which is a 3D mesh of the environment, generated in the pre-mapping phase of operations (see Fig. 6.5).

The state information on the quadrotor that is sent through ROS messages to the GCS is displayed on

6The code for the GCS is open sourced and available on GitHub: https://github.com/genemerewether/torq.

215

CHAPTER 6. UAV FLIGHT DEMONSTRATIONS

the mesh, allowing the operator to check localisation and track the progress of the quadrotor, such as

during the waypoint collection stage of operations and when flying trajectories.

To generate, modify and send trajectories, the GCS has a set of widgets, which work with the GUI

to display the trajectory with the mesh (see Fig. 6.5). Referring to the workflow outlined in Fig. 6.1,

an RDP widget is used to load waypoints, save waypoints, and run the RDP reduction. This widget is

primarily used to load the waypoints from the waypoint collection stage and to reduce it to a minimal set

of waypoints (as decided by the operator). A planner widget then provides the capability to optimise and

adjust a trajectory between waypoints. The widget’s capabilities include moving, adding and deleting

waypoints with the 3D interface, optimising with different time penalties, adding obstacles, saving

and loading trajectories, creating laps, adding take-off and landing, and sending the trajectory. The

sent trajectories are packaged with polynomial coefficients into a ROS message to be processed by the

polynomial evaluation script on the quadrotor. Through this process, the GCS provides the operator

with the ability to assess the feasibility of a trajectory; hence there are numerous forms of information

on the trajectory. This information includes text fields showing the minimum distance to obstacles,

maximum acceleration, and trajectory completion time, along with graphical feedback on the trajectory

showing acceleration arrows and colouring for obstacle clearance (see Fig. 6.5).

FIGURE 6.5. Ground Control Station with operator controls, 3D graphics and coloured trajec-
tory information. The coloured mesh is produced in the pre-mapping stage of operations,
which also produces an ESDF. The trajectory is planned by UNCO and was flown in
flight tests.

A third widget, building on the Voxblox python bindings [171], enables adjustments to the ESDF,

and visualisation at different vertical slices (see Fig. 4.5). These capabilities are used to clear out

free-space around the set of generated waypoints (known to be collision-free), and to add planes of

occupied space to areas not captured in the original map (such as ceilings).

While the trajectory planning looks to generate feasible and safe trajectories automatically, the GCS

216

6.2. DIFFERENTIAL FLATNESS TESTING - AGGRESSIVE FLIGHTS

is an important component to efficiently integrate a human into the loop to control the high-level goals

and have extra checks to ensure safe operation.

6.2 Differential Flatness Testing - Aggressive Flights

Attribution: The results presented in this section come from [153], and are the work of the

author of this thesis.

The analysis presented in Section 5.1 looked to assess methods of performing the differential flatness

transform to enable successful operation across all orientations. This capability enables aggressive

trajectories that pass through 90◦ of pitch or roll. A series of flights tests have been performed to

show the need for such a robust transformation. These tests were designed to show examples where

the singularities and sensitivities in the transformations are met. The flight tests assess how the

transformation performs in the controller, as this is the critical application when the quadrotor is

flying. Therefore, the tests presented here modify the transformation in the controller from the PX4

transformation to the Four Axes Combined method or the Six Axes combined method. Trajectories are

planned with UNCO between three waypoints, such as in Fig. 6.6, to provide an appropriate test for the

controller.

A software-in-the-loop simulation will first be presented, followed by flight tests with the quadrotor

system described in this chapter. Videos of the flight experiments described can be found here: https:

//youtu.be/M-1jA1KCqb8.

FIGURE 6.6. Planned aggressive trajectory between three waypoints. Arrows represent
direction and relative magnitude of commanded acceleration

217

CHAPTER 6. UAV FLIGHT DEMONSTRATIONS

6.2.1 Software-in-the-Loop Tests

A sharp pitching manoeuvre is tested in a software-in-the-loop simulator, RotorS [72], running PX4

with the 3DR Iris quadrotor model from 3DR. The default PX4 transformation is compared to the new

combined method. The PX4 method fails near to 90◦ pitch, with a 180◦ change in the direction of the

x-axis, shown in the discrete change in the quaternion in Fig. 6.7. While the drone does not crash, the

behaviour is highly undesirable when striving for close tracking of aggressive trajectories. The Six Axes

Combined method, in contrast, does maintain continuous set-points throughout (Fig. 6.7.b).

FIGURE 6.7. Software in the loop simulation results for pitching trajectory. (a) using the
standard PX4 controller, showing discontinuous jumps. (b) using the Six Axes Combined
method. For both (a) and (b): top is the thrust set-point and the bottom is the output
attitude set-point coming out of the differential flatness transformation in the controller
(yaw is constant).

6.2.2 Flight Tests

The trajectory that is shown in Fig 6.6 was flown with three different transformation methods: a) the

standard PX4 method, b) the Four Axes Combined method and c) the Six Axes Combined method.

The results from these flight experiments are shown in Fig. 6.8, including the input to the differential

flatness transformation: the thrust set-point (in addition to a constant desired yaw of 90◦), and the

output: the desired attitude as a quaternion set-point. Discontinuities are visible in the quaternion

set-points for both the PX4 and Four Axes Combined methods, which is not ideal when accurate tracking

is desired.

The discontinuous jumps for the Four Axes Combined method is a result that was only observed

in flight. The planned trajectory worked smoothly for that method, as shown in Fig. 6.9. Flying the

trajectory introduces more variables, with tracking errors and disturbances changing the desired thrust

that is output from the position controller. An important point here is that even though the problem

218

6.2. DIFFERENTIAL FLATNESS TESTING - AGGRESSIVE FLIGHTS

FIGURE 6.8. Aggressive trajectory flight results for three differential flatness transformations:
(a) standard PX4 method, (b) Four Axes Combined method and (c)Six Axes Combined
method. In each of (a), (b), and (c): top: thrust direction set-point, bottom: quaternion
set-point. These values are the input and output, respectively, of the differential flat
transformation.

219

CHAPTER 6. UAV FLIGHT DEMONSTRATIONS

areas for a transformation method might not be expected to be encountered, disturbances from the

nominal trajectory could push the quadrotor into such areas.

FIGURE 6.9. Planned aggressive trajectory acceleration and corresponding attitude set points
as quaternions. (a) Acceleration for the trajectory, (b) quaternion from the Four Axes
Combined method, showing smooth changes in quaternions, in contrast to Fig. 6.8.b.

A limitation that is evident in the flight results is that it is possible for the yaw to move to 180

degrees of error. For example, at orientations of 90◦ roll or pitch, a yaw angle of 0◦ and 180◦ become

equivalent. If the 180◦ pathway is taken, it will continue to be tracked because the methods are checking

against the last orientation (which is now at 180◦ yaw). Nonetheless, the Six Axes Combined method

enables highly aggressive trajectories to be tracked, such as demonstrated in Fig. 6.10, in a pitching

manoeuvre beyond 90◦ where the thrust vector passes below the xy plane (when the z component of

the thrust vector goes below zero). Running the standard PX4 transformation on the same sequence of

thrust set-points produces multiple discrete jumps in orientation (Fig. 6.10.c).

These flight test results show that the types of orientations discussed in Section 5.1.4 that cause

differential flatness transformations to fail can indeed occur in flight when attempting aggressive

manoeuvres. Hence it is important to employ an adequate transformation method for applications

striving for aggressive flight.

220

6.2. DIFFERENTIAL FLATNESS TESTING - AGGRESSIVE FLIGHTS

FIGURE 6.10. Flight results from highly aggressive trajectory pitching beyond 90◦. (a) Thrust
direction for the trajectory, showing a z component of thrust below zero (inverted). (b)
Quaternion set-point from controller in flight, using Six Axes Combined method. (c)
Quaternion from PX4 method applied to the flight data.

6.2.3 Conclusions - Differential Flatness

The differential flatness transformation is a crucial part of trajectory planning and control of quadrotors.

With a push towards highly aggressive flight, progressing through 90◦ pitch or roll, and inverted flight,

the commonly used transformation becomes susceptible to the singularity when the desired thrust

vector aligns with the desired heading in the xy plane. Numerous methods have been proposed to deal

with the singularity, but each has limitations arising from sensitivities around the singularity, and in

transitions near it; these can cause more issues than the singularity itself.

An analysis of existing and newly proposed transformation methods highlights the limitations that

are present. A new method that checks six body-axes-sets against the previously computed axes is

shown to be the most stable method through all orientations. A susceptibility exists, however, for the

yaw to have an error of 180◦ after completing aggressive manoeuvres. Different methods may be more

suitable for a given application; hence the analysis presented here may serve as a resource for others

to understand the characteristics and limitations of the various methods. Simulation and flight tests

with aggressive trajectories show that the problematic flight conditions for the transformations can be

experienced and do cause issues, demonstrating a need to carefully consider the differential flatness

transformation method when designing a quadrotor system for highly-aggressive flight.

221

CHAPTER 6. UAV FLIGHT DEMONSTRATIONS

6.3 Comparison of Planners

Attribution: These results come from [154], and are the work of the author of this thesis.

ASTRO, implemented on the quadrotor system is compared against two of the state-of-the-art algorithms

in trajectory planning with obstacles, as described in section 6.1.8.2: UNCO, and TACO.

Repeating from section 5.3, the key goals for the trajectories produced are:

1. Feasibility: to safely avoid all obstacles

2. Low computation time

3. Dynamic-feasibility: to accurately track the trajectory

The batch simulations in Section 5.3 assessed the first and second criteria. Analysis of flight tests

assess the third criteria: dynamic-feasibility, that refers to trajectory tracking in flight: an important

consideration when flying near obstacles, where deviation from the trajectory could result in a collision.

The flight tests provide a real-world assessment of dynamic-feasibility by looking at tracking error for

flights within dense obstacle fields.

Flight tests were performed in a medium lab environment of 4×20×3 m3 (shown in Fig. 6.11).

Dense waypoints are generated by recording positions of the quadrotor in a hand-walked trajectory,

after which RDP is used to reduce the number of waypoints for the trajectory optimisation algorithms,

with the original set satisfying the dense waypoints needed by UNCO.

FIGURE 6.11. Medium lab environment with numerous obstacles where the test flights were
conducted. (a) 3D view of the environment. (b) Top-down view of environment with
example trajectory produced by ASTRO that was flown.

Each of the algorithms assessed includes an optimisation to minimise for snap; however, there are

further tuning parameters that can be adjusted. The main tuning parameter for UNCO and ASTRO

is a weighting, Wt, on the time-cost in the outer-loop optimisation for total trajectory time (Eq. 4.97).

Larger Wt leads to slower, more conservative trajectories. The tuning factor for TACO is the maximum

acceleration value, Amax, which sets the velocity constraints (Eq. 5.30) and time between waypoints

(Eq. 5.31). Larger Amax increases the aggression of the trajectories. In the following analysis, efforts

were made to have comparable overall trajectory times, and the same Wt was used for ASTRO and

222

6.3. COMPARISON OF PLANNERS

TACO. ASTRO also has several other tuning factors, as explored in depth in Section 4.3.6, with the

most influential factors being associated with obstacle cost functions. Finally, the number of waypoints

used is a factor that can be adjusted. TACO is limited to starting with obstacle-free paths. UNCO can

start with fewer waypoints, and will add waypoints until the trajectory is obstacle free. ASTRO requires

the fewest number of waypoints as long as a feasible trajectory can be found. In the tests here, ASTRO

and UNCO started with the same number of waypoints.

The set of waypoints, localisation system and tracking controller are all consistent between the algo-

rithms; hence the variable being analysed is the dynamic-feasibility of the trajectories: a characteristic

that is evident in the tracking performance.

Trajectories were planned over a range of total trajectory times (time to fly the trajectory) to

observe the trends in performance, and compare tracking performance between algorithms at a range

of equivalent trajectory times. This range of flights included speeds up to 5.5 m/s, and accelerations

up to 5.6 m/s2. Flights were also repeated multiple times at a trajectory time of 35 s and 25 s to

average out noise from different flights. A video showing the range of flights can be found at https:

//youtu.be/oQo0J69-Dgk. The results from these tests are presented and analysed below.

6.3.1 Obstacle-Aware Flight Tests

A plot of the planned and flown trajectories at 35 s trajectory time is shown in Fig. 6.12. This figure

highlights the differences in the planned trajectories. TACO can move sub-waypoints within the

hypercube bounds; hence the algorithm can reduce the radius of certain corners and loops, but it

requires a tighter turn on the lower right of the trajectory to ensure the conservative bounds are met.

ASTRO and UNCO are quite similar, except for at the upper right where UNCO produces a very tight

radius turn, in contrast to ASTRO which gives a smoother turn of larger radius.

The change in tracking performance with respect to trajectory time is shown in Fig. 6.13, where the

expected trend of larger error at higher speeds (lower trajectory time) can be observed. In comparing

the different planners, the smoother nature of the obstacle aware path from ASTRO leads to superior

tracking across the range of trajectory times. ASTRO consistently gives better RMS tracking errors

than UNCO by a small margin. TACO fails to solve at higher speeds, and hence is not able to produce

trajectories at lower trajectory times. With increasing speeds, the times allocated to segments between

sub-waypoints gets very small, which causes the constraints from the boundary conditions to become

almost identical, making the problem ill-defined. TACO has superior position and velocity tracking but

requires large yaw movements which leads to more substantial attitude tracking error.

A summary of the tracking performance for the 35 s flights is shown in Table 6.1. Although TACO

gives better RMS errors for position and velocity, the maximum errors are greater. The trajectories

generated by TACO tend to have inconsistencies in tracking, with more substantial standard deviations

in maximum thrust. ASTRO marginally out-performs UNCO in all categories, including smaller

standard deviation in the position error, suggesting the smoother trajectories generated by ASTRO are

easier to track more consistently.

223

CHAPTER 6. UAV FLIGHT DEMONSTRATIONS

FIGURE 6.12. Planned and executed trajectories for each algorithm with consideration of
obstacles, at a trajectory time of 35 s (37 s for TACO). A 2D view is presented, but
the trajectory has 3D components. An overlay of the trajectory on the environment for
ASTRO is in Fig. 6.11.b, and for UNCO in Fig. 6.5.

TABLE 6.1. Tracking errors for flights at 35s

UNCO TACO ASTRO
Errors Mean StDev Mean StDev Mean StDev
xRMS (m) 0.084 0.021 0.067 0.005 0.072 0.006
xmax (m) 0.268 0.204 0.395 0.327 0.189 0.041

ẋRMS (m/s) 0.097 0.019 0.077 0.006 0.089 0.006

ẋmax(m/s) 0.404 0.133 0.470 0.236 0.362 0.080

qRMS(rad) 0.070 0.004 0.087 0.003 0.067 0.003

qmax(rad/s) 0.262 0.045 0.598 0.325 0.255 0.071
ωRMS(rad/s) 1.034 0.016 1.378 0.012 0.934 0.011

ωmax(rad/s) 2.674 0.118 7.080 0.058 2.129 0.483

6.3.1.1 Higher-Speed Flights

Flights were also repeated at 25 s from UNCO and ASTRO (TACO could not generate such a trajectory).

These results emphasise the differences between UNCO and ASTRO (see Fig. 6.14). The top right of the

plot clearly shows ASTRO taking a smoother trajectory, as it can have a sparse number of waypoints,

but still avoid obstacles, whereas UNCO has added waypoints to avoid collisions, but also constrain the

trajectory to have a tight turning radius.

224

6.3. COMPARISON OF PLANNERS

FIGURE 6.13. Tracking Root-Mean-Square (RMS) errors across a range of flights of increasing
speed for each algorithm. RMS for position (x), velocity (ẋ), attitude (q, analysed as a
single angular error), and angular velocity (ω). Each flight represents one data point
with a quadratic fit drawn between them.

6.3.2 Conclusions - Comparison of Planners

The flight results highlight the impact of the approaches taken by each algorithm in considering

obstacles. By including obstacles in the optimisation, ASTRO with ESDF obstacles can exploit free-

space to generate collision-free trajectories that are easier to track, allowing greater freedom to take

smooth trajectories. UNCO also produces very smooth and trackable trajectories. However, if the

reference path has tight turns within tight confines, then UNCO will add extra waypoints from the

reference path. The extra waypoints can result in tighter turns and a trajectory that is more difficult to

track. TACO can generate smooth and safe trajectories effectively and can give a lower distance path

with the ability to adjust waypoints, but the solution method has limitations with the speed that TACO

can plan a trajectory.

Combining with the simulation results in Section 5.3, the best planner depends on the given

application. If conservative, slow, and safe trajectories are required, then TACO or ASTRO with corridor

constraints may be the best choice. If higher speed trajectories are desired, and the input route is

relatively smooth, then UNCO would be the best option. If instead, the input route has tight turns in

tight constraints, then ASTRO would give the better quality trajectories. For a general case, UNCO

has the best trade-off between computation time, collision-feasibility and dynamic-feasibility, if it is

225

CHAPTER 6. UAV FLIGHT DEMONSTRATIONS

FIGURE 6.14. Planned and executed trajectories for UNCO and ASTRO at a trajectory time
of 25 s. A 2D view is presented, but the trajectory has 3D components.

possible to access an initial, collision-free path. If such a path is not available, then ASTRO with ESDF

obstacles can be used.

These results not only provide an assessment of the three algorithms considered but give insight

into the components to consider when selecting a trajectory optimisation algorithm, in particular, the

trajectory tracking performance during flight.

226

6.4. CONCLUSIONS

6.4 Conclusions

The autonomous quadrotor system described in this chapter is capable of accurate trajectory tracking

at high speeds near obstacles, using a robust visual localisation module, advanced tracking controllers

and a sophisticated ground control station. The capability of this system enables the assessment of

controllers and trajectory planning algorithms in flight.

The flight tests presented here show that the sensitivities in the differential flatness transformation

can be experienced in aggressive flight, even if not expected, and do cause issues. The proposed Six Axes

Combined method was shown to handle challenging manoeuvres robustly, in scenarios where existing

transformations failed. There is a remaining susceptibility, though, to a 180◦ yaw error after completing

an aggressive manoeuvre.

