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1 Introduction

In this paper we consider pricing boundary-linked assets and their derivatives in continuous-time markets.
The value of these assets are contractually linked at several dates by means of boundary constraints.
Therefore, valuing boundary-linked assets requires the solution of boundary value stochastic differential
equations.
A stochastic Boundary Value Problem (BVP) is defined as

dXt = b (t,Xt) dt+ σ (t,Xt) dWt, for t ∈ [0, T ] , (1)

with a boundary condition
α (X) = c, (2)

where Wt is a d-dimensional Brownian motion, Xt a continuous time d-dimensional stochastic process, α
a continuous operator from the trajectories’ space to Rd and c ∈ Rd constant. For example, a boundary
condition can be a terminal condition with α (X) = XT , α (X) = A0X0 + ATXT where A1 and AT are

real matrices, or a more involved condition such as α (X) =
∫ T

0
dAt Xt, where At is a d × d matrix

which components are functions of bounded variation in [0, T ] . The theory of stochastic BVPs has also
considered some cases of non linear operators α, see e.g. Nualart and Pardoux (1991a). Other references on
boundary value stochastic differential equations are Huang (1984), Ocone and Pardoux (1998) and Nualart
and Pardoux (1991a).
Stochastic BVPs typically arise from the application of the Pontryagin’s maximum principle to stochas-

tic control optimum problems with finite time horizon T , where the boundary condition is given by the
transversality condition (see, e.g., Malliaris and Brock, 1982, Prop. 10.1, pp. 112-113). These systems can-
not usually be analytically solved, and algorithmic tools are required to cope with these problems. Despite
recent contributions in stochastic BVP literature (see e.g. Ferrante et al., 1996, and Kohatsu-Higa, 2001,
that focus on Stratonovich integrals), much can be done to enlarge the catalogue of techniques for solving
BVP.
In this paper, we propose a projection-based method for solving stochastic BVPs. Its main idea consists

of using a wavelet-collocation method to solve a finite-difference Milstein approximation to the stochastic
differential problem. We prove that this procedure provides a strong approximation for the solution to (1)
and (2) . We study the numerical performance of the algorithm in several examples.
We apply these ideas to study the valuation of boundary-linked assets ad their derivatives. The analysis

of boundary linked assets is not only a theoretical problem, but can also be applied to the increasingly
exotic assets traded in actual economies. With the growing sophistication of financial markets, investors
are demanding new, more complex options products, tailored to their needs. In particular, there is an
increasing number of financial assets which values are contractually linked at certain periods of time, such
as leases and rental agreements. An illustrative example is the English real estate lease market. In English
Law, two legal estates exist in buildings and land: freehold (absolute ownership which does not expire)
and leasehold (temporal possession for a specified time period). Leasehold enables liability on covenants
to pass from tenant to tenant and indeed from landlord to landlord. In this context, the lessor bears the
risk associated with the residual market of the asset at the maturity date of the contract, and the buyer
bears the short term lease risk, where the value fluctuation of the lease randomly fluctuates subject to some
boundary constraints, e.g. a cero value of the leasing contract at the maturity date. The value of lease
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assets can be formulated by a second order boundary value stochastic differential equation

··

X (t) = b (t)
·

X (t) +
·

W (t) , t ∈ [0, T ] ,

X (0) = ρ, X (T ) = 0;

that is, the acceleration of lease assets prices is proportional to their growth rate and affected by a white
noise shock. Note that any second order problem can be reduced to a first order system of stochastic
differential equations with boundary value conditions in the space of states, see e.g. Nualart and Pardoux
(1991b). Hence, to value boundary-linked assets, we are faced with the problem of solving stochastic
differential equations with boundary conditions.
Often, the solution of stochastic BVPs does not satisfy the Markovian conditional independence property,

see e.g. Alabert et al. (1995) and Alabert and Ferrante (2002). Therefore, standard Black-Scholes arguments
cannot sometimes be applied to value derivatives of boundary-linked assets. We propose the use of Malliavin
calculus to value these derivatives. In particular, we consider the generalized Clark-Ocone formula and
present a procedure for its computation based on the Monte Carlo method and wavelets approximations.
To illustrate this methodology, we consider an European call option of boundary-linked assets.
The rest of the paper is organized as follows. After some preliminaries, Section 2 provides a brief

introduction to stochastic BVPs. In Section 3 we present an algorithm for solving boundary value stochastic
differential problems. Its numerical performance is illustrated by means of some examples. Next we study
the properties of the solution approximation. In Section 4 we apply these ideas to value boundary-linked
assets, of which prices are determined by a stochastic differential equation with boundary conditions. Also,
we consider the valuation of boundary-linked derivatives and their numerical computation. Finally, proofs
are placed in Appendix A.

2 Stochastic BVPs: Preliminaries

Now we introduce some basic notation and tools that will be used through the paper.
White Noise Process. Let S be the Schwartz space in R and let S′ be its dual (the space of tempered

distributions) endowed with the weak-* topology and Borel subsets B. By the Minlos Theorem, there is

a probability measure µ on S′ such that
∫
S′ exp {i 〈ω, φ〉}dµ (ω) = exp

{
− (1/2) ‖φ‖2L2(R)

}
for all φ ∈ S,

where 〈ω, φ〉 is the evaluation of ω ∈ S′ on φ. The space (S ′,B, µ) is the white noise probability measure,

satisfying the Itô isometry Eµ [〈ω, φ〉] = ‖φ‖
2
L2(R)

for all φ ∈ S. Consider d independent realizations from µ,

then we construct a d-dimensional Wiener processWt =
(〈
ω1, I[0,t]

〉
, ...,

〈
ωd, I[0,t]

〉)′
, which has a continuous

modification in C
(
R;Rd

)
with Wt = 0 for t ≤ 0, and such that 〈ω, φ〉 =

∫
R
φ (t) dWt for all φ ∈ S, in the

sense of Itô’s integral. Consider the Gelfand triple S ⊂ L2 (µ) ⊂ S ′, where

L2 (µ) =

{
X : S → R : ‖X‖2L2(µ)

=

∫

S′
〈X,ω〉2 dµ (ω) <∞

}
.

