48 research outputs found

    Automated Static Warning Identification via Path-based Semantic Representation

    Full text link
    Despite their ability to aid developers in detecting potential defects early in the software development life cycle, static analysis tools often suffer from precision issues (i.e., high false positive rates of reported alarms). To improve the availability of these tools, many automated warning identification techniques have been proposed to assist developers in classifying false positive alarms. However, existing approaches mainly focus on using hand-engineered features or statement-level abstract syntax tree token sequences to represent the defective code, failing to capture semantics from the reported alarms. To overcome the limitations of traditional approaches, this paper employs deep neural networks' powerful feature extraction and representation abilities to generate code semantics from control flow graph paths for warning identification. The control flow graph abstractly represents the execution process of a given program. Thus, the generated path sequences of the control flow graph can guide the deep neural networks to learn semantic information about the potential defect more accurately. In this paper, we fine-tune the pre-trained language model to encode the path sequences and capture the semantic representations for model building. Finally, this paper conducts extensive experiments on eight open-source projects to verify the effectiveness of the proposed approach by comparing it with the state-of-the-art baselines.Comment: 17 pages, in Chinese language, 9 figure

    Information recovery in the biological sciences : protein structure determination by constraint satisfaction, simulation and automated image processing

    Get PDF
    Regardless of the field of study or particular problem, any experimental science always poses the same question: ÒWhat object or phenomena generated the data that we see, given what is known?Ó In the field of 2D electron crystallography, data is collected from a series of two-dimensional images, formed either as a result of diffraction mode imaging or TEM mode real imaging. The resulting dataset is acquired strictly in the Fourier domain as either coupled Amplitudes and Phases (as in TEM mode) or Amplitudes alone (in diffraction mode). In either case, data is received from the microscope in a series of CCD or scanned negatives of images which generally require a significant amount of pre-processing in order to be useful. Traditionally, processing of the large volume of data collected from the microscope was the time limiting factor in protein structure determination by electron microscopy. Data must be initially collected from the microscope either on film-negatives, which in turn must be developed and scanned, or from CCDs of sizes typically no larger than 2096x2096 (though larger models are in operation). In either case, data are finally ready for processing as 8-bit, 16-bit or (in principle) 32-bit grey-scale images. Regardless of data source, the foundation of all crystallographic methods is the presence of a regular Fourier lattice. Two dimensional cryo-electron microscopy of proteins introduces special challenges as multiple crystals may be present in the same image, producing in some cases several independent lattices. Additionally, scanned negatives typically have a rectangular region marking the film number and other details of image acquisition that must be removed prior to processing. If the edges of the images are not down-tapered, vertical and horizontal ÒstreaksÓ will be present in the Fourier transform of the image --arising from the high-resolution discontinuities between the opposite edges of the image. These streaks can overlap with lattice points which fall close to the vertical and horizontal axes and disrupt both the information they contain and the ability to detect them. Lastly, SpotScanning (Downing, 1991) is a commonly used process where-by circular discs are individually scanned in an image. The large-scale regularity of the scanning patter produces a low frequency lattice which can interfere and overlap with any protein crystal lattices. We introduce a series of methods packaged into 2dx (Gipson, et al., 2007) which simultaneously addresses these problems, automatically detecting accurate crystal lattice parameters for a majority of images. Further a template is described for the automation of all subsequent image processing steps on the road to a fully processed dataset. The broader picture of image processing is one of reproducibility. The lattice parameters, for instance, are only one of hundreds of parameters which must be determined or provided and subsequently stored and accessed in a regular way during image processing. Numerous steps, from correct CTF and tilt-geometry determination to the final stages of symmetrization and optimal image recovery must be performed sequentially and repeatedly for hundreds of images. The goal in such a project is then to automatically process as significant a portion of the data as possible and to reduce unnecessary, repetitive data entry by the user. Here also, 2dx (Gipson, et al., 2007), the image processing package designed to automatically process individual 2D TEM images is introduced. This package focuses on reliability, ease of use and automation to produce finished results necessary for full three-dimensional reconstruction of the protein in question. Once individual 2D images have been processed, they contribute to a larger project-wide 3-dimensional dataset. Several challenges exist in processing this dataset, besides simply the organization of results and project-wide parameters. In particular, though tilt-geometry, relative amplitude scaling and absolute orientation are in principle known (or obtainable from an individual image) errors, uncertainties and heterogeneous data-types provide for a 3D-dataset with many parameters to be optimized. 