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Abstract

In this thesis we study how to efficiently combine the column generation technique (CG)
and interior point methods (IPMs) for solving the relaxation of a selection of integer
programming problems. In order to obtain an efficient method a change in the column
generation technique and a new reoptimization strategy for a primal-dual interior point
method are proposed.

It is well-known that the standard column generation technique suffers from un-
stable behaviour due to the use of optimal dual solutions that are extreme points of
the restricted master problem (RMP). This unstable behaviour slows down column
generation so variations of the standard technique which rely on interior points of the
dual feasible set of the RMP have been proposed in the literature. Among these tech-
niques, there is the primal-dual column generation method (PDCGM) which relies on
sub-optimal and well-centred dual solutions. This technique dynamically adjusts the
column generation tolerance as the method approaches optimality. Also, it relies on
the notion of the symmetric neighbourhood of the central path so sub-optimal and
well-centred solutions are obtained. We provide a thorough theoretical analysis that
guarantees the convergence of the primal-dual approach even though sub-optimal solu-
tions are used in the course of the algorithm. Additionally, we present a comprehensive
computational study of the solution of linear relaxed formulations obtained after apply-
ing the Dantzig-Wolfe decomposition principle to the cutting stock problem (CSP), the
vehicle routing problem with time windows (VRPTW), and the capacitated lot sizing
problem with setup times (CLSPST). We compare the performance of the PDCGM
with the standard column generation method (SCGM) and the analytic centre cutting
planning method (ACCPM). Overall, the PDCGM achieves the best performance when
compared to the SCGM and the ACCPM when solving challenging instances from a
column generation perspective. One important characteristic of this column generation
strategy is that no specific tuning is necessary and the algorithm poses the same level
of difficulty as standard column generation method. The natural stabilization available
in the PDCGM due to the use of sub-optimal well-centred interior point solutions is a
very attractive feature of this method. Moreover, the larger the instance, the better is
the relative performance of the PDCGM in terms of column generation iterations and
CPU time.

The second part of this thesis is concerned with the development of a new warmstart-
ing strategy for the PDCGM. It is well known that taking advantage of the previously
solved RMP could lead to important savings in solving the modified RMP. However,
this is still an open question for applications arising in an integer optimization context
and the PDCGM. Despite the current warmstarting strategy in the PDCGM working
well in practice, it does not guarantee full feasibility restorations nor considers the
quality of the warmstarted iterate after new columns are added. The main motivation
of the design of the new warmstarting strategy presented in this thesis is to close this
theoretical gap. Under suitable assumptions, the warmstarting procedure proposed in
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this thesis restores primal and dual feasibilities after the addition of new columns in
one step. The direction is determined so that the modification of small components at
a particular solution is not large. Additionally, the strategy enables control over the
new duality gap by considering an expanded symmetric neighbourhood of the central
path. As observed from our computational experiments solving CSP and VRPTW, one
can conclude that the warmstarting strategies for the PDCGM are useful when dense
columns are added to the RMP (CSP), since they consistently reduce the CPU time
and also the number of iterations required to solve the RMPs on average. On the other
hand, when sparse columns are added (VRPTW), the coldstart used by the interior
point solver HOPDM becomes very efficient so warmstarting does not make the task
of solving the RMPs any easier.
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Chapter 1

Introduction

In this chapter we give a brief introduction to linear programming and some solution
techniques to solve this class of problems. We also state the scope and the main
contributions of this thesis. At the end of the chapter, we present the outline of this
document.

1.1 Linear programming problems

Linear programming or linear optimization is regarded as one of the most well-established
fields in optimization due to its long history, understanding and wide range of solvers
and methodologies available to tackle it. The linear programming problem is a special
case of the general mathematical optimization problem in which an objective function
f is minimized over a feasible set G ⊆ Rn which is described as

min{f(x) : x ∈ G}, (1.1)

where f : G → R [93, 101]. In its linear case, f(x) is a linear function and G is a
convex feasible set defined by linear (in)equalities. Linear programming problems can
be found in a wide spectrum of real-life applications such as transportation, economics,
energy and logistics among several others. More sophisticated applications are in the
context of non-linear programming problems where in many cases the non-linearities
are approximated by linear functions and therefore one ends up solving a sequence of
linear programming problems. Also, very interesting applications are integer and com-
binatorial optimization problems in which linear continuous relaxations are commonly
used to solve these problems [100].

Among the preferred methods to solve linear programming problems are the simplex
method and interior point methods.

Simplex method. This method was introduced by Dantzig [23] and aims to find
an optimal solution by using partitions of the variables into basic and nonbasic sets,
where the variables in the former set may take non-negative values while the variables
included in the latter set are set to zero. The simplex method starts from a vertex of the
polytope describing the feasible set G and seeks a direction that improves the value of
the objective function by checking the rate of change of the objective in the directions
of the neighbouring vertices. Since only neighbouring vertices are considered, directions
along the edges of this polytope are obtained. In this sense, the simplex method has a
very limited vision of the complete polytope and may prove to be inefficient for some
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problems, as shown by Klee and Minty in [81]. Although the theoretical worst case
complexity bound on the possible number iterations is exponential in the dimension
of the vector x, contemporary codes are stunningly efficient and simplex is regarded
as one of the major breakthrough in optimization [67, 68] and is the default choice of
commercial/academic solvers such us CPLEX [71] and XPRESS [38].

Interior point methods A completely different approach was proposed by Dikin
[30] and then developed by Karmarkar [77]. In contrast to the simplex method in
which every iterate is an extreme point of the feasible polytope G, these algorithms
generate a sequence of iterates which traverse the relative interior of the feasible region.
Several variants of interior point methods (IPMs) offer polynomial complexity such as
the projective methods, path-following methods and affine potential reduction methods
[66]. Among these variants, a family of path-following primal-dual methods has proven
to be the most important and widely used [121]. Additionally, interior point methods
also known as barrier methods due to the use of logarithmic barriers replacing non-
negative constraints, have been shown to be frequently more efficient in general than
simplex methods for solving large scale problems [87, 92].

Another powerful tool used in solving large scale linear programming problems,
known as column generation, has become an important technique in past decades
[28, 118]. Although this technique is not a solver itself as simplex or interior point
methods are, column generation is an iterative algorithm that is commonly used in
the context of integer programming to solve problems with a large number of vari-
ables. This technique was introduced by Dantzig and Wolfe in [26] when solving a
linear programming problem with a large number of variables in a column-wise man-
ner. This was shortly after Gilmore and Gomory [46, 47] proposed this technique to
solve the cutting stock problem. This technique is an iterative procedure applied to
solve a linear programming problem with a possibly huge number of variables, called
the master problem (MP), such that the columns in the coefficient matrix of this prob-
lem can be generated by following a known rule. By exploiting this characteristic, the
column generation technique starts with a reduced version of the problem, called the
restricted master problem (RMP), in which only few columns of the MP are considered
at first. Iteratively, new columns with negative reduced costs are generated and added
to the RMP. These columns are given by one or more pricing subproblems. In general
the method converges to an optimal solution by generating a relatively small subset
of columns. Note that at termination the RMP is equivalent to the original problem
(MP), and therefore, the optimal solution of the RMP is the optimal solution of the
MP.

From a dual point of view, the dual of the RMP is a relaxation of the dual MP
(i.e., problem with fewer constraints). Hence, the process which generates the columns
in the primal space (pricing subproblems) can be also interpreted as the process which
generates cuts in the dual space (separation routine). This cut generation method
applied to the dual is known as Kelley’s cutting plane method [78]. Due to this primal-
dual correspondence, column generation and cutting plane methods are equivalent.

1.2 Motivation and contributions

Although interior point methods, column generation and cutting plane methods have
proven to be powerful techniques for solving large linear programming problems, few
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attempts have been made to combine them efficiently. Among these attempts one could
mention [34, 49, 62, 89, 93, 96].

Despite the benefits showed by these methods for particular applications, somehow
these efforts still have not been widely taken up by the column generation community
and simplex-based methods are still the preferred techniques in this context.

In [86], one of the key papers in column generation, the following statement can be
found:

Besides subgradients and simplex-based methods, the Lagrangian dual can
be solved with more advanced (nonlinear) alternatives with stronger conver-
gence properties. Among them are the bundle method [69] based on quadratic
programming, and the analytic center cutting-plane method [53], an interior
point solution approach. However, the performance of these alternatives is
still to be evaluated in the context of integer programming.

Moreover, in the same article Lübbecke and Desrosiers state:

For some linear programs barrier methods [15] can prove most effective,
although there is no possible warm start.

Although several techniques have been proposed in order to reoptimize IPMs in the
context of cutting plane/column generation [51, 52, 56] these developments have not
yet managed to change the views of the (conservative) column generation community.

