457 research outputs found

    Quantifying Temporal Decorrelation over Boreal Forest at L- and P-band

    Get PDF
    Temporal decorrelation is probably the most critical factor towards a successful implementation of Pol-InSAR parameter inversion techniques in terms of repeat-pass InSAR scenarios. In this paper the effect and impact of temporal decorrelation at L- and P-band is quantified. For this, data acquired by DLR’s E-SAR system in the frame of the BioSAR campaign (initiated and sponsored by the European Space Agency (ESA)) over boreal forest with variable temporal baseline in 2007 in Sweden are analyzed. For validation lidar data and ground measurements data are used

    Assessment of L-Band SAOCOM InSAR coherence and its comparison with C-Band: A case study over managed forests in Argentina

    Get PDF
    The objective of this work is to analyze the behavior of short temporal baseline interferomet ric coherence in forested areas for L-band spaceborne SAR data. Hence, an exploratory assessment of the impacts of temporal and spatial baselines on coherence, with emphasis on how these effects vary between SAOCOM-1 L-band and Sentinel-1 C-band data is presented. The interferometric coherence is analyzed according to different imaging parameters. In the case of SAOCOM-1, the impacts of the variation of the incidence angle and the ascending and descending orbits over forested areas are also assessed. Finally, short-term 8-day interferometric coherence maps derived from SAOCOM-1 are especially addressed, since this is the first L-band spaceborne mission that allows us to acquire SAR images with such a short temporal span. The analysis is reported over two forest-production areas in Argentina, one of which is part of the most important region in terms of forest plantations at the national level. In the case of SAOCOM, interferometric configurations are characterized by a lack of control on the spatial baseline, so a zero-baseline orbital tube cannot be guaranteed. Nevertheless, this spatial baseline variability is crucial to exploit volume decorrelation for forest monitoring. The results from this exploratory analysis demonstrates that SAOCOM-1 short temporal baseline interferograms, 8 to 16 days, must be considered in order to mitigate temporal decorrelation effects and to be able to experiment with different spatial baseline configurations, in order to allow appropriate forest monitoring.This research was funded by the project INTERACT PID2020-114623RB-C32 funded by the Spanish MCIN /AEI /10.13039 /501100011033.Peer ReviewedPostprint (published version

    Forest height inventory from airborne Synthetic Aperture Radar

    Get PDF
    This study assesses the capabilities of commercially available airborne short wavelength Synthetic Aperture Radar (SAR) Interferometry (JnSAR) for retrieving individual tree and forest stand height. Individual tree and stand heights are of importance to the forest industry for a number of reasons. Tree height is a key variable for calculating the amount of wood volume in a tree stem, as well as for predictions of amount of timber for extraction. Forest stand height is an important indicator of standing biomass for management purposes as well as for the assessment of carbon storage. Height is also an important ecological parameter in its own right, and an important input parameter for line-of-site analysis. Remote sensing offers an alternative to destructive measurements for accurate, rapid and cost effective technique without user subjectivity. SAR provides the potential for direct height measurement over large areas, and can operate independently of lighting or weather conditions, which often restricts the use of other remote sensing techniques.In this study, tree height is estimated by subtracting a ground surface elevation model (a UK Ordnance Survey DEM, OSDE M , or a Digital Terrain Model, DTM, from commercial Intermap Technologies) from a Digital Surface Model, DSM, (from Intermap Technologies) and the results are then compared to field measurements of tree and stand heights. The accuracy of Intermap Technologies ST AR-3i InSAR DEM products are initially compared to national elevation data sets. Over various ground types, it was concluded that, within the test areas, over non-vegetated ground the mean difference between the DTM and OSDEM was l.38m RMSE with a l.05m Standard Deviation (SD), and this is within Intermap's stated accuracies. Over forested ground the mean difference was 13.5lm RMSE (2.2lm SD). This vegetation bias was primarily due to limitations of the interpolation procedure used to determine the DTM from the DSM.Subsequently, the use of two airborne InSAR data sets is assessed for top height retrieval as an operational product, as well as a precursor and supplement to satellite data. Firstly, X-band data from Intermap are used to retrieve homogenous plantation top height over four UK study sites using the difference between the DSM and OSDEM with mean underestimations of 33.48% (6.99m mean difference). When assessed for single species, the DSM-OSDEM procedure gave height underestimations of 18-24% for Sitka spruce and 40% for Scots pine, indicating a dependency on canopy structure. Correcting retrieved height based on linear regression with ground reference data is shown to improve height estimation; as such, applying a generic correction to retrieved heights from all four UK study sites improves overall accuracy to 16.77% (3.12m mean difference). For trees greater than 18m measured height, the accuracy is increased to 12.27% (0.92m mean difference).Secondly, X-band data are also used to retrieve tree total height over two heterogeneous woodland areas in Belize and the UK. In Glen Affric, UK, height retrieval using the X-band DSM-OSDEM procedure for individual trees produce mean underestimation of 94.87% (6.08m mean difference). In Belize, height retrieval using the X-band DSM-DEM procedure for individual trees produces a mean underestimation of 74.71% (6.85m mean difference). For the Belize test site, height retrieval using JPL Airsar C-band DSM-DEM procedure for individual trees produces retrieved heights with a mean underestimation of 55.97% (4.79m mean difference). The primary cause of error is that layover effects due to SAR geometry may result in the retrieved height from a specific image coordinate not representing the same geographical position as the measured height.Relationships between radar retrieved height and forest parameters such as stocking density and tree height and radar dependent properties such as slope and edge effects are presented as possible explanations for variations across the collected data. Supporting work using a simple coherent interferometric scattering model is also used to characterise and explain the effects on tree height retrieval due to variations in slope, number density, stand height and forest edges.The results indicate that top height retrieval over homogenous forest stands is feasible with similar accuracies to those found with other remote sensing techniques and ground survey. Individual tree location assessment does not appear to be a suitable technique for assessing height retrieval in heterogeneous environments, and further investigations are required to determine a more suitable approach. This new data set therefore potentially allows a rapid and timely management tool for use in cost-effective sustainable forest management and related applications