2dx_merge (Gipson, et al., 2007) is the follow-up to the first release of 2dx which had originally processed only individual images. Based on the guiding principles of the earlier release, 2dx_merge focuses on ease of use and automation. The result is a fully qualified 3D structure determination package capable of turning hundreds of electron micrograph images, nearly completely automatically, into a full 3D structure. Most of the processing performed in the 2dx package is based on the excellent suite of programs termed collectively as the MRC package (Crowther, et al., 1996). Extensions to this suite and alternative algorithms continue to play an essential role in image processing as computers become faster and as advancements are made in the mathematics of signal processing. In this capacity, an alternative procedure to generate a 3D structure from processed 2D images is presented. This algorithm, entitled ÒProjective Constraint OptimizationÓ (PCO), leverages prior known information, such as symmetry and the fact that the protein is bound in a membrane, to extend the normal boundaries of resolution. In particular, traditional methods (Agard, 1983) make no attempt to account for the Òmissing coneÓ a vast, un-sampled, region in 3D Fourier space arising from specimen tilt limitations in the microscope. Provided sufficient data, PCO simultaneously refines the dataset, accounting for error, as well as attempting to fill this missing cone. Though PCO provides a near-optimal 3D reconstruction based on data, depending on initial data quality and amount of prior knowledge, there may be a host of solutions, and more importantly pseudo-solutions, which are more-or-less consistent with the provided dataset. Trying to find a global best-fit for known information and data can be a daunting challenge mathematically, to this end the use of meta-heuristics is addressed. Specifically, in the case of many pseudo-solutions, so long as a suitably defined error metric can be found, quasi-evolutionary swarm algorithms can be used that search solution space, sharing data as they go. Given sufficient computational power, such algorithms can dramatically reduce the search time for global optimums for a given dataset. Once the structure of a protein has been determined, many questions often remain about its function. Questions about the dynamics of a protein, for instance, are not often readily interpretable from structure alone. To this end an investigation into computationally optimized structural dynamics is described. Here, in order to find the most likely path a protein might take through Òconformation spaceÓ between two conformations, a graphics processing unit (GPU) optimized program and set of libraries is written to speed of the calculation of this process 30x. The tools and methods developed here serve as a conceptual template as to how GPU coding was applied to other aspects of the work presented here as well as GPU programming generally. The final portion of the thesis takes an apparent step in reverse, presenting a dramatic, yet highly predictive, simplification of a complex biological process. Kinetic Monte Carlo simulations idealize thousands of proteins as interacting agents by a set of simple rules (i.e. react/dissociate), offering highly-accurate insights into the large-scale cooperative behavior of proteins. This work demonstrates that, for many applications, structure, dynamics or even general knowledge of a protein may not be necessary for a meaningful biological story to emerge. Additionally, even in cases where structure and function is known, such simulations can help to answer the biological question in its entirety from structure, to dynamics, to ultimate function

    Bulk Collection

    Get PDF
    In June 2013, Edward Snowden revealed a secret US government program that collected records on every phone call made in the country. Further disclosures followed, detailing mass surveillance by the UK as well. Journalists and policymakers soon began discussing large-scale programs in other countries. Over two years before the Snowden leaks began, Cate and Dempsey had started researching systematic collection. Leading an initiative sponsored by The Privacy Projects, they commissioned a series of country reports, asking national experts to uncover what they could about government demands that telecommunications providers and other private-sector companies disclose information about their customers in bulk. Their initial research found disturbing indications of systematic access in countries around the world. These programs, often undertaken in the name of national security, were cloaked in secrecy and largely immune from oversight, posing serious threats to personal privacy. After the Snowden leaks, the project morphed into something more ambitious: an effort to explore what should be the rules for government access to data and how companies should respond to those demands within the framework of corporate responsibility. This volume concludes the nearly six-year project. It assembles 12 country reports, updated to reflect recent developments. One chapter presents both descriptive and normative frameworks for analyzing national surveillance laws. Others examine international law, human rights law, and oversight mechanisms. Still others explore the concept of accountability and the role of encryption in shaping the surveillance debate. In their conclusion, Cate and Dempsey offer recommendations for both government and industry