The accurate localisation and trajectory tracking of the quadrotor system enables assessment of

the dynamic-feasibility of planned trajectories for high-speed flight near to obstacles. The quadrotor

system was used to perform a comparative analysis between different methods of considering obstacles

in trajectory optimisation. By including obstacles directly in the optimisation, the algorithm described

in this thesis, ASTRO, can exploit free-space to generate collision-free trajectories that were shown to

be easier to track than the state-of-the-art. Flight tests also validated ASTRO as being able to produce

suitable trajectories for high-speed flight of quadrotors near obstacles.

This validation of ASTRO for the planning layer of the autonomous navigation stack leads to

the following chapter, where ASTRO is combined with NURBSLAM to test a system consisting of

localisation, mapping and planning layers.

227

C
H

A
P

T
E

R

7
INTEGRATED SYSTEM

Attributions: The robotic simulation framework presented in this chapter is work from an

equal collaboration between the author of this thesis, Mauricio Coen and Anne Bettens.

T
he previous chapters have presented different layers of the autonomous navigation stack:

localisation and mapping with NURBSLAM, and planning with ASTRO. The primary motivation

behind NURBSLAM was for the map produced to be useful for both localisation and trajectory

planning; hence, the combined demonstration of NURBSLAM with ASTRO provides a necessary

validation of what NURBSLAM aims to achieve. In this chapter, NURBSLAM and ASTRO are brought

together along with sensing and image processing layers to demonstrate a near-complete autonomous

navigation stack (control is not implemented). What will be presented are tests that demonstrate online

mapping, localisation and planning in an unknown environment.

The combined autonomous navigation system will be demonstrated in a novel simulation framework,

utilising a game development engine, Unreal [59], connected with the Robot Operating System (ROS).

The framework, which is a part of the SpaceCRAFT space mission simulation project [2, 136], is designed

to allow rapid testing and evaluation of autonomous navigation algorithms.

229

CHAPTER 7. INTEGRATED SYSTEM

In addition to demonstrating the combined NURBSLAM and ASTRO system, the algorithms

developed in this thesis will be compared to the current state-of-the-art in heterogeneous systems: with

separate algorithms for localisation and mapping.

First, an overview of the SpaceCRAFT robotics simulation framework will be presented, highlighting

the benefits of testing robotic navigation algorithms. Then, demonstrations of the combined system of

NURBSLAM and ASTRO will be presented, before comparing the performance against the current

state-of-the-art.

7.1 SpaceCRAFT Robot Simulation Framework

SpaceCRAFT is a large-scale space-mission simulation tool that is in development at the time of

publication. The goals for SpaceCRAFT are large, from low-level physics simulations right through full

space-mission simulations. The low-level physics simulations include areas such as orbital mechanics,

gravity fields, aerodynamics and radiation. Subsystems can also be simulated, such as solar panels,

antennas, thrusters. These subsystems can then be combined to create a full system simulation, such

as for a satellite, or a Mars rover. Finally, a space mission might integrate multiple systems to assess

the operation of the system of systems. A particular simulation might use a subset of these different

levels of simulation to satisfy the given purpose. These purposes could include mission design, testing

a single component in a larger system, or testing a system in a particular environment. On top of

the simulation is an immersive user interface, including virtual reality tools, to visualise, inspect and

control a simulation. Many of the capabilities in SpaceCRAFT come from combining existing tools,

such as orbit propagators, and high fidelity physics simulators. A large component of SpaceCRAFT

is the use of the Unreal Engine [59], a game development tool that provides high-quality graphics, a

robust simulation framework and a physics engine. While SpaceCRAFT is initially focused on space

applications, the concepts are more broadly applicable to other applications, as are the tools behind

SpaceCRAFT. For more details on SpaceCRAFT, refer to [2, 136].

One component of SpaceCRAFT is the simulation of robotic systems, and in particular the au-

tonomous navigation of robotic systems. For this component, SpaceCRAFT is linked with the Robotic

Operation System, ROS [186]. ROS brings numerous benefits for robotic applications. Firstly, ROS

provides a middle-ware to communicate information between different processes with standardised

messaging and timing. By having standardised messages, and robotic systems that are expecting

standardised messages, a set of algorithms that works for one robot can be directly applied to an-

other robot. Secondly, ROS comes with many existing robotics algorithms that can readily be applied.

Additionally, most of the leading open source algorithms for SLAM, mapping, image processing and

trajectory planning are integrated with ROS. By integrating with ROS, SpaceCRAFT can draw from

this abundant source of powerful robotic navigation algorithms. The connection with ROS also means

that algorithms developed with SpaceCRAFT can be ported onto hardware systems more efficiently.

The combination of Unreal, with powerful visualisations and simulation, with ROS, provides a tool

that enables rapid testing and evaluation of algorithms in a wide range of environments. The remainder

of this section describes the design of the robotic component of SpaceCRAFT and how it can be used for

testing robotic algorithms.

230

7.1. SPACECRAFT ROBOT SIMULATION FRAMEWORK

7.1.1 Framework Design

The design of the SpaceCRAFT robotic simulation framework is outlined in Fig. 7.1. There are two

main components: Unreal and ROS. Unreal provides the simulation engine, environment models,

sensor simulation (capturing images of the environment), visualisation and user interaction. The

UnrealCV plugin [184] is used for image capture from the virtual environment. ROS provides the

robotic navigation algorithms and standardised messaging for robotics. A WebSocket bridge connects

these two components, with ROS messages being exchanged across the bridge. On the ROS side, this

WebSocket interface uses the rosbridge functionality. On the Unreal side, the UROSBridge project is

utilised [85], which allows Unreal functions to receive and send ROS messages.

FIGURE 7.1. System diagram for the ROS-Unreal robot simulation framework. Purple compo-
nents connect ROS and Unreal over a web-socket. Yellow components handle trajectory
planning and control. Red components are related to localisation. Blue components are
related to maps. Green components are related to image capture and processing.

231

CHAPTER 7. INTEGRATED SYSTEM

The communications over the ROS bridge are depicted in Fig. 7.1. From Unreal to ROS, sensor

messages are sent, in addition to the simulation time and transform messages that give the true state

of the robot. From ROS to Unreal, planned trajectories are sent, for the simulated robot to follow, along

with the estimated state. For user interaction in an immersive environment, goal locations can also be

sent from Unreal to ROS.

An example flow of data starts with a simulation of the sensor layer of the autonomous navigation

stack. RGBD images are extracted from an environment in Unreal using UnrealCV [184]. These images

are then packed into ROS message to send over the ROS bridge. Tools within ROS are used to fill the

role of the image processing layer, by subscribing to the RGBD images and producing a point cloud (a

set of 3D points). SLAM and mapping nodes subscribe to point cloud or image messages and use them

localise and map. The map and state estimate are used by a trajectory planner, which then sends a

planned trajectory back over the ROS bridge to Unreal for the simulated robot to follow.

The data flow is designed so that from the perspective of the algorithms in ROS, Unreal represents

the robot. This design means that the same algorithms can be run with a real robot, instead of Unreal,

by subscribing to and publishing the same messages. The ability to perform this substitution of a

simulated robot with a real robot is where there is much power in integrating ROS with a simulator.

The simulation allows for rapid testing, development and iteration of navigation algorithms across a

range of environments. Then, once the algorithm is ready, minimal changes are required to apply it to a

real robot.

There are previous integrations of ROS with simulators, such as Gazebo [107], Rotor-S [72]. The

benefits that Unreal has over existing simulators are the realistic graphics and the immersive user

interface. Being a game development engine, Unreal can produce high-fidelity visual graphics, which is

hugely beneficial for simulating visual navigation algorithms. The superior user interface can enable

more intuitive inspection of the performance of algorithms, even allowing virtual reality interaction to

view how a robot is moving through an environment. For example of graphics from Unreal, see Fig. 7.2.

FIGURE 7.2. Example graphics generated in an Unreal simulation. (a) Comet with space-
craft and a trajectory. (b) Close-up of spacecraft and comet. (c) Dense asteroids with a
spacecraft.

232

7.2. SLAM DEMONSTRATION

The framework can be used to evaluate the performance of robotic navigation algorithms by having

Unreal provide the true state of the robot, which is published with a ROS transform message over

the ROS bridge. This information can be logged in a rosbag, along with the SLAM tracked states, for

comparison and analysis.

The framework has been developed in Ubuntu 16.04 using Unreal Engine 4.18 and ROS Kinetic.

The source code of the framework is available at https://github.com/maucoen/UnrealNavigation/.

7.2 SLAM Demonstration

Before testing the full integrated system, a test case is run to analyse the performance of NURBSLAM

for localisation and mapping, with the use of the simulation framework. Unreal provides the sensor

layer and algorithms in ROS provide the image processing layer. The localisation performance is then

compared to a current leading SLAM algorithm: ORB-SLAM2 [163].

7.2.1 Test Case

A test case is established with a single, central object that the robot travels around in a circular orbit

with the view fixed to the object. Only one object is in the space to isolate how NURBSLAM performs

with a single object. This scenario is equivalent to observing a spinning object. The object is comet

67-P, as depicted in Fig. 7.2.a and Fig. 7.2.b, but not at a true scale for the nature of observations: it is

used simply as an example object. RGBD observations are made of the comet at 640x480 resolution.

The images are sent to the image processing and SLAM algorithms, through the ROS bridges. 110

observations are made in 110% of a complete orbit. Comparing NURBSLAM to ORB-SLAM2 when

following the same, circular trajectory, allows a clear comparison between localisation capabilities.

7.2.2 Results

The tracked trajectories from both algorithms are shown in Fig. 7.3, where it is clear that ORB-SLAM2

provides far superior localisation. Both algorithms have a slow drift away from the truth to the outside of

the circle, but the drift of ORB-SLAM2 is substantially less, as shown in Figs. 7.4 and 7.5. NURBSLAM

suffers from large angular errors, especially near observation 65, which place the tracked trajectory into

a different plane and hence build up linear errors. This source of inaccuracies can also be seen in the

odometry-error analysis in Fig. 7.6, where the translational odometry-error is generally low, but large

spikes in angular error occur regularly. ORB-SLAM2, in contrast, has a low and consistent drift in error,

and generally low odometry-error. The method of computing angular-error and odometry-error is the

same as is explained in Section 3.3. Loop-closure is also achieved by ORB-SLAM2 after one full orbit,

which corrects the drift and dramatically reduces the error (the loop closure also causes the jump in

odometry-error in Fig. 7.6.b). A summary of the tracking errors is presented in Table. 7.1, emphasising

the differences in performance.

233

CHAPTER 7. INTEGRATED SYSTEM

FIGURE 7.3. Orbit test case trajectories, comparing NURBSLAM and ORB-SLAM2. Orien-
tation axes are plotted at even intervals along the trajectory. (a) 3D plot. (b) 2D plot
highlighting the drift away from the true, circular trajectory.

FIGURE 7.4. Position errors for orbit test case. (a) Errors for NURBSLAM. (b) Errors for
ORB-SLAM2.

234

7.2. SLAM DEMONSTRATION

FIGURE 7.5. Angular errors for orbit test case. (a) Errors for NURBSLAM. (b) Errors for
ORB-SLAM2.

FIGURE 7.6. Odometry error for orbit test case. (a) Errors for NURBSLAM. (b) Errors for
ORB-SLAM2.

TABLE 7.1. Tracking errors for orbit test case

NURBSLAM ORB-SLAM2
RMSE Position (m) 1.9 0.3

RMSE Angular (deg) 25.7 4.7

While ORB-SLAM2 demonstrates superior tracking, it in-fact was unable to initialise on the same

test case as NURBSLAM, and required the comet to be doubled in size (compare Fig. 7.2.b which has

the comet as twice the size as in Fig. 7.2.a). Additionally, ORB-SLAM2 does not produce a useful 3D

map of what was observed. NURBSLAM does, with some example NURBS surfaces from the test shown

in Fig. 7.7. The combination of the surfaces does not provide an accurate model of the object, due to

the drift in tracking, but they do provide an adequate representation of the obstacle that the object

represents.

235

CHAPTER 7. INTEGRATED SYSTEM

FIGURE 7.7. Mapping examples from NURBSLAM in the orbit test case. (a) - (c) are different
NURBS objects that were generated from the orbit of the object. The true object is a
model of 67P, as depicted in Fig. 7.2.

7.2.3 Comments

The performance of ORB-SLAM2 is far superior, but there are scenarios where ORB-SLAM2 can not

localise: when there are few visual features in the view of the camera. For these scenarios, if there is

still depth information, NURBSLAM could provide adequate tracking over a short window.

7.3 Full System Demonstration

ASTRO is connected to NURBSLAM through ROS to add the planning layer to the autonomous

navigation stack. The resulting system is first tested to demonstrate a capability for online trajectory

planning, localisation and mapping. The system is then compared to the current state-of-the-art in

heterogeneous approaches, with ORB-SLAM2 [163] being combined with Voxblox [171] to produce an

obstacle representation for ASTRO to plan trajectories.

7.3.1 Test Case

A similar scenario is tested as in the previous section, with a single central object at the origin that

is enlarged for tests with ORB-SLAM2 to allow the algorithm to initialise. The planning task is to

travel from one side of the object (x = −3.8m, y = 0m, z = 0m) to the other (x = 3.8m, y = 0m, z = 0m).

Throughout the trajectory, the gaze of the spacecraft is fixed to the centre of the object. Fig. 7.2.a shows

an example stage of the test case with the object, spacecraft and planned trajectory. Observations are

made at 0.1 Hz, with replanning at 0.025 Hz, and an average speed of 0.07 m/s. RGBD observations are

made with image sizes of 640x480. The systems tested are not the full stack of autonomous navigation,

as control is not included in the loop.

As with the previous test, this scenario is not intended to represent a realistic environment but is

instead designed to demonstrate the concept of integrating SLAM, 3D mapping and trajectory planning

with a single representation of the environment. The test case is also designed to demonstrate how the

SpaceCRAFT robotics simulation framework can be used to test an evaluate different navigation algo-

236

7.3. FULL SYSTEM DEMONSTRATION

rithms. Results will first be presented to demonstrate NURBSLAM in a full system, before comparing

the performance to ORB-SLAM2 and Voxblox.

7.3.2 Results - NURBSLAM

The test successfully demonstrates the concept of using a single 3D representation for localisation,

mapping and trajectory planning. After an initial straight-line trajectory through the object, a NURBS

object was generated, and ASTRO successfully planned a trajectory around the obstacle, as shown in

Fig. 7.8.a. This plan was updated as more observations were made to adjust the trajectory and use

replanning opportunities to further optimise the trajectory (Fig. 7.8.b)

FIGURE 7.8. Planned, tracked and true trajectories from NURBSLAM in the full system
demonstration. Orientation axes are plotted at even intervals along the trajectory. (a)
Initial straight-line trajectory and first replanned trajectory with the truth and tracked
trajectories. (b) Examples of successively replanned trajectories.

While following the planned trajectory, NURBSLAM tracked position, but with significant error, as

shown in Fig. 7.8.a. There is a large amount of drift from the true position, which is mainly in the z

direction. This drift is due to ambiguities in rotation that are present when observations are of largely

spherical parts of the object, suggesting NURBSLAM relies more on the larger scale structure of an

object, then the small scale details. Despite the poor tracking in z, the tracking in the x and y plane

remains accurate, as shown in Fig. 7.9. The plot of the linear errors in Fig. 7.10.a also shows how the

main source of error is in the z direction. The start of the drift in z is evident in the plot of angular error,

Fig. 7.10.b. Near step 30, there is a large jump in angular error because of an observation that has poor

alignment with the map object. NURBSLAM is still able to track after this jump, but from the state

with large angular error, hence the estimate moves away from the true trajectory, increasing the error

in z. The tracking errors are summarised in Table 7.2.

237

CHAPTER 7. INTEGRATED SYSTEM

FIGURE 7.9. Trajectory from NURBSLAM in the full system demonstration with top-down
view. Orientation axes are plotted at even intervals along the trajectory.

FIGURE 7.10. Tracking errors for NURBSLAM in the full system demonstration. (a) Position
errors. (b) Angular errors.

238

7.3. FULL SYSTEM DEMONSTRATION

The results show that NURBSLAM has a soft failure mode: it can recover from large errors and

continue to track odometry accurately, as shown in Fig. 7.11. There are large spikes in odometry error

around step 30, after which the odometry error becomes low again. This soft failure is because of the

generation of new NURBS surfaces when there are failed alignments. New surfaces ensure there is

consistently a NURBS surface for observations to be matched to so that the change in state can be

tracked.

FIGURE 7.11. Odometry errors for NURBSLAM in the full system demonstration.

NURBSLAM generated five NURBS objects in the test, each with accurate modelling of the observed

surface of the object, as shown in Fig. 7.12.a-c. The drift in tracking, though, means that newly generated

objects can be offset from the true position, leading to a slightly enlarged representation of the 3D

object from each of the NURBS surfaces (Fig. 7.12.d). Nonetheless, the collection of objects provides an

adequate representation of the object for use as an obstacle representation.

239

CHAPTER 7. INTEGRATED SYSTEM

FIGURE 7.12. Mapping examples from NURBSLAM in the full system demonstration. (a)-(c)
Different NURBS objects that were generated in the test. (d) Combination of the objects
from (a)-(c). The true object is a model of 67P, as depicted in Fig. 7.2.

240

7.3. FULL SYSTEM DEMONSTRATION

7.3.3 Results - Performance Comparison

The system combining ORB-SLAM2 and Voxblox was run on the same test case as for NURBSLAM,

but with 67P enlarged to enable ORB-SLAM2 to initialise. Multiple tests were run with a range of

trajectories1 and ORB-SLAM2 failed to track the complete trajectory in approximately 90% of cases.

These failures were due to three different scenarios. The first scenario is when there were low numbers

of features in the image, as occurs when the robot is too far away from the object. The second scenario is

when the feature movement from frame to frame is too fast for the frame-rate, which is the case when

the robot is too close to the object. The final scenario is when there are changes in lighting conditions,

causing variations in features, which can be more dramatic when moving close to the object.