We believe that some of the reasons why people have been discouraged from using
interior point methods in column generation are the following:

� Historical considerations. Interior point methods are novel techniques when
compared to the traditional and well-established simplex method. Additionally,
when column generation and cutting plane methods were proposed in the early
60’s, simplex was the only efficient method at hand while IPMs have matured
only in recent years.

� Reoptimization. In the column generation/cutting plane framework, solving
relatively similar problems can be exploited, saving iterations and time and there-
fore making the whole iterative process more efficient. Reoptimizing with simplex
is done very efficiently and very intuitively by keeping primal/dual feasibility and
seeking feasibility in the dual/primal space. Reoptimizing with interior point
methods require more “sophisticated” techniques and a good understanding of
this and efficient implementations have only been proposed in recent years.

� “Simplexification” of IPMs. Replacing the simplex method by IPMs in the
column generation/cutting plane context has shown mixed results and tends to
favour the simplex method since column generation was developed with this
method in mind. On top of that, attempting a naive reoptimization with IPMs
using the optimal solution on the boundary of the polytope G, such as it is done
with the simplex method has proven to be disastrous. Therefore, the incentive
to move from a well-established method such as simplex to a method that allows
some doubts is null.

Having all these considerations in mind, the main goal of this thesis is to show
how to combine column generation and interior point methods efficiently in the con-
text of integer programming for solving the relaxation of a selection of combinatorial
optimization problems commonly used by the column generation community.
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This requires a change of the column generation paradigm and the way reoptimiza-
tion is performed with IPMs.

Figure 1.1: Solving the MP - Column generation flow chart considering a warmstarting
procedure.

In order to facilitate the understanding of the main contributions of this thesis in the
context of column generation, in Figure 1.1 we have a schematic diagram showing the
principal components of this technique. In this thesis we are interested in the coloured
components of Figure 1.1: (i) how to solve the RMPs so better dual variables are sent
to the procedure that generates new columns (denoted by “Improve the RMP”); and
(ii) how to provide an initial guess such as the RMP is solved more efficiently than
when no prior information is used. Column generation is fully described in Chapter 3.

In [34], Elhedhli and Goffin study how to compute a Lagrangean-based lower bound
using the analytic centre cutting plane method (ACCPM) [49]. Also, they study how
to use the information of a parent node (cuts and lower bounds) in order to speed up
the solution at a child node inside a Lagrangean-based branch-and-bound scheme. In a
similar spirit but without the branching stage, our study considers the main components
of a column generation scheme that uses the primal-dual column generation method
proposed in [62] to obtain solutions of the RMP, instead of the ACCPM.

Below, we describe in more detail the motivations and major outcomes the reader
will find in this thesis.

It has been observed that in the standard column generation technique, unstable
behaviour is caused by the use of optimal dual solutions that are extreme points of the
RMPs [86, 117]. This unstable behaviour slows down the column generation method
so variations of the standard technique relying on interior points of the dual feasible
set of the RMP have been proposed in the literature [17, 86].

4



A prime focus of this thesis is on the primal-dual column generation technique
(PDCGM) proposed by Gondzio and Sarkissian [62], where an interior point method is
used to obtain sub-optimal solutions that are well-centred in the dual feasible set of the
corresponding RMP. Promising computational results have been reported using this
technique [62, 89], but for a very limited class of problems. Moreover, the PDCGM has
never been tested on applications in which the MP formulation comes from an integer
programming context.

Furthermore, no theoretical analysis that guarantees the convergence of this primal-
dual approach has been presented. One of the objectives of this thesis is to provide
these guarantees. In order to achieve this goal, we first review the primal-dual column
generation technique and show that it converges to an optimal solution of the master
problem if such exists, even though sub-optimal solutions are used in the course of the
algorithm.

Additionally, to demonstrate how the method compares with other column gener-
ation approaches, we present a comprehensive computational performance study for
solving linear-relaxed formulations obtained after applying the Dantzig-Wolfe decom-
position principle [26] for three classes of problems which are well-known in the column
generation literature: the cutting stock problem (CSP) [46], the vehicle routing prob-
lem with time windows (VRPTW) [75], and the capacitated lot sizing problem with
setup times (CLSPST) [114]. These problems are known to lead to very degenerate
restricted master problems, a property that usually causes instability in the standard
column generation method [10, 27, 75]. We compare the performance of the primal-
dual column generation technique with the standard column generation method and
the analytic centre cutting plane method.

The other contributions are with regard to reoptimizing the primal-dual column
generation method.

Despite two decades of successful research concerning IPMs, in particular the class
corresponding to primal-dual path following methods, there is still a lot of room for
improvement in reoptimization techniques. It is well known that taking advantage of
the previously solved RMP could lead to important savings in solving the modified
RMP. However, this still seems to be an open question for applications arising in an
integer optimization context.

Currently, the warmstarting strategy proposed in [56] and further improved by
heuristic procedures has been utilized in the primal-dual column generation method,
showing encouraging results. Despite the fact that the approach introduced in [56] has
worked well in practice, it does not guarantee full primal and dual feasibility restorations
nor considers the quality of the warmstarted iterate after new columns/cuts are added.
The main motivation of the design of the new warmstarting strategy presented in this
thesis is to close this theoretical gap.

Under suitable assumptions, the warmstarting procedure proposed in this thesis re-
stores primal and dual feasibilities after the addition of new columns. This method relies
on solving two linear optimization problems to determine the direction which recovers
primal and dual feasibilities in one step. The direction is determined so that modifica-
tions in the small components at a particular solution are not large. Additionally, the
strategy provides control over the new duality gap by expanding the neighbourhood of
the central path. The analysis is performed for the symmetric neighbourhood of the
central path. In summary, unlike the method proposed in [56] which was based on a
heuristic, the method proposed in this thesis has solid theoretical foundations.

Additionally, we perform some computational experiments and demonstrate how the
proposed strategy behaves in practice. The results show that the method is comparable
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to the method in [56] and, in some cases, far superior to coldstart for problems with
dense columns, and is as efficient as the other methods when problems with sparse
columns are considered.

In summary, this thesis makes the following contributions:

i it provides a new theoretical insight for a natural stable column generation tech-
nique based on a primal-dual interior point method and supports the findings
with computational evidence;

ii it shows how primal-dual interior point methods can be efficiently combined with
the column generation technique for solving relaxations of integer programming
problems;

iii it presents a new warmstarting strategy embedded in the primal-dual column
generation method;

iv it guarantees that after new columns are added to the RMP, the proposed strategy
recovers primal and dual feasibilities in one step, keeping the warmstarting iterate
inside a slightly modified neighbourhood of the central path;

v it provides extensive computational evidence comparing the new approach with
a coldstart approach on some applications.

As studying column generation combined with IPMs leaves some freedom and sev-
eral decisions have to be taken, we would like to state the scope of this research clearly.
Firstly, we are concerned with the use of a primal-dual interior point method in a col-
umn generation framework. Although other variants of interior point method could
have been considered, this class has proven to be the most efficient to date [57].

Secondly, for our computational experiments, we have selected a representative set
of applications considered in several studies concerning column generation strategies
and stabilization techniques [17, 75].

Thirdly, in this thesis we are not interested in obtaining optimal integer solutions,
which would require the development of a branch-and-price-and-cut framework. In-
stead, we want to analyse the behaviour of the primal-dual column generation strategy,
when applied to a given node of the branch-and-price tree. We have taken the root
node as reference in all our computational experiments. However, after the branching
is realized, one could still apply the methodology proposed here. Hence, by improving
the efficiency of the column generation procedure, we are likely to improve the overall
performance on solving the integer problem to optimality.

Fourthly, we have not studied different initializations for column generation nor de-
signed any particular method to solve the subproblem, which correspond to the “Create
the initial RMP” and “Improve the RMP” procedures in Figure 1.1, respectively. These
two components are very specific to each application so we have left them out of the
scope of this study since we are interested in the general efficiency of column generation
and not the performance for a particular application.

Fifthly, the structure of the applications is taken into account when designing the
warmstarting strategy so the conclusions should be understood in this context. Addi-
tionally, we are interested in designing a warmstarting procedure when the size of the
problem is changed and, therefore, a reoptimization technique restricted to changes in
the data only is not considered here.
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All the original developments and computational results presented in this thesis are
(partially) included in three papers:

� New developments in the primal-dual column generation technique jointly with
Jacek Gondzio and Pedro Munari [58] (already published). The contributions,
theoretical developments and computational experiments of this work are pre-
sented in Chapter 5.

� A new warmstarting strategy for the primal-dual column generation jointly with
Jacek Gondzio [59] (submitted for publication). A thorough discussion about the
findings included on this paper can be found in Chapter 6.

