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Summary

The objective of the investigation was to study the existence,

uniqueness, and construction of solutions for the two-point boundary

value problem of nonlinear ordinary differential equations. The text of

this report is divided into six parts, each part possessing its own list

of references.

In part I we have attempted to unify the existing methods for

solving linear boundary value problems. Many of the techniques discussed

here have not been discussed in the same publication, but have been

scattered throughout the literature. Since most of the techniques for

solving nonlinear boundary value problems involves solving several linear

problems, the importance of these methods cannot be overemphasized.

Part II continues the techniges in part I to nonlinear problems.

The parallel shooting method is discussed in some detail, and should

prove to be the most fruitful general purpose technique for solving,

boundary value problems.

Parts III and IV survey the recent developments in existence and

uniqueness theory, in particular the sub and super function approach.

Part V applies Liapunov and perturbation theory to the problem of

determining interval length in the parallel shooting method. Estimates

are obtained on the interval length which are easily obtained without

actual computation of solutions.

Part VI developes Liapunov theory for existence and uniqueness

•	 of solutions to boundary value problems. The Liapunov conditions for

(i)



uniqueness are of a different form than those for initial value problem

uniqueness. The results of Hartman are obtained as a special case of

our theory by a suitable choice of the Liapunov function.

We would like to thank Dr. Judson Lovingood of MSFC for his able

direction of this project. Also, we would like to thank Dr. L. Weinberg,

S. Banks, and the secretaries of the Mathematics Department for their

help and advice.
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CHAPTER I

THE SOLUTION OF LINEAR BOUNDARY VALUE PROBLEMS

1. Introduction. :Many techniques have been proposed for solving

boundary value problems. Excellent sources are Keller [1], Osbourne [2],

Lee [3], and Bellman and Kalaba [4]. To consolidate and unify many of

the more promising techniques, we shall develop these techniques for a

common equation and boundary condition. This should provide the

advantages and disadvantages of each procedure, since one may be better

than another when used on a particular problem.

We shall discuss the linear problem here, since any nonlinear

problem is usually solved by some sort of linearization process. That

is, the solutions of a sequence of linear boundary value problems

approach in some sense the solution of the original nonlinear problem.

We shall discuss the nonlinear techniques after developing

thoroughly the linear methods. It should also be mentioned that more

general boundary conditions such as nultipoint conditions or mixed

conditions could be imposed, but for simplicity and clarity, we shall

not develop the theory for these conditions, [2].

2. Preliminaries. Consider the ordinary differential equations

(2.1a)	 u' - A(t)u + B(t)v + h(t),

(2.1b)	 v' o C(t)u + D(t)v + g(t),
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where A(t),B(t),C(t) and D(t) are n x n matrices with continuous

elements on [a,b), u,v,h(t) and g(t) are n-vectors, and h(t) and

g(t) are continuous on [a,bj. Let us assume that (2.1) is subject

to the two point boundary conditions

	

(2.2a)	 u(a) - a,

	

(2.2b)	 B1u(b) + B2v(b)

where B1 and B2 are constant n x n matrices such that B 1 + B2

is nonsingular, and a and 6 are constant n-vectors.

Let U(t) and V(t) be n x n matrices satisfying

	

(2.3a)	 U'	 A(t)U + B(t)V,

	

3b)	 V'	 C(t)U + D(t)V,

and the initial conditions

	

(2.4a)	 U(a) - 0,

	(2.4b)	 V(a) - I	 (unit matrix).

3. Reduction to an initial valuerp oblem ^X direct substitution.

Let us denote a solution of (2.1) by the pair (u(t),v(t)). Let

(x(t),y(t)) be the solution of (2.1) satisfying the initial conditions

(x(a),y(a)) - (a,0) on the interval a < t < b.
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Remark. Thir, solution can be obtained numerically by any of

several standard routines.

Theorem 3.1. Let (u(t),v(t)) be a solution of (2.1) satisfying

(u(a),v(a)) - (a,d), where d is obtained from

(3.1)	 [BIU(b) + B2V(b)]d - B - B1x(b) - B2x(b).

Then (u(t),v(t)) satisfies the boundary conditions (2.2).

Proof. Consider

(3.2a)	 u(t) - x(t) + U(t)d,

(3.2b)	 v(t) - y(t) + V(t)d,

where (x(t),y(t)) is a solution of (2.1) satisfying (x(a),y(a)) - (a,0)

and U(t) and V(t) are given by (2.3) and (2.4). It is easily

verified that (u (t),v(t)) satisfies (u(a),v(a)) - (a,d) and that

(uit),v(t)) satisfies (2.1) for all d. If (2.2b) is to be satisfied,

d must be the solution of (3.1).

Remark. For this technique to be effective. B 1U(b) + B2V(b) must

be not only nonsingular but also computable. A method suggested by

Conte [5], (see also [41), orthogonalizes the solution (U(t),V(t)) of

(2.3) at each integration step when ce:t3in criteria are violated.

Corollary 3.1 (Hartman [6]). The homogeneous boundary value

problem (2.1) and (2.2) with h(t) = g(t) S 0 and a - 0 - 0 has only
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the trivial solution (u(t),v(t) a (0,0) if and only if

[B1U(b) + B2V(b)1 is nonsingular.

Proof. (3.1) becomes

(3.3)	 [B1U(b) + B 2V(b)]d - 0

which has only the solution d - 0 if and only if [B 1U(b) + B2V(b)]

is nonsingular.

Then (u(t),v(t)) r (U(t)d,V(t)d) = (0,0) - on [a,b] and since this

solution is unique [6] the homogeneous problem has only the trivial

solution. To prove the converse, (u(t),v(t)) 	 (U(t)d,V(t)d) _ (0,0)

implies d - 0. (Since (u(a),v(a)) • (O l d)	 (0,0)). Thus from (3.3)

[B1U(b) + B2V(b)] must be nonsingular.

Corollary 3.2. If (x(t),y(t)) satisfies (2.2b) in addition to

the assumptions of Theorem 3.1 and [B 1U(b) + B2V(b)] has rank n - k,

then k linearly independent solutions can be found.

Proof. (3.1) becomes (3.3) which has k linearly independent

solutions for d.

Remarks. 1. If the linear system (2.1) is unstable, (for example,

if A,B,C,D are constant n x n matrices and C has eigenvalues in
the right half plane), then [B 1U(b) + B2V(b)]-1 is extremely difficult

to compute, (see Osbourne [2] and Bailey and Shampine [71).

2. In remark 1, parallel shooting has been used by Osbourne [2]

and others to alleviate the problem.
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4. Reduction to an initial valuerop bleu ^y adjoint equations.

The formal adjoint of (2.1) can be written

(4. la)	 x' - - A*(t)x - C*(t)y,

(4.1b)	 y' - - B*(t)x - D*(t)yl

where * denotes the complex conjugate transpose. Let X(t) and Y(t)

be n x n matrix solutions to (4.1) en [a,b). That is,

(4.2a)	 X*' - - X*A(t) - Y*C(t)9

(4.2b)	 Y*' - - X*B(t) - Y*D(t),

Let us assume also that X(t) and Y (t) satisfy the initial

conditions

(4.3a)	 X(b) - B*J,

(4.3b)	 Y ) - B2 .

Multiplying (4.2a) by u(t) and (4.2b) by v(t), where (u(t),v(t))

is a solution of (2.1), and multiplying (2.1a) by X* and (2.1b)

by Y^ •and adding the resulting expressions yields
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X* u+Y* v+X*u +Y*v' • X*h+Y*g

or

(4.4)	
dt (X 

*u + Y *v) • X h + Y*g .

Integrating (4.4) from a to b yields

b
X*(b)u(b) + Y *(b)v(b) - X*(a)u(a) - Y *(a)v(a) • 

f 
(X*(t)h(t) + Y*(t)g(t)jdt

a

and from (4.3) and (2.2) we obtain

b
(4.5) Y* (a)v(a)	 S- X*(a)a - fa (X*(t)h(t) + Y*(t)g(t))dt.

We have proved the following re quI t.

Theorem 4.1. Let v(a) • d be obtained from (4.5). Then the

solution of (2.1) with the initial conditions (u(a),v(a)) - (a,d)

satisfies the boundary conditions (2.2).

*
Remarks. 1. It may not be possible to solve for v(a) if Y (a)

is singular and the right side of (4.5) is nonzero.

2. If Y*(a) is singular, it may oe possible that the method of

section 3 would yield a solution for d.

3. If the right side of (4.5) is zero, it would be possible, as

in section 3, to obtain a solution for v(a) if Y (a) is singular.

5. Reduction to an initial value problem by the method of

factorization (8). Let
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(5.1)	 v - Ju + z,

where (v(t),u(t)) is a solution of (2.1), J is an n x n matrix

and z is an n-vector,(J and z both functions of t to be determined).

Differentiating (5.1) we obtain

V , a J'u + Ju l + z'

or, from (2.1a) and (5.1),

(5.2)	 v' - Ju + J(A(t)u + B(t)Ju + B(t)z + h(t)) + z'.

To insure that (5.2) and (2.1b) are equivalent, let us define J

and z as follows:

(5.3a)	 J' + JA(t) + JB(t)J - C(t) + D(t)J,

(5.4a)	 z' - (D(t) - JB(t))z - Jb(t) + g(t).

To prescribe appropriate initial conditions, from (5.1)

v(b) - J(b)u(b) + z (b).

Substitution into (2.2b) yields

(5.5)	 [B1 + B2J(b)] u(b) -	 - B2z(b)
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which we would like satisfied for all u(b). Assume B 2 is nonsingular.

If

(5.3b)	 J(b) _ - B- 1B1

(5.4b)	 z(b) = B-1a

are cansidered as initial conditions for (5.3a) and (5.4b) it in

possible to solve (5.3) for a solution J(t) on the interval a < t < b,

and then solve (5.4) for z(t) on [a,b]. In this manner J(a) and

z(a) would be obtained, and from (5.1) and (2.2a)

(5.6)
	

d = v(a) - J(a)a + z(a)

would give the missing initial condition in (2.1). This caz be

summarized as follows:

Theorem 5.1. Let (u(t),v(t)) be'a 6olution of (2.1) satisfying

(u(a),v(a)) _ (a,d) where d = J(a) + z(a) from (5.6). Then

(u(t),v(t)) satisfies the boundary conditions (2.2).

6. Reduction to initial valuerop blem by invariant imbedding. As

discussed by Bailey and Wing [9], Lee [3], and Bellman and Falaba [4],

invariant imbedding is a concept rather than a formal technique, and

hence a collection of several disjoint procedures. Included in this

would be the method of factorization discussed in section 6. A recent

paper by Meyer [10] relates the invariant imbedding principle to the
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formal method of characteristics. Following Beyer, let v(t,u) satisfy

(6.1)	 vt (t,«) + vu(t,u) [A(t)u + B(t)v(t,u) + g(t)] -

C(O u + D(t)v(t,u) + h(t)

subject to the initial condition (initial manifold)

(6.2)	 Btu + B2v(b,u) - 6

for' a .< t < b, u arbitrary.