    Annual Report of the Clemson Board of Trustees, 1992-1993

    Get PDF

    Collective intelligence: creating a prosperous world at peace

    Get PDF
    XXXII, 612 p. ; 24 cmLibro ElectrónicoEn este documento se plantea un tema de interes general mas como lo es especificamente el tema de la evolucion de la sociedad en materia de industria y crecimiento de las actividades humanas en el aspecto de desarrollo de la creatividad enfocada a los mercadosedited by Mark Tovey ; foreword by Yochai Benkler (re-mixed by Hassan Masum) ; prefaces by Thomas Malone, Tom Atlee & Pierre Levy ; afterword by Paul Martin & Thomas Homer-Dixon.The era of collective intelligence has begun in earnest. While others have written about the wisdom of crowds, an army of Davids, and smart mobs, this collection of essays for the first time brings together fifty-five pioneers in the emerging discipline of collective intelligence. They provide a base of tools for connecting people, producing high-functioning teams, collaborating at multiple scales, and encouraging effective peer-production. Emerging models are explored for digital deliberative democracy, self-governance, legislative transparency, true-cost accounting, and the ethical use of open sources and methods. Collective Intelligence is the first of a series of six books, which will also include volumes on Peace Intelligence, Commercial Intelligence, Gift Intelligence, Cultural Intelligence, and Global Intelligence.Table of Contents Dedication i Publisher’s Preface iii Foreword by Yochai Benkler Remix Hassan Masum xi The Wealth of Networks: Highlights remixed Editor’s Preface xxi Table of Contents xxv A What is collective intelligence and what will we do 1 about it? (Thomas W. Malone, MIT Center for Collective Intelligence) B Co-Intelligence, collective intelligence, and conscious 5 evolution (Tom Atlee, Co-Intelligence Institute) C A metalanguage for computer augmented collective 15 intelligence (Prof. Pierre Lévy, Canada Research Chair in Collective Intelligence, FRSC) I INDIVIDUALS & GROUPS I-01 Foresight I-01-01 Safety Glass (Karl Schroeder, science fiction author 23 and foresight consultant) I-01-02 2007 State of the Future (Jerome C. Glenn & 29 Theodore J. Gordon, United Nations Millennium Project) I-02 Dialogue & Deliberation I-02-01 Thinking together without ego: Collective intelligence 39 as an evolutionary catalyst (Craig Hamilton and Claire Zammit, Collective-Intelligence.US) I-02-02 The World Café: Awakening collective intelligence 47 and committed action (Juanita Brown, David Isaacs and the World Café Community) I-02-03 Collective intelligence and the emergence of 55 wholeness (Peggy Holman, Nexus for Change, The Change Handbook) I-02-04 Knowledge creation in collective intelligence (Bruce 65 LaDuke, Fortune 500, HyperAdvance.com) I-02-05 The Circle Organization: Structuring for collective 75 wisdom (Jim Rough, Dynamic Facilitation & The Center for Wise Democracy) I-03 Civic Intelligence I-03-01 Civic intelligence and the public sphere (Douglas 83 Schuler, Evergreen State College, Public Sphere Project) I-03-02 Civic intelligence and the security of the homeland 95 (John Kesler with Carole and David Schwinn, IngeniusOnline) I-03-03 Creating a Smart Nation (Robert Steele, OSS.Net) 107 I-03-04 University 2.0: Informing our collective intelligence 131 (Nancy Glock-Grueneich, HIGHEREdge.org) I-03-05 Producing communities of communications and 145 foreknowledge (Jason “JZ” Liszkiewicz, Reconfigure.org) I-03-06 Global Vitality Report 2025: Learning to transform I-04 Electronic Communities & Distributed Cognition I-04-01 Attentional capital and the ecology of online social 163 conflict and think together effectively (Peter+Trudy networks (Derek Lomas, Social Movement Lab, Johnson-Lenz, Johnson-Lenz.com ) UCSD) I-04-02 A slice of life in my virtual community (Howard 173 Rheingold, Whole Earth Review, Author & Educator) I-04-03 Shared imagination (Dr. Douglas C. Engelbart, 197 Bootstrap) I-05 Privacy & Openness I-05-01 We’re all swimming in media: End-users must be able 201 to keep secrets (Mitch Ratcliffe, BuzzLogic & Tetriad) I-05-02 Working openly (Lion Kimbro, Programmer and 205 Activist) I-06 Integral Approaches & Global Contexts I-06-01 Meta-intelligence for analyses, decisions, policy, and 213 action: The Integral Process for working on complex issues (Sara Nora Ross, Ph.D. ARINA & Integral Review) I-06-02 Collective intelligence: From pyramidal to global 225 (Jean-Francois Noubel, The Transitioner) I-06-03 Cultivating collective intelligence: A core leadership 235 competence in a complex world (George Pór, Fellow at Universiteit van Amsterdam) II LARGE-SCALE COLLABORATION II-01 Altruism, Group IQ, and Adaptation II-01-01 Empowering individuals towards collective online 245 production (Keith Hopper, KeithHopper.com) II-01-02 Who’s smarter: chimps, baboons or bacteria? The 251 power of Group IQ (Howard Bloom, author) II-01-03 A collectively generated model of the world (Marko 261 A. Rodriguez, Los Alamos National Laboratory) II-02 Crowd Wisdom and Cognitive Bias II-02-01 Science of CI: Resources for change (Norman L 265 Johnson, Chief Scientist at Referentia Systems, former LANL) II-02-02 Collectively intelligent systems (Jennifer H. Watkins, 275 Los Alamos National Laboratory) II-02-03 A contrarian view (Jaron Lanier, scholar-in-residence, 279 CET, UC Berkeley & Discover Magazine) II-03 Semantic Structures & The Semantic Web II-03-01 Information Economy Meta Language (Interview with 283 Professor Pierre Lévy, by George Pór) II-03-02 Harnessing the collective intelligence of the World- 293 Wide Web (Nova Spivack, RadarNetworks, Web 3.0) II-03-03 The emergence of a global brain (Francis Heylighen, 305 Free University of Brussels) II-04 Information Networks II-04-01 Networking and mobilizing collective intelligence (G. Parker Rossman, Future of Learning Pioneer) II-04-02 Toward high-performance organizations: A strategic 333 role for Groupware (Douglas C. Engelbart, Bootstrap) II-04-03 Search panacea or ploy: Can collective intelligence 375 improve findability? (Stephen E. Arnold, Arnold IT, Inc.) II-05 Global Games, Local Economies, & WISER II-05-01 World Brain as EarthGame (Robert Steele and many 389 others, Earth Intelligence Network) II-05-02 The Interra Project (Jon Ramer and many others) 399 II-05-03 From corporate responsibility to Backstory 409 Management (Alex Steffen, Executive Editor, Worldchanging.com) II-05-04 World Index of Environmental & Social 413 Responsibility (WISER) By the Natural Capital Institute II-06 Peer-Production & Open Source Hardware II-06-01 The Makers’ Bill of Rights (Jalopy, Torrone, and Hill) 421 II-06-02 3D Printing and open source design (James Duncan, 423 VP of Technology at Marketingisland) II-06-03 REBEARTHTM: 425 II-07 Free Wireless, Open Spectrum, and Peer-to-Peer II-07-01 Montréal Community Wi-Fi (Île Sans Fil) (Interview 433 with Michael Lenczner by Mark Tovey) II-07-02 The power of the peer-to-peer future (Jock Gill, 441 Founder, Penfield Gill Inc.) Growing a world 6.6 billion people would want to live in (Marc Stamos, B-Comm, LL.B) II-07-03 Open spectrum (David Weinberger) II-08 Mass Collaboration & Large-Scale Argumentation II-08-01 Mass collaboration, open source, and social 455 entrepreneurship (Mark Tovey, Advanced Cognitive Engineering Lab, Institute of Cognitive Science, Carleton University) II-08-02 Interview with Thomas Homer-Dixon (Hassan 467 Masum, McLaughlin-Rotman Center for Global Health) II-08-03 Achieving collective intelligence via large-scale argumentation (Mark Klein, MIT Center for Collective Intelligence) II-08-04 Scaling up open problem solving (Hassan Masum & 485 Mark Tovey) D Afterword: The Internet and the revitalization of 495 democracy (The Rt. Honourable Paul Martin & Thomas Homer-Dixon) E Epilogue by Tom Atlee 513 F Three Lists 515 1. Strategic Reading Categories 2. Synopsis of the New Progressives 3. Fifty-Two Questions that Matter G Glossary 519 H Index 52