When the tracking is successful throughout a trajectory, the result is very accurate, as shown in

Fig. 7.13.a. Accurate tracking allows Voxblox to create an ESDF that is suitable for trajectory planning,

as shown in Fig. 7.13.b. For trajectory planning, the ESDF representation performs equivalently to the

NURBS representation, showing the suitability for NURBS as an obstacle representation. The errors

from the tracking are summarised in Table. 7.2.

FIGURE 7.13. Full system results for ORB-SLAM2 with Voxblox and ASTRO. (a) True and
tracked trajectory. Orientation axes are plotted at even intervals along the trajectory. (b)
Example planned trajectory from ASTRO in green around the ESDF that is generated
by Voxblox from the entire trajectory. Purple voxels are further away from the surface of
the object, with a transition of colours to red voxels that are on the surface of the object.

TABLE 7.2. Tracking errors for full system demonstration

NURBSLAM ORBSLAM
RMSE Pos (m) 0.95 0.04

RMSE Ang (deg) 18.98 0.10

1Variations in trajectories are due to the random perturbations technique in ASTRO.

241

CHAPTER 7. INTEGRATED SYSTEM

7.3.3.1 Computational Load Analysis

With the full systems running, NURBSLAM requires five times more computational resources than

ORB-SLAM2 with Voxblox. The primary source of this computational load in NURBSLAM is the

RANSAC alignment step. Future work could look to first extract robust keypoints, and then use

keypoints for alignment to give a substantial improvement in computational speed.

7.4 Conclusions and Discussion

The results presented in this section have successfully demonstrated the concept of using one central 3D

representation for mapping, localisation and trajectory planning, with RGBD observations. However, the

hypothesis that a homogeneous approach to SLAM and 3D mapping would provide superior efficiency

to a heterogeneous approach is not supported by the results. The current version of NURBSLAM has

a higher computational load and is less accurate than the combination of ORB-SLAM2 and Voxblox,

which have been optimised for their respective tasks of SLAM and 3D mapping. Nonetheless, the testing

results have shown the potential for using 3D objects as the representation for SLAM by providing

the ability to localise when there are few visual features or dynamic lighting: scenarios that cause

ORB-SLAM2 to fail. NURBSLAM also has a softer failure mode, to continue to track odometry after an

error, where other SLAM algorithms have a hard failure and completely lose localisation. Additionally,

by modelling individual 3D objects, NURBSLAM provides a representation with potential applications

for dynamic obstacles, object interaction and object classification.

The testing has identified that further developments to NURBSLAM to improve efficiency and

accuracy could see the algorithm filling a role in autonomous navigation where visual features are

sparse, and observations are infrequent. A possible avenue to strengthen the capability of NURBSLAM

is to develop a hybrid combination of 3D point features with a NURBS representation. Feature points

could anchor the NURBS surfaces and support more accurate localisation, while the NURBS surface

would define the physical shape and obstacle characteristics. The modification of the SLAM algorithm

to use pose-graph optimisation in contrast to Kalman filtering may also enable more accurate results

from NURBSLAM.

Further extension of the tests presented here could stress-test the combined system of localisation,

mapping and trajectory planning with more numerous obstacles in close proximity and a goal that

requires flight near to these obstacles. Such a test would highlight how well the system can adapt to

localisation errors by updating the map and then updating the planned trajectory. The proximity to

obstacles would also more clearly show the potential impact of localisation errors.

The comparison of NURBSLAM to ORB-SLAM and Voxblox demonstrates the benefit of the Space-

CRAFT robotics simulation framework. It enables the quick testing and evaluation of autonomous

navigation algorithms in a visually detailed environment. Future work could further exploit this

capability to test algorithms in a broad range of environments.

The tests presented in this chapter were missing an essential layer of the autonomous navigation

stack that is needed for further evaluation and development of NURBSLAM. A critical next step for

the simulation framework is to integrate the control layer, to have the simulated robot tracking a

planned trajectory based on its estimated position. With control implemented, there is a feedback loop

242

7.4. CONCLUSIONS AND DISCUSSION

with localisation, mapping and trajectory planning that is important to characterise. For example, an

estimation drift could lead to the true robot being closer to an obstacle. This obstacle would be mapped,

and the trajectory adjusted to avoid the obstacle. If the adjustment is too slow or the error too large,

then there could be a collision with the obstacle. The following step is to replace the sensor layer, which

is currently simulated by Unreal, with images from real cameras. The impact of the noise and distortion

of real cameras should be considered when testing autonomous navigation systems. Finally, the system

should be integrated and tested on to run on hardware suitable for flying robots.

243

C
H

A
P

T
E

R

8
CONCLUSION

T
his thesis has presented work on several layers of the autonomous navigation stack, with

a goal to improve capabilities for flying robots to navigate autonomously near obstacles. A

thorough review of the current state-of-the-art provided the context for the work presented and

highlighted the gaps in current capabilities that were tackled in the thesis.

Within the localisation and mapping layers, one of the gaps addressed is that no existing Simulta-

neous Localisation And Mapping (SLAM) algorithms that used stereo or depth cameras can produce

a map that is suitable for trajectory planning. Instead, the current leading is to use a separate 3D

mapping algorithm. Therefore, a new algorithm was presented to combine localisation and 3D mapping

with a common representation of 3D objects. Non-Uniform Rational B-Spline (NURBS) is the 3D

representation used, with algorithms presented to use NURBS for mapping, localisation and obstacle

representation for trajectory planning. NURBS provide a continuous 3D representation that can be

sampled at any resolution, making it adaptable to the range of required tasks. Beyond localisation and

mapping, the representation has the potential to be used for dynamic obstacles, object interaction and

object classification. The algorithm, referred to as NURBS Localisation and Mapping (NURBSLAM),

was tested to successfully demonstrate the concept of using one 3D representation for localisation,

mapping and trajectory planning. Mapping from a known state was able to achieve average errors of

less than 5 mm, and localisation with a pre-mapped environment had tracking errors of less than 1% of

the total path length. Running SLAM, tracking errors were within 2% of the total path length with

mapping errors as low as 2 cm. The NURBS objects produced were able to be successfully used for

trajectory planning and provided a suitable cost profile by using surface normals to compute a signed

distance.

The planning layer was addressed by identifying that there is a loss in optimality in current leading

approaches that combine a global, obstacle-aware path planner with a local trajectory optimiser that

does not consider obstacles. The Admissible Subspace TRajectory Optimiser (ASTRO) was extended from

an early version to provide the capability to plan dynamically-optimised trajectories with consideration

of a range of obstacles. This capability provides a middle ground between a global planner and local

245

CHAPTER 8. CONCLUSION

optimiser. Developments to the constraint formulations of ASTRO enable a wide range of constraints to

be efficiently handled, as is demonstrated in a set of simulated tests cases, including complex scenarios

with many obstacles. ASTRO can efficiently solve these complex, non-convex scenarios with a suite of

optimisation techniques. These techniques were developed and analysed to show the benefit they bring

to optimisation performance.

Existing methods of handling dynamic obstacles for flying robots are either short-term planners, not

considering the dynamic-optimality of the trajectory over a long time-horizon, or are very conservative.

A class of dynamic obstacles are included in ASTRO where the movement of the obstacles are encoded

in the formulation, allowing the algorithm to consider time-dependent obstructions. The result is the

ability to utilise all the free-space that is available to enable more optimal trajectories. This capability

is demonstrated in challenging test cases with multiple moving objects and restricted areas of operation.

The modelled size of dynamic obstacles is grown based on the uncertainty in position to ensure safe

trajectories. These developments to ASTRO were partly informed by an analysis of experiments carried

out with an earlier version of the algorithm on the SPHERES robotic satellites on the International

Space Station.

The layer below planning, control, was analysed through an investigation of the singularities of

the differential flatness transformation for quadrotors, a critical part in trajectory tracking controllers.

The analysis identified where existing transformation methods fail and proposed a new, combined

method that is robust throughout all scenarios tested. Flight tests demonstrated that the issues with

the transformation can indeed be experienced in flight and that the combined method addresses these

issues. Challenges remain to control yaw through orientations were it is ill-defined.

A combination of the planning and control layer was also considered by addressing a gap in the

literature: there has not been an analysis of how the method of considering obstacles in trajectory

optimisation impacts the dynamic-feasibility of the resulting trajectory. Three methods of planning

trajectories with obstacles were assessed, through a batch of tests cases and a series of flight tests.

The flight tests demonstrated that there is an impact on tracking performance related to the dynamic-

feasibility of the trajectory. ASTRO was one of the algorithms tested, with modifications to adapt to

quadrotors. By including obstacles directly in the optimisation, ASTRO was shown to produce the

smoothest trajectories that were the easiest to track, for scenarios when flying near to obstacles. The

trade-off is that ASTRO has larger computation times as it needs to solve a non-convex optimisation.

Finally, the localisation, mapping and planning layer were considered together to demonstrate

the concept of using one 3D representation for all tasks. The combined system was tested in a novel

simulation framework that utilises a game development engine to provide high fidelity visuals. Using

this simulator, NURBSLAM was combined with ASTRO to successfully run online with RGBD data,

proving the concept that a single 3D representation can be used for the localisation, mapping and

planning layers. This system was then compared with the current state-of-the-art visual SLAM and 3D

mapping algorithms. The results do not support the hypothesis that a homogeneous approach to SLAM

and mapping would be more efficient than a heterogeneous approach: the current implementation

NURBSLAM was less efficient and less accurate in tracking. However, NURBSLAM was shown to

be more robust in scenarios with sparse visual features, successfully operating in cases where visual

SLAM algorithms fail. Additionally, NURBSLAM has a soft failure mode, with the ability to quickly

246

recover from errors and continue tracking odometry, rather than completely losing localisation.

Overall, this thesis has presented contributions throughout the autonomous navigation stack. The

concept of NURBSLAM has been demonstrated, with further work required to improve performance

and characterise scenarios where it provides an advantage over split SLAM and mapping approaches.

ASTRO provides a capability in between a global planner and a local optimiser to provide dynamically

optimal trajectories around obstacles; a capability that could be applied to a range of flying robots.

The analysis of the differential flatness transformation and the dynamic-feasibility of trajectories

provides insight on the limitations of existing algorithms, which can be of use to those developing and

implementing such algorithms. The new method for performing the differential flatness transformation

provides a robust alternative to support high acceleration flight.

247

C
H

A
P

T
E

R

9
FUTURE WORK

T
here are numerous avenues for further development of the work presented in this thesis, to

improve performance and enhance capability. These areas of future work are summarised below.

For NURBSLAM, this work presented an initial formulation and a demonstration of the concept.

From this state the algorithm can be improved with the following work:

• Using keypoints for the localisation alignment to improve computational speed.

• Improving mapping performance by using overlapping data from a new observation to update the

existing surface.

• Improving the formulation for observation uncertainty in the EKF to better reject bad alignments.

• Integrating IMU information into the EKF.

• Investigating a pose-graph optimisation version of NURBSLAM using the GTSAM toolbox [47].

• Investigating a hybrid system of representation combining 3D point-feature descriptors with

NURBS surfaces.

The tests performed for NURBSLAM were for a single object, to isolate the operation of the algorithm

and test how effective it is with minimal information. Similarly, the tests were with simulated data, to

isolate the operation of the algorithm from sensor and image processing considerations. Critical next

steps are to expand to more test cases:

• Testing NURBSLAM for multi-object environments.

• Testing the combined NURBSLAM and ASTRO system with many obstacles in close proximity to

stress test the localisation, mapping, planning interactions.

• Testing NURBSLAM with real data from an RGBD sensor, and segmentation of the observations.

• Testing NURBSLAM in a range of environments, and compare to ORB-SLAM2, to characterise

performance and identify where NURBSLAM is superior.

• Testing of NURBSLAM with IMU measurements integrated into the filter.

The map produced by NURBSLAM is not only a map of obstacles but also a map of objects. Therefore,

the NURBS representation could potentially be used for object recognition and grasping by using the

249

CHAPTER 9. FUTURE WORK

shape information for the given object. The objects could also be given motion models to represent

dynamic obstacles. These areas could be investigated further.

ASTRO can be improved, and its capability expanded in the following areas:

• Further development and analysis of performance constraints.

• Including attitude in the optimisation, potentially using Modified Rodrigues Parameters as the

attitude representation.

• Flight tests of ASTRO with dynamic obstacles to thoroughly assess how ASTRO handles dynamic

obstacles.

• Incorporation of perception constraints.

• A tighter integration with perception to include uncertainty of obstacle locations and predict the

movement of dynamic obstacles.

• An in-depth analysis to understand the impact of changing the number of optimisation coefficients.

• Tests in simulated environments to analyse the varying performance of ASTRO, UNCO and TACO

with varying obstacle density.

Additionally, future developments of ASTRO could look to make the algorithm more robust and adapt-

able to a range of scenarios, with less tuning of parameters required.

For the differential flatness transformation, there remain areas of improvement to have a robust

transformation method through all orientations. Avenues for investigation in this area include:

• Deriving the differential flatness transformation with Modified Rodrigues Parameters.

• Removing specification of yaw, and only planning the yaw rate.

• Analyse, implement and test recent work from Watterson and Kumar [224] that use the Hopf

Fibration to manage the singularity.

• Demonstrate flight tests with full inversion.

The SpaceCRAFT robotic simulation framework has numerous avenues of development to implement

a range of robots and environments, to improve the efficiency of image transfer over the ROS bridge,

and to provide more immersive visualisation and user control. This tool can allow NURBSLAM, ASTRO

and other algorithms to be tested in a large range of environments, from indoor offices and warehouses

to inside the International Space Station and on the surface of Mars. In doing so, the tool can help

to develop algorithms for application in a particular environment or to be robust in a variety of

environments.

The system demonstrations of NURBSLAM and ASTRO, compared to ORBSLAM, Voxblox and

ASTRO were missing the control layer of the autonomous navigation stack. It is an essential next step

to implement that control layer so that the robot is moving to minimise the error between the estimated

pose and the desired pose. Following these tests, the combined autonomous navigation systems should

be implemented in hardware. First, a hardware-in-the-loop simulation can be performed, where a real

robot is flying, but the observations come from within a simulated environment from SpaceCRAFT,

similarly to what is presented in [204]. The final goal is to implement and test the full system onboard

a quadrotor for autonomous navigation in an unknown environment.

250

A
P

P
E

N
D

I
X

A
SVD FOR DETERMINING TRANSFORMATIONS

Given a dataset of n 3D observation points, di and n 3D points on a surface to align these points to, pi,

the algorithm to compute alignment with the Singular Value Decomposition (SVD) is effectively a least

squares optimisation of:

di −R pi −T (A.1)

The rotation matrix, R and the translation T are what is being solved for. First the datasets are

normalised by their mean (d̄, p̄):

dci
= di − d̄ (A.2)

pci
= mi − p̄ (A.3)

Then the data is combined to produce a 3×3 correlation matrix:

W =
n
∑

i=0
pci

dT
ci

(A.4)

where each data point is a 3×1 vector. SVD is then performed on W to get W =UΛ‘V T . The rotation

matrix is then computed with:

R =VUT (A.5)

Using the rotation matrix, the translation is computed as:

T = d̄−R p̄ (A.6)

Refer to [53] for a comparison of using SVD for alignment compared to other methods.

251

A
P

P
E

N
D

I
X

B
SUBSPACE PROJECTION

Presented here are the derivations of the projected subspace formulation, for both a gradient step in

coefficients and a full coefficient step. The derivation is for a single dimension, but the i subscript is

dropped for cleaner notation.

B.1 Gradient

A gradient step is split into components that comply with and do not comply with the boundary

conditions:

δC= δC⊥+δC|| (B.1)

where the split of components is defined by:

PBCδC⊥ = 0 (B.2)

What we want to derive is an expression to get δC⊥ from δC. This amounts to a projection of δC

onto the subspace of feasible solutions. Eq. B.1 is used, along with:

PBCδC=PBCδC⊥+PBCδC|| (B.3)

=PBCδC||

We isolate C|| in Eq. B.3, using the Moore-Penrose pseudo-inverse of PBC: P+
BC

:

δC|| =
[

PT
BC

(

PBCPT
BC

)−1
]

PBCδC=P+
BCPBCδC (B.4)

Substituting Eq. B.4 into Eq. B.3, we get:

δC= δC⊥+P+
BCPBCδC (B.5)

253

APPENDIX B. SUBSPACE PROJECTION

Rearranging to solve for C⊥, we get:

δC⊥ = δC−P+
BCPBCδC (B.6)

=
[

I−P+
BCPBC

]

δC

This equation is the projection of δC onto the subspace of feasible solutions.

B.2 Coefficients

When solving directly for coefficients, the goal is to project a coefficient set onto the space of feasible

coefficient sets. The process to derive this projection is very similar to that for the gradients. We first

split the coefficients:

C=C⊥+C|| (B.7)

Defining C⊥ and C|| such that Eq. B.7 holds and:

PBCC⊥ =XBC (B.8)

That is, C⊥ satisfies the boundary conditions, XBC. This property is used to get an expression for C||:

PBCC=PBCC⊥+PBCC|| (B.9)

=XBC +PBCC|| (B.10)

Taking the pseudo-inverse, C|| is isolated :

C|| =P+
BC (PBCδC−XBC) (B.11)

On substitution back into Eq. B.7, the projection to get C⊥ can be produced:

C⊥ =C−P+
BC (PBCC−XBC) (B.12)

Because C⊥ satisfies the boundary conditions, it is the coefficient component that we want to

maintain the boundary conditions. Eqn. B.11 takes that component from an arbitrary coefficient set.

254

A
P

P
E

N
D

I
X

C
QUATERNION MATHS

The quaternion is an important representation of attitude that is singularity free throughout all

orientations. The key mathematical definitions and operations are summarised here for reference.

Useful resources for more information are [45, 49, 81].

C.1 Quaternion Definition

At the core of a quaternion representation of attitude is a vector, e, and an angle to rotate about that

vector, θ. This representation of attitude is the easiest to understand conceptually. The quaternion

gives a convenient mathematical way to represent this vector and rotation, and use it for a range of

operations.