Theorem 6.1 (Meyer [101). The solution of (6.1) is generated hy

the characteristics (t,u(t),v(t)) satisfying t - b, u(b) - u,

Blu + B2v(b)	 B.

Since the characteristic equations (2.1) are linear it is easily

shown [10) that

(6.3)	 v(t,u) - J(t)u + T(t) .

Substitution of (6.3) into (6.1) yields an equation which, when

satisfied for all u, gives (5.3a) and (5.4a). Since from (6.3),

v(b,u) - J(b)u + z(b), (6.2) becomes

(6.4)	 [B1 + B2J(b)]u =•R - B2z(b)

which must be satisfied for all u.

Thus, the quantity multiplying u in (6.4) and the right side of
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(6.4) must both be identically zero, yielding (5.3b) and (5.4b).

Obtaining theorem 5.1 now proceeds exactly as in section S. The method

of factorization as developed in section 5 is seen to be a special case

of the invariant imbedding procedure as developed by Meyer [10].

7. Difference methods. Let (tj ) be a uniform net on [a,b],

where t  a a + j6	 j - 0,1 1,... , N + 1,

b-a
d-N+1'

Let u  and vj be "approximations" in some sense to u(tj),v(tj)

respectively. By replacing the derivatives in (2.1) by a difference

scheme, it is possible to obtain a linear system of equations which,

when solved, has a solution "approximating" the solution to (2.1) and

(2.2). To apply the idea to (2.2) consider

(7. la) 1 aJ = A(tj )uj + B(tj )vj + h(tj ), j - 1,2,...,N + 1,

(7.1b) V-^I . C(tj )uj + D(tj)vj + g(tj ), j - 1,2,...N

and the boundary conditions

(7.2a)	 uo - a,

(7.2b)	
B1uN+1 + B2vN+1 B,
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Let	 aj	 6A(t j ),	 b  a 6B(tj),

c  a 6C(tj ),	 d  m 6D(tj),

u1	 a + dh(t1)	 1

+(t )vl	

d 

S 

1	 ^,

j
u2	 'i	 6h(t2)

v 2 	 i	 68(12)	 f

wN ^	 !	 y 
t	 ^	 ,

	

i I 	 6h(tN)
UN

t

t °PJ	
6g (tN)	 i

i 'N+1	 dh(tN+l)11

t	

i,

°N+1'	 S

and

	

jI-a 1 9 
-bl , 0, 0	 , 0	 0	 ,, 0

	- c l , -I-dl, 0	 I	 , 0	 , 0	 ,, 0
i

-I	 0	 , I-a 2'	 2-b	 , 0	 , 0	 ,	 , 0	 1
i

0	 -I	 -c2, -I-d2 , 0	 , I	 ,	 0

L e	
i

0	 _I	 0	 , I-aN ,-bN .	 0	 . 0

i
0	 0 , -I	 ,-Cs ,-I-dN,	 0	 I

0	 0	 0	 ,-1	 , 0	 ,	 I-aN+l'-bN+1

0	 ...	 0	 0	 0	 0	 B1	 B2	 I
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Then (7.1) and (7.2) can be written as

(7.3)	
L'N ° YN'

Now if LN is nonsingular it is possible to solve (7.3) and obtain

W  ° LNIyN . To conclude, the relation between (7.3) and (2.1), (2.2)

can be summarized by the Lax equivalence theorem.

Lax's equivalence theorem [11]. 
Lv1YN 

is uniformly bounded (as a

function of N) if and only if u^ u(t^) and vj -► v(t^) for all

j < N+1 as N-► ^

Remarks. 1. "Consistency" [11] is usually a condition required

in this theorem, but we have imposed this condition by our choice of

difference scheme in (7.1).

2. Numerically, the matrices may become quite large, causing error.

3. See [1) for conditions implying uniform boundedness of ly .
N

8. Green's function. For the discussion here, let us consider

the vector equation formed by (2.1),

(8.1)	 u' ° A(t)u + h(t),

where lu	
°

,A(t)	 A(t) B(t) , h(t)	 h(t)1u . 
	 `C(t) D(t),  

subject to the boundary conditions

(8.2)	 Alu(a) + A2u(b) ° a,

where Al and A2 are 2n x 2n constant matrices and a is a

constant 2n-vector. The boundary conditions (2.2) are clearly a special

case of (? . I).
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Let U(t) be the 2n x 2n matrix satisfying

(8.3)	 U' - AU.

Also consider

(8.4a)	 u' - A(t)u,

(8.4b)	 Ala(a) + A2- u(b) . 0.

Lemma 8.1. (8.4) has a nontrivial (40) solution if and only if

[A11(a) + A2U(b)I is singular.

Proof. Since u e U(t)d is the general solution of (8.4a)

substitution into (8.4b) yields [A lL(a) + A2U(b)ld . 0 which has a

solution *0 if and only if [AlU(a) + A2U(b)) is singular.

Theorem 8.1. (8.1) has a solution u(t) satisfying (8.2) of the

form

P
(8.5)	 u(t) a	 G(t,$)h(s)ds

o

where G(t,$) is a 2n x 2n matrix function of t and s such that

G(t,$)h(s) is an integrable function of s, if and only if (8.4) has

no nontrivial solution.

Proof. Assume (8.4) has only a trivial solution. Then by lemma 8.1,
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N e AlU(a) + A2U(b) is nonsingular. The general solution of (8.1) is

'	 t
(8.6)	 u(t)	 U(t)[d +	 U-1(s)h(s)ds]

fa

which satisfies (8.2) if and only if

b
(8.7)	 LAlU(a) + A2U(b)11 B - A2U(b)	 U-1 (s)]I(s)ds

fa —
o

(8.8)

	

	 d o 
'bU bSas

 - N-1 U(b) fab -1 (s)h(s)ds.
a 

By substituting (8.8) into (8.6) the function G(t,$) can be

identified and (8.5) obtained. To prove the converse, the alternative

theorem is needed (see Hartman [6] and Stakgold [12]). The Green's

fuuction gives an extremely important representation of the solution,

one which can be used to obtain integral representations of nonlinear

systems.

9. General matrix Ricatti a uati)n. Consider

(9. la)	 L(J) - J' + JAM + JB(t)J - D(t)J - C(t) - 09

(9. lb)	 J(b) a Jo,

along with (2.3) and the initial conditions

(9.2a)	 U(b) - Uo,

(9.2b)	 V(b) - V 0



15

where U is nonsingular and J . V IJ 1.
0	 0	 0 0

Lemma (Reid [13]).If (2.3) and (9.2) have solutions U(t) and

V(t) on [a,b] and V(t)is nonsingular, then J(t) - V(t)U 1 (t) is

a solution -of (9.1) on [a,b].

Proof. Since U(t)Cl(t) - I, differentiating both sides with

respect to t yields

(9.3)	 U'(t)U 1(t) + U(t)[U 1(01f 	 U

(9.4)	 J'(t) a V'(t)U 1 (t) + V(t)[U 1(t)]1.

Substitution of (9.3) into (9.4) yields

J'(t) • V'(t)u 1 (t) - V M U 1 (t)v'(t)u 1(t)

e (CU + DV)U 1 - VU 1 (AU + BV)U 1

C(t) + D(t)J - JA(t) - JB(t)J.

An interesting idea proposed by Bellman [14] for solving the

matrix Ricatti equation consists of replacing JB(t)J by an upper and

a lower estimate involving only J, B(t) and an arbitrary matrix S

in a linear combination. By solving the resulting linear equations,

estimates are obtained for the actual solution.
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CHAPTER II

THE SOLUTION OF NONLINEAR BOUNDARY VALUE PROBLEMS

1. Introduction. Nonlinear boundary value problems can be

reduced to the solution of transcendental equations. It is then

possible to apply techniques from numerical analysis, such as

successive approximation, Newton's method and the method of false

position (Collatz [21) to obtain a solution. Many sufficient

conditions have been developed to insure convergence of a given

iteration procedure [3,41. However, solutions of boundary value

problems and transcendental equations can be obtained by iteration

procedures without having formal convergence criteria. T1. s, in

practice, iteration schemes are used even though formal convergence

criteria are not satisfied.

Any method for solving nonlinear boundary value problems

relies rather heavily on initial value problems. For example, if

a solution does not exist on an interval [a,b1, it could not

satisfy two point boundary conditions at a and b. We shall assume

the standard theory of initial value problems such as developed by

Hartman (1).

One of the more important techniques for solving boundary

value problems is the parallel shooting procedure 13,51. Many

problems not previously solvable by shooting techniques can be

treated by this method.
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2. Preliminaries and basic results. Consider the system of

differential equations

(2.1a)	 u' - F(t,u,v)

(2.1b)	 v' - G(t,u,v)

subject to the boundary conditions

(2.2a)	 u(a) - a

(2.2b)	 H(u(b),v(b)) - 0

Here u,v,F,G,H,a are n-vectors, F and G are continuous

functions defined on a set [a,b] x D, D ^- R 2n , and H is defined

on D.

Let (u(t,d),v(t,d)) be a solution of (2.1) existing on [a,b]

and satisfying (u(a,d),v(a,d)) - (a,d). We have the following result.

Theorem 2.1. (2.1) has a solution satisfying (2.2) if and only

if

(2.3)	 y(d) - H(u(b,d),v(b,d)) - 0

for some d.
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This procedure for obtaining a solution of boundary value

problem is usually referred to as a shooting method and is solved by

numerical procedures such as Newton's method and its variants, and

multipoint "false position" methods which can often be sbown to

converge [2,3].

Theorem 2.2. Let (2.1) be such that solutions exist and are

unique on [a,b] x R 2n . Then the boundary valuerop blem (2.1)

and (2.2) has as many solutions as there are distinct roots d - d(v)

of (2.3).

Proof. If ¢(d) a 0 for some d, then (u(t,d),v(t,d))

satisfies (2.1) and (2.2), let d, and d 2 be distinct points,

dl + d2 . Then (u(t,d1),v(t,dl)) J (u(t,d2),v(t,d2)), since if not,

uniqueness would be violated. Thus each distinct root of m(d) 0

yields a solution to (2.1) and (2.2).

Corollary 2.2. If (F,G) satisfies a Lipschitz condition on

[a,b] x R2n then the conclusion of theorem 2.2 follows.

3. Parallel shooting. [3] We.shall develop the parallel

shooting technique for

(3.1)	 y' ° f(t,y)

subject to the linear boundary conditions
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(3.2)	 B1y(a) + B2y (b) - Y

where y,f are 2n-vectors, f is defined and continuous on

[a,b] x D, D C: R2n , B1 and B2 are constant 2n x 2n matrices,

B1 + B2 nonsingular, and Y is a constant 2n-vector. Let the

interval [a,b] be subdivided into N subintervals with the points

ti t j - 09 1 9 2 9 ... N. a - to < t  < ... < 
tN-1 < t  

a b.

Let 6  - t  - tj-1 and on each interval [tj-1 , tj ] let

t - t
r a — a ^1> . j (r ) a y(t) - y(rdj + tj-1) and

j

fj (r , yj (r)) - 61 f(rdj + tj-1' yj(r)).