An orthogonal basis for L2 (µ) is given by the family {Hk}, indexed by all vectors k = (k1, ..., km), with

{kj}
m
j=1 ⊂ N, for allm = 1, 2, ... whereHk (ω) =

∏m

j=1
hkj (〈ω, ej〉) and {hn} , {en} are Hermite polynomials

and Hermite functions, respectively. Then, we define a singular white noise generalized process as follows,

·
W t =

(
·
W t (ω1) , ...,

·
W t (ωd)

)′
,
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with
·

W t (ω) =
∑

k ek (t)Hk (ω) . A detailed review of this topic can be found, e.g. in Hida et al. (1993)
and Holden et al. (1996).
Let Ω = C0

(
[0, T ] ;Rd

)
be the space of all the continuous functions in [0, T ] which vanish at zero, with

T > 0 deterministic. The restriction of the Wiener process Wt to [0, T ] induces a Borel probability space,
which completion is denoted by (Ω,A, P ). Let {At} denote the filtration generated by Wt, completed and
made right continuous.
Malliavin calculus. Next we introduce some tools from Malliavin calculus. For all h ∈ L2

(
[0, T ] ;Rd

)
,

consider W (h) =
∫ T

0 hsdWs. Let C∞ (Rn) be the set of functions f : Rn → R infinitely continuously
differentiable such that f and all its derivatives are bounded. We denote byD the set of real random variables
of the form F = f (W (h1) , ...,W (hh)) , with f ∈ C∞ (Rn) for any n ∈ N and h1, ..., hn ∈ L2

(
[0, T ] ;Rd

)
.

For all F ∈ D we can define the differential operator DF as the stochastic process

DtF =
n∑

j=1

∂

∂xj
f (W (h1) , ...,W (hh))hj (t) , ∀t ∈ [0, T ] ,

and the iterated differential Dn
t1,...,tnF = Dt1 ...DtnF, and D

0F = F. Let Dq,p be the closure of D with
respect to the Sobolev norm

‖F‖q,p =


‖F‖pLp(Ω)

+
n∑

j=1

∥∥∥∥
∥∥∥Dj

t1,...,tjF
∥∥∥

L2[[0,T ]j]

∥∥∥∥
p

Lp(Ω)



1/p

=


E [|F |p] +

n∑

j=1

E



(∫

[0,T ]j

∣∣∣Dj
t1,...,tjF

∣∣∣
2

dt1...dtj

)p/2




1/p

,

with p ∈ (0,∞) , and Dq,∞ as the elements F in Dq,2 with finite norm

‖F‖q,∞ = ‖F‖L∞(Ω)
+

n∑

j=1

∥∥∥∥
∥∥∥Dj

t1,...,tjF
∥∥∥

L2[[0,T ]j]

∥∥∥∥
L∞(Ω)

.

We also define D∞,p = ∩q≥1D
q,p and D∞ = ∩q,p≥1D

q,p.
The operator D : D1,2 ⊂ L2 (Ω)→ L2 ([0, T ]×Ω) is known as the Malliavin derivative of F ∈ D1,2, with

first order derivatives and second order moments. The adjoint operator of D, denoted by δ, is defined for all

processes u such that E
[∫
[0,T ]DtFutdt

]
≤ c ‖F‖L2(Ω)

. If u ∈ Dom (δ) , then E [δ (u)F ] = E
[∫
[0,T ]DtFudt

]

for all F ∈ D1,2. Often, the operator δ is expressed as δ (u) =
∫ T

0
utdWt, and is known as the Skorohod

integral. It can be proved that δ (u) is equal to the Itô integral if the process ut is adapted. The duality can
be used to establish the Clark-Ocone formula, see e.g. Karatzas and Ocone (1991); that is for all F ∈ D1,2,

F = E [F ] +
∫ T

0
E [DtF |At ]dWt. For an introduction to the Malliavin calculus and its properties, see

e.g. Bell (1987), Ustunel (1995), Nualart (1995) and Øksendal (1997). Malliavin derivatives can be also
considered as Frechet derivatives, see e.g. Øksendal (1997). Malliavin calculus can be also introduced using
Wiener-Itô chaos expansions, see e.g. Houdré et al. (1994).
Stochastic BVP solutions. Consider the stochastic BVP (1) and (2) . Although the study of existence

of solutions for these problems is beyond the scope of this paper, we will sketch a proof using a scheme
similar to that of the deterministic case. Notice that there exists a unique solution associated to Dx (t) = 0
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with α (x) = c since α are linearly independent (at least over Ker {D}). Consider a Green’s matrix of
functions G (t, s) , such that any g ∈ C0

(
[0, T ] ;Rd

)
with Dg integrable can be expressed as follows:

g (t) = P0 (g) (t) +

∫ T

0

G (t, s)Dg (s) ds,

where P0 (g) is the unique element in Ker {D} which agrees with α (g) . Furthermore,

Dg (t) = DtP0 (g) (t) +

∫ T

0

DtG (t, s) g (s) ds.

Let H1,2 =
{
h ∈ L2

(
[0, T ]×Ω;Rd

)
: ∃o ∈

(
D
1,2
)d
,Do = h

}
. We will express the stochastic BVP (1)

and (2) in a more convenient way, using the following property: Define Dx = u, thus u = G [x] and
G−1 [u] = x, reciprocally, with

G [x] (t) = P0 (x) (t) +

∫ T

0

G (t, s)x (s) ds,

G−1 [u] (t) = Dt {P0 (x) (t)}+

∫ T

0

DtG (t, s)x (s) ds.

Therefore, defining U = G (X) , and the nonlinear operator

T [U ] (t) := b
(
t,G−1 [U ] (t)

)
+ σ

(
t,G−1 [U ] (t)

) ·

W t,

we can express the stochastic BVP as U = T [U ] . Then, we can guarantee the existence of solution in BVP
by proving the existence of a fixed point U0 for T, for which it suffices that T is a continuous retraction in
a space isometric to H1,2, and a pathwise unique solution U0 exists. Also, X0 = G−1

(
U0

)
is the almost

sure (a.s.) unique solution of BVP, with U0t = G
(
U0

)
(t) the Malliavin derivative of X0

t . Since

E
[
‖T [U ]‖2L2[0,T ]

]
= E

[∫ T

0

∥∥∥∥b
(
t,G−1 [U ] (t)

)
+ σ

(
t,G−1 [U ] (t)

) ·
W t

∥∥∥∥
2

dt

]

=

∫ T

0

E
[∥∥b

(
t,G−1 [U ] (t)

)∥∥2 +
∥∥σ

(
t,G−1 [U ] (t)

)∥∥2
]
dt,

T is contractive if ‖b (t, x)‖ ≤ k ‖x‖ , ‖σ (t, x)‖ ≤ c ‖x‖ , for all t, x and (k + c)
∥∥G−1