The mathematical definition of a quaternion takes from complex numbers:

q= q0 + iq1 + jq2 +kq3 (C.1)

where q1, q2 and q3 contain information on the rotation vector, and q0 on the rotation angle. This

definition is used for derivations of mathematical operations. The quaternion is normally represented

as a 4×1 vector of these terms. When using a quaternion for representing attitude, it is defined as:

q=
[

q0

q

]

=
[

cos(θ2)

esin(θ2)

]

(C.2)

=

q0

q1

q2

q3

=

cos(θ2)

e1 sin(θ2)

e2 sin(θ2)

e3 sin(θ2)

255

APPENDIX C. QUATERNION MATHS

The rotation θ is present in each term, the bottom three quaternion terms, q, are the vector

components, where e is the unit vector for the vector of rotation. The q0 term is referred to as the scalar

component.

With this definition, it can be useful to mentally think of a few simple rotations, and how they are

represented with quaternions. For instance, for a pitch of 90◦, we have cos(θ/2)= sin(θ/2)= 0.707, and

the rotation is purely about the positive y-axis, so: q= [0.707,0,0.707,0]. Similarly for a 90◦ yaw, we

have q= [0.707,0,0,0.707].

There are different conventions for representing the quaternion, including having the scalar compo-

nent last, or using the notation:

q=

qw

qx

qy

qz

(C.3)

to clearly differentiate the vector and scalar components. The definition in Eqn. C.2 will be used here.

Taking from complex numbers, a quaternion conjugate is obtained by negating the complex terms:

qc =
[

cos(θ2)

−esin(θ2)

]

(C.4)

The inverse of a quaternion uses this conjugate:

q−1 =
qc

|q|
(C.5)

where the quaternion norm is computed similarly to any other vector:

|q| =
√

q2
0 + q2

1 + q2
2 + q2

3 =
p

q ·q (C.6)

The quaternion as used for attitude representation is a unit quaternion: |q| = 1. There are cases where

it would be desired to normalise the quaternion, to make it a unit quaternion. This is done by:

qunit =
q

|q|
(C.7)

Because unit quaternions are used for rotation, the inverse is equal to the conjugate: q−1 =qc. With

regards to rotation, this inverse makes intuitive sense: to do an inverse rotation about a rotation vector,

you can rotate by the negative of θ. Because sin(−α)=−sin(α) and cos(−α)= cos(α), you get qc if −θ is

used in place of θ in Eq. C.2. The inverse can also be thought of as a positive θ rotation about a vector

in the opposite direction to e, i.e. the vector e is negated.

Pure quaternions are quaternions where the scalar term is zero, and are not necessarily unit

quaternions. These are generally used to represent a spatial vector, v as quaternions for use in

quaternion multiplication:
[

0

v

]

(C.8)

256

C.2. QUATERNION MULTIPLICATION

C.2 Quaternion Multiplication

The multiplication of quaternions is derived from the complex numbers definition, Eq. C.1, using the

fact that i2 = j2 = k2 = i jk =−1, i j = k, ji =−k, ki = j, k j =−i, etc. (see [45] for a derivation). For two

quaternions, q and p, this results in:

q⊗p=
[

q0 p0 − qT p

qp0 + q0 p+ q× p

]

(C.9)

This multiplication is not commutative, q⊗p 6=p⊗q. It can be convenient to represent this operation

instead with matrices, q⊗p=q+p, where q+ is a pre-multiplication matrix:

q+ =

q0 −qT

q q0I+ q̂

(C.10)

The matrix I is the 3×3 identity matrix, and the hat operator, â maps a vector to a cross product

matrix:

a×b= âb=

0 −a3 a2

a3 0 −a1

−a2 a1 0

b (C.11)

The matrix q+ can also be represented with the original quaternion and a sub-matrix:

q+ =
[

q E+
q

]

(C.12)

E+
q =

[

−qt

q0I+ q̂

]

=

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

(C.13)

Similar matrices can be constructed for the post-multiplication, q⊗p=p−q:

p− =

p0 −pT

p p0I− p̂

(C.14)

=
[

p E−
p

]

(C.15)

E−
p =

−pt

p0I− p̂

=

−p1 −p2 −p3

p0 p3 −p2

−p3 p0 p1

p2 −p1 p0

(C.16)

The forms of multiplication with matrices are useful for implementation in code, and for doing any

derivations with quaternions. The complete form of the matrices and their terms is:

257

APPENDIX C. QUATERNION MATHS

qp=

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

p (C.17)

=

p0 −p1 −p2 −p3

p1 p0 p3 −p2

p2 −p3 p0 p1

p3 p2 −p1 p0

q (C.18)

The primary uses for quaternions all use quaternion multiplication.

C.3 Quaternion Multiplication properties

Quaternion multiplication is not commutative, q⊗p 6=p⊗q, but is associative: q⊗ (p⊗r)= (q⊗p)⊗r,

and distributive: p⊗ (q+r)=q⊗p+q⊗r. The quaternion multiplied by its inverse gives the identity

quaternion:

q⊗qc =qc ⊗q=

1

0

0

0

(C.19)

These properties allow, for instance: q⊗p= r to be rearranged to give p=qc ⊗r.

A scalar multiplied by a quaternion scales the terms in the quaternion vector:

αq=

αq0

αq1

αq2

αq3

(C.20)

258

C.4. TRANSFORMATIONS VS. ROTATIONS

C.4 Transformations vs. Rotations

A rotation is the inverse of a transformation, and there can be confusion on which is being used. A

transformation does not move a vector but instead describes it in a different coordinate frame. A rotation

moves a vector to change where it is pointing in any reference frame. See [81] for a discussion of the

differences.

For example: consider a runway and a quadrotor. The global axis is fixed to the runway with the x

axis along the runway, pointing North, the z axis is up, and the y axis is west. The body-axis is fixed to

the quadrotor with x through the forward end, that is initially pointing down the runway. The quadrotor

takes off and turns to point due West.

Rotation As the quadrotor takes off and turns, the vector describing the direction of the forward end

in the global frame is rotated by 90◦. It starts as [1,0,0]g, and ends as [0,1,0]g.

Transformation The vector describing the direction of the forward end in the body frame is [1,0,0]b,

which never changes, as the body frame is fixed to the quadrotor. When hovering and pointing

west, if we want to describe this body-axis in the global frame, then we need to do a transformation,

the result of which will be [0,1,0]g. Note how although the result is the same as for rotation (it

should be as both are describing the forward end in the global frame), the quadrotor has not

moved at all. No vector has changed, just the frame in which that vector is described.1

Transformation 2 Let’s say there is a camera on the quadrotor and we want to point it in the direction

of the runway. What direction do we need to point it in the body frame? We need to transform the

vector giving the direction of the runway in the global frame, [1,0,0]g, to the body frame. This

transformation is the inverse of the transformation from the body frame to the global frame and

gives [0,−1,0]b. Again, this is the same vector, it still points down the runway, but it is described

in a different frame.

Rotation 2 The camera is pointing forward, [1,0,0]b, so we need to rotate it to point it in the right

direction, [0,−1,0]b. This step amounts to a negative rotation of 90◦ about the body z axis.

Note how this is a rotation from the body x axis to the global x axis and is the negative of the

transformation from the body frame to the global frame.

Summary Rotations move a vector and stay in the same frame of reference. Transformations do not

move vectors but change the frame of reference.

The same mathematical operations apply for rotations and transformations, but care needs to be

taken to perform the operations in the right direction and order.

C.5 Quaternions for Attitude Transformations

For describing the attitude of a vehicle, the attitude quaternion q encodes the transformation from the

body frame to the global frame. It can also be thought of as representing how the body of a vehicle (and

the body fixed axes) has rotated from the global axes. The attitude quaternion can be used to transform

a spatial vector in the body frame, xb to the global frame, xg with:

1As a general rule: a transformation from frame A to frame B is equivalent to placing the vector in A straight into B (the
same values) and rotating it by the required steps to align B with A.

259

APPENDIX C. QUATERNION MATHS

[

0

xg

]

=q⊗
[

0

xb

]

⊗qc (C.21)

where all multiplications are quaternion multiplications. For ease of notation, from here forward the

pure quaternion representation of a vector will be be assumed whenever a quaternions is multiplying a

vector, hence:

xg =q⊗xb ⊗qc (C.22)

The same equation can be used for rotation, to rotate a vector in the same frame by quaternion p:

x′
b =p⊗xb ⊗pc (C.23)

To compose multiple transformations or rotations, successive quaternions are multiplied in order

of application from right to left. We define here the notation qab, to describe a quaternion that will

transform from frame b to frame a (e.g. the quaternion in Eq. C.22 is qgb). Successive transformations

from frame c to b to a is given by:

qac =qab ⊗qbc (C.24)

An intuitive way to reason about this ordering is by observing Eq. C.22 and composing rotations of

that vector. For example, if there is a camera frame c, with orientation in the body frame, b, given by

qbc, and the body attitude in the global frame, g is given by qbg, then representing a camera frame

vector in the global frame can be constructed as below:

xb =qbc ⊗xc ⊗qc
bc (C.25)

xg =qgb ⊗xb ⊗qc
gb (C.26)

=qgb ⊗qbc ⊗xc ⊗qc
bc ⊗qc

gb (C.27)

=qgc ⊗xc ⊗qc
gc (C.28)

Therefore:

qgc =qgb ⊗qbc (C.29)

The same holds for rotations, but again have caution in that the order of application of rotations to

a vector may be the opposite to the order of transformations.

C.5.1 Quaternions to Rotation Matrices

A rotation matrix can be formed from quaternions with the following matrix (see [49] for a derivation):

R =

(q2
0 + q2

1)− (q2
2 + q2

3) 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) (q2
0 − q2

1)+ (q2
2 − q2

3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q1q0) (q2
0 − q2

1)− (q2
2 − q2

3)

(C.30)

To extract a quaternion from a rotation matrix, four different inverse mappings can be used, for

which we refer to [49]. Conversions to other attitude representations are also presented in [49].

260

C.6. QUATERION RATES

C.6 Quaterion Rates

Given a body rates vector, ω, the quaternion rates are given by:

q̇=
1
2

q⊗ω (C.31)

Using the matrix form of multiplication, the rates are given by:

q̇=

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

q0

q1

q2

q3

(C.32)

Note that the current orientation, q is required.

The inverse; computing the body rates from the quaternion rates can be derived with the quaternion

multiplication rules from Eq. C.31, and is given by:

ω= 2qc ⊗ q̇ (C.33)

The quaternion acceleration uses the body rate acceleration, ω̇ and the quaternion rates:

q̈=
1
2

q⊗ ω̇− (|q̇|2)q (C.34)

The quaternion rates are not unit quaternions, hence the norm is not zero. The body angular

accelerations are obtained from the quaternion accelerations by:

ω̈= 2(qc ⊗ q̈+ q̇c ⊗ q̇) (C.35)

C.7 Quaternion Logarithm and Exponential

The exponential of a quaternion takes a similar form to the exponential of complex numbers, eiφ =
cos(φ)+ isin(φ), where in this case, the magnitude of the complex part is |q|:

eq = eq0

cos(|q|)
q

|q| sin(|q|)

 (C.36)

Note how this is very similar to the complex exponential, but with the rotation axis giving three

dimensions to the complex part.

The quaternion logarithm is the inverse of the exponential, using an "angle" between real and

imaginary parts, φ. For quaternions, this is the angle on the imaginary plane with coordinates (q0, |q|):

φ= arctan
(|q|

q0

)

(C.37)

The logarithm is computed by:

261

APPENDIX C. QUATERNION MATHS

ln(q)=

ln(|q|)
q

|q|φ

 (C.38)

When considering quaternions for attitude representation, these operations can be considered as

a conversion between quaternion and axis-angle type representation, eθ. The exponential of a pure

quaternion with the vector component eθ/2 (halving a rotation vector representation) gives:

exp

([

0

eθ
2

])

=
[

cos(θ2)

esin(θ2)

]

(C.39)

which is the quaternion representation for same attitude. The inverse can also be considered, by

taking the log of a quaternion describing attitude, where |q| = 1, and φ= arctan(sin(θ/2)/cos(θ/2))= θ/2:

ln(q)=

0
q

|q|
θ
2

=
[

0

eθ
2

]

(C.40)

The result is half the axis angle representation of the attitude. For more details on these operations

and use of them when |q| is near zero, refer to [45].

C.8 Quaternion Interpolation - SLERP

The evolution of quaternions representing attitude is not linear, hence linearly interpolating between

two quaternions is not an accurate approach. Instead, the interpolation should be a progressive rotation

from one orientation to the next. Consider an interpolation between q1 and q2. The quaternion defining

the rotation between the two orientations is given by:

∆q=qc
1 ⊗q2 (C.41)

Note that we are considering rotations between quaternions in this case. The mathematics is the

same, whether or not they are used for transformations or rotations, but care needs to be taken when

considering the order of the quaternions rotations, and the frame in which the rotation is defined. For

example, if we want to represent the change in attitude from a roll in the body-axis, this rotation comes

after the quaternion that describes the current attitude, so it is about the current body x axis.

The delta quaternion defines a rotation vector and angle to move from one orientation to the next;

hence rotating by fractions of the angle interpolates the rotation. To rotate by fractions of the angle, the

difference quaternion is transformed into the rotation vector form by the quaternion logarithm:

[

0

v

]

=
[

0

eθ
2

]

= ln(∆q) (C.42)

with the rotation angle θ being a multiplicative factor of the rotation vector v, the rotation can be

incremented by using τv, where τ ranges from 0 to 1. A given partial rotation then needs to be mapped

back into a quaternion with the matrix exponential:

262

C.9. QUATERNION FINITE DIFFERENCING

∆q(τ)= exp

(

τ

[

0

v

])

= exp
(

τ ln(qc
1 ⊗q2)

)

(C.43)

This partial rotation quaternion can then be applied to the starting quaternion to get the interpolated

rotation, q(τ):

q(τ)=q1 ⊗∆q(τ)=q1 ⊗exp
(

τ ln(qc
1 ⊗q2)

)

(C.44)

This method of interpolation is called Spherical Linear Interpolation, or SLERP.

The right part of Eq. C.44 can be conveniently represented by the quaternion power:

qt = exp(t ln(q)) (C.45)

This power is effectively combining the steps to perform partial rotations for a quaternion: rotating

about the same rotation axis, but by a fraction or multiple of θ, set by the value t.

C.9 Quaternion Finite Differencing

If it is desired to get the rotational rate from a sequence of quaternions (e.g. the attitude of a vehicle

over time), there needs to be a numerical computation of the rates. However, because quaternions are

not linear, doing a simple finite differencing:

q̇=
q2 −q1

∆t
(C.46)

is not sufficient and will introduce errors. The same principles as used in SLERP need to be applied to

get the rotational difference between two quaternions, from Eq. C.41.

Taking the logarithm of this rotational difference converts it into an axis-angle form where the

rotation can then be divided by time to get what is the body rates:

1
2
ω=

ln(∆q)
∆t

(C.47)

This method of determining body rates assumes a constant rotation axis, and computes the rate of

rotation about that axis. With the angular rate, the quaternion rates can be determined:

q̇=
1
2

q1 ⊗ω=
1
∆t

q1 ⊗ ln(qc
1 ⊗q2) (C.48)

263

APPENDIX C. QUATERNION MATHS

C.10 Quaternion Integration

To propagate forward dynamics, integrating from given a quaternion rate or body rates, difficulties

arise when using Euler or Runge-Kutta integration as the quaternions will lose their unit quaternion

property. This issue can be managed by normalising the quaternions on each iteration.

qk+1 =
q̇k∆t+qk

|q̇k∆t+qk|
(C.49)

Alternatively, the body rate can be computed with Eq. C.33, and an approximation made to have a

constant angular rate for the period of integration. Multiplying the body rate by the time period, ∆t

gives the forward propagated rotation in rotation vector format. The quaternion exponential transforms

this into quaternion form to apply the rotation:

qk+1 = exp
(

ω∆t

2

)

⊗qk (C.50)

With this method, the unit quaternion properties are maintained.

264

A
P

P
E

N
D

I
X

D
QUATERNION DERIVATION OF DIFFERENTIAL FLATNESS TRANSFORM

It is assumed that a trajectory is given for the differentially flat derivatives and their inputs: position

(x, y, z) up to the 4th derivative, the quaternion for the z part of the vector, q3 up to the 2nd derivative.

i.e. the variables planned are:

x, ẋ, ẍ,x(3),x(4)

q3, q̇3, q̈3

where the quaternion convention is defined as outlined in Appendix C.

It is assumed in this derivation that a North-East-Up reference frame is used (important for defining

the sign of the acceleration due to gravity, g̃).

D.1 Compute the Thrust Vector

As in previous techniques, the net acceleration, along with gravity gives the thrust, which gives the z

body-axis.

First, the thrust vector is given by:

T= m(ẍ+ g̃zg) (D.1)

where m is the mass, and zg the z global vector ([0,0,1]T). The magnitude of thrust is:

T = m||ẍ+ g̃zg|| (D.2)

D.2 Coupling Thrust with Attitude

The thrust is coupled with the attitude, as thrust can only be directed upward in the z body-axis. Hence:

265

APPENDIX D. QUATERNION DERIVATION OF DIFFERENTIAL FLATNESS TRANSFORM

Rzb =
m

T
(ẍ+ g̃zg) (D.3)

where R is the rotation matrix describing the orientation. This coupling only reduces two of the degrees

of freedom (with the equation only using the third column of the rotation matrix). FOr quaternions, the

third column in the rotation matrix (Eq. C.30) results in the following equations:

2(q0q2 + q1q3)=
m

T
ẍ1 (D.4)

2(q2q3 − q0q1)=
m

T
ẍ2 (D.5)

(q2
0 − q2

1)− (q2
2 − q2

3)=
m

T
(ẍ3 + g̃) (D.6)

(D.7)

This gives us three equations to find the three unknowns, q0, q1, q2, but the quaternions are also

coupled by requiring a norm of 1, giving us a fourth equation:

q2
0 + q2

1 + q2
2 + q2

3 = 1 (D.8)

Equation D.8, combined with equation D.6 gives either of the following equations:

2q2
0 +2q2

3 −1=
m

T
(ẍ3 + g) (D.9)

1−2q2
1 −2q2

2 =
m

T
(ẍ3 + g) (D.10)

Equations D.4, D.5, D.9 and D.10 will be used to derive expressions for q0, as a function of q3, as

well as q1, and q2 as a function of q0 and q3.