� Large-scale optimization with the primal-dual column generation method jointly
with Jacek Gondzio and Pedro Munari (in preparation). A brief description of
this work in progress is given in Chapter 7.

Outline

In Chapter 2 we review the fundamentals of primal-dual interior point methods. We
introduce the idea of the central path and its neighbourhood and provide complexity
and convergence results for a primal-dual interior point algorithm that keeps its iterates
in a symmetric neighbourhood of the central path.

In Chapter 3 we describe the Dantzig-Wolfe decomposition principle (DWD) and
column generation. We show the equivalence of DWD and Lagrangian relaxation and
justify the use of DWD over linear relaxation. We also present different cases one may
encounter after applying DWD and introduce some stabilization techniques for column
generation.

In Chapter 4 we present three applications in the context of integer programming:
the cutting stock problem (CSP), the vehicle routing problem with time windows
(VRPTW) and the capacitated lot-sizing problem with setup times (CLSPST). We
provide a complete derivation of the master problems and the subproblems obtained
for each application.

In Chapter 5 we describe the primal-dual column generation method (PDCGM)
which relies on a primal-dual interior point method to obtain well-centred and sub-
optimal dual solutions so a more stable approach is obtained. A thorough analysis
demonstrates the convergence of the method to ensure that, although sub-optimal dual
solutions are used during intermediate iterations, the method still converges. At the
end of the chapter, we present computational comparisons of the proposed method with
the standard column generation method and the analytic centre cutting plane method.

In Chapter 6 we introduce our specialized warmstarting idea, providing a theoretical
analysis which demonstrates how the algorithm deals with infeasibilities and the prox-
imity to the central path. Computational experiments for solving the root node of CSP
and VRPTW after applying DWD, comparing the proposed strategy with coldstart
and a partial feasibility restoration technique [56], are presented.

In Chapter 7 we summarize the main outcomes of this study and discuss further
developments and avenues for related research.
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Chapter 2

Primal-Dual Interior Point
Methods

Interior point methods have been widely used in the last two decades and the area
has grown so much that it is now a very well-established methodology to solve general
optimization problems using second order information. The literature about them is
ample, in particular for the linear and quadratic cases [57, 63, 64, 108, 121, 122].

In this chapter we introduce the notation used in this thesis and the fundamental
ideas behind primal-dual interior point methods. Additionally, we motivate the use of
a neighbourhood in the feasible interior in which the iterates should remain and present
convergence and complexity results for the feasible long step path-following algorithm
for that specific neighbourhood.

Since we are interested in column generation used to solve linear programming prob-
lems, we will present the associated barrier problem and derive the KKT-like system
of equations for the linear case. For a more general case (convex quadratic program-
ming), we refer the reader to [57]. For general theory regarding primal-dual interior
point methods, we refer the reader to Wright’s book [121].

Let us consider the following primal-dual linear programming pair

P0 := min cTx, s.t. Ax = b, x ≥ 0, (2.1a)

D0 := max bT y, s.t. AT y + s = c, s ≥ 0, (2.1b)

where x ∈ Rn is the vector of primal variables, y ∈ Rm and s ∈ Rn are the vectors of
dual and dual slack variables, respectively. A ∈ Rm×n represents the coefficient matrix,
where rank(A) = m ≤ n, and c ∈ Rn and b ∈ Rm are vectors of parameters.

In a feasible primal-dual interior point method, we aim to solve the primal and dual
problems simultaneously by relying on interior solutions of the feasible set. There-
fore, instead of imposing x ≥ 0 or s ≥ 0, we associate a logarithmic barrier term
(−
∑n

i=1 lnxi, in the primal space or
∑n

i=1 ln si, in the dual space) to replace these sets
of constraints. The resulting problems are called the barrier subproblems described by
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Pµ := min cTx− µ
n∑
i=1

lnxi, s.t. Ax = b, (2.2a)

Dµ := max bT y + µ
n∑
i=1

ln si, s.t. AT y + s = c, (2.2b)

where the barrier parameter µ is the penalty associated with the barrier term. Large
values of µ emphasise the contribution of the second term in the objective function of
the barrier subproblems and therefore, the solution is expected to be away from the
boundaries and in the interior of the positive orthant. On the other hand, when µ is
small, the first term takes importance and the primal-dual solution obtained by solving
(2.2) approximates the optimal solution of the primal-dual pair (2.1).

One could use either the primal or dual barrier problem to derive the first order
optimality conditions.

By taking the primal barrier problem (2.2a) and using duality theory [14], we get
the following Lagrangian function

LP(x, y) = cTx− µ
n∑
i=1

lnxi − yT (Ax− b), (2.3)

where y is the (free) dual associated with constraint Ax = b. Applying first order
optimality conditions, we get

∇xLP(x, y) = c− µX−1e−AT y = 0, (2.4)

where e is an n-dimensional column vector of ones and X−1 = diag{x−1
1 , x−1

2 , . . . , x−1
n }.

Additionally, by using the following substitution, s = µX−1e, the following µ-perturbed
KKT system [16, 101] associated with the primal and dual barrier problems is obtained

Ax = b (2.5a)

AT y + s = c (2.5b)

XSe = µe, (2.5c)

(x, s) > 0, (2.5d)

where S = diag{s1, s2, ..., sn}. The set of solutions of this system of equations for µ ∈
(0,+∞) defines the central path. Equations (2.5a) and (2.5b) are the linear constraints
corresponding to primal and dual feasibility, respectively, and equations (2.5c) are the
perturbed complementarity conditions, which are mildly non-linear. Equations (2.5d)
ensure that the primal and dual slack variables are in the positive orthants.

The same system of equations (2.5) can be obtained by associating x as the dual
of constraint AT y + s = c in the dual barrier problem (2.2b), writing the Lagrangian
function as

LD(y, s, x) = bT y + µ

n∑
i=1

ln si − xT (AT y + s− c), (2.6)
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and using the first order optimality conditions

∇yLD(y, s, x) = 0,

∇sLD(y, s, x) = 0.

In a primal-dual interior point method, an approximate solution to the perturbed KKT
system (2.5) is obtained at each iteration by using a (damped) step of a Newton-like
system of equations. The step direction is defined by the vector (∆x,∆y,∆s) which is
obtained by solving the following system of equations A 0 0

0 AT I
S 0 X

 ∆x
∆y
∆s

 =

 ξb
ξc

τµe−XSe

 , (2.7)

where the primal-dual solution is (x, y, s), and ξb = b − Ax and ξc = c − AT y − s are
the primal and dual residuals, respectively and τ ∈ (0, 1) is the centering parameter.
It has to be noticed that inputs (x, y, s) and therefore, the residuals ξb and ξc and µ
are iteration-dependent. Also, τ can vary from one iteration to another. For instance,
if τ = 1, the system (2.7) defines a centering direction while if τ = 0, we refer to it as
an affine-scaling direction. Most algorithms choose an intermediate value so centrality
is improved as well as achieving a reduction of µ (optimality measure) [121].

Note that solving (2.7) directly can be very inefficient since it requires an invertible
representation of the Jacobian matrix (matrix multiplying the vector of primal and
dual directions) and therefore, one usually relies on the augmented system of equations
or the normal equations [121]. By noting ξµ = τµe −XSe, the augmented system of
equations can be written as[

−Θ−1 AT

A 0

] [
∆x
∆y

]
=

[
ξc −X−1ξµ

ξb

]
=

[
ξ̂c
ξb

]
, (2.8)

where Θ = XS−1. By solving (2.8) one can then easily determine the direction for
the dual slack components as ∆s = X−1(ξµ − S∆x). Note that linear system (2.8) is
symmetric but indefinite. Also, one could go one step further and work out the normal
equations, by setting ∆x = Θξ̂c −ΘAT∆y, so the system (2.8) becomes

AΘAT∆y = ξb +AΘξ̂c. (2.9)

The resulting system (2.9) requires the inverse of a positive definite matrix AΘAT where
Cholesky factorization is applicable and commonly used to speed up the calculations
[33]. As pointed out in [57], the normal equations are preferred over augmented system
for most linear programs.

Once the direction (∆x,∆y,∆s) is determined from (2.7), and since the next iterate
is defined as (x+, y+, s+) = (x + αP∆x, y + αD∆y, s + αD∆s), suitable values for
αP ∈ [0, 1] and αD ∈ [0, 1] are calculated bearing in mind that (x+, s+) > 0. One
could be even more aggressive by allowing larger steps as shown in [21]. However, one
of the key practical requirements for the fast convergence of primal-dual interior point
methods is to reduce uniformly the magnitude of all complementarity products. By
doing this, we aim to keep the iterates away from the boundaries and at the same
time well centred in the feasible region so large steps in the directions obtained by
solving system (2.7) can be taken. To achieve this, extra conditions (extra steps) may
be imposed so the new iterate, more specifically, the complementarity products of the
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new iterate, remain within a close distance with respect to the reference parameter µ.
After finding suitable step sizes and updating the current iterate, µ+ is updated

(usually reduced) and the primal-dual method continues iterating until a relative duality
gap drops below a prescribed optimality tolerance ε.