∥∥ < 1. Note that the
solution X0 satisfies

X0
t = X0

0 +

∫ t

0

b
(
s,X0

s

)
ds+

∫ t

0

σ
(
s,X0

s

)
dWs, (3)

for some initial condition X0
0 . Given X

0, we can define a sequence {Xn
t } as follows

Xn+1
t = X0

0 +

∫ t

0

b (s,Xn
s ) ds+

∫ t

0

σ (s,Xn
s ) dWs, (4)

where E
[∫ T

0

∣∣Xn
t −X

0
t

∣∣2 dt
]
→ 0 under appropriate Lipschitz conditions on b and σ. Hence, using (4), the

existence of a unique continuous version of X0 on [0, T ] can be proved using arguments similar to the case
of ordinary stochastic differential equations.
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Adaptativeness. The solutions of stochastic BVPs are anticipative in nature due to the boundary
condition. But given an appropriate (anticipating) initial condition, the dynamics of the process is driven
by an ordinary stochastic differential equation. This is the logic underlying shooting numerical methods.
These methods are widely used to solve deterministic BVP (see Ascher et al (1995) for a review), and have
been recently extended by Ferrante et al. (1996) to solve Stratonovich stochastic BVPs. A shooting method
is a successive substitution method based on the idea of guessing the initial condition until its associate
solution satisfies the boundary condition.
We use the shooting argument to define a conditional adaptativeness for solutions of BVPs. LetA0 be the

completion of the smallest σ-algebra such that
{
α
(
X0

)}
is measurable, and consider the filtration {Ft}t>0

with Ft = A0∩At. Note that conditioning on
{
α
(
X0

)
= c

}
, the unique solution X0

t satisfies (3), where X
0
0

is A0 measurable, and as a consequence X0 is adapted respect to {Ft}t>0 . Therefore, conditioning on the
boundary condition the expression (1) can be considered as an Itô integral or, alternatively, a generalized
process (see Holden et al., 1996). Otherwise, Equation (1) should be interpreted in terms of Skorohod
stochastic integrals.

3 An algorithm to solve stochastic BVPs

The numerical resolution of stochastic BVPs is the aim of this section. We propose a wavelet projection-
based algorithm for solving stochastic differential equations with boundary conditions. Its main idea consists
of using a wavelet-collocation method to solve a finite-difference approximation to the stochastic BVP. With
this end in view, we first introduce some concepts of wavelet approximation.
Within the last decades, wavelet multiresolution methods have proved to be a flexible method for

approximating relatively irregular functions with a parsimonious number of parameters. The first wavelet
basis can be at least traced to the Haar (1910) work, but the theoretical foundations of wavelets have been
established by physicians and mathematicians from the early 30’s to the 80’s. The interest on wavelets has
increased since Mallat (1989) and Meyer (1992) introduced the use of multiresolution as a framework to
study wavelets expansions. A historical perspective can be found in Daubechies (1992) and Meyer (1993).
Excellent monographs in wavelets are Chui (1992), Daubechies (1992), Meyer (1992, 1993) and Walnut
(2001).
Given the Hilbert space L2 (R) , let consider a sequence of closed subspaces {Vn}n∈Z such that: i)

Vn ⊂ Vn+1, ∀n ∈ Z, ii)
⋂

n∈Z Vn = {0} , and iii)
⋃

n∈Z Vn is dense in L2 (R) . In particular we say that

{Vn}n∈Z is a multiresolution if each subspace Vn is the span of an orthonormal basis
{
φn,k

}
k∈Z

, with

φn,k (t) = 2n/2φ (2nt− k) and φ ∈ L2 (R), is known as the father wavelet. This concept was introduced by
Mallat (1989).
As

{
φn,k

}
k∈Z

are orthonormal, if ΠVn (x) denotes the orthogonal projection of an arbitrary x ∈ L2 (R)
into Vn, then

x (t) = lim
n→∞

ΠVn (x) (t) = lim
n→∞

∑

k∈Z

〈
x, φn,k

〉
L2

φn,k (t) , (5)

in the sense of L2. Whenever φ has compact support, for each t ∈ R the summation in (5) contains a finite
number of non null terms. Otherwise it should be truncated for practical applications. In practice, one of
the most popular wavelets systems is the compact wavelet proposed by Daubechies, for a detailed exposition
see Daubechies (1992). Let W r

2 (R) be the Sobolev space of functions (a.s. identical) with L2-integrable
weak derivatives up to order r. If x ∈ W r

2 (R), under appropriate conditions, wavelets derivatives can also
approximate the weak derivatives of x. The multiresolution ideas can be specialized to the space L2 ([0, T ])
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taking a multiresolution {Vn}n≥0 . In this context, it can be proved that ΠVn (x) → x uniformly for all
x ∈ C ([0, T ]), see e.g. Daubechies (1994).
The first basic step of our algorithm is to consider a real wavelet multiresolution {Vn}

∞
n=1 in L2 ([0, T ]) .

To simplify notation throughout the remainder of the paper, given a vector of d functions x (t) = (x1 (t) , ..., xd (t))
′ ,

we will denote the wavelet approximation of any x ∈ L2 (R)
d by

ΠVn (x) (t) =
∑

k∈Z

θn,k φn,k (t) ,

where θn,k ∈ Rd is a vector of coefficients.
The next step is to consider a finite-difference approximation to the stochastic differential equation. For

the sake of simplicity, we first consider the problem of solving an autonomous stochastic system dXt =
b (Xt) dt + σ (Xt) dWt, with α (X) = c. In particular, we consider the Milstein (1974) finite-difference
approach,

Xn (ti,n)−Xn (ti−1,n) = hnb (Xn (ti−1,n)) + σ (Xn (ti−1,n))
(
Wti,n −Wti−1,n

)

+σ (Xn (ti−1,n))
∂σ

∂x
(Xn (ti−1,n))

[∫ ti,n

ti−1,n

∫ s1

ti−1,n

dWs1dWs2

]
,

Xn (0) = c.

The double stochastic integral can be readily computed, e.g. in the scalar case
∫ ti,n

ti−1,n

∫ s1

ti−1,n

dWs1dWs2 =
1

2

((
Wti,n −Wti−1,n

)2
− hn

)
.

For the multivariate case see Kloeden and Platen (1999, Ch. 5, Sec. 8).
Thus, the third and final step of the algorithm consists of applying the wavelet-collocation method to

the Milstein approximation and solving the following system of equations in θn,k ∈ R,

∑
k∈Z θn,k

(
φn,k (ti,n)− φn,k (ti−1,n)

)
=

hnb (Xn (ti−1,n)) + σ
(∑

k∈Z θn,k φn,k (ti−1,n)
) (
Wti,n −Wti−1,n

)

+1
2σ

(∑
k∈Z θn,k φn,k (ti−1,n)

)
∂σ
∂x

(∑
k∈Z θn,k φn,k (ti−1,n)

) ((
Wti,n −Wti−1,n

)2
− hn

)
,∑

k∈Z θn,k α
(
φn,k

)
= c,

(6)

where ti,n = 2−ni ∈ [0, T ] with i ∈ Z, and hn = 2−n. The solution coefficients
{
θ∗k,n

}
determine Xn ∈ Vn

as
Xθ∗,n (t) =

∑

k∈Zd

θ∗n,k φn,k (t) .