First we take equation D.4 and rearrange to make q2 the subject, then do the same for q1, using

equation D.5:

q2 =
1
q0

(m

2T
ẍ1 − q1q3

)

(D.11)

q1 =
1
q0

(

−
m

2T
ẍ2 + q2q3

)

(D.12)

Substituting one into the other and rearranging to isolate variables, we get expressions for q1 and

q2 in terms of q3 and q0:

q1 =
(m

2T

)

(

1

(q2
0 + q2

3)

)

(q3 ẍ1 − q0 ẍ2) (D.13)

q2 =
(m

2T

)

(

1

(q2
0 + q2

3)

)

(q0 ẍ1 + q3 ẍ2) (D.14)

There are two methods to get q0. First, using equation D.9, it can simply be rearranged to give q0

as a function of q3.

266

D.3. SINGULARITIES

q0 =
√

[]
1
2

(

1+
m

T
(ẍ3 + g)

)

− q2
3 (D.15)

The second derivation uses equation D.10, and substitutes the equations for q1 and q2, giving:

q0 =
√

[]
ẍ2

1 + ẍ2
2

2
(

T
m

)[

T
m
− (ẍ3 + g)

] (D.16)

A choice is made to select the positive square root in each, taking the option of a positive constant

term of the two equivalent quaternion representations (q=−q).

With each of the quaternion terms, the full orientation is known, and the derivation of the remaining

states is very similar to the standard derivation, except for the use of quaternion rates, rather than yaw

rates (details are not presented here).

D.3 Singularities

It is important to note the singularities inherent in these formulations:

1. In equations D.13 and D.14 if q2
0 + q2

3 = 0. Which would be the case for pure rotations about the x

or y axes of 180 degrees.

2. For the different q0 options:

a) In equation D.15, and D.16 when q3 is large, and the terms under the square root become

negative.

b) In equation D.16 when there is no horizontal acceleration (T
m
− (ẍ3 + g)= 0)

An approach to address each of these singularities is to plan both q0 and q3, yet this has difficulties

in describing the desired orientation.

D.4 Angular Rates

The process of extracting the angular rates is very similar to the process outlined by [26, 140], using

jerk. Refer to their papers for more detail on the derivation. It is repeated here for completeness. First,

the quaternion is used to get the rotation matrix (using equation C.30), where each column gives the

body-axes:

R=
[

xb yb zb

]

(D.17)

Here xb is referring to the x body-axis. The pitch and roll rates (ω1 and ω2) can then be extracted

using:

hw =
m

T
(x(3) − (zb ·x(3))zb) (D.18)

ω1 =−hw ·yb (D.19)

ω2 =hw ·xb (D.20)

267

APPENDIX D. QUATERNION DERIVATION OF DIFFERENTIAL FLATNESS TRANSFORM

The extraction of the yaw rate differs from [26, 139], as it is the rate of q3 that is planned. The

quaternion rates are given by the quaternion product, Eq. C.31. Taking the last row of the rates equation,

and rearranging to make ω3 the subject gives:

ω3 =
1
q0

(2q̇3 +ω1q2 −ω2q1) (D.21)

This equation does have a singularity when q0 = 0 which would occur when there are 180-degree

rotations.

D.5 Angular Acceleration

Angular acceleration proceeds similarly to angular velocity, using the snap. Following [26, 139], first

the utility vector hα is computed:

hα =
m

T

[

x(4) − (zb · x(4))zb

+
T

m
(zb · (ω×ω×zb))zb

−
T

m
ω×ω×zb

−2ω× (zb · x(3))zb)
]

(D.22)

Which then gives the first two rotational accelerations:

ω̇1 =−hα ·yb (D.23)

ω̇2 =hα · xb (D.24)

Deriving the third angular acceleration uses the quaternion acceleration:

q̈=
1
2

q⊗ ω̇−q⊗ q̇c ⊗ q̇=
1
2

q⊗ ω̇− (q̇T ⊗ q̇)⊗q (D.25)

We take the row corresponding to the yaw acceleration, and rearrange to give:

ω̇=
1
q0

[

2q̈3 − q1ω̇2 + q2ω̇1 +2(q̇T ⊗ q̇)q3

]

(D.26)

The quaternion rates, q̇ can be computed using equation C.31. Note that the same singularity exists

here if q0 = 0.

With the rotational acceleration, the torques and motor RPM are extracted as for all other methods,

as described in Section 5.1.1.4.

268

269

LIST OF ACRONYMS AND ABBREVIATIONS

LIST OF ACRONYMS AND ABBREVIATIONS

Acronym Meaning

ASTRO Admissible Subspace Trajectory Optimiser

ASTRO-C ASTRO with corridor constraints

ASTRO-CE ASTRO with corridor constraints and ESDF feasibility checks

ASTRO-E ASTRO with ESDF constraints

BA Bundle Adjustment

BCM Bayesian Committee Machine

CRM Confidence Rich Mapping

DSP Digital Signal Processor

EKF Extended Kalman Filter

ESC Electronic Speed Controller

ESDF Euclidean Signed Distance Field

GCS Ground Control Station

GP Gaussian Process

GPIS Gaussian Process Implicit Surfaces

GPOM Gaussian Process Occupancy Maps

GPS Global Positioning System

ICP Iterative Closest Point

IMU Inertial Measurement Unit

LQR Linear Quadratic Regulator

MEKF Multiplicative Extended Kalman Filter

MIT Massachusetts Institute of Technology

NURBS Non-Uniform Rational B-Splines

NURBSLAM Non-Uniform Rational B-Splines Localisation And Mapping

ORB-SLAM Oriented FAST, Rotated BRIEF Simultaneous Localisation And Mapping

PCL Point Cloud Library

PDFF Proportional, Derivative, Feed-Forward controller

PID Proportional, Integral, Derivative controller

PnP Perspective from n Points

RANSAC Random Sample Consensus

RDP Ramer-Douglas-Peucker algorithm

RGBD Red, Green, Blue, Depth (colour and depth images)

RMS/RMSE Root-Mean-Square/Root-Mean-Square Error

ROS Robotic Operating System

RPM Revolutions Per Minute

RRT Randomly-exploring Random Trees

SLAM Simultaneous Localisation And Mapping

SLAM Simultaneous Localisation And Mapping

SPHERES Synchronized Position Hold, Engage, Reorient Experimental Satellites

270

Acronym Meaning

SSL Space Systems Laboratory

TACO Tube And Cube constrained Optimiser

TAN Terrain Aided Navigation

TSDF Truncated Signed Distance Field

UAV Unmanned Aerial Vehicle

UNCO UNConstrained Optimiser

V-SLAM Visual Simultaneous Localisation And Mapping

VIO Visual Inertial Odometry

VO Visual Odometry

271

273

LIST OF SYMBOLS

LIST OF SYMBOLS

Term Meaning Area

A Shape matrix for ellipsoids and prisms Traj. Opt.

a Time scaling factor for ASTRO Traj. Opt.

α Optimisation step size Traj. Opt.

Amax Maximum acceleration for TACO Traj. Opt.

au Acceleration uncertainty for dynamic obstacles Traj. Opt.

β Angular rotation for pitch and roll differential flatness transforma-

tion

Quad. Control

Br
i

ith basis blending function for NURBS of degree r SLAM + 3D Map.

B Matrix of basis blending function for NURBS SLAM + 3D Map.

C̄ Matrix of coefficients for one polynomial segment in all dimensions Traj. Opt.

C⊥ Component of polynomial coefficients with no influence on boundary

conditions

Traj. Opt.

Ci Stack of polynomial coefficients for the ith dimension Traj. Opt.

C′
i

Coefficients fit to a trajectory for the ith dimension Traj. Opt.

Cik Polynomial coefficient for the ith dimension for the kth degree basis

polynomial

Traj. Opt.

C|| Component of polynomial coefficients that does influence boundary

conditions

Traj. Opt.

Ci Stack of polynomial coefficients for multiple segments in the ith

dimension

Traj. Opt.

D Data points for NURBS surface fitting SLAM + 3D Map.

d Derivatives at waypoints, for use in snap optimisation Traj. Opt.

Dh Propellor drag vector Quad. Control

Dp Parasitic drag vector Quad. Control

∆t Timestep SLAM + 3D Map.

e Rotation axis unit vector -

E Cross product matrix for rotation axis e Traj. Opt.

eq Attitude error vector SLAM + 3D Map.

ǫ Setting for path discretisation algorithm RDP Traj, Opt.

η Scalar component of Rodrigues parameters SLAM + 3D Map.

fBC Boundary conditions function Traj. Opt.

fc j
Constraint cost function Traj. Opt.

f j jth cost function Traj. Opt.

fs Trajectory cost function Traj. Opt.

Γ Time rescaling factor Traj. Opt.

γ Second angle for use in differential flatness transformations Quad. Control

H Approximate Hessian matrix Traj. Opt.

h Time per segment for TACO Traj. Opt.

hα Working vector for differential flatness transformation Quad. Control

274

Term Meaning Area

hω Working vector for differential flatness transformation Quad. Control

I Identity matrix -

Ī Moment of Inertia matrix Quad. Control

J Process model Jacobian for EKF SLAM + 3D Map.

J Augmented cost function in Traj. Opt. Traj. Opt.

Jh Observation model Jacobian for EKF SLAM + 3D Map.

Jm Multiple segment augmented cost function Traj. Opt.

Jt Time optimisation cost function Traj. Opt.

K Kalman gain SLAM + 3D Map.

κ Weighting in GPIS kernel SLAM + 3D Map.

Kd D gain on velocity error Quad. Control

k f Thrust coefficient for quadrotor dynamics Quad. Control

K f f Feed-forward gain on acceleration Quad. Control

K j Weighting for jth cost function Traj. Opt.

Kω D gain on angular velocity error Quad. Control

Kp P gain on position error Quad. Control

Kq P gain on attitude error Quad. Control

L Moment are for quadrotor dynamics Traj. Opt.

l Spacing between waypoints for TACO Traj. Opt.

lmax Size of free-space bounds Traj. Opt.

m,ms,mt NURBS number of data points (in s and t parametric directions) SLAM + 3D Map.

µ Custom constraint weighting parameter Traj. Opt.

n,ns,nt NURBS number of control points (in s and t parametric directions) SLAM + 3D Map.

n f number of samples for fitting a polynomial for replanning Traj. Opt.

Ni Number of coefficients in the ith dimension SLAM + 3D Map.

no ASTRO number of constraints Traj. Opt.

nseg Number of segments Traj. Opt.

nst Surface normal SLAM + 3D Map.

ν Custom constraint weighting parameter Traj. Opt.

⊗ quaternion product -

ω Rotational velocity Quad. Control

Ω Rotor rotational velocity Quad. Control

p Degree of polynomials in NURBS SLAM + 3D Map.

PBC Legendre polynomial matrix for boundary conditions Traj. Opt.

P̄BC Multiple-segment boundary-condition matrix of Legendre polyno-

mial coefficients

Traj. Opt.

PCC Matrix of Legendre polynomials for continuity constraints Traj. Opt.

PC i
Combined boundary and continuity constraint matrix of Legendre

polynomials for multiple segments and dimension i

Traj. Opt.

φ Angle of rotation for rotation vector attitude representation -

275

LIST OF SYMBOLS

Term Meaning Area

P int Matrix of Legendre polynomial integrals Traj. Opt.

Pk Legendre Polynomial coefficients of degree k Traj. Opt.

PL(t′) Matrix of basis polynomials across all derivatives for normalised

time t′
Traj. Opt.

ψ yaw angle -

ψsp Yaw set-point Quad. Control

q Quaternion -

q The highest derivative considered in trajectory optimisaiton Traj. Opt.

qe Error quaternion -

Qn Process noise in EKF SLAM + 3D Map.

qsp Quaternion set-point Quad. Control

R Rotation matrix -

r derivative iterator Traj. Opt.

r1, r2, r3 Axes sizes for ellipsoids and prisms Traj. Opt.

rho NURBS Control points SLAM + 3D Map.

Rn Observation uncertainty matrix SLAM + 3D Map.

s NURBS parameter value SLAM + 3D Map.

Σ Covariance matrix -

σ1,σ2,σ3 Optimisation convergence criteria Traj. Opt.

Σ̂ Predicted Covariance SLAM + 3D Map.

T Thrust magnitude Quad. Control

T Thrust vector Quad. Control

t0 Starting time for trajectory planning Traj. Opt.

t NURBS parameter value SLAM + 3D Map.

t time Traj. Opt.

τ Moment vector Quad. Control

t f Ending time for trajectory planning Traj. Opt.

t′ Normalised time Traj. Opt.

t̄obs Translational component of an observed transformation SLAM + 3D Map.

Tsp Thrust set-point Quad. Control

uk NURBS knot in s direction SLAM + 3D Map.

ū NURBS knot vector in s direction SLAM + 3D Map.

vk NURBS knot in t direction SLAM + 3D Map.

v̄ NURBS knot vector in t direction SLAM + 3D Map.

vc Velocity of obstacle Traj. Opt.

ve Error rotation vector -

Vmax Maximum velocity for TACO Traj. Opt.

vst Vector from nearest surface point to query point for NURBS signed

distance evaluation

SLAM + 3D Map.

vu Velocity uncertainty for dynamic obstacles Traj. Opt.

276

Term Meaning Area

W Cost function for snap optimisation Traj. Opt.

w0–5 Tuning parameters for NURBS alignment observation noise matri-

ces.

SLAM + 3D Map.

wio In or out value for constraints Traj. Opt.

Wj Constraint cost for jth constraint Traj. Opt.

Wt Time penalty in optimisation Traj. Opt.

x Position vector -

ẋ Velocity vector -
˙̇x Acceleration vector -

xb x body axis -

x̄ Vector with all derivatives for x, y, z Traj. Opt.

XBC Boundary conditions vector Traj. Opt.

X̄BC Multiple-segment boundary conditions Traj. Opt.

x̆, y̆, z̆ Cost components for rectangular prism constraint Traj. Opt.

xc Desired heading, x axis Quad. Control

xcsa
Desired heading, x axis, rotated by a second angle Quad. Control

XC i
Combined boundary and continuity constraints for multiple seg-

ments and dimension i

Traj. Opt.

x EKF State SLAM + 3D Map.

ξ Derivative of trajectory that is parameterised by Legendre Polyno-

mials

Traj. Opt.

x
(p)
i

The pth derivative in the ith dimension Traj. Opt.

xsp Position set-point Quad. Control

x̃ Position offset from the centre of a constraint Traj. Opt.

xu Position uncertainty for dynamic obstacles Traj. Opt.

Y Matrix of scaled data points for NURBS fitting SLAM + 3D Map.

yb y body axis -

yc Desired heading, y axis Quad. Control

zb z body axis -

ζ Control points on a new surface SLAM + 3D Map.

zg Global z vector -

zk Observation vector at the kth timestep SLAM + 3D Map.

277

LIST OF SYMBOLS

Superscript Meaning Area

+ Moore-Penrose Pseudo-Inverse -
(i) The ith derivative Traj. Opt.
∫

(i) The ith integral Traj. Opt.

Subscript Meaning Area

b body frame -

g Global frame -

m Multiple segment Traj. Opt.

278

BIBLIOGRAPHY

[1] ABBEEL, P., COATES, A., AND NG, A. Y.

Autonomous helicopter aerobatics through apprenticeship learning.

The International Journal of Robotics Research 29, 13 (2010), 1608–1639.

[2] ABDOU, E., FOWERAKER, N., PHILLIPS, E., ZHANG, X., ZOCHOWSKI, Y., COEN, M., MCHENRY,

N., MORRELL, B., CHAMITOFF, G., AND WU, X.

Spacecraft: Endeavouring towards a satellite virtual reality for mission operation evaluation.

In 68th International Astronautical Congress (IAC) (Adelaide, Australia, Sept. 2017), no. IAC-17-

F1.2.3.

[3] AGHA-MOHAMMADI, A.-A., HEIDEN, E., HAUSMAN, K., AND SUKHATME, G.

Confidence-rich grid mapping.

In Proc. Int. Symp. Robot. Res. (2017), pp. 1–19.

[4] AIT-JELLAL, R., AND ZELL, A.

Outdoor obstacle avoidance based on hybrid visual stereo SLAM for an autonomous quadrotor

mav.

In 2017 European Conference on Mobile Robots (ECMR) (Sept. 2017), pp. 1–8.

[5] ALLEN, R. E., AND PAVONE, M.

A real-time framework for kinodynamic planning with application to quadrotor obstacle avoidance.

PhD thesis, Stanford University, 2016.

[6] ALONSO AYUSO, A., ESCUDERO, L., AND MARTIN CAMPO, F.

Collision Avoidance in Air Traffic Management: A Mixed-Integer Linear Optimization Approach.

Intelligent Transportation Systems, IEEE Transactions on 12, 1 (Mar. 2011), 47–57.

[7] AMENTA, N., CHOI, S., AND KOLLURI, R. K.

The power crust, unions of balls, and the medial axis transform.

Computational Geometry 19, 2-3 (2001), 127–153.

[8] ANDERSEN, M. S., DAHL, J., AND VANDENBERGHE, L.

Cvxopt: A python package for convex optimization, version 1.1. 6.

Available at cvxopt. org 54 (2013).

[9] ARMIJO, L.

Minimization of functions having lipschitz continuous first partial derivatives.

Pacific Journal of mathematics 16, 1 (1966), 1–3.

279

BIBLIOGRAPHY

[10] ARTHUR RICHARDS, TOM SCHOUWENAARS, JONATHAN P. HOW, AND ERIC FERON.

Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-Integer Linear Pro-

gramming.

Journal of Guidance, Control, and Dynamics 25, 4 (July 2002), 755–764.

[11] BALDINI, F., BANDYOPADHYAY, S., FOUST, R., CHUNG, S.-J., RAHMANI, A., DE LA CROIX, J.-P.,

BACULA, A., CHILAN, C. M., AND HADAEGH, F. Y.

Fast motion planning for agile space systems with multiple obstacles.

In AIAA/AAS Astrodynamics Specialist Conference (2016), p. 5683.

[12] BANGURA, M.

Aerodynamics and Control of Quadrotors.

PhD thesis, The Australian National University, 2017.

[13] BARRY, A. J., FLORENCE, P. R., AND TEDRAKE, R.

High-speed autonomous obstacle avoidance with pushbroom stereo.

Journal of Field Robotics 35, 1 (2018), 52–68.

[14] BELLINGHAM, J. S., TILLERSON, M., ALIGHANBARI, M., AND HOW, J. P.

Cooperative Path Planning for Multiple UAVs in Dynamic and Uncertain Environments.

In Decision and Control, 2002, Proceedings of the 41st IEEE Conference on (2002), vol. 3, IEEE,

pp. 2816–2822.

[15] BELONGIE, S.

Rodrigues rotation formula.

From MathWorld–A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.

wolfram. com/RodriguesRotationFormula. html (1999).

[16] BEUL, M., DROESCHEL, D., NIEUWENHUISEN, M., QUENZEL, J., HOUBEN, S., AND BEHNKE,

S.

Fast autonomous flight in warehouses for inventory applications.

IEEE Robotics and Automation Letters 3, 4 (2018), 3121–3128.

[17] BIASOTTI, S., GIORGI, D., MARINI, S., SPAGNUOLO, M., AND FALCIDIENO, B.

A comparison framework for 3d object classification methods.

In International Workshop on Multimedia Content Representation, Classification and Security

(2006), Springer, pp. 314–321.

[18] BLACKMORE, L., LI, H., AND WILLIAMS, B.

A Probabilistic Approach to Optimal Robust Path Planning with Obstacles.

In American Control Conference, 2006 (2006), IEEE, pp. 7–pp.

[19] BLOESCH, M., OMARI, S., HUTTER, M., AND SIEGWART, R.

Robust visual inertial odometry using a direct EKF-based approach.

In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on (2015),

IEEE, pp. 298–304.

280

BIBLIOGRAPHY

[20] BREGER, L. S., AND HOW, J. P.

Safe Trajectories for Autonomous Rendezvous Of Spacecraft.

Journal of Guidance, Control, and Dynamics 31, 5 (2008), 1478–1489.

[21] BROCKERS, R., FRAGOSO, A., AND MATTHIES, L.

Stereo vision-based obstacle avoidance for micro air vehicles using an egocylindrical image space

representation.

In Micro-and Nanotechnology Sensors, Systems, and Applications VIII (2016), vol. 9836, Interna-

tional Society for Optics and Photonics, p. 98361R.

[22] BROOK, P., CIOCARLIE, M., AND HSIAO, K.

Collaborative grasp planning with multiple object representations.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on (2011), IEEE,

pp. 2851–2858.

[23] BROOKS, A., AND BAILEY, T.

HybridSLAM: Combining FastSLAM and EKF-SLAM for Reliable Mapping.

In Algorithmic Foundation of Robotics VIII. Springer, 2009, pp. 647–661.

[24] BROYDEN, C. G.

The Convergence of a Class of Double-Rank Minimization Algorithms.

Journal of the Institute of Mathematics and its Applications 6 (1970), 76–90.

[25] BRUCE, J., AND VELOSO, M.

Real-Time Randomized Path Planning for Robot Navigation.

In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on (2002), vol. 3,

IEEE, pp. 2383–2388.

[26] BRY, A., RICHTER, C., BACHRACH, A., AND ROY, N.

Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments.

The International Journal of Robotics Research 34, 7 (2015), 969–1002.

[27] BUCH, A. G., KRAFT, D., KAMARAINEN, J.-K., PETERSEN, H. G., AND KRÜGER, N.

Pose estimation using local structure-specific shape and appearance context.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on (2013), IEEE,

pp. 2080–2087.

[28] BURRI, M., NIKOLIC, J., GOHL, P., SCHNEIDER, T., REHDER, J., OMARI, S., ACHTELIK, M. W.,

AND SIEGWART, R.

The EuRoC micro aerial vehicle datasets.

The International Journal of Robotics Research 35, 10 (2016), 1157–1163.

[29] BYATT, D., COOPE, I. D., AND PRICE, C. J.

Effect of limited precision on the BFGS quasi-Newton algorithm.

ANZIAM Journal 45, 0 (2004), 283–295.

281

BIBLIOGRAPHY

[30] CAFIERI, S., AND DURAND, N.

Aircraft Deconfliction with Speed Regulation: New Models from Mixed-Integer Optimization.

Journal of Global Optimization 58, 4 (2014), 613–629.

[31] CALONDER, M.

EKF SLAM vs. FastSLAM A Comparison.

Tech. rep., 2006.

[32] CAMPOS-MACÍAS, L., GÓMEZ-GUTIÉRREZ, D., ALDANA-LÓPEZ, R., DE LA GUARDIA, R., AND

PARRA-VILCHIS, J. I.

A hybrid method for online trajectory planning of mobile robots in cluttered environments.

IEEE Robotics and Automation Letters 2, 2 (2017), 935–942.

[33] CHAMITOFF, G. E.

Autonomous Guidance for the Recovery and Landing of a Remotely Piloted Vehicle.

In IFAC Aerospace Control Conference (Palo Alto, California, 1994).

[34] CHAMITOFF, G. E., SAENZ OTERO, A., KATZ, J. G., AND ULRICH, S.

Admissible Subspace TRajectory Optimizer (ASTRO) for Autonomous Robot Operations on the

Space Station.

In AIAA Guidance, Navigation, and Control Conference (2014), AIAA Reston, VA, pp. 1–17.

[35] CHAMITOFF, G. E., SAENZ-OTERO, A., KATZ, J. G., ULRICH, S., MORRELL, B. J., AND GIBBENS,

P. W.

Real-time maneuver optimization of space-based robots in a dynamic environment: Theory and

on-orbit experiments.

Acta Astronautica 142 (2018), 170–183.

[36] CHANG, D. E., SHADDEN, S. C., MARSDEN, J. E., AND OLFATI SABER, R.

Collision Avoidance for Multiple Agent Systems.

In Proceedings of the 42nd IEEE Conference on Decision and Control (Dec. 2003), IEEE.

[37] CHANG, W.

Surface reconstruction from points.

Department of Computer Science and Engineering, University of California, San Diego, 2008.

[38] CHANG, Y.-C., KAO, J.-H., PINILLA, J., DONG, J., AND PRINZ, F.

Medial axis transform (MAT) of general 2D shapes and 3D polyhedra for engineering applications.

In Geometric Modelling. Springer, 2001, pp. 37–52.

[39] CHIODINI, S., REID, R., HOCKMAN, B., NESNAS, I., DEBEI, S., AND PAVONE, M.

Robust visual localization for hopping rovers on small bodies.

In International Conference on Robotics and Automation (2018), IEEE.

[40] CLARK, C. M.

Probabilistic Road Map Sampling Strategies for Multi-Robot Motion Planning.

282

BIBLIOGRAPHY

Robotics and Autonomous Systems 53, 3 (2005), 244–264.

[41] CONCHA, A., AND CIVERA, J.

DPPTAM: Dense piecewise planar tracking and mapping from a monocular sequence.

In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on (2015),

IEEE, pp. 5686–5693.

[42] CONTE, G., AND DOHERTY, P.

An integrated uav navigation system based on aerial image matching.

In Aerospace Conference, 2008 IEEE (2008), IEEE, pp. 1–10.

[43] CONWAY, B. A.

A survey of methods available for the numerical optimization of continuous dynamic systems.

Journal of Optimization Theory and Applications 152, 2 (2012), 271–306.

[44] CSÁKÁNY, P., AND WALLACE, A. M.

Representation and classification of 3-d objects.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 33, 4 (2003), 638–647.

[45] DANTAM, N.

Quaternion computation.

Georgia Institute of Technology, Institute for Robotics and Intelligent Machines (2014).

[46] DAVISON, A. J., REID, I. D., MOLTON, N. D., AND STASSE, O.

MonoSLAM: Real-time single camera SLAM.

Pattern Analysis and Machine Intelligence, IEEE Transactions on 29, 6 (2007), 1052–1067.

[47] DELLAERT, F.

Factor graphs and gtsam: A hands-on introduction.

Tech. rep., Georgia Institute of Technology, 2012.

[48] DELMERICO, J., AND SCARAMUZZA, D.

A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots.

Memory 10 (2018), 20.

[49] DIEBEL, J.

Representing attitude: Euler angles, unit quaternions, and rotation vectors.

Matrix 58, 15-16 (2006), 1–35.

[50] DOHERTY, K., WANG, J., AND ENGLOT, B.

Probabilistic map fusion for fast, incremental occupancy mapping with 3D hilbert maps.

In Robotics and Automation (ICRA), 2016 IEEE International Conference on (2016), IEEE,

pp. 1011–1018.

[51] DRAGIEV, S., TOUSSAINT, M., AND GIENGER, M.

Gaussian process implicit surfaces for shape estimation and grasping.

283

BIBLIOGRAPHY

In Robotics and Automation (ICRA), 2011 IEEE International Conference on (2011), IEEE,

pp. 2845–2850.

[52] DROESCHEL, D., NIEUWENHUISEN, M., BEUL, M., HOLZ, D., STÜCKLER, J., AND BEHNKE, S.

Multilayered mapping and navigation for autonomous micro aerial vehicles.

Journal of Field Robotics 33, 4 (2016), 451–475.

[53] EGGERT, D. W., LORUSSO, A., AND FISHER, R. B.

Estimating 3-D rigid body transformations: a comparison of four major algorithms.

Machine vision and applications 9, 5-6 (1997), 272–290.

[54] EHANG.

Drone formation flight, 2019.

[55] ENGEL, J., KOLTUN, V., AND CREMERS, D.

Direct sparse odometry.

IEEE transactions on pattern analysis and machine intelligence 40, 3 (2018), 611–625.

[56] ENGEL, J., SCHÖPS, T., AND CREMERS, D.

LSD-SLAM: Large-scale direct monocular SLAM.

In European Conference on Computer Vision (2014), Springer, pp. 834–849.

[57] ENGEL, J., STÜCKLER, J., AND CREMERS, D.

Large-scale direct SLAM with stereo cameras.

In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on (2015),

IEEE, pp. 1935–1942.

[58] ENGEL, J., USENKO, V., AND CREMERS, D.

A photometrically calibrated benchmark for monocular visual odometry.

arXiv preprint arXiv:1607.02555 (2016).

[59] EPIC GAMES, INC.

Unreal engine.

Online software, May 2018.

https://www.unrealengine.com/en-US/what-is-unreal-engine-4.

[60] EREN, U., AÇIKMESE, B., AND SCHARF, D. P.

A Mixed Integer Convex Programming Approach to Constrained Attitude Guidance.

1120–1126.

[61] FAESSLER, M., FONTANA, F., FORSTER, C., AND SCARAMUZZA, D.

Automatic re-initialization and failure recovery for aggressive flight with a monocular vision-

based quadrotor.

In Robotics and Automation (ICRA), 2015 IEEE International Conference on (2015), IEEE,

pp. 1722–1729.

284

BIBLIOGRAPHY

[62] FALANGA, D., MUEGGLER, E., FAESSLER, M., AND SCARAMUZZA, D.

Aggressive quadrotor flight through narrow gaps with onboard sensing and computing using

active vision.

In Proc. of the IEEE International Conference on Robotics and Automation (ICRA) (2017).

[63] FANG, Z., YANG, S., JAIN, S., DUBEY, G., ROTH, S., MAETA, S., NUSKE, S., ZHANG, Y., AND

SCHERER, S.

Robust autonomous flight in constrained and visually degraded shipboard environments.

Journal of Field Robotics 34, 1 (2017), 25–52.

[64] FIORINI, P., AND SHILLER, Z.

Motion planning in dynamic environments using velocity obstacles.

The International Journal of Robotics Research 17, 7 (1998), 760–772.

[65] FISCHLER, M. A., AND BOLLES, R. C.

Random sample consensus: A paradigm for model fitting with applications to image analysis and

automated cartography.

Commun. ACM 24, 6 (June 1981), 381–395.

[66] FLETCHER, R.

A New Approach to Variable Metric Algorithms.

Computer Journal 13 (1970), 317–322.

[67] FORSTER, C., PIZZOLI, M., AND SCARAMUZZA, D.

SVO: Fast semi-direct monocular visual odometry.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on (2014), IEEE, pp. 15–

22.

[68] FORSTER, C., ZHANG, Z., GASSNER, M., WERLBERGER, M., AND SCARAMUZZA, D.

SVO: Semidirect visual odometry for monocular and multicamera systems.

IEEE Transactions on Robotics 33, 2 (2017), 249–265.

[69] FOX, D., BURGARD, W., AND THRUN, S.

The dynamic window approach to collision avoidance.

IEEE Robotics & Automation Magazine 4, 1 (1997), 23–33.

[70] FRAUNDORFER, F., AND SCARAMUZZA, D.

Visual odometry: Part II: Matching, robustness, optimization, and applications.

IEEE Robotics & Automation Magazine 19, 2 (2012), 78–90.

[71] FRAZZOLI, E., DAHLEH, M. A., AND FERON, E.

A hybrid control architecture for aggressive maneuvering of autonomous helicopters.

In Decision and Control, 1999. Proceedings of the 38th IEEE Conference on (1999), vol. 3, IEEE,

pp. 2471–2476.

285

BIBLIOGRAPHY

[72] FURRER, F., BURRI, M., ACHTELIK, M., AND SIEGWART, R.

RotorsS, a modular gazebo mav simulator framework.

In Robot Operating System (ROS). Springer, 2016, pp. 595–625.

[73] FURUKAWA, Y., CURLESS, B., SEITZ, S. M., AND SZELISKI, R.

Towards internet-scale multi-view stereo.

In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (2010), IEEE,

pp. 1434–1441.

[74] GAVRILETS, V., METTLER, B., AND FERON, E.

Human-inspired control logic for automated maneuvering of miniature helicopter.

Journal of Guidance Control and Dynamics 27, 5 (2004), 752–759.

[75] GE, S. S., AND CUI, Y. J.

Dynamic motion planning for mobile robots using potential field method.

Autonomous robots 13, 3 (2002), 207–222.

[76] GEIGER, A., LENZ, P., AND URTASUN, R.

Are we ready for autonomous driving? The kitti vision benchmark suite.

In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (2012), IEEE,

pp. 3354–3361.

[77] GERARDO CASTRO, M. P., PEYNOT, T., AND RAMOS, F.

Laser-radar data fusion with gaussian process implicit surfaces.

In Field and Service Robotics (2015), Springer, pp. 289–302.

[78] GIESEN, J., MIKLOS, B., PAULY, M., AND WORMSER, C.

The scale axis transform.

In Proceedings of the twenty-fifth annual symposium on Computational geometry (2009), ACM,

pp. 106–115.

[79] GIL, A., JULIÁ, M., AND REINOSO, Ó.

Occupancy grid based graph-slam using the distance transform, surf features and sgd.

Engineering Applications of Artificial Intelligence 40 (2015), 1–10.

[80] GOLDFARB, D.

A Family of Variable Metric Updates Derived by Variational Means.

Mathematics of Computing 24 (1970), 23–26.

[81] GROSSEKATTHOFER, K., AND YOON, Z.

Introduction into quaternions for spacecraft attitude representation.

TU Berlin 16 (2012).

[82] GSCHWANDTNER, M., KWITT, R., UHL, A., AND PREE, W.

BlenSor: Blender Sensor Simulation Toolbox Advances in Visual Computing.

286

BIBLIOGRAPHY

vol. 6939 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, Berlin, Heidelberg,

2011, ch. 20, pp. 199–208.

[83] GUIZILINI, V., AND RAMOS, F.

Large-scale 3d scene reconstruction with hilbert maps.

In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on (2016),

IEEE, pp. 3247–3254.

[84] GUO, Y., BENNAMOUN, M., SOHEL, F., LU, M., WAN, J., AND KWOK, N. M.

A comprehensive performance evaluation of 3D local feature descriptors.

International Journal of Computer Vision 116, 1 (2016), 66–89.

[85] HAIDU, A.

Urosbridge.

Online Software, May 2018.

https://github.com/robcog-iai/UROSBridge.

[86] HANDA, A., WHELAN, T., MCDONALD, J., AND DAVISON, A. J.

A benchmark for rgb-d visual odometry, 3D reconstruction and SLAM.

In Robotics and automation (ICRA), 2014 IEEE international conference on (2014), IEEE,

pp. 1524–1531.

[87] HEHN, M., AND D’ANDREA, R.

Real-time trajectory generation for quadrocopters.

IEEE Transactions on Robotics 31, 4 (2015), 877–892.

[88] HEIDEN, E., HAUSMAN, K., SUKHATME, G. S., AND AGHA-MOHAMMADI, A.-A.

Planning high-speed safe trajectories in confidence-rich maps.

In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on (2017),

IEEE, pp. 2880–2886.

[89] HENG, L., HONEGGER, D., LEE, G. H., MEIER, L., TANSKANEN, P., FRAUNDORFER, F., AND

POLLEFEYS, M.

Autonomous visual mapping and exploration with a micro aerial vehicle.

Journal of Field Robotics 31, 4 (2014), 654–675.

[90] HERSHBERGER, J. E., AND SNOEYINK, J.

Speeding up the Douglas-Peucker line-simplification algorithm.

No. TR-92-07. University of British Columbia, Department of Computer Science, 1992.

[91] HORNUNG, A., WURM, K. M., BENNEWITZ, M., STACHNISS, C., AND BURGARD, W.

