39 research outputs found

    Reoptimization in lagrangian methods for the quadratic knapsack problem

    No full text
    International audienceThe 0-1 quadratic knapsack problem consists in maximizing a quadratic objective function subject to a linear capacity constraint. To solve exactly large instances of this problem with a tree search algorithm (e.g. a branch and bound method), the knowledge of good lower and upper bounds is crucial for pruning the tree but also for fixing as many variables as possible in a preprocessing phase. The upper bounds used in the best known exact approaches are based on Lagrangian relaxation and decomposition. It appears that the computation of these Lagrangian dual bounds involves the resolution of numerous 0-1 linear knapsack subproblems. Thus, taking this huge number of solvings into account, we propose to embed reoptimization techniques for improving the efficiency of the preprocessing phase of the 0-1 quadratic knapsack resolution. Namely, reoptimization is introduced to accelerate each independent sequence of 0-1 linear knapsack problems induced by the Lagrangian relaxation as well as the Lagrangian decomposition. Numerous numerical experiments validate the relevance of our approach

    A simplified binary artificial fish swarm algorithm for 0–1 quadratic knapsack problems

    Get PDF
    Available online 8 October 2013.This paper proposes a simplified binary version of the artificial fish swarm algorithm (S-bAFSA) for solving 0–1 knapsack problems. This is a combinatorial optimization problem, which arises in many fields of optimization. In S-bAFSA, trial points are created by using crossover and mutation. In order to make the points feasible, a random heuristic drop item procedure is used. The heuristic add item is also implemented to improve the quality of the solutions, and a cyclic reinitialization of the population is carried out to avoid convergence to non-optimal solutions. To enhance the accuracy of the solution, a local search is applied on a predefined number of points. The method is tested on a set of benchmark 0–1 knapsack problems.Fundação para a Ciência e a Tecnologia (FCT

    Approximated Perspective Relaxations: a Project&Lift Approach

    Get PDF
    The Perspective Reformulation (PR) of a Mixed-Integer NonLinear Program with semi-continuous variables is obtained by replacing each term in the (separable) objective function with its convex envelope. Solving the corresponding continuous relaxation requires appropriate techniques. Under some rather restrictive assumptions, the Projected PR (P^2R) can be defined where the integer variables are eliminated by projecting the solution set onto the space of the continuous variables only. This approach produces a simple piecewise-convex problem with the same structure as the original one; however, this prevents the use of general-purpose solvers, in that some variables are then only implicitly represented in the formulation. We show how to construct an Approximated Projected PR (AP^2R) whereby the projected formulation is "lifted" back to the original variable space, with each integer variable expressing one piece of the obtained piecewise-convex function. In some cases, this produces a reformulation of the original problem with exactly the same size and structure as the standard continuous relaxation, but providing substantially improved bounds. In the process we also substantially extend the approach beyond the original P^2R development by relaxing the requirement that the objective function be quadratic and the left endpoint of the domain of the variables be non-negative. While the AP^2R bound can be weaker than that of the PR, this approach can be applied in many more cases and allows direct use of off-the-shelf MINLP software; this is shown to be competitive with previously proposed approaches in some applications

    A Stabilized Structured Dantzig-Wolfe Decomposition Method

    Get PDF
    We discuss an algorithmic scheme, which we call the stabilized structured Dantzig-Wolfe decomposition method, for solving large-scale structured linear programs. It can be applied when the subproblem of the standard Dantzig-Wolfe approach admits an alternative master model amenable to column generation, other than the standard one in which there is a variable for each of the extreme points and extreme rays of the corresponding polyhedron. Stabilization is achieved by the same techniques developed for the standard Dantzig-Wolfe approach and it is equally useful to improve the performance, as shown by computational results obtained on an application to the multicommodity capacitated network design problem