Using these changes of variables, (3.1) becomes

dy
(3.3)	 dr - fj (r,yj )	 0 < r < 1 j a 1,2, ... ,N

The boundary conditions (3.2) become

(3.4)	 Blyl(0) + B2YN ( 1) - Y

Assume also that solutions to initial value problems for (3.1) exist

on every interval It - t'I < d - max 6n, 	 t' a [a,b].

0<n<N



In addition, the solution of (3.1) must be continuous,

requiring that

(3.5)	 Yj+1(0) - y1 (1)	 j ' 1,2, ... ,ti - 1

Y1	 1f (r •Yl)	 Y

0

let	 .'	 f(r,y)	 y•

YN	fN(r'YN) .	 0

Then (3.3) can be written as

(3.6)	 Y-' - f(r,.)	 0 < r < 1

and (3.4) and (3.5) become

(3.7)	 Py(0) + Qy (1) ° Y

where

5
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Bl	0	 0	 . . .

0	 I	 0	 . . .	 0

0 0 I 0

P •

110 0 0 I

0 0 0 . . . 0 B2

-I 0 0 . . . 0 0

0 -I 0 . . . 0 0
i

00 0 . , -I 0

Parallel shooting, technique I. Consider along with (3.6) the

initial conditions

dl

(3.8)
	

Y(0) - d	 •

d 

Then if y(r,d) is the corresponding solution of (3.6) we attempt

to find a d such that (3.7) is satisfied. This will be true if

(3.9)	 0(d) - Pd + ^(l,d) - Y n 0

If Newton's method is used to solve (3.9) for d, the

variational system of (3.6) will be useful. Let W(r,d) 	
a (r d

ad



(3.10x)
dr o (rf-	

r d'Y() )W
'—

where W(r,d) is the 2nN x 2nN Jacobian matrix of y(r,d) with

respect to d. (Here i must be assumed sufficiently smooth)

Then from (3.6) and (3.8),

7

(3.10b)
	

W(C.d) - I	 (I is the 2nN x 2nN unit matrix)

An iteration procedure for solving (3.9) can now be given by

the following:

(3.Ila)	 d v+l d v + Ad v	 where

(3.11b)	 Ip + QW(l,d v)) Ad v - - ^(d v)

To solve this equation, note that (3.6) and (3.8) involve the

solution of N systems of 2n equations where each system is

independent of the others.

Define the 2n x 2n matrix 14 1 as the solution of

dw	 a f
(3.12a)	

dW	
Y (r,y^(r'd^M

(3.12b)	 W1 (0) - I, (I is the 2n :z 2n unit matrix) j - 1,2, ... ,N



Then

W(r,d) s diag (141 (r,d J))

Let us compute the inverse of [P + QW(l,d v)] allowing a

eolution for Ad v to be computed in (3.11). Let

I 0	 0 0

I

0 I	 0 0

0 0	 I 0

TK 6	 N +1- K WN-K

N-K

That is, in	 TK "N-K
occupies the	 N + 1 - K now and the	 N - K

column.	 (TK	 is a	 2nN x 2nN matrix).	 Then

8

(3.13)	 [P + QWIT1T2 ... TN-1 0 
R



where
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B1 + B 
2 

W 
N ... W1,BPN'IN-2	

111,BPNtJN-3 ... Wl, ... B 

R u

0 I	 0	 ...	 0
0 0	 I	 ...	 0

0 ...	 I

If

R1 R2	. . .	 RN

0	 I	 0

R

0	 0	 I

Then

r R11} - R11R2
	 - R11RN

0 ,	 I	 ^	 0

	 i
R-1
	 •

0	 I
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Let

R1 - B1 + B2IJN . . . to

R2 - B2WNWN-2 .	
141

R3 - B2WNWN-3 - . 0 W1

RN - B?N

Then

(3.14)	 [P + QW]	 RTN11 ... T11

1P + QT.J)-1 - T1 ... TN-1R 1

Parallel shooting, technique H. Assume N is even and that

the solution originates at the odd points 1,3, ... ,N - 1 in both

directions. Assume the net is fine enough so that initial value

solutions of (3.1) exist in both directions up to the even points.

Let y2j-1 (t), y2j (t) be solutions of (3.3) originating at

t2j-1 to the left and right respectively such that at t2j-1

(3.15)	 y2j-1 (0) - y2j (0) - dj	j - 1,2, ... ,N/2

and y2j-1 (r) extends to t2j-2 and y2j (r) extends to t,j.
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At the points with even indices, t 2n , we must have

(3.16)	
y2j(1) . y2j+1(1)
	 j - 1,2, ... ,[N - 11/2

to insure continuity.

The boundary conditions (3.2) become Ay l (1) + By14(1) - Y.

Now suppose the solutions initiating at T 2j-1 satisfying (3.15)

are denoted by y2j-l (r,dj ), y2j (r,dj ). Then (3.15) and (3.2) become

(3.17x)	 y2j(l,dj) ' y2j+l (l,dj+1) 	j - 1,2, ... ,N/2 + 1

(3.17b)	 Blyl(l,d1) + B2yN(1'dN/2) . Y

(3.17) is a system of N/2 equations in the N/2 unknowns

dl, .. 0 dN/2 and any of the standard numerical techniques such as

Newton's method can now be used to obtain a solution.

Remark. For computational purposes, excer the points (tj}

have been specified, a solution is obtained on the interval of interest

for an arbitrary initial condition C initiating at tj . If, for

example, (l y (tj
+1)i1 > R II&II where R is some preassigned constant

depending on accuracy requirements, the grid should be refined and this

procedure repeated.

4. suasilinearization [6,71. Let y(t) be a solution of (3.1)

and (3.2). Let us assume that f is sufficiently smooth, so that
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ay(t,y) exists and is continuous. Let yv (t) be an "approximation"

to y(t) such that (3.2) is satisfied by yv(t). Let

xv (t) - y (t) - yv(t). Then if yv(t) is "sufficiently close" to y(t)

(4.1a)	 x, - ay (t.yv(t)) v + f( t •yv (t)) - yVI(t)

(4.1b)	 B1 v (a) + B 2xv (b) - 0	 v - 1,2, ...

This is a linear problem which can be solved for x  if a

solution exists.

SCHEME. Compute yv+l (t ) - xv (t) + yV (t) and replace yv(t)

in (4.1) by yv+l(t), and x  by xv+1' An iteration is thus

established. Convergence of the sequence generated by this technique

falls in the general category of Newton's method in a function space [2,4].

5. Iteration techniques closely related to quasilinear equations.

Goodman and Lance [8) have devised an iterative technique for obtain-

ing the missing initial condition. In (4.2) let

ay ( t , yv (t )) _ A,(t)

f(t, yv (t)) -y 1 (t) - rv(t)

Then (4.1a) becomes

(5.1)	 xV - A^(t)xv + rv(t)
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subject to the boundary conditions

(4.2b)	 Blxv(a) + B 2xv (b) - 0

Consider the adjoint equation

(5.2)	 V- v M , Xv(b) - B2

where X  is a 2n x 2n matrix continuously differentiable with

respect to t.

Then from ( 5.1) and (5.2)

(5.3)	 d [X rxv ] - X,Mrv(t)

or, integrating from a to b,

(5.4)	 Xv(b)xv(b) - Xv (a)xv (a) - fa Xv(t)rv(t)dt

If d  - xv(a), d1 is given, and Xv (a) is nonsingular, then (5.4)

and (4.2b) give

(5.5)	 dv+1	
vl(a)[Bldv + fb X^(t)rv(t)dt]

v - 1,2, ...



14

An alternative method for obtaining the missing initial condition would

be to compute the matrix solution to

(5.6)	 Y' - A i (t)Y	 Y^(a) - I

where Yv is a 2n x 2n matrix continuously differentiable with

respect to t.

The general solution of (5.1) can be written

(5.7)	 xv(t) - vv(t) + Yv(t)d

where d is an arbitrary constant and vv (t) is an arbitrary

initial value solution to (5.1). If (5.7) satisfies the botradary

conditions (4.2b),

[BI + Bgv (b)] d - Blvv (a) - B2vv(b)

and an iteration, for d could be

dv+l - [B1 + B2]-1 {B2 [I - Yv (b)]dv - Blyv (a) - B2vv(b))

Roberts and Shipman [9] have shown that the iteration described

by (5.5) is equivalent to Newton's method. Thus the Kantorovich

Theorem [4] can be used to give convergence criteria.

6. Continuity methods. Roberts and Shipman [9] develop the

following procedure for solving (3.1) and (3.2). Let y(a) - dl

and integrate (3.1) as an initial value problem until the solution

becomes excessively large. (For example, H Y(tl)11 > RIIdv11
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where R is given). Let us assume that at t  the solution of (3.1)

is sufficiently "well behaved". Solve the boundary value problem

(6.1a)	 y' - f(t,y)

(6. lb)	 By(a) + B2y (tl) - Y

for y1(t) using any of the techniques mentioned in sections 5 and 6.

For this solution yl(t) let d2 - yl(a). Now for (6.1a) and

the initial condition y(a) - d 2 integrate past t 1 until the

solut^an becomes excessively large, and assume it is "well behaved"

at t2 > ti, Then replace t1 by t2 in (6.1b) and solve the

boundary value problem (6.1) for y 2(t). Letting d3 - Y2 (a) the

procedure is continued until b is reached.

The Poincare continuity method (3) involves introducing a new

system

(6.2a)	 z' - af(t,z)

(6.2b)	 Blz(a) + B2z(b) - y

Here, if a - 1 we are back to (3.1) and (3.2). Let z(t,d,a)

be a solution of (6.2a) 9atisfy4as z (a) - d. To anive (6.2b) we

must have

(6.3)	 ^(d,a) - B 
1 
d + B2z(b,d,a) - y - 0
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Now clearly at a - 0 the solution of (6.2) is z(t) _ (B 1 + B2) -lY9

a constant. Also det I 
941

^aI'I - 
det [B1 + B2 ] + 0. We wo+ild like

to obtain a solution of (6.3) when a - 1. Since det wd• °) 	 + 0,

continuity implies det C I^ (da)l # 0 for Jai < c. By the implicit

function theorem, there exists a continuous function d(a) on jai < e

such that

(6.4)	 ^(d(a),a) = 0

for all a such that 101 < E

By assuming suitable conditions on f and the boundary conditions,

it is possible to insure that e > 1 so that a = 1 is a satis-

factory solution.

7. Galerkin's method. For (3.1) and (3.2) assume a system of

approximating functions { *k(t)) to the solution of (3.1) and (3.2),

where 1)k(t) are orthonormal and piecewise continuously differentiable

fa ^^(t) (t)dt - 6 ik	 i j - 1,2, ...

N

Let	 uN(t) _

j=1

where C 1 ,	 ,EN are arbitrary. To determine these numbers, compute

la (u '(t) - f(t,uN(t))] ^yk(t)dt - 0 	 K e 1,2, 000 ,N - 1
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and

B1uN(a) + B2uN (b) - Y

which is again a nonlinear system of N equations for the N

unknowns & 1' " " 9Y

8. Power series methods. If f(t,y) in (3.1) is analytic, a

solution would be of the form

W

(8.1)	 y(t) - d + I ak(t - a)k
k-1

and conditions (3.2) become

m
(8.2)	 B 

1 
d + B2	ak(b - a)k ° Y

k-1

Since the a  are functions of d, (8.2) is a transcendental

system of equations in d. Of course convergence becomes a

problem, since the series (8.1) is not known to converge for all

t, a < t < b. If we assume that

N
u (x) - d + I a (t - a)k
N	

k-1 k

is an approximation to y(t) then (8.2) could be "approximately"

solved [3].