OctoMap: An efficient probabilistic 3D mapping framework based on octrees.

Autonomous Robots 34, 3 (2013), 189–206.

[92] HUGH DURRANT WHYTE, AND TIM BAILEY.

Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms.

287

BIBLIOGRAPHY

Tech. rep., Australian Centre for Field Robotics, 2006.

[93] ICHTER, B., SCHMERLING, E., AND PAVONE, M.

Group Marching Tree: Sampling-Based Approximately Optimal Motion Planning on GPUs.

In Robotic Computing (IRC), IEEE International Conference on (2017), IEEE, pp. 219–226.

[94] IOAN A. SUCAN, MARK MOLL, AND LYDIA E. KAVRAK.

The Open Motion Planning Library.

IEEE Robotics & Automation Magazine 19, 4 (Dec. 2012), 72–82.

http://ompl.kavrakilab.org.

[95] JANSON, L., SCHMERLING, E., CLARK, A., AND PAVONE, M.

Fast marching tree: A fast marching sampling-based method for optimal motion planning in

many dimensions.

The International journal of robotics research 34, 7 (2015), 883–921.

[96] JOHNSON, A. E., AND HEBERT, M.

Using spin images for efficient object recognition in cluttered 3D scenes.

IEEE Transactions on pattern analysis and machine intelligence 21, 5 (1999), 433–449.

[97] JOLLIFFE, I.

Principal component analysis.

Wiley Online Library, 2002.

[98] JONES, E., OLIPHANT, T., PETERSON, P., ET AL.

SciPy: Open source scientific tools for Python.

Online, 2001.

[http://www.scipy.org/].

[99] JUNG, S., CHO, S., LEE, D., LEE, H., AND SHIM, D. H.

A direct visual servoing-based framework for the 2016 IROS autonomous drone racing challenge.

Journal of Field Robotics 35, 1 (2018), 146–166.

[100] KAM, H. R., LEE, S.-H., PARK, T., AND KIM, C.-H.

RViz: a toolkit for real domain data visualization.

Telecommunication Systems 60, 2 (2015), 337–345.

[101] KAPLAN, K.

500 drones light night sky to set record.

iQ by Intel, November 2016.

[102] KARAMAN, S., WALTER, M. R., PEREZ, A., FRAZZOLI, E., AND TELLER, S.

Anytime motion planning using the RRT*.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on (2011), IEEE,

pp. 1478–1483.

288

BIBLIOGRAPHY

[103] KAUL, L., ZLOT, R., AND BOSSE, M.

Continuous-time three-dimensional mapping for micro aerial vehicles with a passively actuated

rotating laser scanner.

Journal of Field Robotics 33, 1 (2016), 103–132.

[104] KLEIN, G., AND MURRAY, D.

Parallel tracking and mapping for small AR workspaces.

In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Sympo-

sium on (2007), IEEE, pp. 225–234.

[105] KOBILAROV, M.

Discrete Geometric Motion Control of Autonomous Vehicles.

University of Southern California, 2008.

[106] KOENDERINK, J. J., AND VAN DOORN, A. J.

Affine structure from motion.

JOSA A 8, 2 (1991), 377–385.

[107] KOENIG, N., AND HOWARD, A.

Design and use paradigms for gazebo, an open-source multi-robot simulator.

In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International

Conference on (2004), vol. 3, IEEE, pp. 2149–2154.

[108] KRAFT, E.

A quaternion-based unscented Kalman filter for orientation tracking.

In Proceedings of the Sixth International Conference of Information Fusion (2003), vol. 1, pp. 47–

54.

[109] KUETHER, D. J., MORRELL, B. J., CHAMITOFF, G. E., BISHOP, M., MORTARI, D., GIBBENS,

P. W., AND COEN, M.

Cohesive Autonomous Navigation System.

In AIAA Guidance Navigation and Control Conference, AIAA SciTech (San Diego, California,

USA, 2016), IEEE.

[110] KUFFNER, J. J., AND LAVALLE, S. M.

RRT-connect: An efficient approach to single-query path planning.

In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on

(2000), vol. 2, IEEE, pp. 995–1001.

[111] KUMAR, V., AND MICHAEL, N.

Opportunities and challenges with autonomous micro aerial vehicles.

The International Journal of Robotics Research 31, 11 (2012), 1279–1291.

[112] KUSHLEYEV, A., MELLINGER, D., POWERS, C., AND KUMAR, V.

Towards a swarm of agile micro quadrotors.

Autonomous Robots 35, 4 (2013), 287–300.

289

BIBLIOGRAPHY

[113] LALISH, E., MORGANSEN, K. A., AND TSUKAMAKI, T.

Decentralized Reactive Collision Avoidance for Multiple Unicycle-Type Vehicles.

In American Control Conference, 2008 (2008), IEEE, pp. 5055–5061.

[114] LANDRY, B.

Planning and control for quadrotor flight through cluttered environments.

PhD thesis, Massachusetts Institute of Technology, 2015.

[115] LANGELAAN, J., AND ROCK, S.

Navigation of small uavs operating in forests.

In AIAA Guidance, Navigation, and Control Conference and Exhibit (2004), p. 5140.

[116] LAVALLE, S. M.

Planning algorithms.

Cambridge university press, 2006.

[117] LAVOIE, P.

NURBS++. A C++ library for manipulating NURBS curves and surfaces.

Online, 2002.

https://github.com/chrisidefix/nurbs.

[118] LEE, T., LEOKY, M., AND MCCLAMROCH, N. H.

Geometric tracking control of a quadrotor UAV on se (3).

In Decision and Control (CDC), 2010 49th IEEE Conference on (2010), IEEE, pp. 5420–5425.

[119] LEUTENEGGER, S., LYNEN, S., BOSSE, M., SIEGWART, R., AND FURGALE, P.

Keyframe-based visual–inertial odometry using nonlinear optimization.

The International Journal of Robotics Research 34, 3 (2015), 314–334.

[120] LI, A. Q., COSKUN, A., DOHERTY, S. M., GHASEMLOU, S., JAGTAP, A. S., MODASSHIR, M.,

RAHMAN, S., SINGH, A., XANTHIDIS, M., OKANE, J., ET AL.

Experimental comparison of open source vision-based state estimation algorithms.

In International Symposium on Experimental Robotics (2016), Springer, pp. 775–786.

[121] LOIANNO, G., BRUNNER, C., MCGRATH, G., AND KUMAR, V.

Estimation, control, and planning for aggressive flight with a small quadrotor with a single

camera and IMU.

IEEE Robotics and Automation Letters 2, 2 (2017), 404–411.

[122] LU, P., AND LIU, X.

Autonomous Trajectory Planning for Rendezvous and Proximity Operations by Conic Optimiza-

tion.

Journal of Guidance, Control, and Dynamics 36, 2 (2013), 375–389.

[123] LUNA, R., SUCAN, I., MOLL, M., KAVRAKI, L. E., ET AL.

Anytime solution optimization for sampling-based motion planning.

290

BIBLIOGRAPHY

In Robotics and Automation (ICRA), 2013 IEEE International Conference on (2013), IEEE,

pp. 5068–5074.

[124] LUO, J., AND HAUSER, K.

An empirical study of optimal motion planning.

In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on

(2014), IEEE, pp. 1761–1768.

[125] LUO, Y.-Z., LEI, Y.-J., AND TANG, G.-J.

Optimal Multi-Objective Nonlinear Impulsive Rendezvous.

Journal of guidance, control, and dynamics 30, 4 (2007), 994–1002.

[126] LUPASHIN, S., SCHÖLLIG, A., SHERBACK, M., AND D’ANDREA, R.

A simple learning strategy for high-speed quadrocopter multi-flips.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on (2010), IEEE,

pp. 1642–1648.

[127] MA, W., AND KRUTH, J.-P.

Parameterization of randomly measured points for least squares fitting of B-spline curves and

surfaces.

Computer-Aided Design 27, 9 (1995), 663–675.

[128] MAHONY, R., KUMAR, V., AND CORKE, P.

Multirotor aerial vehicles.

IEEE Robotics and Automation magazine 20, 32 (2012).

[129] MARDER-EPPSTEIN, E.

Project Tango.

In ACM SIGGRAPH 2016 Real-Time Live! (New York, NY, USA, 2016), SIGGRAPH ’16, ACM,

pp. 40:25–40:25.

[130] MARKLEY, F. L., AND CRASSIDIS, J. L.

Fundamentals of spacecraft attitude determination and control, vol. 33.

Springer, 2014.

[131] MASOUD, S. A., AND MASOUD, A. A.

Motion Planning in the Presence of Directional and Regional Avoidance Constraints Using

Nonlinear, Anisotropic, Harmonic Potential Fields: A Physical Metaphor.

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 32, 6 (2002),

705–723.

[132] MATHWORKS.

isosurface.

Matlab function, 2015.

http://www.mathworks.com/help/matlab/ref/isosurface.html.

291

BIBLIOGRAPHY

[133] MATLAB.

version 9.3 (R2017b).

The MathWorks Inc., Natick, Massachusetts, 2017.

[134] MATTHIES, L., BROCKERS, R., KUWATA, Y., AND WEISS, S.

Stereo vision-based obstacle avoidance for micro air vehicles using disparity space.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on (2014), IEEE,

pp. 3242–3249.

[135] MCCAMISH, S., ROMANO, M., NOLET, S., EDWARDS, C., AND MILLER, D. W.

Testing of Multiple-Spacecraft Control on SPHERES During Close-Proximity Operations.

Journal of Spacecraft and Rockets 46, 6 (2009), 1202–1213.

[136] MCHENRY, N., COEN, M., HOGAN, R., MORRELL, B., AND CHAMITOFF, G.

Virtual reality multi-user space systems mission design and simulation: Engaging the public

through open-source collaboration.

In 68th International Astronautical Congress (IAC) (Adelaide, Australia, Sept. 2017), no. IAC-17-

E1.6.13.

[137] MEIER, K., CHUNG, S.-J., AND HUTCHINSON, S.

Visual-inertial curve simultaneous localization and mapping: Creating a sparse structured world

without feature points.

Journal of Field Robotics (2017).

[138] MEIER, L., TANSKANEN, P., HENG, L., LEE, G. H., FRAUNDORFER, F., AND POLLEFEYS, M.

Pixhawk: A micro aerial vehicle design for autonomous flight using onboard computer vision.

Autonomous Robots 33, 1-2 (2012), 21–39.

[139] MELLINGER, D., AND KUMAR, V.

Minimum snap trajectory generation and control for quadrotors.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on (2011), IEEE,

pp. 2520–2525.

[140] MELLINGER, D., MICHAEL, N., AND KUMAR, V.

Trajectory generation and control for precise aggressive maneuvers with quadrotors.

The International Journal of Robotics Research 31, 5 (2012), 664–674.

[141] MENDES, E., KOCH, P., AND LACROIX, S.

ICP-based pose-graph SLAM.

In Safety, Security, and Rescue Robotics (SSRR), 2016 IEEE International Symposium on (2016),

IEEE, pp. 195–200.

[142] MICHAEL MILFORD, AND GORDON WYETH.

Mapping a Suburb With a Single Camera Using a Biologically Inspired SLAM System.

IEEE Transactions on Robotics 24, 5 (Oct. 2008), 1038–1053.

292

BIBLIOGRAPHY

[143] MICHAEL MILFORD, AND GORDON WYETH.

Persistent Navigation and Mapping using a Biologically Inspired SLAM System.

The International Journal of Robotics Research 29, 9 (Aug. 2010), 1191–1153.

[144] MILLER, A. T., KNOOP, S., CHRISTENSEN, H. I., AND ALLEN, P. K.

Automatic grasp planning using shape primitives.

In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on

(2003), vol. 2, IEEE, pp. 1824–1829.

[145] MIT.

SPHERES website.

Online, 2014.

http://ssl.mit.edu/spheres/index.html.

[146] MIT.

Zero Robotics website.

Online, 2018.

http://zerorobotics.mit.edu/.

[147] MOHTA, K., WATTERSON, M., MULGAONKAR, Y., LIU, S., QU, C., MAKINENI, A., SAULNIER,

K., SUN, K., ZHU, A., DELMERICO, J., ET AL.

Fast, autonomous flight in GPS-denied and cluttered environments.

Journal of Field Robotics 35, 1 (2018), 101–120.

[148] MONTEMERLO, M., AND THRUN, S.

Simultaneous Localization and Mapping with Unknown Data Association using FastSLAM.

In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on

(2003), vol. 2, IEEE, pp. 1985–1991.

[149] MORDVINTSEV, A., AND ABID, K.

Introduction to SURF (Speeded-Up Robust Features).

Website, 2013.

[150] MORENO-NOGUER, F., LEPETIT, V., AND FUA, P.

Accurate non-iterative O(n) solution to the PnP problem.

In Computer vision, 2007. ICCV 2007. IEEE 11th international conference on (2007), IEEE,

pp. 1–8.

[151] MORRELL, B., GIBBENS, P., AND CHAMITOFF, G.

Application of a Trajectory Optimisation Algorithm for Dynamic Obstacle Avoidance and Multiple

Vehicle Coordination.

In Fourth Australasian Conference on Unmanned Systems (Dec. 2014).

[152] MORRELL, B., PLAYER, P., BEST, F., FAZIO-NAGY, J., CHAMITOFF, G., AND HOLMES, W.

High school students coding for space: The Zero Robotics competition.

In International Astronautical Congress (2017), no. IAC-17-E1.2.13.

293

BIBLIOGRAPHY

[153] MORRELL, B., RIGTER, M., MEREWETHER, G., REID, R., THAKKER, R., TZANETOS, T., RAJUR,

V., AND CHAMITOFF, G.

Differential flatness transformations for aggressive quadrotor flight.

In Robotics and Automation (ICRA), 2018 IEEE International Conference on Robotics and Au-

tomation (Brisbane, Australia, 2018), no. 1817, IEEE.

[154] MORRELL, B., THAKKER, R., MEREWETHER, G., REID, R., RIGTER, M., TZANETOS, T., AND

CHAMITOFF, G.

Comparison of trajectory optimization algorithms for high-speed quadrotor flight near obstacles.

IEEE Robotics and Automation Letters 3, 4 (2018), 4399–4406.

[155] MORRELL, B. J., CHAMITOFF, G., AND GIBBENS, P.

Autonomous Operation of Multiple Free-Flying Robots on the International Space Station.

In 25th AAS/AIAA Spaceflight Mechanics Conference (Jan. 2015), vol. 155, pp. 2633–2650.

[156] MORRELL, B. J., CHAMITOFF, G. E., KUETHER, D. J., COEN, M., AND GIBBENS, P.

Integration of 3D SLAM, rigid body landmarks and 3D path planning.

In AIAA SPACE 2016. 2016, p. 5411.

[157] MUELLER, M. W., HEHN, M., AND D’ANDREA, R.

A computationally efficient algorithm for state-to-state quadrocopter trajectory generation and

feasibility verification.

In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on (2013),

IEEE, pp. 3480–3486.

[158] MUELLER, M. W., HEHN, M., AND D’ANDREA, R.

A computationally efficient motion primitive for quadrocopter trajectory generation.

IEEE Transactions on Robotics 31, 6 (2015), 1294–1310.

[159] MUKHERJEE, D., WU, Q. J., AND WANG, G.

A comparative experimental study of image feature detectors and descriptors.

Machine Vision and Applications 26, 4 (2015), 443–466.

[160] MUNOZ, J. D., AND FITZ COY, N. G.

Rapid Path-Planning Options for Autonomous Proximity Operations of Spacecraft.

In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Toronto, Ortario Canada

(2010).

[161] MUR-ARTAL, R., MONTIEL, J. M. M., AND TARDOS, J. D.

ORB-SLAM: a versatile and accurate monocular SLAM system.

IEEE Transactions on Robotics 31, 5 (2015), 1147–1163.

[162] MUR-ARTAL, R., AND TARDÓS, J. D.

Fast relocalisation and loop closing in keyframe-based SLAM.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on (2014), IEEE,

pp. 846–853.

294

BIBLIOGRAPHY

[163] MUR-ARTAL, R., AND TARDÓS, J. D.

ORB-SLAM2: An open-source slam system for monocular, stereo, and RGB-D cameras.

IEEE Transactions on Robotics 33, 5 (2017), 1255–1262.

[164] MURRAY, R. M., RATHINAM, M., AND SLUIS, W.

Differential flatness of mechanical control systems: A catalog of prototype systems.

In ASME international mechanical engineering congress and exposition (1995).

[165] NEUNERT, M., DE CROUSAZ, C., FURRER, F., KAMEL, M., FARSHIDIAN, F., SIEGWART, R., AND

BUCHLI, J.

Fast nonlinear model predictive control for unified trajectory optimization and tracking.

In Robotics and Automation (ICRA), 2016 IEEE International Conference on (2016), IEEE,

pp. 1398–1404.

[166] NEWCOMBE, R. A., LOVEGROVE, S. J., AND DAVISON, A. J.

Dtam: Dense tracking and mapping in real-time.

In Computer Vision (ICCV), 2011 IEEE International Conference on (2011), IEEE, pp. 2320–2327.

[167] NIESSNER, M., ZOLLHÖFER, M., IZADI, S., AND STAMMINGER, M.

Real-time 3D reconstruction at scale using voxel hashing.

ACM Transactions on Graphics (ToG) 32, 6 (2013), 169.

[168] NÜCHTER, A., LINGEMANN, K., HERTZBERG, J., AND SURMANN, H.

6D slam- 3D mapping outdoor environments.

In IEEE international workshop on safety, security, and rescue robotics (SSRR) (2006).

[169] OCALLAGHAN, S. T., AND RAMOS, F. T.

Gaussian process Occupancy Maps.

The International Journal of Robotics Research 31, 1 (2012), 42–62.

[170] OLEYNIKOVA, H., BURRI, M., TAYLOR, Z., NIETO, J., SIEGWART, R., AND GALCERAN, E.

Continuous-time trajectory optimization for online UAV replanning.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Oct.

2016), pp. 5332–5339.