    Electronic Evidence and Electronic Signatures

    Get PDF
    In this updated edition of the well-established practitioner text, Stephen Mason and Daniel Seng have brought together a team of experts in the field to provide an exhaustive treatment of electronic evidence and electronic signatures. This fifth edition continues to follow the tradition in English evidence text books by basing the text on the law of England and Wales, with appropriate citations of relevant case law and legislation from other jurisdictions. Stephen Mason (of the Middle Temple, Barrister) is a leading authority on electronic evidence and electronic signatures, having advised global corporations and governments on these topics. He is also the editor of International Electronic Evidence (British Institute of International and Comparative Law 2008), and he founded the innovative international open access journal Digital Evidence and Electronic Signatures Law Review in 2004. Daniel Seng (Associate Professor, National University of Singapore) is the Director of the Centre for Technology, Robotics, AI and the Law (TRAIL). He teaches and researches information technology law and evidence law. Daniel was previously a partner and head of the technology practice at Messrs Rajah & Tann. He is also an active consultant to the World Intellectual Property Organization, where he has researched, delivered papers and published monographs on copyright exceptions for academic institutions, music copyright in the Asia Pacific and the liability of Internet intermediaries

    Rethinking the risk matrix

    Get PDF
    So far risk has been mostly defined as the expected value of a loss, mathematically PL (being P the probability of an adverse event and L the loss incurred as a consequence of the adverse event). The so called risk matrix follows from such definition. This definition of risk is justified in a long term “managerial” perspective, in which it is conceivable to distribute the effects of an adverse event on a large number of subjects or a large number of recurrences. In other words, this definition is mostly justified on frequentist terms. Moreover, according to this definition, in two extreme situations (high-probability/low-consequence and low-probability/high-consequence), the estimated risk is low. This logic is against the principles of sustainability and continuous improvement, which should impose instead both a continuous search for lower probabilities of adverse events (higher and higher reliability) and a continuous search for lower impact of adverse events (in accordance with the fail-safe principle). In this work a different definition of risk is proposed, which stems from the idea of safeguard: (1Risk)=(1P)(1L). According to this definition, the risk levels can be considered low only when both the probability of the adverse event and the loss are small. Such perspective, in which the calculation of safeguard is privileged to the calculation of risk, would possibly avoid exposing the Society to catastrophic consequences, sometimes due to wrong or oversimplified use of probabilistic models. Therefore, it can be seen as the citizen’s perspective to the definition of risk

    The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications

    CLARIN

    Get PDF
    The book provides a comprehensive overview of the Common Language Resources and Technology Infrastructure – CLARIN – for the humanities. It covers a broad range of CLARIN language resources and services, its underlying technological infrastructure, the achievements of national consortia, and challenges that CLARIN will tackle in the future. The book is published 10 years after establishing CLARIN as an Europ. Research Infrastructure Consortium
    corecore