Leavitt [10] has considered a solution of the form

(8.3)	 y(t) - E	 I a tkdj
k-0 j-0 kj
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where d is the initial condition, J JT are cultiindices, and

dj a d lld22 ... dnn . Then substitution into (3.2) yields

	

N	 *i
(8.4)	 B d+ B 1	 1 a tkdj Y

i	 2k0	 j=Ukj

which is a nonlinear system of equations in d l , ... ,dn.

9. Miscellaneous methods. Several of the techniques discussed

earlier in chapter 1 for linear systems can be applied to nonlinear

systems.

Difference methods can be used if a solution of both the

difference equation and the original equation, is known to exist.

The theory of "approximate" systems developed by Kantorovich and

Akilov [4] could be used to show convergence. Since the formal

mechanics of obtaining the difference equations are the same in

the linear and the nonlinear case, it will not be done here. See

Keller [3] for a derivation of the equations. The technique of

invariant imbedding is discussed from the characterist_'^ surface

standpoint by Meyer [11] for nonlinear systems. Since invariant

imbedding has already been discussed briefly in chapter 1 for linear

equations, we shall not go further into this subject.

A novel technique discussed by Bellman and Kalaba [6] is

based on backwards and forward integration. For example, assume (2.1)

and (2.2), with (2.2b) replaced by u(b) s 8. Then an initial

condition v(a) a dl is chosen, (2.1) is integrated forward to b,
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and (u1(b),v1(b)) is obtained. Then the problem is integrated

from (8,v1 (b)) backwards to a, and (u2(a),v2(a)) is obtained.

Then from (a,v2 (a)), (2.1) is integrated forward to b and an

iteration procedure is established. Convergence is claimed in

some instances [6].

Summarizing, inventing techniques for solving boundary

value problems is limited only by the imagination of the researcher.

10. Convergence. Convergence must be mentioned in any

discussion of iteration techniques for solving equations. By

reducing the boundary value problem to that of solving a system

of nonlinear equations, many standard techniques are available.

Among these are fixed point theorems, such as the contraction

principle and Schauder's theorem, [2,3,4]. Since c-iteria for

convergence are given in these references [2,3,4] we shall not

repeat them here. Again it should be mentioned that often a given

iteration procedure will converge without satisfying any of the

known sufficient conditons for convergence.
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CHAPTER III

SUBFUNCTION APPROACH TO THE TWO-POINT BOUNDARY VALUE PROBLEM

1. Introduction. We consider the two-point boundary value

problem (BVP),

(1.1)	 y"(x) - f(x,y(x),y'(x))

(1.2)	 y(a) - A,y(b) - B

The subfunction approach to the boundary value problem is to develop

the properties of subfunctions, and then to use these to extend local

existence theorems to global existence theorems. This approach

originated in the work of Perron [7], where he uses subharmonic

functions in the study of the Diric%,let problem for harmonic functions

with bounded plane domains. The actual application of this approach

to the BVP is relatively recent, and it is primarily due to the efforts

of Bebernes [1], Fountain and Jackson [4], and Jackson [5].

This chapter will deal with the definition of and elementary

properties of subfunction, local existence theorems and their

generalization to global existence theorems, and the relationship

between subfunction and functions satisfying differential inequalities.
I

Throughout we will assume that f(x,y,y) is continuous on
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'	 (a,b) x (— , w) x (-W , w), [a,b] a compact interval.

2. Preliminaries. A function ^(x) is said to be a subfunction

with respect to solutions of y" - f (x,y,y') on an interval I in

case for any [x1 ,x2 ] C:.I and any solution y e C(2) [xl,x2],

y(x i) ? t(xi) for i - 1,2 implies y(x) > f(x) on [xl ,x2]. A

function w(x) is said to be a superfunction with respect to
I

solutions of y" - f(x,y,y) on an interval I in case for any

[xl ,x2 I C: I and any solution y c C(2)[xl,x2], y (xi) < *(xi) for

i - 1,2 implies y(x) < *(x) on [x1 'x2].

We will give our results in terms of subfunction, although there

will be exactly analogous results in terms of superfunctions.

To give the reader an intuitive idea of a subfunction, we list

some properties.

Remark. First note that a subfunction need not be continuous,

(as required by some earlier authors).

Lemma 2.1. If 0 is a bounded subfunction on 3 C_I, then

.as at most a countable number of discontinuities on J.

Lemma 2.2. If m is a bounded subfunction on J C: . I, then m

has a finite derivative almost everywhere (a.e,) on J.

Theorem 2.3. Assume that the collection of subfunction

{ma :a a A) on the interval J C I is bounded above at each point of J.
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Then mo(x) - sup acAoa(x) is a subfunction on J.

Proof: Assume [xl ,x2 ] C J and assume that y(x) c C(2)[xl,x2]

is a solution on [x 1 ,x21 with 0o(x) < y(x) at x a xl ,x 2. Then

from the definition of mo(x) it follows that ma (x) <y(x) at

x M xl,x2 for each a c A. Since each 0a is a subfunction on J,

we conclude that 0 
0
(x) < y(x) on [xl,x2I for each a e A. This

implies ^o(x) < y(x) on [xl ,x2 ] and 0o is a subfunction on J.

From the definition of a subfunction, it is natural to consider

the relationship between subfunction and differential inequality

theory. Necessary and sufficient conditions for subfunctions to satisfy

the differential inequality

D¢'(x) = lim6-P-0inf 01( ^- O-^== > f(x,m(x),O'(x)) have been

derived. These will be discussed later.

3. Local Existence. The local existence that we will need is

summg ized as the following:

Theorem 3.1. Let M > 0 and N > 0 be given real numbers and

let q be the maximum of if(x,y,y')l on the compact set

{ (x .Y.Y ):a < x < b, IY !. ZK . IY 	 2N}. 'fly, if

6 a mini(LM)1 /2, Q], any1, 	 y'	 f(x,Y.Y' ). Y(x1) Y 1 . Y(x2) x2



a

with [x1 "2 ] = [8.b1. x2 - xl 1 d, 1 yl 1 < M. IY2 1	 ti,	 y-Y2 ( < N
1 2

has a solution y(x) E C (2) [xl ,x21. Furthermcre, given E > 0 there

is a solution y(x) such that ly(x) - w(x)l < E and

ly'(x) - w'(x)) < E on [xl,x2]rp ovided x2 - x  is sufficiently

small where w(x)is the linear function with w(x l) y1, w(x2) • y2'

Essentially, Theorem 3.1 says that on a sufficiently small interval

with admissible boundary conditions, the boundary value problem can

be solved, and that, furthermore, the solution can be made arbitrarily

close to the straight line connecting the boundary points.

Now, using Theorem 3.1 along with some of the properties of sub-

functions and superfunctions, we can obtain the following theorem

about properties of bounded functions which are simultaneously sub-

functions and superfunctions.

Theorem 3.2. Assume that f(x,y,y') is such that C (2) solutions

sz£ boundary-valuerop blems, when they exist, are unique. That is,

assume that, if [xl ,x2] C-1  and yl,y2 E C (2) [xl ,x2 1 are solutions

of y" - f(x,y,y') on [xl ,x2 ] with y(x1) - y2(xl) and

yl (x2) - y2(x2), then y
l (x) = y2 (x) on [x1 ,'2 ]. Assume that z(x)

is bounded on each compact subinterval of J C I and that z(x) is

simultaneously a subfunction and a superfunction on J. Then z(x)

is a solution of y" - f(x,y,y') oc an open subset of J the

complement of which has w-asure zero. Furthermore, if x  E Jo

is .A Doint of continu ' if z(x) at which z(x) does not have a

finitg dgrivative, 	 . e!the Dz(xo+) - Dz(xo-) - + m or



5

Dz(x0+) - Dz(xo-) - -	 If zo (xo + 0) > z(xo - 0),

Dz( o+ ) - Dz(xo ) - + •, and if zo (xo + 0) < z(xo - 0),

Dz (xo ) - Dz (xo ) - - -.

These properties of z(x) will be needed later in the study of

boundary value problems by the Perron method.

4. Study of boundary--value problems ^j subfunction methods.

A bounded real-valued function ^ defined on [a,b] is said to be

an underfunction with respect to the boundary-value problem

Y" - f (x ,Y. y '), y (a) - A, y(b) ., B	 (4.1)

in case ^(a) <.A, O(b) < B, and g is a subfunction on [a,b]

with respect to solutions of y" - f(x,y,y'). The bounded function

*(x) defined on [a,b] is said to be an overfunction with respect

to the BVP in case *(a) > A. *(b) > B, and * is a superfunction on

[a,b] with respect to solutions of y" - f(x,y,y').

Theorem 4.1. Assume that C(2) solutions of BVP's for

Y" - f(x,y,y') on subintervals of [a,b] are unique in the sense

of Theorem 3.2. Assume that there exists both an overfur_ction

*o and an underfunction 
fo 

with respect to the BVP (4.1) and

that ^o (x) !.% (x)  on [a,b]. Let 0 be the collection of all

underfunction f such that ^(x) < *o(x) on [a,b]. Then

Z(X) - sup ^ CoO ) is simultaneously a subfunction and a super-

function on [a,b].
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Definition 4.3: The function z(x) defined in Theorem 4.1

depends on the BVP (4.1) and on the overfunction * 0(x). It will be

designated by z(x,*0) and will be called a generalized solution

of the BVP.

Remark. The justification of the title "generalized solution"

follows from Theorem 3.2, which is applicable since z(x,^ 0) is

both a subfunction and a superfunction.

The other properties given in Theorem 3.2, also apply to

z(x,*o). The behavior of z(x,*0) at the endpoints of [a,b] is

given by the following theorem.

Theorem 4.2. Assume hypotheses of Theorem 4.1 are satisfied,

and let z(x,*o) - z(x) be the corresponding generalized solution

of BVP (4.1). Then z(a) A. If Dz(a+) - + -, z(a + 0) < z(a).

If z(a + 0) < A, Dz(a+) - - -. Hence, if Dz(a+) is finite,

z(a + 0) - z(a) - A. Similar statements a1DPly at x - b.

Ath the above results, ve can divide the study of the BVP

by the subfunctlon approach into two parts: First, to establish the

existence of an overfunction *o and an uuderfunction Q  such

that ^ W < *0 (x) on [a,b] (this gives us a candidate for a

solution, z(x,*o) 	 second, to estab113h conditions under which the

generalized solution z(x,^ 0) is of class C (2) [a,b] and is a

solution of the boundary value problem on [a,b]. Theor^is 3.2, 4.1,

and 4.2 play a major role in achieving the second part, since they
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tell us it is sufficient to show Dz(x+) is finite on [a,b)

and Dz(x-) is finite on (a,b).