Often, system (6) has to be solved by numerical methods. There are numerous methods for solving
nonlinear equations (see e.g. Rheinboldt, 1998). However, we consider Newton’s method as we are faced
with the problem of solving small-size systems of smooth non linear equations.
Solving BVPs with σ (t) = σ for all t is particularly easy. In this case, Milstein’s equations are reduced

to the Euler-Maruyama approximation (see Maruyama, 1955) and the system of equations in θn,k ∈ R to
be solved is,

Xn (ti,n)−Xn (ti−1,n) = (ti,n − ti−1,n) b (Xn (ti−1,n)) +
(
Wti,n −Wti−1,n

)
,

α (Xn) = c,
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where ti,n = 2−ni ∈ [0, T ] with i ∈ Z, and hn = 2−n.
Also, this method can be applied to the non autonomous stochastic systems, dXt = b (t,Xt) dt +

σ (t,Xt) dWt, with α (X) = c. However, instead of the Milstein equation, we should consider an expansion
for non homogeneous stochastic differential equations, see e.g. Kloeden and Platen (1999, Chap 5, Sect. 5).
In order to illustrate the accuracy of the method, we compute several examples of stochastic BVPs

with analytical solution. All the examples consider the compactly supported wavelets of Daubechies, with
parameter N. The algorithm has been implemented and the tests have been carried out on MATLAB 6.5
on an Intel Centrino Pentium M 1.6 GHz with machine precision 10−16. First we consider a very simple
stochastic BVP to show how to set up parameters to compute its approximate solution.

• Example I. Consider the problem

dXt = dWt, t ∈ [0, 1],

X1/2 +X1 = 0.

This problem has a solution of the form Xt = −1
2

(
W1/2 +W1

)
+Wt. We compute the numerical

approximation of its solution for a sample path of {Wt} using Daubechies wavelets with N = 3 and
the step length h = 2−2 (i.e. n = 2 and the number of dyadic points used is 9). In order to illustrate
the accuracy of the numerical solution, we perform a Monte Carlo with N = 400 realizations. The
mean of the maximum error of the approximation ‖X∗ (ti,n)−Xθ∗,n (ti,n)‖∞ is 2.7717 × 10−15 and
its standard deviation 1.5896× 10−15.

In case of being interested in a higher accuracy, we can consider a larger number n. For n = 6, Figure 1
shows the values of the actual solution and its approximation over the dyadic points ti = 2−6i ∈ [0, 2]
with i ∈ Z.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 ≤ x ≤ 2

 

Solution
Euler Aprox.

Figure 1. Numerical and exact solution of Example I with N = 3 and n = 6.

Next example is intended to demonstrate that the algorithm also behaves well in more complicated prob-
lems. However, higher number of dyadic points (in other words, higher parameter n) should be considered
to get accuracy.
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• Example II. Consider the problem

dXt = dWt, t ∈ [0, 1],∫ 1

0

Xt = 0.

The solution of this problem has the general form Xt = −
∫ 1
0 Wtdt+Wt.

For a given sample path of {Wt} , using Daubechies wavelets with N = 3, Figure 2 shows the exact
and the computed approximation for n = 2, 4, 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 ≤ x ≤ 2

Solution
Euler Aprox.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 ≤ x ≤ 2

Solution
Euler Aprox.

For n = 2 For n = 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 ≤ x ≤ 2

Solution
Euler Aprox.

For n = 6
Figure 2. For n = 2, 4, 6, numerical and exact solutions of Example II with N = 3.
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Table 1 reports the approximation errors to the solution and the computational cost for solving the
stochastic BVP for n = 2, 4, 6. In this case, the approximation solution with n = 6 gives the smallest
residual ‖X∗ (ti,n)−Xθ∗,n (ti,n)‖∞ as illustrated in Figure 2.

‖X∗ (ti,n)−Xθ∗,n (ti,n)‖∞ CPU (seconds)
n = 2 0.2058 0.02
n = 4 0.0997 0.03
n = 6 0.0075 4.66

Table1: Approximation errors and running times for computing Example 2 with n = 2, 5, 6.

Similarly to stochastic BVPs, most stochastic differential equations arising in real-world applications
cannot be solved exactly. Numerical methods to get accurate solutions are Euler-Maruyama and Milstein
schemes, among others. A review of the literature can be found, e.g. Kloeden and Platen, 1991. The
proposed algorithm can also be used to solve ordinary stochastic differential equations as the following
example illustrates.

• Example III. Consider the problem dXt = bXtdt+ σXtdWt for t ∈ [0, 1], with X0 = ξ. The solution
of this problem has the general form

Xt = ξ exp

((
b−

σ2

2

)
t+ σWt

)
.

Assume that b = 2, σ = 1 and ξ = 1. We compute the numerical of this problem using Daubechies
wavelets with N = 3. Figures 3 shows that the approximation error is satisfactory for n = 6, although
there is room for improvement in the right hand side of the time interval.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

0 ≤ x ≤ 1

 

Solution
Numerical Aprox.

Figure 3. Numerical and exact solutions of Example III with N = 3 and n = 6.
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Although we have focused on solving stochastic BVPs with linear boundary conditions, we can also apply
this method to problems in which the boundary conditions are given by non linear continuous operators.
When α is a non linear continuous operator, the proposed method can be applied replacing the last equation
in (6) by α

(∑
k∈Z θn,k φn,k

)
= c. However, the convergence theory for this type of problem is beyond the

scope of this paper.

3.1 Convergence analysis

In this section, we study the convergence properties of the proposed method. Proofs are placed in Appendix
A. Assume

A.1. Let {Vn} be a multiresolution in L2 (R) , with compactly supported father wavelet φ and assume for
all x ∈W r

2 (R) , with 1 ≤ r ≤ q, q ≥ 1, and all integer vector ν, 0 ≤ ‖ν‖1 ≤ r − 1, it is satisfied

‖Dνx−DνΠVn (x)‖L2
= O

(
2−(r−‖ν‖1)n

)
,

Whenever x ∈ Cr (R) with compact support the same rates are satisfied replacing the L2 norm by
the supremum norm. In spaces L2 ([a, b]) , an analogous behavior is assumed.

There are several sufficient conditions for this result that can be found in the literature, often based on
the regularity of order q assumption. The father wavelet φ is said to be regular of order q ∈ N, if φ has
a version q times continuously differentiable and for 0 ≤ ‖ν‖1 ≤ q, and any positive integer p ∈ N, there

exists a constant Cp > 0 such that |Dνφ (t)| < (1 + ‖t‖)−p
Cp, ∀t ∈ R. See Meyer (1992) for further details.

A.2. Let X0 (t) be a solution of the stochastic BVP and define the curve C =
{(
t,X0 (t)′

)′
: t ∈ [0, T ]

}
.