The stopping criterion is usually defined as

cTx− bT y
1 + |cTx|

≤ ε. (2.10)

One of the most remarkable characteristics of primal-dual methods is that the dis-
tance to optimality, called the duality gap, can be calculated if some conditions hold. In
particular, if (2.5a) and (2.5b) are satisfied simultaneously, we have perfect information
on how far the current iterate is from the optimal solution. This feature is one of the
most attractive characteristics which is heavily exploited by the primal-dual column
generation method (see Chapter 5 for further details).

If the point (x, y, s) is feasible in the primal-dual spaces, the duality gap can be
calculated as

cTx− bT y = cTx− (Ax)T y = xT (c−AT y) = xT s = nµ. (2.11)

It is clear from (2.11), that µ is the average complementarity product (i.e., µ =
xT s/n).

2.1 Neighbourhoods and path-following methods

For τ = 1, solving system (2.7) for a particular solution (x, y, s) depends on the value of
µ. We define the µ-centre, (x(µ), y(µ), s(µ)) as the unique point satisfying conditions
(2.5a)-(2.5c) and (x(µ), s(µ)) > 0 for a particular µ > 0.

Let us define the primal-dual feasible and strictly feasible sets as follows

F = {(x, y, s) : Ax = b, AT y + s = c, (x, s) ≥ 0},

F0 = {(x, y, s) : Ax = b, AT y + s = c, (x, s) > 0}.

It is easy to see that (x(µ), y(µ), s(µ)) ∈ F0. Uniqueness can be shown in the
following theorem which is a variation of the results obtained in [89, 91].

Theorem 2.1. Assume that FP = {x : Ax = b} is bounded and that there exists
x ∈ FP such that x > 0. Then, for any v ∈ Rn+, there exists a unique solution (x, y, s)
that satisfies

Ax = b (2.12a)

AT y + s = c (2.12b)

XSe = v, (2.12c)

(x, s) ≥ 0, (2.12d)

Proof. Consider the following primal barrier problem

min cTx−
n∑
i=1

vi lnxi, s.t. Ax = b. (2.13)
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By assumption, there exists a strictly positive x ∈ FP so the problem (2.13) has a
feasible solution. Moreover, the objective function of the barrier problem is strictly
convex for any v > 0. Since matrix A is full rank, there exists a unique solution x ∈ FP
that minimizes the objective function in (2.13). Also, there exists a unique y ∈ Rm
such that

c− V X−1e−AT y = 0, (2.14)

where V = diag{v1, v2, . . . , vn}. The uniqueness of y follows since the rank of A equals
the number of variables y. Additionally, by considering the usual transformation s =
V X−1e, s is also unique. Finally, having v > 0 and x > 0, implies s > 0, which
completes the proof.

Having shown that for every µ > 0 there exists a unique solution (x(µ), y(µ), s(µ)),
we can introduce the notion of central path or central trajectory which is defined as

C = {(x(µ), y(µ), s(µ)) : µ > 0}. (2.15)

The central path guides the algorithm to the optimal solution of the primal-dual
pair (2.1) as µ → 0 while keeping (x, s) in the positive orthant and decreasing the
complementarity products to zero at “almost” the same rate. The central path is the
target of any path-following method. However, it is unlikely that the new point lies
exactly on the central path since the step size (αP , αD) is usually shrunk to avoid
negative solutions in some of the components of the primal and dual slack variables.

While an infeasible primal-dual algorithm allows ξb and ξc to take any value, their
feasible counterpart requires ξb = 0 and ξc = 0. For all the theoretical analysis in this
study, we will use a feasible path-following method.

As mentioned before, the success of primal-dual interior point methods relies on
keeping the points close to the central path. In order to do so, we can require the
iterates to remain in the vicinity of C. This vicinity is known as the neighbourhood of
the central path. The most well-known neighbourhoods are the wide (also known as
the one-sided) neighbourhood defined by

N−∞(γ) = {(x, y, s) ∈ F0 : xjsj ≥ γµ,∀j = 1, 2, ..., n},

for some γ ∈ (0, 1), and the narrow (so-called 2-norm) neighbourhood defined by

N2(θ) = {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ},

for some θ ∈ (0, 1). Note that the idea behind the wide neighbourhood is to keep
the pair-wise complementarity products bounded from below with respect to the old
barrier parameter. With the narrow neighbourhood the difference of these products
and the barrier parameter is bounded from above and below and circumscribed on a n-
dimensional sphere of radius

√
θµ. As pointed out in [121], the N−∞(γ) neighbourhood

is more flexible than N2(θ) due to the arbitrary choice we can make for γ. In the
extreme case of γ being very close to 0, the neighbourhood resembles F0. For the
N2(θ) case, even by choosing θ = 1, the complementarity products cannot vary by
more than [0, 2µ].

In addition to these two neighbourhoods of the central trajectory, in [21, 55], the
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following neighbourhood is used

Ns(γ) = {(x, y, s) ∈ F0 : γµ ≤ xjsj ≤
1

γ
µ, ∀j = 1, 2, ..., n}. (2.16)

This neighbourhood controls the pair-wise complementarity products from below but
also (unlike the N−∞ neighbourhood), from above. Therefore, one may expect better
practical performance by not being as conservative as with the N2(θ) neighbourhood.
The drawback of this neighbourhood is that full steps are no longer ensured, worsening
the theoretical complexity results of the method.

1 1
x s

2 2
x s

kµk lµ +

kγµ

k lγµ +

(a) N−∞(γ)

1 1
x s

2 2
x s

kµk lµ +

kθµ

k lθµ +

(b) N2(θ)

1 1
x s

2 2
x s

kµk lµ +

kγµ

k lγµ +

1 k lµ
γ

+

1 kµ
γ

(c) Ns(γ)

Figure 2.1: Neighbourhoods of the central path

As an illustrative example, let us generate two example values for µ with n = 2. In
Figure 2.1, we have plotted the three described neighbourhoods, namelyN−∞(γ),N2(θ)
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and Ns(γ) in the space of the complementarity products. The diagonal dotted line
defines the central trajectory while the areas with horizontal and vertical lines represent
the corresponding neighbourhoods associated with a given µ (denoted by a circle). The
analysis of these figures, hints at why the path-following methods are classified into the
ones which use long or short steps.

Since the symmetric neighbourhood Ns(γ) will be used extensively in the warm-
starting analysis in Chapter 6, in the following section we recall the convergence and
complexity results for a long-step path following algorithm using the symmetric neigh-
bourhood.

2.2 Convergence and complexity of the Ns(γ) neighbour-
hood

In this section we summarize the convergence and complexity results for the symmetric
neighbourhoods presented in [20]. The analysis closely follows the results for the long-
step path following method presented in [121, Chapter 5]. For the sake of completeness,
we also provide proofs of some lemmas which were missing in [20, 21, 121].

2.2.1 Algorithm

Firstly, let us consider a feasible primal-dual interior point method and therefore
ξb = ξc = 0 in system (2.7). Algorithm 2.1 is a variation of the long-step path fol-
lowing method introduced in [121, Chapter 5] but in our case we use the symmetric
neighbourhood.

Algorithm 2.1 Long-Step Path Following Algorithm with Symmetric Neighbourhood

Input: γ, τmin, τmax with γ ∈ (0, 1), 0 < τmin < τmax < 1 and (x0, λ0, s0) ∈
Ns(γ);

1: for k = 0, 1, 2, ... do
2: choose τk ∈ [τmin, τmax];
3: solve  A 0 0

0 AT I
Sk 0 Xk

 ∆xk

∆yk

∆sk

 =

 0
0

τkµke−XkSke

 (2.17)

to obtain (∆xk,∆yk,∆sk);
4: choose αk as the largest value of α ∈ [0, 1] such that (xk(α), yk(α), sk(α)) ∈

Ns(γ);
5: set (xk+1, yk+1, sk+1) = (xk(αk), y

k(αk), s
k(αk)) ∈ Ns(γ);

6: end for

2.2.2 Convergence

The following lemma provides a bound on ‖∆X∆Se‖. This technical result is the same
as the one obtained in [121, Lemma 5.10] and the proof can be found in that textbook.

Lemma 2.2. If (x, y, s) ∈ Ns(γ), then

‖∆X∆Se‖ ≤ 2−3/2(1 +
1

γ
)nµ.
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The next lemma ensures that feasibility is kept by the algorithm if the starting
point is feasible.