[171] OLEYNIKOVA, H., TAYLOR, Z., FEHR, M., SIEGWART, R., AND NIETO, J.

Voxblox: Incremental 3D Euclidean signed distance fields for on-board mav planning.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017).

[172] OLEYNIKOVA, H., TAYLOR, Z., SIEGWART, R., AND NIETO, J.

Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles.

IEEE Robotics and Automation Letters 3, 3 (2018), 1474–1481.

[173] OMER, J., AND FARGES, J.-L.

Hybridization of Nonlinear and Mixed-Integer Linear Programming for Aircraft Separation With

Trajectory Recovery.

295

BIBLIOGRAPHY

Intelligent Transportation Systems, IEEE Transactions on 14, 3 (Sept. 2013), 1218–1230.

[174] OUSINGSAWAT, J., AND CAMPBELL, M. E.

On-Line Estimation and Path Planning For Multiple Vehicles in an Uncertain Environment.

International Journal of Robust and Nonlinear Control 14, 8 (2004), 741–766.

[175] PALLOTTINO, L., FERON, E. M., AND BICCHI, A.

Conflict Resolution Problems for Air Traffic Management Systems Solved with Mixed Integer

Programming.

Intelligent Transportation Systems, IEEE Transactions on 3, 1 (2002), 3–11.

[176] PARANJAPE, A. A., MEIER, K. C., SHI, X., CHUNG, S.-J., AND HUTCHINSON, S.

Motion primitives and 3D path planning for fast flight through a forest.

The International Journal of Robotics Research 34, 3 (2015), 357–377.

[177] PEREZ-GRAU, F. J., RAGEL, R., CABALLERO, F., VIGURIA, A., AND OLLERO, A.

An architecture for robust UAV navigation in GPS-denied areas.

Journal of Field Robotics (2017), n/a–n/a.

[178] PETERSEN, K. B., PEDERSEN, M. S., ET AL.

The matrix cookbook.

Technical University of Denmark 7, 15 (2008), 510.

[179] PIEGL, L.

Modifying the shape of rational B-splines. part 2: surfaces.

Computer-Aided Design 21, 9 (1989), 538–546.

[180] PIEGL, L.

On NURBS: a survey.

IEEE Computer Graphics and Applications 11, 1 (1991), 55–71.

[181] PIEGL, L., AND TILLER, W.

The NURBS book.

Springer Science & Business Media, 2012.

[182] PIZZOLI, M., FORSTER, C., AND SCARAMUZZA, D.

REMODE: Probabilistic, monocular dense reconstruction in real time.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on (2014), IEEE,

pp. 2609–2616.

[183] QIN, T., LI, P., AND SHEN, S.

Vins-mono: A robust and versatile monocular visual-inertial state estimator.

arXiv preprint arXiv:1708.03852 (2017).

[184] QIU, W., AND YUILLE, A.

UnrealCV: Connecting computer vision to unreal engine.

In European Conference on Computer Vision (2016), Springer, pp. 909–916.

296

BIBLIOGRAPHY

[185] QUALCOMM.

Snapdragon flight 801 processor, 2017.

https://developer.qualcomm.com/hardware/snapdragon-flight.

[186] QUIGLEY, M., CONLEY, K., GERKEY, B., FAUST, J., FOOTE, T., LEIBS, J., WHEELER, R., AND

NG, A. Y.

ROS: an open-source robot operating system.

In ICRA workshop on open source software (2009), vol. 3, Kobe, Japan, p. 5.

[187] RAMOS, F., AND OTT, L.

Hilbert maps: scalable continuous occupancy mapping with stochastic gradient descent.

The International Journal of Robotics Research 35, 14 (2016), 1717–1730.

[188] RAO, A. V.

A survey of numerical methods for optimal control.

Advances in the Astronautical Sciences 135, 1 (2009), 497–528.

[189] RAO, A. V., BENSON, D. A., DARBY, C., PATTERSON, M. A., FRANCOLIN, C., SANDERS, I., AND

HUNTINGTON, G. T.

Algorithm 902: GPOPS, a Matlab software for solving multiple-phase optimal control problems

using the gauss pseudospectral method.

ACM Transactions on Mathematical Software (TOMS) 37, 2 (2010), 22.

[190] RAO, D., CHUNG, S.-J., AND HUTCHINSON, S.

CurveSLAM: An approach for vision-based navigation without point features.

In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on (2012),

IEEE, pp. 4198–4204.

[191] RASMUSSEN, C. E.

Gaussian processes for machine learning.

[192] REID, R., MEREWETHER, G., TZANETOS, T., MORRELL, B., RIGTER, M., AND MATTHIES, L.

A high-speed autonomous quadrotor system for vision-based teach & repeat.

Journal of Field Robotics (2018).

In submission process as of May 2018.

[193] REVELIOTIS, S. A., AND ROSZKOWSKA, E.

Conflict Resolution in Free-Ranging Multivehicle Systems: A Resource Allocation Paradigm.

Robotics, IEEE Transactions on 27, 2 (2011), 283–296.

[194] RICHARDS, A., AND HOW, J.

Aircraft Trajectory Planning with Collision Avoidance Using Mixed Integer Linear Programming.

In American Control Conference, 2002. Proceedings of the 2002 (2002), vol. 3, pp. 1936–1941vol.3.

[195] RIGTER, M.

Replanning strategies to improve real-time performance of trajectory optimisation.

297

BIBLIOGRAPHY

Aero3711: Aerospace engineering project 2 report, The University of Sydney, Nov. 2016.

[196] RIMON, E., AND KODITSCHEK, D. E.

Exact Robot Navigation Using Artificial Potential Functions.

Robotics and Automation, IEEE Transactions on 8, 5 (1992), 501–518.

[197] ROSS, I. M., AND KARPENKO, M.

A review of pseudospectral optimal control: from theory to flight.

Annual Reviews in Control 36, 2 (2012), 182–197.

[198] RUSU, R. B., BLODOW, N., AND BEETZ, M.

Fast point feature histograms (FPFH) for 3D registration.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on (2009), IEEE,

pp. 3212–3217.

[199] RUSU, R. B., BLODOW, N., MARTON, Z. C., AND BEETZ, M.

Aligning point cloud views using persistent feature histograms.

In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on

(2008), IEEE, pp. 3384–3391.

[200] RUSU, R. B., AND COUSINS, S.

3D is here: Point Cloud Library (PCL).

In IEEE International Conference on Robotics and Automation (ICRA) (Shanghai, China, May

2011).

[201] RUSU, R. B., HOLZBACH, A., BLODOW, N., AND BEETZ, M.

Fast geometric point labeling using conditional random fields.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on

(2009), IEEE, pp. 7–12.

[202] SAENZ OTERO, A.

Design Principles for the Development of Space Technology Maturation Laboratories Aboard the

International Space Station.

Doctor of philosophy, Massachusetts Institute of Technology, June 2005.

[203] SANTOS, J. M., PORTUGAL, D., AND ROCHA, R. P.

An evaluation of 2D SLAM techniques available in robot operating system.

In Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium on (2013),

IEEE, pp. 1–6.

[204] SAYRE-MCCORD, T., ANTONINI, A., ARNEBERG, J., BROWN, A., CAVALHEIRO, G., FANG, Y.,

GORODETSKY, A., GUERRA, W., MCCOY, D., QUILTER, S., RIETHER, F., TAL, E., TERZIOGLU,

Y., CARLONE, L., AND KARAMAN, S.

FlightGoggles: Visual-inertial-odometry flight with photorealistic camera simulation in the loop.

In International Conference on Robotics and Automation (ICRA) (Brisbane, 2018), IEEE.

298

BIBLIOGRAPHY

[205] SCARAMUZZA, D., AND FRAUNDORFER, F.

Visual odometry: Part I: The first 30 years and fundamentals.

IEEE robotics & automation magazine 18, 4 (2011), 80–92.

[206] SCHNEIDER, T., DYMCZYK, M. T., FEHR, M., EGGER, K., LYNEN, S., GILITSCHENSKI, I., AND

SIEGWART, R.

maplab: An open framework for research in visual-inertial mapping and localization.

IEEE Robotics and Automation Letters (2018).

[207] SHANNO, D. F.

Conditioning of Quasi-Newton Methods for Function Minimization.

Mathematics of Computing 24 (1970), 647–656.

[208] SMITH, M., BALDWIN, I., CHURCHILL, W., PAUL, R., AND NEWMAN, P.

The new college vision and laser data set.

The International Journal of Robotics Research 28, 5 (2009), 595–599.

[209] SOLA, J., VIDAL-CALLEJA, T., CIVERA, J., AND MONTIEL, J. M. M.

Impact of landmark parametrization on monocular ekf-slam with points and lines.

International journal of computer vision 97, 3 (2012), 339–368.

[210] SPEDICATO, S., AND NOTARSTEFANO, G.

Computing minimum-time trajectories for quadrotors via transverse coordinates.

In Decision and Control (CDC), 2016 IEEE 55th Conference on (2016), IEEE, pp. 239–244.

[211] STEDER, B., RUSU, R. B., KONOLIGE, K., AND BURGARD, W.

Point feature extraction on 3D range scans taking into account object boundaries.

In Robotics and automation (icra), 2011 ieee international conference on (2011), IEEE, pp. 2601–

2608.

[212] STURM, J., MAGNENAT, S., ENGELHARD, N., POMERLEAU, F., COLAS, F., BURGARD, W., CRE-

MERS, D., AND SIEGWART, R.

Towards a benchmark for RGB-D SLAM evaluation.

In Proc. of the RGB-D Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science

and Systems Conf. (RSS) (Los Angeles, USA, June 2011).

[213] SUN, K., MOHTA, K., PFROMMER, B., WATTERSON, M., LIU, S., MULGAONKAR, Y., TAYLOR,

C. J., AND KUMAR, V.

Robust stereo visual inertial odometry for fast autonomous flight.

IEEE Robotics and Automation Letters 3, 2 (2018), 965–972.

[214] SVESTKA, P., AND OVERMARS, M. H.

Coordinated Path Planning for Multiple Robots.

Robotics and Autonomous Systems 23, 3 (1998), 125–152.

299

BIBLIOGRAPHY

[215] THIERY, J.-M., GUY, É., AND BOUBEKEUR, T.

Sphere-Meshes: shape approximation using spherical quadric error metrics.

ACM Transactions on Graphics (TOG) 32, 6 (2013), 178.

[216] THOMAS, J., POPE, M., LOIANNO, G., HAWKES, E. W., ESTRADA, M. A., JIANG, H., CUTKOSKY,

M. R., AND KUMAR, V.

Aggressive flight with quadrotors for perching on inclined surfaces.

Journal of Mechanisms and Robotics 8, 5 (2016), 051007.

[217] TOMBARI, F., SALTI, S., AND DI STEFANO, L.

Unique signatures of histograms for local surface description.

In European conference on computer vision (2010), Springer, pp. 356–369.

[218] TRIGGS, B., MCLAUCHLAN, P. F., HARTLEY, R. I., AND FITZGIBBON, A. W.

Bundle adjustment, a modern synthesis.

In International workshop on vision algorithms (1999), Springer, pp. 298–372.

[219] VAN NIEUWSTADT, M., AND MURRAY, R. M.

Real time trajectory generation for differentially flat systems.

IFAC Proceedings Volumes 29, 1 (1996), 2301–2306.

[220] VÁSÁRHELYI, G., VIRÁGH, C., SOMORJAI, G., NEPUSZ, T., EIBEN, A. E., AND VICSEK, T.

Optimized flocking of autonomous drones in confined environments.

Science Robotics 3, 20 (2018), eaat3536.

[221] VOLKOVA, A., AND GIBBENS, P. W.

More robust features for adaptive visual navigation of UAVs in mixed environments.

Journal of Intelligent & Robotic Systems 90, 1-2 (2018), 171–187.

[222] WAN, E., VAN DER MERWE, R., ET AL.

The unscented Kalman filter for nonlinear estimation.

In Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000.

AS-SPCC. The IEEE 2000 (2000), IEEE, pp. 153–158.

[223] WANG, J., AND ENGLOT, B.

Fast, accurate Gaussian Process Occupancy Maps via test-data octrees and nested Bayesian

fusion.

In Robotics and Automation (ICRA), 2016 IEEE International Conference on (2016), IEEE,

pp. 1003–1010.

[224] WATTERSON, M., AND KUMAR, V.

Control of quadrotors using the Hopf fibration on SO(3).

In Proceedings of the 2017 International Symposium on Robotics Research (2018).

[225] WILLIAMS, D.

Edge Feature and Optical Flow Terrain Aid for GNSS-Denied Airborne Visual Navigation.

300

BIBLIOGRAPHY

Phd thesis, The University of Sydney, School of Aeronautical, Mechanical and Mechatronic

Engineering, 2017.

[226] WILLIAMS, O., AND FITZGIBBON, A.

Gaussian Process Implicit Surfaces.

Gaussian Proc. in Practice (2007).

[227] XUE, Y., LEE, B., AND HAN, D.

Automatic Collision Avoidance of Ships.

Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the

Maritime Environment 223, 1 (2009), 33–46.

[228] ZHANG, Z.

Iterative point matching for registration of free-form curves and surfaces.

International Journal of Computer Vision 13, 2 (Oct. 1994), 119–152.

301

	List of Tables
	List of Figures
	Introduction
	Background
	Challenges and Current State-of-the-Art
	Gaps
	Focus of Thesis
	Contributions
	Localisation and Mapping
	Trajectory Optimisation
	Analysis of the Differential Flatness Transformation for Quadrotors
	Analysis of Dynamic Feasibility of Trajectories for Quadrotors and the Impact of How Obstacles are Considered

	Outline of Thesis

	Background and Related Work
	Simultaneous Localisation And Mapping (SLAM)
	Key Concepts and Terminology
	Point Cloud SLAM
	Visual SLAM - Preliminaries
	Indirect Visual SLAM
	Direct Visual SLAM
	Semi-Direct Visual SLAM
	Appearance-Based Visual SLAM
	Geometric-Feature-Based Visual SLAM
	Summary and Assessment

	3D Mapping
	3D Mapping Algorithms
	3D Modelling

	Trajectory Optimisation
	Optimisation Approaches
	Planning with Obstacles
	Planning with Dynamic Obstacles
	Trajectory Planning for Quadrotor UAVs

	Complete Systems
	Software
	System Examples
	Current State-of-The-Art

	Summary and Identification of Gaps

	Localisation and Mapping with 3D Object Representations
	Review of Candidate 3D Object Representations
	Ellipsoids - Full Application to SLAM and Trajectory Planning
	Gaussian Process Implicit Surfaces - Assessment of Potential for SLAM and Trajectory Planning
	Non-Uniform Rational B-Splines - Assessment of Potential for SLAM and Trajectory Planning
	Selected 3D Object Representation

	NURBSLAM: Using NURBS Surfaces for Localisation, Mapping and Trajectory Planning
	Data Association
	Mapping - Object Generation
	Mapping - Object Update
	Localisation
	SLAM
	Trajectory Optimisation

	NURBSLAM Demonstration, Testing and Analysis
	Mapping
	Localisation
	SLAM
	Trajectory Optimisation

	Conclusion

	Trajectory Optimisation
	Contributions
	Preliminaries
	Algorithm Description
	Convexity of the Cost Function
	Boundary Conditions
	Obstacles and Performance Constraints
	Example Constraint Cost Functions
	Dynamic Obstacles
	Optimisation Techniques
	Replanning and Multiple Robots
	Multi-Segment Optimisation
	Summary of ASTRO

	Simulation Results
	Static Demonstrations
	Randomised Seeding and Perturbations
	Dynamic Obstacles and Multi-Robot Planning
	Analysis of Optimisation Techniques
	Constraint Type Comparison
	Convex, Quadratic Steps and Line Search
	Computation Time Analysis
	Summary of Simulation Tests

	Trajectory Optimisation for Space-Based Robotics
	SPHERES
	On-Orbit Testing
	Results From On-Orbit Testing
	Lessons Learned

	Conclusion

	Trajectory Optimisation for Quadrotor UAVs
	The Differential Flatness Transformation for Quadrotors
	Description of the Transformation
	Singularities
	Existing Methods to Address the Singularity
	Analysis of Differential Flatness Transformations
	New Approaches to Address the Singularity
	Summary of Analysis

	ASTRO for Quadrotors
	Modifications to ASTRO for Application to Quadrotors
	Comparison with Existing Planners

	Quadrotor Trajectory Optimisation - Simulation Comparisons
	Algorithm Implementation
	Test Case Generation
	Results
	Summary and Assessment of Simulation Comparisons

	Conclusion

	UAV Flight Demonstrations
	Description of Hardware System
	High-Level Architecture
	Airframe
	On-Board Computing
	Actuation
	Control
	Localisation
	Mapping
	Planning
	Ground Control Station

	Differential Flatness Testing - Aggressive Flights
	Software-in-the-Loop Tests
	Flight Tests
	Conclusions - Differential Flatness

	Comparison of Planners
	Obstacle-Aware Flight Tests
	Conclusions - Comparison of Planners

	Conclusions

	Integrated System
	SpaceCRAFT Robot Simulation Framework
	Framework Design

	SLAM Demonstration
	Test Case
	Results
	Comments

	Full System Demonstration
	Test Case
	Results - NURBSLAM
	Results - Performance Comparison

	Conclusions and Discussion

	Conclusion
	Future Work
	SVD for Determining Transformations
	Subspace Projection
	Gradient
	Coefficients

	Quaternion Maths
	Quaternion Definition
	Quaternion Multiplication
	Quaternion Multiplication properties
	Transformations vs. Rotations
	Quaternions for Attitude Transformations
	Quaternions to Rotation Matrices

	Quaterion Rates
	Quaternion Logarithm and Exponential
	Quaternion Interpolation - SLERP
	Quaternion Finite Differencing
	Quaternion Integration

	Quaternion Derivation of Differential Flatness Transform
	Compute the Thrust Vector
	Coupling Thrust with Attitude
	Singularities
	Angular Rates
	Angular Acceleration

	List of Acronyms and Abbreviations
	List of Symbols
	Bibliography