Also, assume that, b, σ ∈ C2 (N ) where N ⊂ RR+1 is an ε-neighborhood of C in the L∞ norm, and
for some η > 0, it is satisfied

Pr

{
inf

t∈[0,T ]

∣∣∣∣det
(
I −Dxb

(
t,X0 (t)

)
−Dxσ

(
t,X0 (t)

) ·
W t

)∣∣∣∣ > η

}
= 1.

Notice that the last condition is satisfied whenever det (I −Dxb (t, x)−Dxσ (t, x) g (t)) is non null for all
(t, x) and for all g ∈ L1 [0, T ] . For example, when σ (t) does not depend onX it suffices det (I −Dxb (t, x)) �=
0 for all (t, x) . In particular, for linear stochastic BVP, b (t, x) = bx and σ (t, x) = σ, it suffices that
det (I − b) �= 0.
We start with an auxiliary result on the rate of approximation of the wavelet-Galerkin method. Given

the multiresolution {Vn}, let xn ∈ Vn be the wavelet-Galerkin solution to the stochastic BVP; i.e. xn

satisfies

ΠVn

{
Dxn − b (t, xn)− σ (t, xn)

·

W t

}
= 0, α (xn) = c.

Theorem 1 Let consider the problem BVP with solution X0 (t) , and a multiresolution sequence {Vn} in
L2 ([0, T ]) . Assume that A.1., A.2. are satisfied, then there exist δ > 0 and an integer M such that X0 is
unique a.s. in B

(
X0, δ

)
=
{
X :

∥∥X −X0
∥∥
∞
≤ δ

}
, and the projected system

ΠVn

{
DXn − b (t,Xn)− σ (t,Xn)

·
W t

}
= 0,
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has an a.s. unique solution Xn ∈ Vn ∩B
(
X0, δ

)
. Furthermore, with probability one,

max
{∥∥Xn −X

0
∥∥
∞
,
∥∥DXn −DX

0
∥∥
∞

}
= O

(
2−n

)
.

In order to prove the convergence of the wavelet-collocation method we will use an interpolation result,

Theorem 2 Consider a multiresolution {Vn} in L2 (R) satisfying A.1. For each x ∈ L2 (R) with an almost
everywhere (a.e.) continuous version with compact support, we define ΓVn (x) as any function gn ∈ Vn

such that gn (tn,i) = x (tn,i) , for all {tn,i = 2−ni}i∈Z. Then, there exists a unique element in ΓVn (x).
Furthermore, assuming

1. φ is regular of order q ≥ 1, and

2. the Poisson summa
∑

k∈ZΦ(ω + 2πk) > 0, for almost every ω ∈ [0, 2π] , being Φ(ω) =
∫
R
φ (t) eitωdt

the Fourier transformed of φ;

for all x ∈W q
2 (R) with compact support, there exist K > 0 and n0 such that, ∀n > n0,

‖ΓVn (x)− x‖L2
≤ K ‖ΠVn (x)− x‖W q

2

.

Given the multiresolution {Vn}, let xn ∈ Vn denote the wavelet-collocation solution to the stochastic
BVP, and therefore

ΓVn

{
Dxn − b (t, xn)− σ (t, xn)

·

W t

}
= 0, α (xn) = c. (7)

The following result is a consequence of Theorems 2 and 1.

Corollary 3 Under the assumptions of Theorems 1 and 2, the wavelet-collocation method satisfies the
approximation property at rate O (2−n) .

Therefore, it remains to prove the consistence of the proposed method based on the Milstein scheme:

X̃n (ti,n)− X̃n (ti−1,n) = hnb
(
X̃n (ti−1,n)

)
+ σ

(
X̃n (ti−1,n)

)(
Wti,n −Wti−1,n

)

+σ
(
X̃n (ti−1,n)

) ∂σ
∂x

(
X̃n (ti−1,n)

) 1
2

((
Wti,n −Wti−1,n

)2
− hn

)
, (8)

for X̃n ∈ Vn.

Proposition 4 Under the assumptions of Theorems 1 and 2. Let x̃n ∈ Vn be the approximation gener-
ated by the proposed method and xn the solution of the wavelet-collocation method. Then, it is satisfied
‖x̃n − xn‖∞ = Op (2−n) .

4 Boundary-linked financial markets

Consider a monetary bond and d boundary-linked assets. Let assume that the bond has a continuous
positive price per share X0 (t) solving the stochastic differential equation

dX0 (t) = r (t) X0 (t) dt, X0 (0) = 1, (9)
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where r (t) is a progressively measurable process satisfying
∫ T

0
|r (t)| dt <∞. ThereforeX0 (t) = exp

{∫ t

0
r (s) ds

}

for t ∈ [0, T ] . Let Xd (t) denote the price per share of each d-th boundary-linked asset and X (t) =
(X1 (t) , ...,Xd (t))

′
. Assume that the initial values of the boundary-linked assets X1 (0) , ..., Xd (0) are

positive constants almost surely. For each t ∈ [0, T ], suppose also that these prices are governed by

dX (t) = b (t,X (t)) dt+ σ (t) dW (t) (10)

and the boundary conditions β (X) = ρ, where β (X) is a set of d linear continuous real functionals and
ρ ∈ R

d. A particularly relevant example is the linear boundary value stochastic differential equations
defined as,

dX (t) = b (t)X (t) dt+ σ (t) dW (t) (11)

with β (X) = ρ. Following the arguments given in Alabert and Ferrante (2002), this problem possesses
a unique solution in C1 ([0, T ]) if and only if det {β (xs)} �= 0 for some s ∈ [0, T ] (equivalently for all
s ∈ [0, T ]), where xs (t) is the solution of the homogeneous system dx (t) = x (t) b (t) dt with x (s) = Id;
(i.e., problem dx (t) = x (t) b (t) dt with β (x) = 0 has only the trivial solution). In this case, we can express

X (t) = J−1 (t) ρ+

∫ T

0

G (t, x)σ (s) dW (s) ,

with Green function

G (t, s) = J−1 (t)

[∫ s

0

J−1 (u) ν (du)− 1[0,s] (t) Id

]
J (s) ,

being 1[0,s] (t) the characteristic function of the set [0, s] .

In the linear context, we define a portfolio as a progressively measurable process (θ0 (t) , θ1 (t) , ...θd (t))
′

that represents the number of units of the assets for each t ∈ [0, T ] . The value of a portfolio is given by
Vθ (t) = θ0 (t)X0 (t) + θ0 (t)

′X (t) . The portfolio θ0 (t) , θ (t) = (θ1 (t) , ...θd (t))
′ is called self-financing

(respect to X0 (t) ,X (t)) if

∫ T

0

(
r (s) θ0 (s)

′
X0 (s) + θ (s)

′
b (s) +

d∑

k=1

∣∣θ (s)′ σk (s)
∣∣2
)
ds <∞,

dVθ (t) = θ0 (t) dX0 (t) + θ (t)′ dX (t) .