Lemma 2.3. Let the step (∆x,∆y,∆s) be defined by A 0 0
0 AT I
S 0 X

 ∆x
∆y
∆s

 =

 0
0

τµe−XSe

 . (2.18)

Then

∆xT∆s = 0

Proof. From the first and the second rows of (2.18) it follows that

A∆x = 0 (2.19)

AT∆y + ∆s = 0. (2.20)

Multiplying (2.20) by ∆xT , we obtain

0 = ∆xTAT∆y + ∆xT∆s

= (A∆x)T∆y + ∆xT∆s. (2.21)

Replacing (2.19) in (2.21), we get

∆xT∆s =
n∑
j=1

∆xj∆sj = 0,

as claimed.

The following lemma corresponds to [20, Theorem 2.6.]. This lemma provides a
bound on α so that the new iterate remains in the symmetric neighbourhood of the
central trajectory.

Lemma 2.4. If (x, y, s) ∈ Ns(γ), (x(α), y(α), s(α)) ∈ Ns(γ) for all

α ∈

[
0,

23/2

n
γ

1− γ
1 + γ

τk

]
.

The proof can be found in Colombo’s thesis [20]. Lemmas 2.2, 2.3 and 2.4 are useful
when proving the convergence of the method which is stated in the following theorem.

Theorem 2.5. Given the parameters γ, τmin and τmax in Algorithm 2.1, there is a
constant δ independent of n such that

µk+1 ≤
(

1− δ

n

)
µk (2.22)

for all k ≥ 0.

The proof is skipped since the details can be found in [20, Theorem 2.7.].
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2.2.3 Complexity

To analyse the complexity of Algorithm 2.1 we first need a technical result on logarith-
mic functions.

Lemma 2.6. We have log (1 + β) ≤ β for all β > −1, with equality if and only if
β = 0.

Proof. Let us define a function

f(β) = β − log (1 + β).

Therefore, the claim can be proven if

f(β) ≥ 0, ∀β > −1.

with equality (i.e., f(β) = 0) if and only if β = 0. Using first and second order
optimality conditions, we observe that f has a minimum at point β if

f ′(β) = 1− 1

1 + β
= 0,

f ′′(β) =
1

(1 + β)2
> 0.

Since the function is convex its (only) minimum is attained at β = 0. Hence, f(0) = 0
which completes the proof.

The complexity result of Algorithm 2.1 is an immediate consequence of Theorem
2.5, [121, Theorem 3.2.] and Lemma 2.6.

Theorem 2.7. Given ε > 0 and γ ∈ (0, 1), suppose that the starting point (x0, y0, s0) ∈
Ns(γ) in Algorithm 2.1 satisfies

µ0 ≤ 1

εκ
(2.23)

for some positive constant κ. Then there is an index K with K = O(n log 1
ε ) such that

µk ≤ ε, ∀k ≥ K. (2.24)

The proof can be found in [20, Theorem 2.8.]

It is important to point out that both convergence and complexity results are the
same as those obtained for a long-step path following algorithm using a N−∞(γ) neigh-
bourhood. It is clear that when using Ns(γ) we obtain better control over each comple-
mentarity product j at each iteration k since each of them is bounded from above and
from below. This remedies possible bad behaviour when the complementary products
are unbalanced, a phenomenon which may occur when a one-sided neighbourhood is
used. Moreover, this is achieved without losing polynomial complexity, O(n log 1

ε ) for
a predefined tolerance ε.
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Chapter 3

Column Generation and the
Decomposition Principle

In this chapter we describe column generation and the Dantzig-Wolfe decomposi-
tion principle. We first introduce Dantzig-Wolfe decomposition and show its equiv-
alence with Lagrangian relaxation. Then, we describe the standard column generation
method, point out well-known drawbacks of this version and briefly describe some of
the methods proposed to remedy these difficulties.

There exists a close relation between Dantzig-Wolfe decomposition and column
generation. The Dantzig-Wolfe decomposition principle is one of several ways of re-
formulating a problem by means of describing the feasible set fully or partially with
an exponential number of variables in order to exploit the underlying structure of the
problem. It has similarities with Benders decomposition [12] and an equivalence with
Lagrangian relaxation [45]. On the other hand column generation is an iterative process
which includes generating and adding a subset of this exponential number of variables
and checking whether an optimal or sub-optimal solution has been achieved and has
an equivalence with the cutting plane method [78].

3.1 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition principle (DWD) is a technique proposed for linear
programming problems with a special structure in the coefficient matrix. The original
aim of this technique is to make large linear problems tractable as well as to speed
up the solution by the simplex method [25]. Although the name is due to Dantzig
and Wolfe for their contribution in [25], the method was inspired by the work of Ford
and Fulkerson [41] where they proposed a multicommodity flow formulation where
variables represent path flows for each commodity. This decomposition principle was
also considered in [46] to solve the cutting stock problem and, shortly after, the method
was proposed to tackle a two-stage stochastic programming problem [24]. Except for
some classes of problems, DWD was not advantageous for general linear programming
problems. However, it showed itself to be very successful when extended to integer
programming problems [8, 116]. In this context, the focus was on providing stronger
bounds when solving linear relaxations in order to speed up a branch-and-bound search.
In this thesis we are interested in developing this technique and using it to solve the
root node of some problems arising in combinatorial optimization.
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Let us consider the following integer programming problem (IP):

min cTx, (3.1a)

s.t. Ax ≤ b, (3.1b)

x ∈ X , (3.1c)

where X = {x ∈ Zn+ : Dx ≤ d} is a discrete set, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, D ∈ Rh×n,
d ∈ Rh. Also, let us denote the optimal solution of problem (3.1) as zIP . Let us assume
that without the presence of constraint (3.1b), the problem would be easily solved by
taking advantage of the structure of X , particularly of matrix D (see Figure 3.1).

The Dantzig-Wolfe decomposition principle can be applied to integer programming
formulations that have a special structure in the coefficient matrix. Usually, the matrix
is very sparse and composed of several blocks which are almost independent of each
other except for the existence of a set of linking constraints. By linking set of constraints
we mean the set of constraints that couple several variables. In Figure 3.1, we illustrate
a possible matrix structure of problem (3.1) known as block diagonal. This is usually
referred to as the set of global constraints. For instance, matrix A can describe the
company’s yearly budget while the decomposable part, matrices D1, D2, . . . , DK , may
represent subsidiary conditions.

1
D

K
D

2
D

Figure 3.1: Block diagonal structure

Note that even though block structure is desirable from a decomposition and a
parallel computation point of view, it is not a requirement. The desirable property is
that the solution of the problem without the linking constraints can be calculated more
efficiently than the solution with their presence.

To apply DWD to the integer programming problem (3.1), we consider the convex-
ification approach [115], although an alternative approach could have been used (see
[116]). Consider the convex hull of the set X , denoted by C = conv(X ). Now, assume
that we know the sets of all extreme points pq and extreme rays pr that fully represent
C. Hence, we can write any x ∈ C as

x =
∑
q∈Q

λqpq +
∑
r∈R

µrpr, with
∑
q∈Q

λq = 1,

where the sets Q and R consist of indices of all extreme points and extreme rays
of C, respectively. By using this equality in problem (3.1), we obtain the equivalent
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formulation

min
∑
q∈Q

λq(c
T pq) +

∑
r∈R

µr(c
T pr), (3.2a)

s.t.
∑
q∈Q

λq(Apq) +
∑
r∈R

µr(Apr) ≤ b, (3.2b)

∑
q∈Q

λq = 1, (3.2c)

λq ≥ 0, µr ≥ 0, ∀q ∈ Q, ∀r ∈ R, (3.2d)

x =
∑
q∈Q

λqpq +
∑
r∈R

µrpr, (3.2e)

x ∈ Zn+. (3.2f)

Notice that we still need to keep x ∈ Zn+ in order to guarantee the equivalence between
(3.2) and (3.1). However, relaxing the integrality of x in (3.2) usually leads to a lower
bound that is the same as or stronger than the one obtained by the linear programming
relaxation of (3.1) (this will be shown in Section 3.3). For this reason, the relaxation of
(3.2) can lead to improvements when solving (3.1) by a branch-and-bound approach.
This is because a tighter relaxation is obtained and therefore the space search for the
branch-and-bound algorithm is reduced.

