444 research outputs found

    AI for the Common Good?! Pitfalls, challenges, and Ethics Pen-Testing

    Full text link
    Recently, many AI researchers and practitioners have embarked on research visions that involve doing AI for "Good". This is part of a general drive towards infusing AI research and practice with ethical thinking. One frequent theme in current ethical guidelines is the requirement that AI be good for all, or: contribute to the Common Good. But what is the Common Good, and is it enough to want to be good? Via four lead questions, I will illustrate challenges and pitfalls when determining, from an AI point of view, what the Common Good is and how it can be enhanced by AI. The questions are: What is the problem / What is a problem?, Who defines the problem?, What is the role of knowledge?, and What are important side effects and dynamics? The illustration will use an example from the domain of "AI for Social Good", more specifically "Data Science for Social Good". Even if the importance of these questions may be known at an abstract level, they do not get asked sufficiently in practice, as shown by an exploratory study of 99 contributions to recent conferences in the field. Turning these challenges and pitfalls into a positive recommendation, as a conclusion I will draw on another characteristic of computer-science thinking and practice to make these impediments visible and attenuate them: "attacks" as a method for improving design. This results in the proposal of ethics pen-testing as a method for helping AI designs to better contribute to the Common Good.Comment: to appear in Paladyn. Journal of Behavioral Robotics; accepted on 27-10-201

    Ontological Analysis For Description Logics Knowledge Base Debugging

    Get PDF
    International audienceFormal ontology provides axiomatizations of domain independent principles which, among other applications,can be used to identify modeling errors within a knowledge base. The Ontoclean methodology is probably the best-known illustration of this strategy, but its cost in terms of manual work is often considered dissuasive. This article investigates the applicability of such debugging strategies to Description Logics knowledge bases, showing that even a partial and shallow analysis rapidly performed with a top-level ontology can reveal the presence of violations of common sense, and that the bottleneck, if there is one, may instead reside in the resolution of the resulting inconsistency or incoherence

    Imitative Follower Deception in Stackelberg Games

    Full text link
    Information uncertainty is one of the major challenges facing applications of game theory. In the context of Stackelberg games, various approaches have been proposed to deal with the leader's incomplete knowledge about the follower's payoffs, typically by gathering information from the leader's interaction with the follower. Unfortunately, these approaches rely crucially on the assumption that the follower will not strategically exploit this information asymmetry, i.e., the follower behaves truthfully during the interaction according to their actual payoffs. As we show in this paper, the follower may have strong incentives to deceitfully imitate the behavior of a different follower type and, in doing this, benefit significantly from inducing the leader into choosing a highly suboptimal strategy. This raises a fundamental question: how to design a leader strategy in the presence of a deceitful follower? To answer this question, we put forward a basic model of Stackelberg games with (imitative) follower deception and show that the leader is indeed able to reduce the loss due to follower deception with carefully designed policies. We then provide a systematic study of the problem of computing the optimal leader policy and draw a relatively complete picture of the complexity landscape; essentially matching positive and negative complexity results are provided for natural variants of the model. Our intractability results are in sharp contrast to the situation with no deception, where the leader's optimal strategy can be computed in polynomial time, and thus illustrate the intrinsic difficulty of handling follower deception. Through simulations we also examine the benefit of considering follower deception in randomly generated games

    Artificial Intelligence and eLearning 4.0: A New Paradigm in Higher Education

    Get PDF
    John Markoff (2006, para.2) was the first to coin the phrase Web 3.0 in The New York Times in 2006, with the notion the next evolution of the web would contain a layer “that can reason in human fashion.” With the emergence of Web 3.0 technology and the promise of impact on higher education, Web 3.0 will usher in a new age of artificial intelligence by increasing access to a global database of intelligence. Bill Mark, former VP of Siri note, “We’re moving to a world where the technology does a better job of understanding higher level intent and completes the entire task for us” (Temple, 2010, para. 14). This poster provides a quick overview of the developments from Web 1.0 to Web 3.0, the progression of artificial intelligences, as well as possible advances as we move into the era of eLearning 4.0.https://fuse.franklin.edu/ss2014/1032/thumbnail.jp

    AI literacy in K‑12: a systematic literature review

    Get PDF
    The successful irruption of AI-based technology in our daily lives has led to a growing educational, social, and political interest in training citizens in AI. Education systems now need to train students at the K-12 level to live in a society where they must interact with AI. Thus, AI literacy is a pedagogical and cognitive challenge at the K-12 level. This study aimed to understand how AI is being integrated into K-12 education worldwide. We conducted a search process following the systematic literature review method using Scopus. 179 documents were reviewed, and two broad groups of AI literacy approaches were identified, namely learning experience and theoretical perspective. The first group covered experiences in learning technical, conceptual and applied skills in a particular domain of interest. The second group revealed that significant efforts are being made to design models that frame AI literacy proposals. There were hardly any experiences that assessed whether students understood AI concepts after the learning experience. Little attention has been paid to the undesirable consequences of an indiscriminate and insufficiently thought-out application of AI. A competency framework is required to guide the didactic proposals designed by educational institutions and define a curriculum reflecting the sequence and academic continuity, which should be modular, personalized and adjusted to the conditions of the schools. Finally, AI literacy can be leveraged to enhance the learning of disciplinary core subjects by integrating AI into the teaching process of those subjects, provided the curriculum is co-designed with teachersThis work has partially been funded by the Spanish Ministry of Science, Innovation and Universities (PID2021-123152OB-C21), and the Consellería de Educación, Universidade e Formación Profesional (accreditation 2019–2022 ED431C2022/19 and reference competitive group, ED431G2019/04) and the European Regional Development Fund (ERDF), which acknowledges the CiTIUS— Centro Singular de Investigación en Tecnoloxías Intelixentes da Universidade de Santiago de Compostela as a Research Center of the Galician University System. This work also received support from the Educational Knowledge Transfer (EKT), the Erasmus + project (reference number 612414-EPP-1-2019-1- ES-EPPKA2-KA) and the Knowledge Alliances call (Call EAC/A03/2018)S

    Learning Semantic Text Similarity to rank Hypernyms of Financial Terms

    Full text link
    Over the years, there has been a paradigm shift in how users access financial services. With the advancement of digitalization more users have been preferring the online mode of performing financial activities. This has led to the generation of a huge volume of financial content. Most investors prefer to go through these contents before making decisions. Every industry has terms that are specific to the domain it operates in. Banking and Financial Services are not an exception to this. In order to fully comprehend these contents, one needs to have a thorough understanding of the financial terms. Getting a basic idea about a term becomes easy when it is explained with the help of the broad category to which it belongs. This broad category is referred to as hypernym. For example, "bond" is a hypernym of the financial term "alternative debenture". In this paper, we propose a system capable of extracting and ranking hypernyms for a given financial term. The system has been trained with financial text corpora obtained from various sources like DBpedia [4], Investopedia, Financial Industry Business Ontology (FIBO), prospectus and so on. Embeddings of these terms have been extracted using FinBERT [3], FinISH [1] and fine-tuned using SentenceBERT [54]. A novel approach has been used to augment the training set with negative samples. It uses the hierarchy present in FIBO. Finally, we benchmark the system performance with that of the existing ones. We establish that it performs better than the existing ones and is also scalable.Comment: Our code base: https://github.com/sohomghosh/FinSim_Financial_Hypernym_detectio
    • …
    corecore