Then, Vθ (t) = Vθ (0)+
∫ t

0
θ0 (s) dX0 (s)+

∫ t

0
θ (s)′ dX (s). Notice that given an appropriate θ (t)′, there exists

θ0 (t) such that
(
θ0 (t) , θ (t)

′)
is self-financing. A self-financing portfolio

(
θ0 (t) , θ (t)

′)′
is called admissible

if its corresponding process Vθ (t) is a.e. lower bounded; i.e. ∃Kθ > 0 such that Vθ (t) ≥ −Kθ a.e. for
all t ∈ [0, T ] . This is a natural constraint in real life as debts cannot infinitely increase. An admissible
portfolio is called an arbitrage in the considered market, if the associated value process satisfies Vθ (0) and
Vθ (T ) ≥ 0 a.e. with P (Vθ (T ) > 0) > 0.
In practice, the value of a portfolio is often discounted at the non-risk rate. This means that we can

normalize prices by defining X̃0 (t) = 1 and X̃k (t) = X0 (t)
−1Xk (t) . Given a self-financing portfolio,

the discounted values are Ṽθ (t) = L0 (t)
−1 Vθ (t) , and applying the Itô formula dṼθ (t) = θ (t)′ dL̃ (t).

Therefore, the self-financing portfolio property is not affected by the discount normalization. Furthermore,
if
(
θ0 (t) , θ (t)

′) is admissible for (L0, L (t)), then
(
θ0 (t) , θ (t)

′) is also admissible for the normalized market(
1, L̃ (t)

)
, as r (t) is bounded.
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4.1 Valuation of boundary-linked derivatives

In this section we consider pricing of boundary-linked derivatives. In this context, standard Black-Scholes
techniques cannot help to value derivatives of boundary-linked assets as these processes are not Markovian.
However, an alternative approach based on the generalized Clark-Ocone formula can be considered. We
illustrate this approach considering an European call option of boundary-linked assets.
Let XT be the values of the d boundary-linked assets at the maturity date of the contract. By the

Clark-Ocone formula,

XT (ω) = E [X] +

∫ T

0

E [DtXT (ω) |Ft ] dWt,

with DtXT (ω) is the Malliavin derivative of XT (ω) . The Clark-Ocone formula can be extended to study
FT random variables G (ω) that are stochastic integrals respect to processes:

W̃t (ω) =

∫ T

0

α (s, ω) ds+Wt (ω) ,

where α (s, ω) is an Ft adapted stochastic process satisfying some appropriate regularity conditions. By the

Girsanov’s theorem, W̃t is a Wiener process under certain probability measure Q on FT , where dQ (ω) =
ZT (ω) dP (ω) , with

Zt (ω) = exp

{
−

∫ t

0

α (s, ω) ds−

∫ t

0

α (s, ω)
2
ds

}
.

The generalization of the Clark-Ocone formula ensures that if G (ω) is a regular stochastic integral respect

to W̃t, then

G (ω) = EQ [G] +

∫ T

0

ϕQ (t, ω) dW̃t,

where ϕQ (t, ω) = EQ

[
DtG−G

∫ T

0
Dtα (s, ω) dW̃s |Ft

]
. The proof and other technical details can be found

in Øksendal (1997).
This result can be applied to the valuation of derivatives in linear boundary-linked markets. As the

value of a portfolio is given by Vθ (t) = θ0 (t)X0 (t) + θ (t)′X (t), we have,

θ0 (t) = X0 (t)
−1 (

Vθ (t)− θ (t)
′
X (t)

)
. (12)

If the portfolio is self-financing,

dVθ (t) = θ0 (t) dX0 (t) + θ (t)
′
dX (t) ,

using (9), (11) and (12), we obtain that

dVθ (t) =
(
r (t)Vθ (t) + (b (t)− r (t)) θ (t)′X (t)

)
dt+ θ (t)

′
σ (t) dW (t) .

Assuming that the solution of the boundary value problem is Ft adapted, our aim is to find a portfolio
θ (t) leading to the lower bounded FT measurable random variable G (ω) , such that G (ω) = Vθ (T ) and
the initial value is Vθ (0) .

If Vθ (t) is Ft adapted, taking α (t) = (b (t)− r (t))σ (t)−1 and W̃t =
∫ T

0
α (s) ds+Wt, we can express

dVθ (t) = r (t)Vθ (t) dt+ θ (t)′ σ (t) dW̃ (t) .
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Therefore, the discounted portfolio Ṽθ (t) = X0 (t)
−1 Vθ (t) satisfies

dṼθ (t) = X0 (t)
−1 θ (t)′ σ (t) dW̃ (t) .

By the generalized Clark-Ocone theorem, the discounted final value G := Ṽθ (T ) = X0 (T )
−1
Vθ (T ) verifies

G = EQ [G] +

∫ T

0

EQ

[
DtG−G

∫ T

0

Dt α (s) dW̃s |Ft

]
dW̃t.

As a consequence, Ṽθ (0) = EQ [G] and the required portfolio is,

θ (s) = X0 (t)σ (t)
−1EQ

[
DtG−G

∫ T

0

Dt α (s) dW̃s |Ft

]
.

This expression can be applied to the analysis of derivative prices in boundary-linked markets in an analo-
gous way to the Black-Scholes formula.
For example, consider an European call option which gives the owner the right to buy the stock with value

XT at exercise price p. Then, G = (XT − p)
+ represents the payoff at time T . Clearly, G = fp (XT ) where

fp (x) = (x− p)+ . Note that fp (·) is continuous but not differentiable at x = p andDtG cannot be obtained
applying the chain rule. However, fp ∈ C ([0, T ]) can be approximated by a sequence {fn} ⊂ C1 ([0, T ])
with fn (x) = fp (x) for |x− p| ≥ 1/n, and 0 ≤ fn ≤ 1. Taking Gn = fn (XT ) we have

DtG = lim
n→∞

DtGn = I[p,∞) (XT ) ·DtXT = I[p,∞) (XT ) ·XT · σ (t) .

Hence,

θ (t) = X0 (t)σ (t)
−1EQ

[
I[p,∞) (XT ) XT σ (t)− fp (XT )

∫ T

0

Dt α (s) dW̃s |Ft

]
.