    Continuous optimization methods for convex mixed-integer nonlinear programming

    Get PDF
    The topic of this dissertation is the design of fast branch-and-bound algorithms that use intelligently adapted approaches from continuous optimization for solving convex mixed-integer nonlinear programming problems. This class of optimization problems is NP-hard and polynomial-time algorithms for these problems are therefore unlikely to exist (unless P=NP). The importance of this class is highlighted by the fact that many real-world applications can be modeled as a (convex) mixed-integer nonlinear programming problem. Currently, there are several standard techniques such as outer approximation that are used within recent state-of-the-art software. Although all these algorithms include sophisticated improvements such as primal heuristics and effective preprocessing, they do not take into account the large gap between the algorithmic performance of NLP and IP solvers. While NLP solvers are well-engineered for large-scale problems, MIP problems of similar sizes are by far harder to solve in practice. Therefore, when using NLP techniques within MIP solvers, these NLP algorithms have to be adjusted to handle small-size instances effectively. Taking this problem into account, we present three branch-and-bound algorithms, based on a former work by Buchheim et al. (2012) on unconstrained convex quadratic integer programming problems. The main strategies used within this branch-andbound framework include extensive preprocessing and fast incremental computations, aiming at a very fast enumeration of the nodes. The first algorithm we present is designed to solve convex quadratic mixed-integer programming problems with linear inequality constraints and is based on a new feasible active set algorithm applied to the dual of the continuous relaxation. This active set algorithm is tailored for the continuous problem and fully exploits its structure. Furthermore, a warmstarting procedure is used to reduce the number of active set iterations per node. The second algorithm we introduce is an approach called quadratic outer approximation for solving box-constrained convex mixed-integer nonlinear programming problems. It extends the classical outer approximation by using quadratic underestimators leading to a faster convergence in practice. Finally, the last algorithm we devise is aimed at a class of mean-risk portfolio optimization problems that can be modeled as convex mixed-integer programming problems with a single linear budget constraint. For this application we propose a branch-and-bound scheme using a modified Frank-Wolfe type algorithm to solve the node relaxations. Similarly to the branch-and-bound algorithms mentionded above we exploit the simplicity of the relaxations to enumerate the nodes as quickly as possible rather than focussing on strong dual bounds. We implemented all three algorithms and compared their performance with several state-of-the art approaches. Our extensive computational studies show that all new approaches presented in this thesis are able to effectively solve large classes of real-world instances

    Advances in interior point methods and column generation

    Get PDF
    In this thesis we study how to efficiently combine the column generation technique (CG) and interior point methods (IPMs) for solving the relaxation of a selection of integer programming problems. In order to obtain an efficient method a change in the column generation technique and a new reoptimization strategy for a primal-dual interior point method are proposed. It is well-known that the standard column generation technique suffers from unstable behaviour due to the use of optimal dual solutions that are extreme points of the restricted master problem (RMP). This unstable behaviour slows down column generation so variations of the standard technique which rely on interior points of the dual feasible set of the RMP have been proposed in the literature. Among these techniques, there is the primal-dual column generation method (PDCGM) which relies on sub-optimal and well-centred dual solutions. This technique dynamically adjusts the column generation tolerance as the method approaches optimality. Also, it relies on the notion of the symmetric neighbourhood of the central path so sub-optimal and well-centred solutions are obtained. We provide a thorough theoretical analysis that guarantees the convergence of the primal-dual approach even though sub-optimal solutions are used in the course of the algorithm. Additionally, we present a comprehensive computational study of the solution of linear relaxed formulations obtained after applying the Dantzig-Wolfe decomposition principle to the cutting stock problem (CSP), the vehicle routing problem with time windows (VRPTW), and the capacitated lot sizing problem with setup times (CLSPST). We compare the performance of the PDCGM with the standard column generation method (SCGM) and the analytic centre cutting planning method (ACCPM). Overall, the PDCGM achieves the best performance when compared to the SCGM and the ACCPM when solving challenging instances from a column generation perspective. One important characteristic of this column generation strategy is that no speci c tuning is necessary and the algorithm poses the same level of difficulty as standard column generation method. The natural stabilization available in the PDCGM due to the use of sub-optimal well-centred interior point solutions is a very attractive feature of this method. Moreover, the larger the instance, the better is the relative performance of the PDCGM in terms of column generation iterations and CPU time. The second part of this thesis is concerned with the development of a new warmstarting strategy for the PDCGM. It is well known that taking advantage of the previously solved RMP could lead to important savings in solving the modified RMP. However, this is still an open question for applications arising in an integer optimization context and the PDCGM. Despite the current warmstarting strategy in the PDCGM working well in practice, it does not guarantee full feasibility restorations nor considers the quality of the warmstarted iterate after new columns are added. The main motivation of the design of the new warmstarting strategy presented in this thesis is to close this theoretical gap. Under suitable assumptions, the warmstarting procedure proposed in this thesis restores primal and dual feasibilities after the addition of new columns in one step. The direction is determined so that the modi cation of small components at a particular solution is not large. Additionally, the strategy enables control over the new duality gap by considering an expanded symmetric neighbourhood of the central path. As observed from our computational experiments solving CSP and VRPTW, one can conclude that the warmstarting strategies for the PDCGM are useful when dense columns are added to the RMP (CSP), since they consistently reduce the CPU time and also the number of iterations required to solve the RMPs on average. On the other hand, when sparse columns are added (VRPTW), the coldstart used by the interior point solver HOPDM becomes very efficient so warmstarting does not make the task of solving the RMPs any easier