A function m(x) is called a lower solution of the differential

equation y" - f(x,y,y') on an interval I in case

a(x) a C(IM C(1 W), i° the interior of I, and

Da'(x) = limd,^inf a'(x + d) 
2d
a'(x - d) > f(xsa(x)sa'(x)) on I°.

Similarly, S(x) is an upper solutionution if

DB'(x) = lim^aup B' (x + d) - 8
1 (x - d ) < f (x,B(x),B'(x)) on I°.

Proceeding along the line of argument (in the two parts)

mentioned above, we obtain first Lemma 4.3, and then Theorem 4.4.

eL ^a 4.3. Assume that f(x,y,y') is non-decreasing in y

on [a,b] x (—,+m) x (--,+m) for ftxed x,y' " and is dikeh th8t lower

and upper solutions of the differential equation are subfunctions

and superfunctions, respecti--lv. Further assume that there is a

k > 0 MUSh that lf(x,0,y') - f(x,0,0)1 < kjy'j on a < x < b

J.0 jLU y'. Then thezethe exists overfMActions an under-functions

w th resvect 12 every BVP 4g [a,b]. With the aid of this lemma,

we can then show

Theorem 4.4. Assume that f(x,y,y') is non-decreasing in y

on [a,b] x (-m,+-) x (--,+-) for fixed r,y' and assume that

f(x,y,y') satisfies a Lipschitz condition with respect to y'

on each c_ i^ct subset of [a,b] x (-m ,+m) x (-- ,+-) or that
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solutions of . ytial-value problems are unique. In addition

assume that there is a k > 0 such that If(x,0,y') - f(x,0,0 )1 < kjy'j,-

on [a,b] for all y'. Then for anv boundary-value problem aM

[a,b] with an associated overfunction * o (x) the generalized

solution z(x) a z(x,^ 0) belonrza to C (2) (a,b) An z" - f(x,z,z')

on (a,b).

Proof: (sketch). Lemma 4.3 guarantees us that with respect

to a given BVP on [a,b], there is an overfunction 4s (x) and an

underfunction ^ o(x) with 0O W < *0 (x) on [a,b]. Consequently,

-he generalized solution z(x) a z (x l ^ ) is defined. Furthermore,

the hypotheses imply that solutions of BVP's when they exist, are

unique; hence, the conclusions of Theorem 3.2 apply to z(x).

Thus, to complete the proof, it is sufficient to show that Dz(xo+)

and Dz (xo) are finite at every point of (a,b).

Ocher representative theorems which can be obtained in this

manner are the following:

Theorem 4.5. Assumg that f(x,y,y') is nondecreasiug

in y on [a,b] x (--,+-) x (-m,+-) for fixed x ,y' and satisfies

a uniform Lipschitz condition with respect to y' on [a ,b] x (--,+-)

x (-^,+^). Then for any A,B, the boundary-value problem (4.1)

has a unique solution y(x) a C(2)[a,b].

Corollary 4.6. If f(x,y) is continuous on (a,b) x

and is nondecreasir_R in y for fixed x, then for any A,B, the
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boundary-valuerop blem y" - f(x,y), y(a) - A, y(b) ` B has a

unique solution y c C(2)[a,b].

Using the subfunction approach, Jackson was able to show a

result first proved by Opial and Lasota in 1967, which is that

uniqueness of solutions of BVP's implies their existence.

Theorem 4.7. Assume that I C Reals is an interval and that

f(x.y,y') is continuous on I x R2 . Assume that for every

(xo' Yo'yo ') c I x R2 , the initial-value problem y" - f(x,y,y'),

Y(x0) - Yo' Y'(xo) - yo' has a unique solution y(x) a C (2) M.

Further, assume that, if for any [x l ,x2] I and any A,B, the

BVP (*) y" - f (x,Y,Y'). Y(xl) - A , y(x2) - B has a solution

Y(X) a C (2) [xl ,x2 1, then that solution is unique. Then for any

proper subinterval [x l ,x2 ] r, I and any A,B, the BVP (4.1) has a

solution.

The basic idea behind the subfunction approach of working in

the 'small', and then using these results to obtain some fn the

'large', is quite well established and produces fruitful results.

So far, practically all theorems obtained in this manner have been

already known. In this sense, little new is being added, and it

seems certain that any result which has been shown otherwise could

also be shown using subfunctions. The important thing to keep in

mind is that the subfunction theory is relatively new and may well

be leading the development in the field of BVP's in the coming years.

5. Relation between subfunctions and differential inequalities

An interesting quzation is, what is the relationship between
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subfunctions and differential inequalities? A function a(x) is

called a lower solution of the differential equation y" - f(x,y,y')

on an interval I in case a'x) f C(I ) A" . C (l) (I°) and

Da'(x) = lim640inf a'(x + b) - a'(x - a) > f(x,a(x),a'(x)) on I°.
26	

-

(Similar definition for upper solution).

Theorem 5.1. Assume that ^ c C(I)i; C (1) (I°) is a subfunction

on I with respect to solutions of y" - f(x,y,y'). Then 0 is a

lower solution of the differential equation on I.

That is, a sufficiently smooth subfunction is a lower solution.

The converse, that a lower solution is a subfunction, is not

true under just the assumption of continuity of f. To see this,

assume so, i.e. that every lower solutior. is a subfunction. Then,

since a solution is a lower solution, we have that every solution is

a subfunction. By the definition of a subfunction, this implies

that the solution to the BVP must be unique. It is easy to think

of a BVP with non-unique solutions. Thus, we have that a theorem

which gives sufficient conditions for a lower solution to be a sub-

function is automatically a the.>Lem giving sufficient conditions for

solutions of BVP's to be unique.

Along these lines, we have

Theorem 5.2. Let f(x,y,y') be non-decreasing in y for

fixed x,y' and satisfy, a Lipschitz condition with respect to y'

on each compact subset of [a,b] x R 2 . Then slower solution

on a subinterval I C:[a,b] is a subfunction on I.
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If we retain the non-decreasing assumption and alter the other to

assuming that solutions of IVP for y" - f(x,y,y') are unique, then

the conclusion is still valid.

As a last result, we have

Theorem 5.3. Assume that solutions of BVP for y" - f(x,y,y'),

when they exist, are unique (i.e., if yl ,y2 c C (2) [x1 ,x21 are

solutions on [x1 ,x2 ]	 [a,b] with y1 (xi) - y2 (xi ) ' i - 1,2,

then y1 (x) = y2(x) on [x1,x2]). Assume also that each IVP for

Y" - f(x ,y,y') has a solution which extends throughout [a,b]. rhen,

if I =^[a,b] and ^ c C (l) (I) is a lower solution on I, then

is a subfunction on I.

As an example of results obtained using lower and upper solutions,

we have

Theorem 5.4. There exists a solution y of y" - f(x,y,y'),

y(a) - A, y(b) = B, which is in C (2) [a,b] provided the following

conditions hold:

(i) There exists a,s E C (1) [a,b] n C(2) [a,b] with a a

lower solution and s an upper solution on [a,b]. Also

a(x) < s(x) for x c [a,b] and a(a) < A < $(a), a(b) < B < s(b).

(ii) f satisfies the Nagumo condition on set

E = {(x,y) : a < x < b, a(x) < y(x) < O(x), where a,s c C[a,b]);

thrt is, there is a positive continuous function h such that

lf(x,y,y')l < h(,y'j) for all (x,y) c E, and ly'l < + -, where

CO

j s d  > max	 s(x) - min	 a(x) with
X^ 	 x c [a,b]	 x c [a,b]
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a max fla(b) - s(a;l/(b-a), 
8(b)	 a(a) ). 

Furthermore, the
b-a

solution is such that a(x) < y(x) < 8(x), and ly'(x)l < M on

M
[a,b], where f X 

h^ 
de maxx 

E [a,b]S(x) - minx c [a,b]a(x).

I
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CHAPTER IV

LITERATURE SURVEY OF EXISTENCE AND UNIQUENESS THEOREMS

1. Introduction. The literature survey conducted by Mr. York

centered on the investigation of techniques used to prove uniqueness

and existence theorems for boundary value problems. Basically, the

survey dealt with three main areas: (1) contraction mappings,

which yield both existence and uniqueness; (2) distance between

zeroes, which resulted in improved estimates of uniqueness intervals;

and (3) comparison theorems and differentia' inequalities, which

yield bounds on solutions along with existence and uniqueness results.

Of the three, the one that seems to offer the most promise for future

investigation is the last. Many-of the more recent papers in the

field of boundary value problems utilize a subfunction or superfunction

approach which is to reality part and parcel of the comparison theorems

and differential inequalities.

2. Preliminaries. Before proceeding with the actual findings,

it will be advantageous to introduce some terminology Which we will

employ throughout. Consider the differential equation:

(2.1)	 y"(t) + f(t,y(t),y'(t)) - 0	 t E [a,b).
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By a solution to tae first boundary value problem (denoted lot BVP),

we will mean a solution of (2.1) satisfying the imrased boundary

condition, y(a) - A and y(b) - B, A, B real numbers. By a solution

to the second boundary val-te problem (denoted 2nd BVP), we will mean

a solution of (2.1) satisfying the boundary condition y'(a) - m

and y(b) - B. Included in this case, of course, is the boundary

condition y(a) - A, y'(b) - m.

Throughout, we will always assume that f(t,y(t),y'(t)) is a

continuous function on [a,b) x (- m ,•) x (-^,•), unless otherwise

stated. Additional assumptions on the function f will be stated

fully when needed. Frequently, we assume f to be Lipschitzian,

i.e., there exist two non-negative constants K and L such that

whenever (t,y,y') and (t,x,x') are in the domain of f, then

the inequality If(t,y,y') - f(t,x,x')l 	 Kjy - x! + Lly' - x'l holds.

Remark: if f(t,y,y') is linear in y and y', then f(t,y,y')

is Lipschitzian for t confined to some finite closed interval.

More generally, if f(t ,y,y') has bounded partial derivatives,

of (t,y,y'), ay, (t,y,y'), then f (t,y,y') is Lipschitzian with

K - sup	 1—f ( t ,Y.Y ') l and L - sup	 ka-Y f ( t 'Y.9' ) I •
( t .Y.Y )	 (t+Y.Y )

By a solution to the initial value problem (IVP), we mean a solution

of (2.1) satisfying y(a) - A, y'(a) - m or y(b) - B, y' (b) - m.

3. Linear and nonlinear boundary valu e problems.

Before proceeding to the three main areas, let us give some

preliminary results concerning nonlinear vs. linear problems,
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and boundary value problem vs. initial value problems. By studying

such simple BVP's as the linear problem

y"(t) + y(t) - 0

y(0) - 0 y(b) - B

and the nonlinear problem

Y 11 (t) + iy(t)' - 0

y (0) - 0, y(b) - B,

we find the following: (1) for linear problems, for fixed a,

existence anA./or uniqueness fail for exceptional values of b; while

(2), for nonlinear problems, both existence and uniqueness may fail

for all b greater than or equal to a certain bo.