In particular, if dX (t) = bX (t) dt+ σdW (t) and r (t) = r > 0, then Dt α = Dt (b− r)σ−1 = 0 a.e., and

θ (t) = X0 (t)EQ

[
I[p,∞) (XT ) XT |Ft

]
. (13)

When XT follows a diffusion process, (13) leads to the classical Black-Scholes formula applying Markov-
ian arguments. However, in case of boundary-linked assets markets, as these assets follow a boundary value
stochastic differential equation, the expectation in (13) cannot be computed using Markovian arguments
and numerical resolution methods are required.
In order to compute the portfolio {θt}, associated to a given a realization of the underlying processes

{(Xt,Wt)}, we propose the use of a Monte Carlo simulation-based estimation of (13) using independently
generated realizations of the process {Xt} conditioned to the information set Ft, which is computed using
the wavelet-collocation approach presented in Section 3. Three steps are involved. For each dyadic point
ti,n = 2−ni ∈ [0, T ] with i ∈ Z, we simulate M independent realizations of the Brownian motion, denoted

by W j
ti,n for all j = 1, ...M, such that W j

t = Wt, for any dyadic point t ∈ [0, ti,n] . The second step of
the algorithm consists of solving, for each j = 1, ...M, the following system of boundary value stochastic
differential equations,

dXj
t = bXj

t dt+ σdW j
t ,

β
(
Xj

)
= ρ,
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with the additional constraints Xj
t = Xt, for any dyadic point t ∈ [0, ti,n] . In particular, we compute the

solution of these problems
{
Xj

t

}M

j=1
by means of the wavelet-collocation algorithm presented in Section 3.

In the third and final step, we compute Portfolio (13) at each ti,n ∈ [0, T ] as

θM (ti,n) = exp (rti,n)
1

M

M∑

j=1

I[p,∞)

(
Xj

T

)
Xj

T . (14)

For example, Figure 4 shows the numerical simulations of Xt conditioned to the available information
at ti,n = 0.25, when Xt follows the boundary-valued stochastic differential equation given in Example I and
M = 50. Figure 5 shows the path of portfolio (13) computed as (14) with r = 0.2 and p = 0.25.
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Figure 4. Monte Carlo simulations of Xt |Ft=0.25 .
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Figure 5. Path of the portfolio (13), with r = 0.2 and p = 0.25.

5 Appendix A: Proofs

A) Proof of Theorem 1

We will use the following Theorem,

Theorem 5 Let B be a Banach space, {Vn} ⊂ B a sequence of increasing linear subspaces, and ΠVn

a sequence of continuous projections converging pointwise to the identity operator on B. Let T define a
(non linear) operator in B. If (1− T )u = 0 has a solution u0, T is continuously Frechet differentiable at
u0 and

(
1− T ′u0

)
u = 0 has only the trivial solution in B, then u0 is unique in some sphere B

(
u0, δ

)
={

u ∈ B :
∥∥u− u0

∥∥ ≤ δ
}
for some δ > 0, and there exists an integer M such that for all n > M the equation

ΠVn {(1− T )u} = 0 has a unique solution un ∈ Vn ∩B
(
u0, δ

)
. Moreover, ∃K > 0 such that

∥∥un − u
0
∥∥ ≤ K

∥∥ΠVnu
0 − u0

∥∥ .

Proof. See e.g. Vainikko (1967, Th. 5).
Using the properties of the Green function and the continuity of b, the functional T is continuous relative

to the uniform norm on a neighborhood of u0 = G
(
x0
)
. Since for each realization of the white noise process

(1− T )u = 0 can be seen as an equation in C0
(
[0, T ] ,Rd

)
, we will consider the equation ΠVn (I − T )un = 0

in Vn.
First, we check the continuously Frechet differentiability of T. For any u ∈ B

(
u0, δ

)
define h = u− u0.

Notice that N contains all line segments in RR+1 such as
{
u0 + θh : θ ∈ [0, 1]

}
, since

x (t)− x0 (t) =

∫ T

0

DtG (t, s)h (s) ds,
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with
∥∥x− x0

∥∥
L∞

< ε whenever δ is small enough, using that

χ := ess sup
t∈[0,T ]

∫ T

0

|DtG (t, s)| ds <∞.

Recall that u0 = G
(
x0
)
. We will see that the Frechet derivative T at u0 (t) = Dx0 (t) respect to the

direction h =
(
u− u0

)
is given by

T ′u0 (h) (t) =

(
Dub

(
t, u0

)
+Duσ

(
t, u0

) ·
W t

)∫ T

0

DtG (t, s)h (s) ds,

and the error term is given by

ǫu0 (u) (t) = |‖h‖|2
∫ T

0

(1− θ) b′′
(
t, u0 (t) + θh (t)

)
dt

+ |‖h‖|2
∫ T

0

(1− θ)σ′′
(
t, u0 (t) + θh (t)

)
dW (t) ,

being b′′, σ′′ the second directional derivatives of b (t, ·) , σ (t, ·) respectively, in the direction h/ |‖h‖| ,

and |‖h‖|2 =
∑R

r=1 ‖hr‖
2 . Clearly ‖ǫu0 (u)‖L∞

≤ c1
∥∥u− u0

∥∥2
L∞

, where c1 is the maximum between χ

and sup {b′′ (t, x) + σ′′ (t, x)WT} over all directions on adh (N ), which is finite with probability one as
Pr (WT =∞) = 0 for finite T.
Notice also that T ′u0 (h) (t) can be expressed in the original domain as the operator

T ′x0 (x) =

(
Dxb

(
t, x0 (t)

)
+Dxσ

(
t, x0 (t)

) ·
W t

)
Dx.

Since det

{(
I −Dxb

(
t, x0 (t)

)
−Dxσ

(
t, x0 (t)

) ·
W t

)}
�= 0, almost surely, for all t ∈ [0, T ] , there exists a

unique trivial solution for
(
I −Dxb

(
t, x0 (t)

)
−Dxσ

(
t, x0 (t)

) ·
W t

)
Dx = 0,

with α (x) = c. This implies the same result for
(
I − T ′u0

)
u = 0, hence assumptions of Theorem 5 are

satisfied.
Thus, there exists an integer M > 0 such that, for all n > M a solution un ∈ Vn exists and is unique in

the same sphere. Moreover, there exists a constant c > 0 such that un = Dxn, u0 = Dx0 and
∥∥un − u

0
∥∥

L∞

≤ c
∥∥ΠVnu

0 − u0
∥∥

L∞

.

By the Banach-Steinhaus theorem, for all u ∈ Vn,
∥∥ΠVnu

0 − u0
∥∥

L∞

=
∥∥ΠVn

(
u0 − u

)
−
(
u− u0

)∥∥
L∞

=
∥∥(1−ΠVn)

(
u0 − u

)∥∥
L∞

≤ c′ inf
{∥∥u0 − u

∥∥
L∞

: u ∈ Vn

}
= O

(
2−n

)
,

where the rate O (2−n) follows from Assumption A.1.
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The result follows noticing that
∥∥Dxn −Dx0

∥∥
L∞

=
∥∥un − u0

∥∥
L∞

, and

∥∥xn − x
0
∥∥

L∞

≤
∥∥G−1

∥∥
L∞

∥∥un − u
0
∥∥

L∞

using that xn − x0 = G−1
(
un − u0

)
.