Assume we have relaxed the integrality condition on x (linear relaxation). Thus,
there is no need to keep the constraints (3.2e) in the formulation of (3.2). By denoting
cq = cT pq, aq = Apq, ∀q ∈ Q and cr = cT pr, ar = Apr, ∀r ∈ R, a relaxation of the
problem (3.2) is given by

min
∑
q∈Q

cqλq +
∑
r∈R

crµr, (3.3a)

s.t.
∑
q∈Q

aqλq +
∑
r∈R

arµr ≤ b, (3.3b)

∑
q∈Q

λq = 1, (3.3c)

λq ≥ 0, µr ≥ 0, ∀q ∈ Q,∀r ∈ R, (3.3d)

which is called the Dantzig-Wolfe master problem (DW-MP). Let us denote zDWD as
the optimal solution of (3.3). The dual problem associated with (3.3) has the same form
as the problem obtained after applying Lagrangian relaxation for integer programming
in the original problem (3.1) [45, 86, 106]. The equivalence between both techniques
will be discussed in Section 3.2.

As depicted in Figure 3.1, for some classes of problems, the set X can be represented
as the Cartesian product of K independent sets, due to a special structure in the matrix
D that allows it to be partitioned in several independent submatrices Dk, k = 1, . . . ,K.
Let us define X = X1 × . . .×XK , where

Xk = {xk ∈ Z|Lk|
+ : Dkxk ≤ dk}, ∀k = 1, . . . ,K,

where |Lk| is the number of variables associated with Xk, and xk is the vector containing
the components of x associated with Xk. Note that the number of variables associated
with every set does not have to be the same and varies with the problems we are dealing
with. For simplicity, we assume that the set X is bounded and, hence, R = ∅, although
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the following discussion can be extended to deal with unbounded cases (see [100]).
When we can decompose matrix D, DW-MP can be rewritten as

min
K∑
k=1

∑
q∈Qk

ckqλ
k
q , (3.4a)

s.t.

K∑
k=1

∑
q∈Qk

akqλ
k
q ≤ b, (3.4b)

∑
q∈Qk

λkq = 1, ∀k = 1, . . . ,K, (3.4c)

λkq ≥ 0, ∀q ∈ Qk, ∀k = 1, . . . ,K, (3.4d)

where the extreme points of the subset Xk are represented by each pq with q ∈ Qk.
This form is know as the disaggregated master problem. In the case where D is not
decomposable, namely when X = {x ∈ Zn+ : Dx ≤ d} and R = ∅, we can rewrite (3.3)
as the following aggregated master problem

min
∑
q∈Q

cqλq, (3.5a)

s.t.
∑
q∈Q

aqλq ≤ b, (3.5b)

∑
q∈Q

λq = 1, (3.5c)

λq ≥ 0, ∀q ∈ Q, (3.5d)

where q ∈ Q and Q represents the set of extreme points of C. Note that the disaggre-
gated version has more constraints than the aggregated one. However, the number of
extreme points to represent C is larger in the aggregated version. Despite the fact that
technically both problems offer the same optimal solution, the way of generating the
columns may differ, and a disaggregated form is usually preferred over its aggregated
counterpart.

3.2 Lagrangian relaxation equivalence

As stated in [86, 106], there is a strong relation between the bounds obtained applying
DWD and Lagrangian relaxation [39, 45]. This is a well-known result that we state
here for the sake of completeness.

Recalling the original problem (3.1), let us associate u ∈ Rm− as the Lagrangian
multiplier for constraints (3.1b). Then, the partial Lagrangian function becomes

L(x, u) = cTx− uT (Ax− b) = bTu+ (cT − uTA)x.

Note that for an arbitrary non-positive value of u, the problem

L(u) = min
x∈X

L(x, u),

= bTu+ min
x∈X

(cT − uTA)x,

= bTu+ min
x∈C

(cT − uTA)x,
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provides a lower bound for the optimal solution of the primal problem, zIP . Since we
are interested in the best lower bound, we are interested in finding

L := max
u∈Rm

−
L(u). (3.6)

Using the notation pq with q ∈ Q and pr with r ∈ R as the extreme points and extreme
rays introduced earlier, which describe C, we get the following Lagrangian bounds:

(i) L(u) = −∞, if (cT − uTA)pr < 0 for some r ∈ R; and

(ii) L(u) = bTu+ (cT − uTA)pq, for some q ∈ Q, otherwise.

Since we have assumed that the master problem (3.3) has a finite optimal solution,
we can impose L(u) > −∞. To avoid such solution, we include a set of constraints to
prevent optimal unbounded directions. Then, the Lagrangian dual problem (3.6) can
be rewritten as the following linear programming problem

max v, (3.7a)

s.t. uTApr ≤ cT pr, ∀r ∈ R, (3.7b)

v + uTApq − bTu ≤ cT pq, ∀q ∈ Q, (3.7c)

u ≤ 0. (3.7d)

Constraints (3.7b) guarantee (cT − uTA)pr ≥ 0 for every r ∈ R avoiding a Lagrangian
bound of type (i). Additionally, introducing variable v ∈ R, the Lagrangian bound of
type (ii) is obtained by maximizing v and considering constraints (3.7c). Using the
same transformation as in the previous section, namely cj = cT pj and aj = Apj , for
j ∈ Q ∪R, we get the following equivalent problem

max v, (3.8a)

s.t. aTr u ≤ cr, ∀r ∈ R, (3.8b)

v + aTq u− bTu ≤ cq, ∀q ∈ Q, (3.8c)

u ≤ 0. (3.8d)

It is easy to see that by associating dual variables µr ≥ 0 for every r ∈ R and λq ≥ 0
for every q ∈ Q with constraints (3.8b) and (3.8c), respectively, and writing the dual
of problem (3.8), we get (3.3). Therefore, due to duality theory, we can conclude that
the bound obtained by solving (3.8) is the same as the one obtained by solving (3.3).
A different way of showing this equivalence is to associate u ∈ Rm− and v ∈ R as dual
variables of constraints (3.3b) and (3.3c), respectively and derive the dual problem
associated with (3.3). The resulting problem is (3.8).

3.3 A graphical interpretation

As pointed out at the beginning of this chapter, the main idea of using the Dantzig-
Wolfe decomposition principle is to get a better lower bound for a branch-and-bound
tree than if linear relaxation is applied to the original problem. A well-known result
[45, Theorem 1] is partially restated here in a simplified form suiting our interests.
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Theorem 3.1. Having a problem of the form (3.1) with at least one feasible solution,
the following bound relations are always valid

zIP ≥ zDWD = zLR ≥ zLP , (3.9)

where zIP represents the optimal solution of the integer program (3.1), zDWD is the op-
timal solution of (3.3), zLR the optimal solution of (3.8), and zLP denotes the optimal
solution of a linear relaxation to (3.1).

IP
z

( )conv X

Ax b≤

Dx d≤

(a) IP

LP
z

( )conv X

Dx d≤

Ax b≤

(b) LP

( )conv X

/DWD LR
z

Dx d≤

Ax b≤

(c) DWD/LR

( )conv X

IP
z

LP
z

/DWD LR
z

Dx d≤

Ax b≤

(d) DWD/LR vs LP

Figure 3.2: Feasible solutions for the IP, DWD/LR and LP formulations

A proof of this theorem can be found in [45]. In this section, we are interested in
giving a more intuitive interpretation of these results using some graphical aid. To do
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so, let us consider Figure 3.2 which illustrates feasible and optimal solutions for the
aforementioned problems. In all the subfigures the contour of the feasible polytope
described by constraints (3.1b) (Ax ≤ b) is represented by a solid line. Also, we use
a dotted line to illustrate the shape of the polytope formed by constraints Dx ≤ d.
The convex hull of X is represented by a dashed line and the direction in which the
objective function is minimized is indicated by the arrow at the bottom right corner.
Subfigure 3.2(a) represents the feasible set of the original problem (3.1) considering
integer solutions. In Subfigure 3.2(b) the feasible region after applying linear relaxation
to (3.1) (LP) is shown. From this subfigure, it is clear that the solution one can obtain
by solving zLP is a lower bound on zIP since we do not force integer solutions and that
the feasible solutions of zIP are included in the feasible polytope considered in zLP .
In contrast, Subfigure 3.2(c), displays the corresponding primal (dual) feasible region
after applying DWD (LR) and relaxing integrality on x. It is important to notice that
conv(X ) is very likely to be different from the feasible region illustrated in Subfigure
3.2(b). Observe that similar to the previous case, the feasible set of zIP is included
in the polytope obtained by using the zDWD/zLR approach and therefore, the bounds
obtained by any of these reformulations satisfy zIP ≥ zLP and zIP ≥ zDWD = zLR.
Finally, in Subfigure 3.2(d) the gains obtained by applying DWD/LR over LP are
illustrated. We have overlapped the feasible region of Subfigure 3.2(c) over Subfigure
3.2(b), where the shaded region is the feasible region removed from the LP by using
DWD/LR instead. This shows that the feasible set of DWD/LR is contained in the
LP feasible polytope. Hence, we have zDWD = zLR ≥ zLP . In general, by using DWD
[25], one should expect to get a tighter lower bound for the original problem than by
applying a linear relaxation.