4. Application of initial value theory to boundary value problems.

Frequently, much use is made of the theory of the initial value

problem in obtaining theorems for the boundary value problem. The most

used results are that continuity of f(t,y,y') guarantees existence

of a solution, and the added assumption of the Lipschitz condition

implies uniqueness and continuability of the solution. Also, under

the same assumptions, -,*Q have the continuous dependence on initial

conditions and parameters. As art example, we can use these results

of IVP theory to prove

Theorem 4.1. If f(t,y,y') satisfies a Lipschitz conditiog on

[a,b] x (-*e ,4-) x (--,•) and is bounded, i.e., I f (t,y,y' )' < N

for every (t,y,y'), then the lst BVP has a solution.
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Remark: The assumption of boundedness, here, is rather restrictive,

but the theorem does illustrate how knowledge of IVP's implies that

of BVP's.

Also, we can make certain assertions concerning the relation

between existence and uniqueness intervals for the two BVP's.

Theorem 4.2. Let a < c < b. If uniquenesseness holds for all

2nd BVP y(a) - A, y'(c') - m whenever c' a (a,c), andif

uniqueness holds for all 2nd BVP y(b) - B, y'(c') - m whenever

c' a [c,b), then uniqueness holds for the lot BVP on [a,b].

Let a < c < b. Then we have that: if all IVP on [a,b] have

unique Lolutions, and if both 1st and 2nd BVP have unique solutions

on [a,c] and also on [c,b], then the lot BVP has a unique solution

on [a,b]. This result is of importance later in establishing the

best uniqueness interval for the 1st BVP.

S. Contraction mappings. We are now ready to study the contraction

mapping approach. Let S be a nonmed linear space S with norm

denoted by 11 . 11. The space will be called complete if every Cauchy

sequence converges to a point in S. An operator T mapping S

into S will be called a contraction mapping if there is a number

a, 0 < a < 1, such that, for all x,y a S, jjTx - Tyl) < a'jx - y+j.

The whole idea behind the contraction mapping approach is contained

in the following theorem.

Theorem 5.1. Every, contraction mapping T defined on a

complete nonmed linear space S has one and only one fixed point



S

L

(i.e., y - Ty has exactly one solution). In this one theorem,

we have both the assertion of existence and uniqueness of a solution.

Our problem then is how to view the BVP as a map.

We can accomplish this end by employing a Green's function to

rewrite our differential equation as an integiil equation. The

Green functions we will use are

(b - t) (s - a) a < s c t < b
b - a	 — — —

G(t,$) -

(b- 9) (t - a) a < t < s <b.
b - a	 — —

and

s- a a< s< t< b
H(t,$)
	 — — —

t- a a< t< s< b.

Hence the 1st BVP with zero boundary conditions is equivalent to

y(t) - 1a G(t,$) f(s,y(s),y'(s)) ds 	 a < t < b

and

Y'(t) - fb
8t (

t . $) f(s,Y(s),y'(s)) ds.

For non-zero boundary conditions, we would add to the right-

hand side of the first equation the linear function

bA - aB + (B - A)t
b - a
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whict. satisfies Qa) - A, t(b) - B, and is a solution of y"(t) - 0.

For this reason, boundary conditions may be taken to be zero without

loss of generality. Similarly, we would add V (t) to the right-hand

side of tue second equation.

When A - 0 and m - 0, the 2nd BVP is equivalent to

Y(t) - ib B(t.$) f(s.Y(s).Y'(s)) ds

and

Y'(t) - fa ai (t's) f(s.Y(s).Y'(s)) ds.

For A and m not zero, we add to the right-hand side of the

first equation, the solution of y"(t) - 0 which satisfies y(a) - A,

y'(b) - m, namely, A + m(t - a), and its derivative to the second.

The properties of the Green's functions that we will need are

jb G(t,$) < (b - a)2 and lb (aG (t s)( ds < b - a .
2

Just as Picard did some seventy years ago, we can define an

iterative procedure as follows: starting with any continuously

differentiable function, we define yn(t) as the solution of

yn'(t) + f(t•yn-l(t).Yn-1(t)) - 0 n - 1, 2, ...

yn(a) - s yn(b) - B.



7

Here, in effect, we have defined a map T, y  - Tyn_l, on the space

of all continuously differentiable functions into itself. We need

now to investigate under what assumptions will T be a contraction

mapping. If T is, then the fixed point y, y - Ty, will be the

unique solution to the original BVP.

We first consider the special case of the 1st BVP in which y'

does not appear. Take S to be the space of - all continuous functious

	

on [a,b) with norm 1,ull - max	 Ju(t)s. S is then a complete
a<t<b

nonmed linear space. We arrive at

Theorem 5.2. Le*: f(t,y) satisfy a Lipschitz condition.

Then the let BVP has a unique solution whenever b - a < 8 K.

This result is not best possible meaning that existence and/or

uniqueness may not fail when b - a - 8 K.

To obtain a sharper estimate, we change the norm by introducing a

non-negative weight function w(t), which we later choose. Define

a new norm II 
u 

II 
1 - max	

lu(t))	
With the appropriate choice

a<t<b w(t)

of w(t), we find that

Theorem 5 . 3. Let f (t,y) satisf a Lipschitz condition.
2

Then the 1st BVP has a unique solution whenever K(b 2 a)
2
 1.^. _.	 _	

n
This result is best possible. The important point here is that

in this special case, i.e., no y', the Picard iterations do

converge on the best possible uniqueness and existence interval.

This result does not hold in the general case.



For the more general case with y' included, we introduce

the space S of continuously differentiable functions on [a,b]

with norm 1jull - max 	 (K,u(t)i + Llu'(t)l), where K and L
a<t<b

are the Lipschitz constants.

Theorem 5 . 4. Let f(t,y,y') satisfy .1 Lipschitz condition.

If K(b 
8 a^ + L(b 2 a) < 1, then the 1st BVP has one and o

nly one

solution. This result, however, is not best possible.

To obtain results for the 2nd BVP, we let S consist of the

space of all continuously differentiable functions on [a,b], with

norm

(u(t	 +u'(t)lu	 max a<
a<t<b w(t) a<t<b v(t)

in which we introduce weight functions for both the function and

its derivative. Let us introduce the following notation. If u(t)

is any non-trivial solution of u"(t) + Lu'(t) + Ku(t) - 0 which

vanishes at t - a, then its derivative vanishes at t - a + a(L,K),

where

8

2	 -1 Lcos
OK - L2)it	 2 r

L
s,	

2	
cosh-1

a(L,F) - (L2 - 4K)	
2 ►rK

2
L

if 4K - L2 > 0

if 4K - L2 < 0, L > 0, K> 0

if 4K-L2 -0, L> 0

otherwise
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Then we can show

Theorem 5.5. If f(t,y,y') satisfies a Lipschitz condition,

then, if b - a < a(L,K), then the 2nd BVP has one and only one

solution. This result is best possible.

In conclusion, Picard's iteratives converge on largest possible

interval for the 2nd BVP, but only in the special case for the 1st

BVP. By employing results on relations between uniqueness intervals

for BVP's, we get

Theorem 5.6. Let f(t,y,y') satisfy a Lipschitz condition.

If b - a < 2a(L,K), then the 1st BVP has one and only one solution.

Result is best possible.

In some sense, the above can be considered a global result.

By requiring that T be a contraction mapping not on the whole space

but on some ball, we can obtain local existence and uniqueness of

solutions.

Theorem 5.7. Let f(t,y,y') be continuous on

[a,b] x [-N,N] x [- b 
4Na, 

b 
4N 

a
1, and satisfy a Lipschitz condition

there. Let m e max	 (f(t,0,0)1, M - max lf(t,y,y'); for
a<t<b

iyj !. N. ly'( <	
4N	

t e [a,b]. Then if a	
K b - a) 2 + L(b - a) < 1

	

— b-a'	 8	 2

	

m(b-a 2	tab-a)2
and either	 8	 < N(1 - a) or	 8	 < N, then the 1st

BVP has one and only one solution y(t) such that 'y(t)) < N,

jy'(t)j < .b 4N 	 for t c [a,b]. If f(t,y,y') is continuous and

bounded on [a,b] x D, D c R 2n , then by the Shauder fixed point
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theorem, local solutions exist. A more general =axed point theorem

might well result in existence and uniqueness theorems with less

conditions imposed on the function f(t,y,y').

6. Estimates of uniqueness intervals.

The second main area of constderation was obtaining better

estimates of the uniqueness intervals. To this end, we introduce

a generalized Lipschitz condition. Instead of just the two constants

K and L, we now have four constants K 1 , K2 , L1 , L2 and linear

functions G1 and G2 . Then

G1 (y - x,y' - x') < f ( t .Y.y ') - f(t,x,x') < G2 (y - x,y' - x')

where

Kly + Lly'

'K1y + L2y'
Gl(Y.Y')

K2y + L2y'

_K2y + Lly'

and

if y ? 0	 and y' > 0

if y> 0	 and y' < 0

if y < 0	 and y' < 0

if y < 0	 and y' > 0

iK2y + L2y'

1K2y + Lly'
G2(Y.Y')

Kly + LlY

Kly + L2y'

if y > 0	 and y' > 0

if y > 0	 and y' < 0

if y < 0	 and y' < 0

if y < 0	 and y' >	 0.
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Not#- that if we have -K1 . K2 ' K, and -L1 a L2 - L, then we just

have the usual Lipschitz condition. The advantage of this approach

is simply that more information is contained in four constants than

two. Now, we can distinguish between such differential equations as

y" - y - 0 and y" + y - 0. The lst BVP for the first equation

has unique solutions on all finite intervals [a,b]; whereas, the

1st BVP for the second equation has a unique solution only on intervals

of length less than n. With the old Lipschitz condition, these two

equations fell into the same class.

One of the most fundamental results is what might be called

an 'alternative'

Theorem 6.1. The maximum interval on which all of the equations

in the family (Kl , K2 , L19 L2 specified) have unique solutions to all

first boundary value problems coincides with the minimum inters-1

on which none of the "unforced" equations in the family has a non-

trivial solution with two zeroes. We say that an equation

y"(t) + f(t,y(t),y'(t)) - 0 is unforced if f(t,0,0) - 0. Similarly,

uniqueness holds for all the second boundary value problems in the

class, if and only if, none of the unforced equations has a non-

trivial solution such that both it and its derivative have a zero

on the interval. The main idea here is that without loss of generality,

when considering the question of uniqueness, it is sufficient to

study the distance between zeroes of unforced equations.

When considering the family of all differential equations

associated with given Lipschitz constants (Ki t K2 , Ll , L2), it is
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By studying the relationships between u(t), v(t), and y(t), we

arrive at the following uniqueness theorem.

Theorem 6 . 2. Su ose f (t,y,y') is continuous and satisfies

S generalized Lipschitz condition.

(1) If 0 < b - a < r,(L21 K2), then the 2nd BVP

y"(t) + f(t,y (t),y'(t)) - 0

Y(a) - A, y ' (b) - m

has one solution at most.

(2) If 0 < b - a < B(L l ,K2), the 2nd BVP

y"(t) + f(t,y (t),y'(t)) - 0

Y'(a) - m, y(b) - B

has one solution at most.
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(3) If 0 < b - a < a(L2 ,K2) + O(Ll ,K2), then the lot BVP

1.

y(a) - A, y (b) - B

has one solution at most. These results, (1), (2), (3), are

best possible.