    Evaluation of insar dem from high-resolution spaceborne sar data

    Get PDF
    In recent years a new generation of high-resolution SAR satellites became operational like the Canadian Radarsat-2, the Italian Cosmo/Skymed, and the German TerraSAR-X systems. The spatial resolution of such devices achieves the meter domain or even below. Key products derived from remote sensing imagery are Digital Elevation Models (DEM). Based on SAR data various techniques can be applied for such purpose, for example, Radargrammetry (i.e., SAR Stereo) and SAR Interferometry (InSAR). In the framework of the ISPRS Working Group VII/2 "SAR Interferometry" a long term scientific project is conducted that aims at the validation of DEM derived from data of modern SAR satellite sensors. In this paper, we present DEM results yield for the city of Barcelona which were generated by means of SAR Interferometry.DL

    Estimation of biophysical parameters in boreal forests from ERS and JERS SAR interferometry

    Get PDF
    The thesis describes investigations concerning the evaluation of ERS and JERS SAR images and repeat-pass interferometric SAR images for the retrieval of biophysical parameters in boreal forests. The availability of extensive data sets of images over several test sites located in Sweden, Finland and Siberia has allowed analysis of temporal dynamics of ERS and JERS backscatter and coherence, and of ERS interferometric phase. Modelling of backscatter, coherence and InSAR phase has been performed by means of the Water Cloud Model (WCM) and the Interferometric Water Cloud Model (IWCM); sensitivity analysis and implications for the retrieval of forest biophysical parameters have been thoroughly discussed. Model inversion has been carried out for stem volume retrieval using ERS coherence, ERS backscatter and JERS backscatter, whereas for tree height estimation the ERS interferometric phase has been used. Multi-temporal combination of ERS coherence images, and to a lesser extent of JERS backscatter images, can provide stem volume estimates comparable to stand-wise ground-based measurements. Since the information content of the interferometric phase is strongly degraded by phase noise and uncorrected atmospheric artefacts, the retrieved tree height shows large errors

    A Macroecological Analysis of SERA Derived Forest Heights and Implications for Forest Volume Remote Sensing

    Get PDF
    Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100

    Summaries of the Sixth Annual JPL Airborne Earth Science Workshop

    Get PDF
    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop

    An Effective Method for InSAR Mapping of Tropical Forest Degradation in Hilly Areas

    Get PDF
    Current satellite remote sensing methods struggle to detect and map forest degradation, which is a critical issue as it is likely a major and growing source of carbon emissions and biodiveristy loss. TanDEM-X InSAR phase height (hϕ) is a promising variable for measuring forest disturbances, as it is closely related to the mean canopy height, and thus should decrease if canopy trees are removed. However, previous research has focused on relatively flat terrains, despite the fact that much of the world’s remaining tropical forests are found in hilly areas, and this inevitably introduces artifacts in sideways imaging systems. In this paper, we find a relationship between hϕ and aboveground biomass change in four selectively logged plots in a hilly region of central Gabon. We show that minimising multilooking prior to the calculation of hϕ strengthens this relationship, and that degradation estimates across steep slopes in the surrounding region are improved by selecting data from the most appropriate pass directions on a pixel-by-pixel basis. This shows that TanDEM-X InSAR can measure the magnitude of degradation, and that topographic effects can be mitigated if data from multiple SAR viewing geometries are available

    An Effective Method for InSAR Mapping of Tropical Forest Degradation in Hilly Areas

    Get PDF
    Current satellite remote sensing methods struggle to detect and map forest degradation, which is a critical issue as it is likely a major and growing source of carbon emissions and biodiveristy loss. TanDEM-X InSAR phase height is a promising variable for measuring forest disturbances, as it is closely related to the mean canopy height, and thus should decrease if canopy trees are removed. However, previous research has focused on relatively flat terrains, despite the fact that much of the world's remaining tropical forests are found in hilly areas, and this inevitably introduces artifacts in sideways imaging systems. In this paper, we find a relationship between InSAR phase height and aboveground biomass change in four selectively logged plots in a hilly region of central Gabon. We show that minimising multilooking prior to the calculation of InSAR phase height on a pixel-by-pixel basis. This shows that TanDEM-X InSAR can measure the magnitude of degradation, and that topographic effects can be mitigated if data from multiple SAR viewing geometries are available
    • …
    corecore