3.4 Column generation

Decomposing an integer problem with DWD results in a linear programming problem
which has an exponential number of variables. Moreover, in many situations the vari-
ables are not even explicitly available and have to be generated by calling a specialized
procedure. According to [99], the first reference to the term column generation was
made in [3]. However, the method was proposed a few years earlier by Gilmore and
Gomory [46, 47]. In those papers from the early 60’s, Gilmore and Gomory suggested
solving the cutting stock problem by using cutting patterns as variables and generating
them by solving a knapsack problem. To motivate this section, we briefly describe the
one-dimensional cutting stock problem. A more formal definition is given in Chapter 4.
The cutting stock problem deals with finding the cutting patterns which minimize the
waste of material such that demands for pieces of different widths are satisfied. In the
one-dimensional case, one can think of paper rolls that need to be cut into smaller pieces
to satisfy some customer’s demands. Considering a specific cutting pattern as a vector
of integer values, where every value represents the number of pieces of a particular size
to be cut, one may end up with an exponential number of columns. This number be-
comes very large when the stock width is large and the demanded pieces are of smaller
widths. For real size instances, the direct approach of listing all the possible cutting
patterns becomes impractical and therefore one should avoid it. A way of solving this
problem (and many more with an exponential number of variables) is to start with
only a small set of columns and add more only if needed. This whole process is known
as column generation because, from a linear algebra and simplex point of view, the
objective and constraint coefficients associated with a variable come as a new column
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to be appended to the working tableau. The interest in column generation is huge and
has attracted the attention of the integer programming community for several decades
but it has been accentuated during the past 10 years due to the computational and
theoretical developments in the techniques used to generate columns. Additionally, the
better understanding of how to remedy the main difficulties when using the standard
approach has made this technique widely known and used. Moreover, the variety of
problems this can be applied to is vast. For instance, the cutting stock problem is
in the core formulation of many problems due to its simple structure (e.g., air crew
scheduling [7, 65] and bin packing [18, 48, 84, 85]) and therefore, of interest to many
researchers.

More formally, let us consider a master problem (MP) represented by the following
linear programming problem

z? := min
∑
j∈N

cjλj , (3.10a)

s.t.
∑
j∈N

ajλj = b, (3.10b)

λj ≥ 0, ∀j ∈ N, (3.10c)

where N = {1, . . . , n} is a set of indices, λ = (λ1, . . . , λn) is the column vector of
decision variables, c ∈ Rn, b ∈ Rm and aj ∈ Rm, ∀j ∈ N . The similarity with problem
(3.5) is obvious. Note that the convexity constraint

∑
j∈N λj = 1, is implicitly included

in constraints (3.10b).
We assume that the MP has a huge number of variables which makes solving this

problem a very difficult task. Furthermore, we assume the columns aj are not given
explicitly but are implicitly represented as elements of a set A 6= ∅, and they can be
generated by following a known procedure. For instance, for the cutting stock problem,
the columns (patterns) are generated by solving the knapsack problem [46]. Hence,
instead of solving the MP directly, we consider only a small subset of columns at first,
which leads to a reduced version of (3.10), known as the restricted master problem
(RMP):

zRMP := min
∑
j∈N

cjλj , (3.11a)

s.t.
∑
j∈N

ajλj = b, (3.11b)

λj ≥ 0, ∀j ∈ N, (3.11c)

for some N ⊆ N . Any primal feasible solution λ̄ of the RMP corresponds to a primal
feasible solution λ̂ of the MP, with λ̂j = λ̄j , ∀j ∈ N , and λ̂j = 0, otherwise. Hence, the
optimal value of any RMP gives an upper bound of the optimal value of the MP, i.e.,
z? ≤ zRMP .

Column generation is an iterative process where the RMP is solved and the optimal
solution is used to generate one or more new columns. Then, the RMP is modified
by adding the generated column(s) and the same steps are repeated until once can
guarantee that no more columns are necessary to obtain an optimal solution of the
MP. In an extreme case one may end up solving an RMP which has the same number
of columns as the MP. However, in practice, one ends up solving RMPs with much
fewer columns than the associated MP.
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Natural questions arise at this point: (a) how to check whether no more columns
are necessary? and (b) how to generate new columns to be added to the RMP? The
answers to both questions are given by the oracle. The oracle is composed of one or
more (pricing) subproblems, which are able to generate new columns by using a dual
solution of the RMP. The oracle’s function is to check if a dual solution of the RMP is
also feasible for the MP.

Let u ∈ Rm be the vector of free dual variables associated with constraints (3.10b)
of the MP. The dual of (3.10) can be written as

max bTu, (3.12a)

s.t. aTj u+ sj = cj , ∀j ∈ N, (3.12b)

sj ≥ 0, ∀j ∈ N. (3.12c)

For any given primal-dual solution (λ, u), we assume that λ is a primal feasible
solution of (3.10). We can verify the feasibility of the dual variables in the MP by
checking the sign of the reduced costs sj = cj − uTaj , for each j ∈ N (see (3.12b)). If
sj < 0 for some j ∈ N , then the dual solution uj is not dual feasible and, therefore, λ
cannot be optimal. Otherwise, if sj ≥ 0 for all j ∈ N and bTu = cTλ, then an optimal
solution of the MP has been found.

Since we have assumed that columns aj do not have to be explicitly available, we
should avoid calculating the value of sj for every j ∈ N . Instead, we use the minimum
among them, which is obtained by solving the subproblem

zSP (u) := min
{

0; cj − uTaj |aj ∈ A
}
. (3.13)

The value zSP (u) is called the value of the oracle. If u is the optimal dual solution
for the RMP and zSP (u) = 0, we can ensure that there is no negative reduced cost
and, hence, an optimal solution of the MP has been obtained. Otherwise, a column
aj corresponding to the minimal reduced cost should be added to the RMP. Note that
more than one column may be found by the oracle and therefore, we can add one or
more of them to the RMP. Actually, any column with a negative reduced cost (i.e.,
cj−uTaj < 0) can be added to the RMP. By using (3.13) we can provide a lower bound
of the optimal value of the MP if we know a constant κ such that

κ ≥
∑
i∈N

λ?i , (3.14)

where λ? = (λ?1, . . . , λ
?
n) is an optimal solution of the MP. Indeed, we cannot reduce

zRMP by more than κ times zSP (u) and, hence, we have

zRMP + κ× zSP (u) ≤ z? ≤ zRMP . (3.15)

The value of κ is usually known when DWD is applied (see constraints (3.4c) and (3.5c)
for instance).

Column generation terminates when both the lower and upper bounds in (3.15) are
the same, i.e., zSP (u) = 0. We refer to each call to the oracle as an outer iteration and
consider the column generation scheme to be efficient if it keeps the number of outer
iterations small. Every RMP is then solved by an appropriate linear programming
technique and the iterations in this process are called inner iterations.

To summarize the above discussion, in Algorithm 3.1 we describe the standard col-
umn generation method, where δ denotes the optimality tolerance and zSP := zSP (u).
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Algorithm 3.1 The Standard Column Generation Method

Input: Initial RMP; δ > 0.
Set: LB = −∞, UB =∞, gap =∞;

1: while (gap ≥ δ) do
2: find an optimal solution (λ, u) of the RMP;
3: UB = zRMP ;
4: call the oracle with the query point u and set zSP := zSP (u);
5: LB = max{LB, κzSP + UB};
6: gap = (UB− LB)/(1 + |UB|);
7: if (zSP < 0) then add the new columns to the RMP;
8: end while

3.4.1 Adding columns to the RMP

When setting the number of columns to be added to the RMP per iteration different
situations can occur. The number of columns provided by the subproblems depends on
the structure of the problem and the ability of the oracle solver to generate columns
with negative reduced costs. Let us recall DWD notation but keep in mind the column
generation framework.

As shown in Section 3.1, depending on the structure of the problem, we can get an
aggregated or disaggregated formulation.

First let us consider the disaggregated case (3.4). In this case, K independent
subproblems are obtained and, therefore, K columns can be added to the RMP per
iteration. In fact, if we denote by u and v the dual variables associated with constraints
(3.4b) and (3.4c), respectively, we have the following subproblem for each k = 1, . . . ,K

zkSP := min
{
ckq − uTakq − vk | q ∈ Qk

}
,

= min
{

(ck − (Ak)Tu)Txk − vk | xk ∈ Xk
}
,

where Ak are the columns in A associated with the variables xk, for every k = 1, . . . ,K.
In a special case when the K subproblems are identical, they generate the same

columns for a given dual point u. We can take advantage of such a situation by using
an aggregation of variables in the following way

λq :=

K∑
k=1

λkq .

