2,100 research outputs found

    Difference Methods and Deferred Corrections for Ordinary Boundary Value Problems

    Get PDF
    Compact as possible difference schemes for systems of nth order equations are developed. Generalizations of the Mehrstellenverfahren and simple theoretically sound implementations of deferred corrections are given. It is shown that higher order systems are more efficiently solved as given rather than as reduced to larger lower order systems. Tables of coefficients to implement these methods are included and have been derived using symbolic computations

    Numerical Methods for a Nonlinear BVP Arising in Physical Oceanography

    Full text link
    In this paper we report and compare the numerical results for an ocean circulation model obtained by the classical truncated boundary formulation, the free boundary approach and a quasi-uniform grid treatment of the problem. We apply a shooting method to the truncated boundary formulation and finite difference methods to both the free boundary approach and the quasi-uniform grid treatment. Using the shooting method, supplemented by the Newton's iterations, we show that the ocean circulation model cannot be considered as a simple test case. In fact, for this method we are forced to use as initial iterate a value close to the correct missing initial condition in order to be able to get a convergent numerical solution. The reported numerical results allow us to point out how the finite difference method with a quasi-uniform grid is the less demanding approach and that the free boundary approach provides a more reliable formulation than the classical truncated boundary formulation.Comment: 25 pages, 12 figures, 5 table

    Trajectory computational techniques emphasizing existence, uniqueness, and construction of solutions to boundary problems for ordinary differential equations Final report

    Get PDF
    Trajectory computational techniques emphasizing existence, uniqueness, and construction of solutions to boundary problems for ordinary differential equation

    Valuation of boundary-linked assets

    Get PDF
    This article studies the valuation of boundary-linked assets and their derivatives in continuous-time markets. Valuing boundary-linked assets requires the solution of a stochastic differential equation with boundary conditions, which, often, is not Markovian. We propose a wavelet-collocation algorithm for solving a Milstein approximation to the stochastic boundary problem. Its convergence properties are studied. Furthermore, we value boundary-linked derivatives using Malliavin calculus and Monte Carlo methods. We apply these ideas to value European call options of boundary-linked asset

    Numerical computation of nonlinear normal modes in mechanical engineering

    Get PDF
    This paper reviews the recent advances in computational methods for nonlinear normal modes (NNMs). Different algorithms for the computation of undamped and damped NNMs are presented, and their respective advantages and limitations are discussed. The methods are illustrated using various applications ranging from low-dimensional weakly nonlinear systems to strongly nonlinear industrial structures. © 2015 Elsevier Ltd

    Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast

    Get PDF
    Ultrasound Tomography has seen a revival of interest in the past decade, especially for breast imaging, due to improvements in both ultrasound and computing hardware. In particular, three-dimensional ultrasound tomography, a fully tomographic method in which the medium to be imaged is surrounded by ultrasound transducers, has become feasible. In this paper, a comprehensive derivation and study of a robust framework for large-scale bent-ray ultrasound tomography in 3D for a hemispherical detector array is presented. Two ray-tracing approaches are derived and compared. More significantly, the problem of linking the rays between emitters and receivers, which is challenging in 3D due to the high number of degrees of freedom for the trajectory of rays, is analysed both as a minimisation and as a root-finding problem. The ray-linking problem is parameterised for a convex detection surface and three robust, accurate, and efficient ray-linking algorithms are formulated and demonstrated. To stabilise these methods, novel adaptive-smoothing approaches are proposed that control the conditioning of the update matrices to ensure accurate linking. The nonlinear UST problem of estimating the sound speed was recast as a series of linearised subproblems, each solved using the above algorithms and within a steepest descent scheme. The whole imaging algorithm was demonstrated to be robust and accurate on realistic data simulated using a full-wave acoustic model and an anatomical breast phantom, and incorporating the errors due to time-of-flight picking that would be present with measured data. This method can used to provide a low-artefact, quantitatively accurate, 3D sound speed maps. In addition to being useful in their own right, such 3D sound speed maps can be used to initialise full-wave inversion methods, or as an input to photoacoustic tomography reconstructions

    The turnpike property in finite-dimensional nonlinear optimal control

    Get PDF
    Turnpike properties have been established long time ago in finite-dimensional optimal control problems arising in econometry. They refer to the fact that, under quite general assumptions, the optimal solutions of a given optimal control problem settled in large time consist approximately of three pieces, the first and the last of which being transient short-time arcs, and the middle piece being a long-time arc staying exponentially close to the optimal steady-state solution of an associated static optimal control problem. We provide in this paper a general version of a turnpike theorem, valuable for nonlinear dynamics without any specific assumption, and for very general terminal conditions. Not only the optimal trajectory is shown to remain exponentially close to a steady-state, but also the corresponding adjoint vector of the Pontryagin maximum principle. The exponential closedness is quantified with the use of appropriate normal forms of Riccati equations. We show then how the property on the adjoint vector can be adequately used in order to initialize successfully a numerical direct method, or a shooting method. In particular, we provide an appropriate variant of the usual shooting method in which we initialize the adjoint vector, not at the initial time, but at the middle of the trajectory

    Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applications

    Get PDF
    Almost block diagonal (ABD) linear systems arise in a variety of contexts, specifically in numerical methods for two-point boundary value problems for ordinary differential equations and in related partial differential equation problems. The stable, efficient sequential solution of ABDs has received much attention over the last fifteen years and the parallel solution more recently. We survey the fields of application with emphasis on how ABDs and bordered ABDs (BABDs) arise. We outline most known direct solution techniques, both sequential and parallel, and discuss the comparative efficiency of the parallel methods. Finally, we examine parallel iterative methods for solving BABD systems. Copyright (C) 2000 John Wiley & Sons, Ltd
    • …
    corecore