    Robust long-term production planning

    Get PDF

    Stochastic programming for City Logistics: new models and methods

    Get PDF
    The need for mobility that emerged in the last decades led to an impressive increase in the number of vehicles as well as to a saturation of transportation infrastructures. Consequently, traffic congestion, accidents, transportation delays, and polluting emissions are some of the most recurrent concerns transportation and city managers have to deal with. However, just building new infrastructures might be not sustainable because of their cost, the land usage, which usually lacks in metropolitan regions, and their negative impact on the environment. Therefore, a different way of improving the performance of transportation systems while enhancing travel safety has to be found in order to make people and good transportation operations more efficient and support their key role in the economic development of either a city or a whole country. The concept of City Logistics (CL) is being developed to answer to this need. Indeed, CL focus on reducing the number of vehicles operating in the city, controlling their dimension and characteristics. CL solutions do not only improve the transportation system but the whole logistics system within an urban area, trying to integrate interests of the several. This global view challenges researchers to develop planning models, methods and decision support tools for the optimization of the structures and the activities of the transportation system. In particular, this leads researchers to the definition of strategic and tactical problems belonging to well-known problem classes, including network design problem, vehicle routing problem (VRP), traveling salesman problem (TSP), bin packing problem (BPP), which typically act as sub-problems of the overall CL system optimization. When long planning horizons are involved, these problems become stochastic and, thus, must explicitly take into account the different sources of uncertainty that can affect the transportation system. Due to these reasons and the large-scale of CL systems, the optimization problems arising in the urban context are very challenging. Their solution requires investigations in mathematical and combinatorial optimization methods as well as the implementation of efficient exact and heuristic algorithms. However, contributions answering these challenges are still limited number. This work contributes in filling this gap in the literature in terms of both modeling framework for new planning problems in CL context and developing new and effective heuristic solving methods for the two-stage formulation of these problems. Three stochastic problems are proposed in the context of CL: the stochastic variable cost and size bin packing problem (SVCSBPP), the multi-handler knapsack problem under uncertainty (MHKPu) and the multi-path traveling salesman problem with stochastic travel times (mpTSPs). The SVCSBPP arises in supply-chain management, in which companies outsource the logistics activities to a third-party logistic firm (3PL). The procurement of sufficient capacity, expressed in terms of vehicles, containers or space in a warehouse for varying periods of time to satisfy the demand plays a crucial role. The SVCSBPP focuses on the relation between a company and its logistics capacity provider and the tactical-planning problem of determining the quantity of capacity units to secure for the next period of activity. The SVCSBPP is the first attempt to introduce a stochastic variant of the variable cost and size bin packing problem (VCSBPP) considering not only the uncertainty on the demand to deliver, but also on the renting cost of the different bins and their availability. A large number of real-life situations can be satisfactorily modeled as a MHKPu, in particular in the last mile delivery. Last mile delivery may involve different sequences of consolidation operations, each handled by different workers with different skill levels and reliability. The improper management of consolidation operations can cause delay in the operations reducing the overall profit of the deliveries. Thus, given a set of potential logistics handlers and a set of items to deliver, characterized by volume and random profit, the MHKPu consists in finding a subset of items which maximizes the expected total profit. The profit is given by the sum of a deterministic profit and a stochastic profit oscillation, with unknown probability distribution, due to the random handling costs of the handlers.The mpTSPs arises mainly in City Logistics applications. Cities offer several services, such as garbage collection, periodic delivery of goods in urban grocery distribution and bike sharing services. These services require the planning of fixed and periodic tours that will be used from one to several weeks. However, the enlarged time horizon as well as strong dynamic changes in travel times due to traffic congestion and other nuisances typical of the urban transportation induce the presence of multiple paths with stochastic travel times. Given a graph characterized by a set of nodes connected by arcs, mpTSPs considers that, for every pair of nodes, multiple paths between the two nodes are present. Each path is characterized by a random travel time. Similarly to the standard TSP, the aim of the problem is to define the Hamiltonian cycle minimizing the expected total cost. These planning problems have been formulated as two-stage integer stochastic programs with recourse. Discretization methods are usually applied to approximate the probability distribution of the random parameters. The resulting approximated program becomes a deterministic linear program with integer decision variables of generally very large dimensions, beyond the reach of exact methods. Therefore, heuristics are required. For the MHKPu, we apply the extreme value theory and derive a deterministic approximation, while for the SVCSBPP and the mpTSPs we introduce effective and accurate heuristics based on the progressive hedging (PH) ideas. The PH mitigates the computational difficulty associated with large problem instances by decomposing the stochastic program by scenario. When effective heuristic techniques exist for solving individual scenario, that is the case of the SVCSBPP and the mpTSPs, the PH further reduces the computational effort of solving scenario subproblems by means of a commercial solver. In particular, we propose a series of specific strategies to accelerate the search and efficiently address the symmetry of solutions, including an aggregated consensual solution, heuristic penalty adjustments, and a bundle fixing technique. Yet, although solution methods become more powerful, combinatorial problems in the CL context are very large and difficult to solve. Thus, in order to significantly enhance the computational efficiency, these heuristics implement parallel schemes. With the aim to make a complete analysis of the problems proposed, we perform extensive numerical experiments on a large set of instances of various dimensions, including realistic setting derived by real applications in the urban area, and combinations of different levels of variability and correlations in the stochastic parameters. The campaign includes the assessment of the efficiency of the meta-heuristic, the evaluation of the interest to explicitly consider uncertainty, an analysis of the impact of problem characteristics, the structure of solutions, as well as an evaluation of the robustness of the solutions when used as decision tool. The numerical analysis indicates that the stochastic programs have significant effects in terms of both the economic impact (e.g. cost reduction) and the operations management (e.g. prediction of the capacity needed by the firm). The proposed methodologies outperform the use of commercial solvers, also when small-size instances are considered. In fact, they find good solutions in manageable computing time. This makes these heuristics a strategic tool that can be incorporated in larger decision support systems for CL