7. Comparison theorems. Chapters 5 and 6 of Bailey, Shampine,

and Waltman's book develop comparison theorems based on differential

inequality theory and use them to prove existence of solutions to

boundary value problems. A sample comparison theorem would be:

Theorem 7.1. Let v(t) be a twice continuously differentiable

function on [a,b] satisfying

V II (t) + f(t,v(t),v'(t)) > 0.

(Assume f continuous on (a,b) x (--,+m)x (-m ,+•) and that all

IVP's and all BVP's have unique solutions existing throughout the

interval [a,b)).

(1) If u(t) is a solution of u"(t) + h(t,u(t),u'(t)) - 0 (7.1)

which agrees with v(t) in both value and slope at some point

t  a [a,bj, then v(t) > u(t) for t + t0.

(2) If u(t) is a solution of (7.1) which agrees with v(t) in

value at a and at b, then v(t) < u(t) for t + a,b.
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Although of Interest in itself as Theorem 7.1 relates solutions

of the differential equatioa with functions satisfying the ass^; •:iated

differential inequality, this comparison theorem can be used to

prove

Theorem 7.2. Su ose f(t,y,y') is continuous and satisfies

aeg neral Lipschitz condition. Then the second boundary value

problem

y"(t) + f(t,y(t),y'(t)) - 0, y(a) - A y'(b) - m

has a unio-,e solution whenever 0 < b - a < a (L29K2). Result

best possible. Note that this result is not new, as it has been

obtained before using fixed point theorems.
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PERTURBATION THEORY USEFUL IN PARALLEL SHOOTING METHODS 

By John H. George*

1. Introduction. Shooting methods are techniques for solving

boundary value problems by reduction to initial value problems.

They have been the subject of numerous recent papers, (see Roberts

and Shipman [1], Osbourn [2], Bailey and Shampine [3] and Keller [41).

The main computational advantage of shooting methods is the avail-

ability of sophisticated numerical procedures for integrating initial

value problems. The difficult:-Ps in the use of shooting methods

occur because (i) the initial value problem is "unstable", (for

now, unstable means a small variation in the initial conditions gives

rise to large variations in the corresponding solution)and (ii) it

is difficult to obtain "good" starting values for most iterative

techniques used to solve nonlinear problems. Osbourne [2] shows

how the parallel shooting technique (see Keller [4] for a comprehensive

explanation of parallel shooting) makes positive contributions to

both of these problems.

Bailey and Shampine [3] have given several concepts closely

related to stability and boundedness (as in Hahn [5]) of initial

value problems. In their trca l.ment a Lipschitz condition is assumed

on the differential equation. Using differential inequalities

obtained from the Lipschitz condition, solution bounds are obtained.

1This research was supported in part by NASA grant NAS8-21434.
*Department of Mathematics, University of Wyoming.
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In this paper Liapunov theory will be applied to the shooting

methods to gbtain solution estimates. These estimates will then be

used to determine a suitable interval length in the parallel shooting

technique.

2. Preliminaries. Let us consider the system of n differential

equations

(2.1)	 y' ' f(t,y), ' 	 dt

where f (t,y) is defined and continuous on [a,b] x D, D C Rn,

subject to the boundary conditions

(2.2)	 Bly(a) + B2y(b) - c ,

where B1 and B2 are n x n matri::es, B 1 + B2 is nonsingular,

and c is a constant n vector. Let us assume that (2.1) and

(2.2) has a unique solution and that the initial value problem

(2.1) and

(2.3)	 y(a) a a

has a unique solution on [a,b].

A real valued function ^(r) belongs to class K (f £ K)

if it is defined, continuous, and strictly increasing on 0 < r < ^,
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and 0(0) - 0. The solution y(t) of (2.1) and (2.2) can always

be transferred to the solution u(t) 0 of a new equation as

follows:

Let z(t) be any solution of (2.1) and (2.3). Then if

U(t) - z(t) - y(t),

(2.4)	 u' - f(t,u + y(t)) - f(t,y(t)) - g(t,u)

and g(t,0) = 0. Thus, u (t) - 0 is a solution of (2.4).

The solution u(t) F 0 of (2.4) is uniformll stable if there

exists a function ^ e K such that if u(t ,a,a) is a solution of

(2.1) and (2.3), then 1 1u(t,a,a ) JI < 0(liall), a < t < b. If

0(r) - Lr then L is called a rg owth factor. Obtaining growth

factors by Liapunov theory can then be used to estimate the interval

length in the parallel shooting technique.

3. Liapunov theory. A Liapunov function v(t,u) is a real

valued continuous function which is locally Lipschitzian on (a,b) x D,

D CO. Let

v'(t,u) - lim sup 1 [v(t + h, x + hg(t,x)) - v(t,x)] .S	
h-0+h

Then, as in Yoshizawa [6], it can be shown that

vg(t,u) - dt (t,u(t,a,a))
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Theorem 3 . 1. If there exists a Liapunov function v(t,u) such

that

al(llull) < v(t,u) < 0 201 u ll), 0 1 90 2 e K

and v' (t,u) < 0, then u(t) =_ 0 is uniformly stable.

Proof. This is a standard theorem [5), but since the proof

indicates how growth factors could be determined, it will be included.

Since vg(t,u) < 0, v(t l ,u (t l ,a,a)) > v(t 2 ,u(t 2 ,a,a)) for

t  < t2 . Then

^2 (11 a ll) > v(a,a) > v(t,u(t,a,a)) > ^1 (llu(t,a,a)ll) .

By the properties of class K, X11 exists and 0112 a K, [5).

Then

li u(t,a,a)il <_ ^12(llall) ° WWI), 	 011m2 c K .

Remark. If an L can be found so that $(Ilall) < Lllall

then L would be a growth factor. For example, if ¢ 1 (r) ° c1r2,
^ (r) ° c 2r 2 , c l ,c 2	c> 0, then L a c1 2 .

4. Perturbation theory. In the study of perturbations, the most

widely used methods involve the construction of Liapunov functions

for the perturbed system [5,7,8). Other methods are based on the
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variation of parameter technique [9,10]. Several of the more useful

theorems will be given here.

Let A(t) be an n x n matrix with continuous elements

on [a,b], let AT(t) be the transpose of A(t), and let A(A(t))

denote the largest eigenvalue of 2(A(t) + AT (t)) on [a,b].

Lemma 4.1 (Wazewski [11]). Every solution z(t) of the linear

system

(4.1)	 z' a A(t)z

satisfies

(4.2) jjz ( t ) I j 1 jjz (a) jj eXp (ft ),(A(s))ds], a < t < b .

Proof. Let v(z) - zTz - I1zII 2. Then

V , (z)	 [z']T z + zTz 	 zT [A(t) + AT (t)Iz < 2A(A(t))v.

Thus by solving this differential inequality, (4.2) is obtained.

Let u(t,a,a) be a solution of (2.4) through (a,a) and let

gu (t,u) represent the Jacobian matrix. Let A(g u(t,u)) denote

the largest eigenvalue of 2[gu (t,u) + gu(t,u)] and suppose

(4.3)	 A(gu(t,u)) < h(t) for a < t < b, u c D,

where h(t) is a continuous function defined on [a,b]. Then in



I I Z(t,a, a ) I I_ L I la 11, a< t< b.

an analogous manner to Lemma 4.1 we have

Lemma 4.2 (Brauer [9]). If a E a convex subset S of D

thett for all t for which all solutions with initial values in

D remain in D,

(4.4)	 IIu(t,a,a)1) < IIal1 exp [j8 h(s)ds] .

Consider

(4.5)	 z' - A(t)z + F(t,z) ,

where A and f are matrix and vector functions respectively.

Assume A(t) is continuous on a < t < b and F(t,z) is

continuous on a < t < b, z c D. Let Z(t) be the fundamental

solution of (4.1) satisfying Z(a) - I.

Theorem 4.1 (Coppel [101). Let the solution z(t) = 0 of

(4.1) be uniformly stable, and let F satisfy

II F (t,Z)11 <Y(t) II Z 11 ,

where Y(t) is a continuous non-negative function satisfying

fa Y(t)dt < -. Then there exists a positive constant L such that

for any solution z(t,a,a) of (4.5) through (a,a),

6
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Remark. If JIBIJ -	 sup	 11Bx1j, and if 11 Z (t)Z-1 (9)11 < K
I (XI 1 .1

for a < s < t < b, then L - K exp [K Ia r(s)ds] is a growth factor

[10]. These results should give conservative estimates of L.

5. Applications. Holt [12] and Osbourne [2] consider the

differential equation

2

(5.1a)	 ^ - (1 + t 2)y . 0
dt

(5. lb)	 y(0) - 1, y(b) • 0 .

According to Holt, the solution of (5.1) cannot be obtained

for b > 3.5 by conventional shooting methods. Reverting to (4.1),

	

l y'1	 ^	 0	
1 ^1

,

	

z I yll
	 A(t)	 2

	

I	 1 + t	 0I

a(A(t)) - 2 + t 2 , and from (4.2),

3
jj z( t ) jj ` jjz(a)Ij exp [2t + t31, 

0 < t < b .

3

If L - 105 , then exp [2t } l  < L . 105 holds for t < 2.7.

If L - 103 as is suggested by Keller [4, p. 681, then t < 2.

The interval length of 2.7 is a reasonable estimate to the

interval length 3.5 obtained by bolt by numerical computation.
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Consider the problem

(5.2a)
	

Y" + sin y ° sin 
nb

(5.2b)
	

y(0) ° 0, y(b) ° 0

considered for b n 3.1 by Bailey and Shampine [3].

Suppose y(t) is a solution of (5.2) and z(t) is a

solution of (5.2a) and

(5.3)	 y(0) ° 0, y (a)	 a

Then letting v(t) ° z(t) - y(t) we have

Vol
	 sin(v + y(t)) + sin y(t) .

Writing

V 1	 i r v'

h	 g(t,u)°
^v)'	 l - sin(v + y(t)) + sin y(t)

we have

! 0	 1
9U( t,u)

- cos(v + y(t))	 0
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^(gu(t,u)) . 1 - cos(v + y(t)) < 2 ,

From 4 . 4, if u (t,0,a) is a solution of u' - g (t,u) through

aat t - 0, we have

(5.4)	 jju(t,0.a)j) < jal exp 2t ,

and if exp 2t < L - 10 2 , then t < 2.3.

Remark. A disadvantage of this method is that singularities

must be known beforehand. For example, in (5.2) there is a singularity

at b •• n which would not appear in (5.4). In any case, because

of the ease of application, it is felt that the described methods

should yield useful information in many parallel shooting problems

as, for example, in the method for determining the parallel

shooting interval length as described by Keller [4, p. 681.

Use of a quadratic Liapunov function and the theory of first

approximation would yield other estimates of a similar nature to

those already given.
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J. tit. GEORGE and W. G. SUTTON. APlication of Lpjunov. theory two

bow value problems.

Abs_ tract: The theory of Liapunov's direct method is developed for

boundary value problems occurring in ordinary differential equations.

Conditions are Given in terms of a Liapunov function which are sufficient

to insure uniqueness and existence ci solutions to boundary value

problems. A suitable Liapunov function to obtained to Siva conditions

obtained by Hartman as special cases.