B) Proof of Theorem 2

The problem of interpolation in Vn at points tn,i = 2−ni can be reduced to solve the problem g0 (i) =
x (tn,i) in g0 ∈ V0 and then take gn (t) = 2n/2g0 (2nt). Therefore, assume that g0 (t) =

∑
k∈Z θkφ (t− k) solves

this problem, i.e. ∑

k∈Z

θkφ (i− k) = x (tn,i) .

Clearly, a unique solution exists since {φ (t− k)}k∈Z are linearly independent functions. To simplify the
notation, we denote xi = x (tn,i) , hence

∑
k∈Z θkφ (i− k) = xi. This is a convolution equation that we will

solve in the spectral domain. Let define the discrete Fourier transform of φ by

Φ̃ (ω) =
∑

k∈Z

φ (k) e−ikω.

The Poisson formula states that Φ̃ (ω) =
∑

k∈ZΦ(ω + 2πk) . If φ is regular of at least order 1, this series

converges uniformly on compact sets. Furthermore, as Φ̃ (ω) > 0 a.e. for ω ∈ [0, 2π], the inverse has a

Fourier expansion
(
1/Φ̃ (ω)

)
=
∑

k∈Z βke
−ikω where b :=

∑
k∈Z |βk| < ∞, by the Wiener-Lévy theorem.

Thus, we can explicitly evaluate the coefficients {θk} as,

θk =
∑

k∈Z

βk−ixi.

Obviously,

∑

k∈Z

|θk|
2
=
∑

k∈Z

∣∣∣∣∣
∑

l∈Z

βl−ixi

∣∣∣∣∣

2

≤ b2
∑

k∈Z

|xi|
2
= b2

∑

i∈Z

|x (tn,i)|
2
,

with sup
n>1

∑
i∈Z |x (tn,i)|

2
<∞ as x is continuous with compact support.

Next, we will prove that
‖ΓVn (x)‖L2

≤ b ‖x‖n ,

where ‖x‖n =
(
2−n

∑
i∈Z |x (tn,i)|

2
)1/2

.

Notice that ‖gn‖L2
= 2−n ‖g0‖L2

= 2−n ‖F (g0)‖L2
, where F (g0) (ω) is the continuous Fourier trans-

formed of g0. We will prove that ‖F (g0)‖
2
L2

=
∑

k∈Z |θk|
2 and the result follows. Let define c̃ (ω) =
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∑
k∈Z θke

−ikω, then

‖F (g0)‖
2
L2

=

∫

R

∣∣∣∣∣F
(∑

k∈Z

θkφ0,k

)
(ω)

∣∣∣∣∣

2

dω =

∫

R

∣∣∣∣∣Φ(ω)
(∑

k∈Z

θke
−ikω

)∣∣∣∣∣

2

dω

=

∫

R

|Φ(ω) c̃ (ω)|2 dω =
∑

k∈Z

∫ 2(k+1)π

2kπ

|Φ(ω) c̃ (ω)|2 dω

=

∫ 2π

0

|c̃ (ω)|2
∣∣∣∣∣
∑

k∈Z

Φ(ω + 2πk)

∣∣∣∣∣

2

dω

=

∫ 2π

0

|c̃ (ω)|2 dω =
∑

k∈Z

|θk|
2 ,

as {φ (t− k)}k∈Z is orthonormal if and only if
∑

k∈Z |Φ(ω + 2πk)|2 = 1 a.e., for details see Daubechies

(1992). Hence, we have that ‖ΓVn (x)‖
2
L2
≤ b2 ‖x‖2n .

Defining xn = ΠVn (x) , we have that ΓVn (xn) = xn since xn ∈ Vn and has compact support. And as a
consequence,

‖ΓVn (x)− x‖L2
= ‖ΓVn (xn − x) + xn − x‖L2

≤ b2 ‖xn − x‖n + ‖xn − x‖L2

= b2 ‖ΠVn (x)− x‖n + ‖ΠVn (x)− x‖L2
.

Moreover, as for all x ∈W r
2 (R) , with r ≥ 1,

‖x‖2n ≤ C

{∫ 2nπ

−2nπ

|F (x) (ω)|2 dω + 2−nr ‖x‖2W r
2

}

see Thomée (1973, Lemma 4.4.), the result follows applying the same bound to ‖ΠVn (x)− x‖
2
n .

C) Proof of Proposition 4

Let Xn be the solution to (7), and X̃n be the solution to (8), i.e. the proposed algorithm. We will prove

that E

[∥∥∥Xn − X̃n

∥∥∥
2

∞

]
= O

(
h2n
)
and the result follows.

Consider first the autonomous case. By assumption b, σ ∈ C2 (N ) . Define the operators,

L0 = b
∂

∂x
+
1

2

∂2

∂x2
, L1 = σ

∂

∂x
.

By the Wagner and Platen expansion (see Kloden and Platen, 1999, for a review), Xn satisfies the equations

Ai,n (Xn) = Ri,n (Xn) ,
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for all i ∈ Z such that ti,n = 2−ni ∈ [0, T ] , where

Ai,n (Xn) = Xn (ti,n)−Xn (ti−1,n)− hnb (Xn (ti−1,n))− σ (Xn (ti−1,n))
(
Wti,n −Wti−1,n

)

−L1σ (Xn (ti−1,n))

∫ ti,n

ti−1,n

∫ s

ti−1,n

dWzdWs

Ri,n (Xn) =

∫ ti,n

ti−1,n

∫ s

ti−1,n

L0b (Xn (z)) dzds+

∫ ti,n

ti−1,n

∫ s

ti−1,n

L1b (Xn (z)) dWzds

+

∫ ti,n

ti−1,n

∫ s

ti−1,n

L0σ (Xn (z)) dzdWs

+

∫ ti,n

ti−1,n

∫ s

ti−1,n

∫ z

ti−1,n

L0L1σ (Xn (u)) dudWzdWs

+

∫ ti,n

ti−1,n

∫ s

ti−1,n

∫ z

ti−1,n

L1L1σ (Xn (u)) dWudWzdWs

Let An (Xn) = Rn (Xn) denote this system of nonlinear equations, where Let denote this system by

An (Xn) = Rn (Xn) , where E
[
‖Rn (Xn)‖

2
∞

]
= O

(
h2n
)
.

On the other hand, X̃n satisfies system (8); i.e. An

(
X̃n

)
= 0. Then,

Rn (Xn) = An (Xn) = An

(
X̃n

)
+DAϕn

(
Xn − X̃n

)
= DAξn

(
Xn − X̃n

)
,

whereDAϕn is the Frechet derivative at some intermediate point ϕn. Since
∥∥DAϕn (·)

∥∥−1
∞
≥ ε > 0 uniformly,

it is satisfied that

E

[∥∥∥Xn − X̃n

∥∥∥
2

∞

]
= O

(
E
[
‖Rn (Xn)‖

2
∞

])
,

and the result follows. For non autonomous systems the argument is analogous.
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