    Resolution Search et problèmes d'optimisation discrète

    Get PDF
    Les problèmes d optimisation discrète sont pour beaucoup difficiles à résoudre, depar leur nature combinatoire. Citons par exemple les problèmes de programmationlinéaire en nombres entiers. Une approche couramment employée pour les résoudreexactement est l approche de Séparation et Évaluation Progressive. Une approchedifférente appelée Resolution Search a été proposée par Chvátal en 1997 pourrésoudre exactement des problèmes d optimisation à variables 0-1, mais elle restemal connue et n a été que peu appliquée depuis.Cette thèse tente de remédier à cela, avec un succès partiel. Une première contributionconsiste en la généralisation de Resolution Search à tout problème d optimisationdiscrète, tout en introduisant de nouveaux concepts et définitions. Ensuite,afin de confirmer l intérêt de cette approche, nous avons essayé de l appliquer enpratique pour résoudre efficacement des problèmes bien connus. Bien que notrerecherche n ait pas abouti sur ce point, elle nous a amené à de nouvelles méthodespour résoudre exactement les problèmes d affectation généralisée et de localisationsimple. Après avoir présenté ces méthodes, la thèse conclut avec un bilan et desperspectives sur l application pratique de Resolution Search.The combinatorial nature of discrete optimization problems often makes them difficultto solve. Consider for instance integer linear programming problems, which arecommonly solved using a Branch-and-Bound approach. An alternative approach,Resolution Search, was proposed by Chvátal in 1997 for solving 0-1 optimizationproblems, but remains little known to this day and as such has seen few practicalapplications.This thesis attempts to remedy this state of affairs, with partial success. Itsfirst contribution consists in the generalization of Resolution Search to any discreteoptimization problem, while introducing new definitions and concepts. Next, wetried to validate this approach by attempting to solve well-known problems efficientlywith it. Although our research did not succeed in this respect, it lead usto new methods for solving the generalized assignment and uncapacitated facilitylocation problems. After presenting these methods, this thesis concludes with asummary of our attempts at practical application of Resolution Search, along withfurther perspectives on this matter.AVIGNON-Bib. numérique (840079901) / SudocSudocFranceF
    corecore