Application of Liapunov Theory to Boundary Value Problems

By J. H. George and W. G. Sutton 

1. Introduction. Many techniques and theories developed for

boundary value problems-of ordinary differential-equations originated.

as initial value concepts. For example, f axed.point theorems .111, Picard's

Iteration 141 and differential inequalities 12,3,41 are commonly used

techniques in both initial and boundary value problems.

A theoretical technique that has proved extremely useful in

Initial value theory 151, but does not seem to be given ite due in

boundary value theory, is the direct method of Liapunov. in initial

value problems, since necessary and sufficient Liapunov function

conditions are obtained for many types of solution behavior, the theory

can be considered as a unifying concept. That is, all known sufficient

conditions can be obtained by choosing the proper Liaprzov function, as

is done by Yoshizawa 15, p.101 for the Lipschitz condition as a

uniqueness criterion. (See George 171 for a Liapunov function for

more general uniqueness theorems). Yoshisawa 13] has obtained a

Liapunov result for boundary value problems, giving necessary and

sufficient conditions for the boundary value solution to remain

between two estimates obtained by differential inequalities.

We shall develop a Liapunov theory for existence and uniqueness

of solutions of boundary value problems. Also the existing theory of

Hartman will be shown to be included in our theory by a suitable

Liapunov function selection.
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2. Preliminaries and notation. Let us consider the system of

ordinary differential equations

(1) x" a f(t,x,xI)

where x and f are n-vectors, ' * dt and f is a function defined

and continuous on a domain D (a,b) x D, where [a,b) is an interval

on the real line and D c R2n.

The boundary value problem is that of finding a solution x(t) of

(1) on (a,b) satisfying for b > a,

(2) x(a) - A, x(b) a B.

The corresponding initial value problem is obtaining a solution

x(t) of (1) satisfying the initial values

(3) x(a) - A, x' (a) - a.

A Liapunov function V(t,x,x') is a continuous, locally Lipachitzian

with respect to (x,x'), real valued function. Corresponding to

V(t,x,x') define

Vf(t,x,x') a lim+ inf h l[V(t+h,x+hx',x'+hf(t,x,x')) - V(t,x,x')).
h+0

Lemma 2.1. (Yoshiaawa, [5, p. 4)). if V(t,x,x') is a Liapunov
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function and x ( t) is a solution of (1), then V ( t,x(t),x' ( t)) is

noniecreasing (nondecreasing) if and only if

Vf(t,x,x') < 0 (Vf(t,x , x') > 0).

Lemma 2.2. Let x(t) be a solution of (1) satisfying

(4)
	

X(a) • 0, x' (a) - 0

and either x(t) * 0 or x' (t) 4 0 on (a,b). Then there exists an
open interval I C (a,b) such that both x (t) ¢ 0 and x'(t) f 0 on I.

Proof. Suppose x(t) t 0 on [a,b). Then by continuity of x(t)

there exists an open interval I1 (to,tl) such that x(t) f 0 on

I1, and x ( to) - 0. Assume x'(t) = 0 on Ti. Then x(t) = c on Il,

where c is a constant, and c -= 0 since x(to) - 0. Since x'(t) is

continuous there exists an open interval I2 C I1 where x'(t) f 0.

Thus on I - Il n I21 x(t) f 0 and x' (t) f 0. If x'(t) * 0 on

[a,b] a similar arguaent concludes the proof.

Let ( x,y) be the standard inner product in a Hilbert space and

let lix,12	 ^x,x^ be the corresponding norm.

3. Uniquenee a and continuability. Let u (t) be a solution of

the boundary value problem (1) and (2). What conditions on f insure

that u(t) is the only solution of (1) and (2)4 Many criteria on f

are given to insure uniqueness; for example, the Lipschitz condition (4)

and nondecreasing properties 12, p. 317] are standard sufficient

conditions. We shall develop a Liapunov theory for boundary value

problems which gives sufficient conditions for uniqueness.
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Suppose v(t) is another solution of (1) and (2). If

x(t) - u(t) - v(t), then x must satisfy

(5) x" - f(t , x + V, x' + V') - f(t,v,v') - F(t,x,x')

(6) x(a) - 0, x(b) - 0

Fow F(t,0,0) = 0 and hence x(t) = 0 is a solution satisfying (5) and

(6). We have proved the following:

Lemma 3 . 1. x(t) = 0 is the only solution of (5) and (6) if and

only if u(t) is the only solution of (1) and (2).

Theorem 3.1. For F defined in (5), if there exists a Liapunov

function V(t,x,i) defined on D such that

(i) V(t,x,x') - 0 if x 0

(ii) V(t,x,x') > 0 if x 0

(iii) VF(t,x,x') _ 0 in the interior of D,

then there is at most one solution of (1) and (2).

Proof. By Lemma 3.1 it suffices to show x(t) : 0 is the unique

solution of (5) and (6). Suppose there exists a solution *(t) of (5)

such that ^(a) - 0, ^ (b) 0 and f(t1) 0 0 for some tl s (a,b).

Then there exists lt2 ,t3j C ta,bj such that t  s (t2,t3),

m(t2) - f(t3) - 0, and # ( t) # 0 on (t2,t3). Thus V(t,#(t),f'(t)) > 0

on (t2 ,t3). Since VF(t,x,x') > 0, V(t,f(t),#'(t)) is nondecreasing

along the solution #(t) and thus V(t3,#(t3) , #'(t3)) > 0, a

contradiction.
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Corollary 3.1. If there exists a Liapunov function as in Theorem

3.1 except that (ii) holds when both x and x' are f 0, then a

solution of (1) and (2) is unique.

Proof. Followe as in Theorem 3.1 by using Lemma 2.2.

Example. In Hartman, 11, p. 4271, the condition 	 X, P) + 11 x'II > 0

if x f 0, (x,x') - 0 is given to insure uniqueness of x = 0. By

choosing V(t,x,x') - (X,X) all conditions of Theorem 3.1 are

satisfied since Hartman's condition insures V does not have a

maximum, and hence VF(t,x,x') > 0.

Because it may be convenient to give continuability conditions,

such as are required by Jackson. [2) in the theory of sub and super-

functions, as Liapunov conditions, it will simply be mentioned that the

necessary and sufficient conditions for continuability are given by

Yoshizawa (S, pp. 11-17).

4. Existence. If f is bounded, then it is possible to give

local existence results such as the following: (see also 11, p. 424]).

Theorem 4.1. (Jackson, [2, p. 309)). Let M > 0 and N > 0 be

given real numbers and let q - max 1jf(t,x,x')j) on

(a,b) x (x: jjx<< < 2M) x (x': (+x'j+ < 2N). Let

d - min [(8M/q)1/2,(2N/q)). Then for any [t l,t2 ) G [a,b) such that

t2 - tl < d,

(7)	 x(t1) - xl , x(t2) - x2' tl < t2

where 11 x1 11 < M. lIx2 11 < M, jj (x2 - xl)/(t2 - t,),) IN, the
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boundary value problem (1) and (7) has at least one solution.

Hartman [1, p. 435) has introduced the following concept, where

L • t2 - t 

A solution x(t) of (1) satisfying 11x(011 .1 M on [tl9t2)

has property At if there exists a constant N(t) such that

1Ix'(t)II < N on [tl,t2).

Lemma 4.1. (Hartman 11, p. 435)). Let there exist an M such

that every solution of (1) satisfies 11x(t)11 < M and has property

A.. Then (1) and (7) has at least one solution.

We are now in a position to give Liapunov sufficient conditions to

Insure the hypothesis of Lemma 4.1.

Theorem 4.2. Let x(t) be a solution of the boundary value

problem (1) and (7), where 11x111 < M. 11 x2 11 < M. Let there exist a

Liapunov function V(t,x,x') defined on D1 • [a,b) x {x: 11x11 > M) x Rn

such that

(i) V(t,x,x') • 0 whenever 11 x11 • M

(ii) V(t,x,x') > 0 whenever 11 x11 > M

(iii) Vf(t,x,x') > 0 in the interior of D1.

Then 11x(t)11 < M on [t19t2).

Proof. Follows as in Theorem 3.2.

Theorem 4.3. Let x(t) be a solution of (1) and (7) satisfying

11x(t)11 < M on (tl,t2 1. Let there exist a Liapunov function

V(t,x,x') defined on D2 • [a,b) x {x: 11 x11 < M) x {x': 11 x'11 > N)+

where K is sufficiently large, satisfying
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(i) V(t,x,x') > a(Ilx'il) where a(r) is a positive continuous

function defined on [K,m) such that a(r) -► • as r ♦ •.

(ii) Vf(t,x,x ` ) < 0 in the interior of D2.

Then x(t) has property At.

Proof. Let x(t) be such a solution, where x'(t l) > K. We can

then find a constant K1 such that V(tl,x(tl),x'(tI)) < K1 and an

N > K such that a(Ilx'II) > Kl when Ilx'II > N. We shall now show

Ilx'(t)JI 1 N on [tl,t2 1. For if not, there exists a t 3 E (tl,t2)

where Ilx'(t3)II > N. But

Kl _> V(tl,x(tl),x'(tl)) > V(t3,x(t3),x'(t3)) > a (II x '( t3)II) > K1•

a contradiction. Hence x(t) has property At.

Theorem 4.4. Suppose there exist two LI-ipunov functions having

the properties given in Theorems 4.2 and 4.3 respectively. Then the

boundary value problem (1) and (7) has at least one Folution.

Proof. Since every solution initiating in

D3 - [tl,t2 ] x ,x: Ilxil < M) x (x': Ii x'II 1 N)

remains in D3 by Theorems 4.2 and 4.3, the function f can be

restricted to the set D3. Since f is bounded on this compact set, a

solution exists to the boundary value problem.

Example. Hartman [1, p. 433] gives the following condition to

Insure 11 x ( t)11 < M.

X, 
f) + IIx'II 2 > 0 if (x,x') - 0 and II xlI _ M.
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If V(t,x,x') - ( x,x) - M2 , then Hartman's condition implies V

evaluated along a solution x(t) of (1) does not have a maximum at any

point t a [t l ,t2 ] where jjx(t)jj t M. Also this V satisfies all

conditions of Theorem 4.2, thus insuring '+x(t)jj < M on [tl,t2].

5. Obtaining existence from uniqueness. This interesting concept

was introduced by Lasota and Opial [6] and Jackson [2]. We shall

restrict our considerations in this section to second order differential

equations where f(t,x,y) is defined, continuous and real valued on

the strip D4 a (a,b) x R2 . Let D5 - [tl,t2 I x R2 where a < t1 < t2 < b.

Theorem 5.1. (Lasota and Opial [6, p. 2]). Assume solutions to

initial value problems through any point of D5 are unique. If there

exists at most one solution of (1) and (7) for every pair

(tl,xl), (t2 ,x2) E (a,b) x R then there exists one and only one

solution of this problem.

Theorem 5.2. If solutions to initial value problems through any

point of D5 are unique and there exists a Liapunov function as in

Theorem 3.1, then there exists one and only one solution of (1) and (7)

as in Theorem 5.1.
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