As a consequence, we can drop the index k from Qk and denote it simply by Q, since
allQk represent the same set. The same simplification may be applied to the parameters
ckq and akq . Note that even though after considering all these changes together, we can
rewrite problem (3.4) as (3.5) (except for constraint (3.5c)), the subproblem obtained
has reduced dimensions and solving it is usually preferred over solving the subproblem
obtained when using the aggregated form. Also, notice that similar to DW-MP, there
is now only one subproblem associated with the aggregated master problem, which is
given by any zkSP , since they are all identical. If 0 ∈ Xk and its associated cost is also
zero, then the equality in constraint (3.5c) can be relaxed to∑

q∈Q
λq ≤ K.
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Besides, if K is sufficiently large, then this inequality holds strictly in the optimal solu-
tion and, hence, (3.5c) can be dropped from the problem. Since by aggregating variables
we lose

∑
q∈Qk

λkq = 1 for every k = {1, . . . ,K}, one may consider this formulation as
a generalization of DWD.

A third case is when we can add many more different columns per iteration. This
situation is independent of the way we decompose the problem but related to the
subproblem solver. Therefore, it may happen in the aggregated and disaggregated
cases. As mentioned previously, any solution of the subproblem that has a negative
reduced cost can lead to an attractive column of the MP. Hence, if the method applied
to solve the subproblem is able to find the best p solutions, for a given p > 0, then
we can generate up to p columns, instead of only one. It is usually a good strategy,
as it reduces the number of outer iterations. In practice, there must be a compromise
between the number of columns added to the RMP at each iteration and the CPU time
required to obtain them.

3.4.2 Limitations of the standard version

The standard version of column generation based on simplex-type methods is known to
be unstable due to the use of extreme dual variables [29, 117]. Two problems usually
arise when using these extreme solutions.

The first one is due to large oscillations in the value of the dual variables at the
beginning of the process. This is known as the heading-in effect [117]. It occurs since
during the first iterations of column generation only a small subset of columns is avail-
able and, therefore, the dual information provided by them and sent to the subproblems,
is of limited use. This results in a considerable number of calls to the subproblem solver
before gathering any useful columns. This problem is accentuated when the initializa-
tion of the method (initial columns) is poor. Moreover, it has been observed that the
initial dual variables differ completely from the dual solutions obtained close to termi-
nation. As it turns out, this issue has attracted much of the attention of the column
generation community and a wide variety of methods have been proposed to deal with
this weakness.

The second problem when using the standard column generation method and the
simplex method to obtain the solution of the RMPs, is when approaching the optimal
solution of the MP. Many of the applications suffer from degeneracy and in a column
generation process this results in slow convergence towards optimality known as the
tailing-off effect. In other words, and as described in [29], an optimal solution in the
original components x can be described by many convex combinations of extreme points
(λ components), making the right choice difficult. Therefore, one should expect very
little progress when approaching optimality. Using a graphical interpretation [47], this
can be observed as a large tail if we plot the progress of the gap against the iteration
counter.

In order to see how these two limitations affect the performance of column gener-
ation, let us consider four results obtained when solving different combinatorial opti-
mization applications on random instances after applying DWD. They are depicted in
Figure 3.3. These results consider adding one column per subproblem and using the
standard (simplex-based) column generation method.

On the vertical axis, we have the relative gap (gap = (UB−LB)/(1+UB)) while on
the horizontal axis the number of iterations is shown. The problems considered are: the
vehicle routing problem with time windows (VRPTW) [28, 72, 112], the uncapaciated
facility location problem (UFLP) [1, 22, 36]; the cutting stock problem (CSP) [46, 47,
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Figure 3.3: The standard column generation method behaviour

76]; and the capacitated lot-sizing problem with setup times (CLSPST) [27, 73, 114].
It can be seen that for the instance considered for VRPTW, the heading-in effect is
not that pronounced; however, the tailing-off effect is considerable. For the UFLP
and CSP instances considered, the behaviour seem similar: a first stage in which the
gap is reduced (but rather slowly); then only few iterations are required to obtain a
considerable reduction of the relative gap; and finally a very slow convergence close
to optimality. In our last example, CLSPST presents a decomposable structure and
the subproblems are not identical. This is exploited in our implementation so several
columns can be added per iteration and therefore the behaviour seems to be better than
for the other applications/instances. However, by looking closer at the results, one can
say that: in the first 50 iterations, very little progress was made; in the following 100
iterations, a considerable reduction in the gap was obtained; and finally, it took the
standard version around 100 more iterations to converge.

In summary, Figure 3.3 shows general slow progress to optimality at the beginning
due to unstable behaviour of the dual variables (heading-in effect), suddenly a (very)
steep reduction in the relative gap (the method has gathered enough information to get
a good MP representation) and then, slow convergence towards optimality (tailing-off
effect).

It is important to emphasize at this point that these two limitations are the two
most well-known drawbacks of the standard column generation method and therefore,
finding a reliable remedy to them has been a challenge and any progress in this area
has always been of great interest to the research community.
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3.5 Stabilization strategies

As mentioned in the previous section, column generation is adversely affected by the
use of extreme dual solutions. One important observation is that solving every RMP to
optimality is not needed in a column generation procedure and, hence, variations of the
standard technique avoid it. In general, they rely on interior points of the dual feasible
set of the RMP. For instance, the stabilization techniques [17, 32, 88] choose a dual
point called the stability centre and add penalization terms to the RMP dual objective
function to keep the dual solutions close to this centre and/or add constraints (boxes)
so that the dual variables are limited to stay close to a reference point. The modified
dual RMP is solved to optimality; however, now the dual solutions do not oscillate so
much from one outer iteration to another, because of the penalties and boxes added
to the dual problem. These penalties and boxes can be updated at every iteration.
The following linear programming model proposed in [32] shows how both stabilization
techniques are incorporated in the dual space (see (3.12))

max bTu− υT−w− − υT+w+, (3.16a)

s.t. ATu ≤ c, (3.16b)

u+ w− ≥ δ−, (3.16c)

u− w+ ≤ δ+, (3.16d)

w− ≥ 0, (3.16e)

w+ ≥ 0, (3.16f)

where A is the current coefficient matrix of the RMP, w− and w+ are additional dual
variables and δ−, δ+, υ− and υ+ are vector parameters of suitable dimensions. Note that
constraints (3.16c) and (3.16d) restrict the value of u to the interval [δ− − w−, δ+ + w+].
Any deviation from the suitable box described by [δ−, δ+] is captured by w− and w+ and
penalized by the unitary non-negative penalties υ− and υ+. This approach requires:
(a) the formulation of the dual problem; (b) the addition of new variables (w− and
w+); (c) the setting of parameters (δ+, δ−, υ+ and υ−); and (d) a strategy to update
these parameters.

A different stabilization strategy is proposed in [109]. At each outer iteration, the
RMP is solved several times, with different objective coefficients which are randomly
generated. Then, a set of optimal solutions in the dual space is obtained and an interior
dual point is generated by considering a linear convex combination of these solutions.
Rousseau et al. present computational results considering instances of VRPTW, for
which the number of outer iterations and CPU time were reduced in relation to the
standard as well as stabilized column generation. However, for applications with large-
scale RMPs, the need to solve these problems several times for different objective
functions adversely affects the efficiency of the approach. Moreover, the number of
RMPs to be solved per iteration seems to be problem dependent.

A third stabilization technique has been proposed in [120]. Instead of using the
optimal dual solutions of the RMP in the subproblems, the weighted Dantzig-Wolfe
method constructs these dual solutions using a weighted average of the previously con-
structed dual solutions and the optimal solution of the current RMP. Finiteness of the
method has been shown and encouraging computational results are provided for solv-
ing the capacitated facility location problem. The dual variables are constructed in the
following way
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uk+1 :=
1

wk
uk +

wk − 1

wk
uk, (3.17)

where uk is the optimal dual vector in iteration k, and uk is the dual vector associated
with the best bound found until iteration k. Additionally, the weight wk is calculated
as

wk := min{t, k + l

2
}, (3.18)

where t is a threshold such as t ≥ 2, k is the iteration counter and l is the number of
improvements of the lower bound. This dynamic choice of weights allows the method to
choose dual variables which are in the neighbourhood of the best dual variables found
so far.

Bundle methods [69, 79] have become popular techniques in nondifferentiable op-
timization and therefore, they have also been studied in the context of column gen-
eration/cutting plane methods for solving decomposable mixed-integer programming
applications in their relaxed forms [17]. These techniques stabilize the RMP via the use
of Euclidean penalties. The following quadratic programming problem demonstrates a
modification made to the dual RMP in the bundle method

max bTu− 1

2t
‖u− u‖2, (3.19a)

s.t. ATu ≤ c, (3.19b)

where t controls the impact in the objective of any deviation from the reference param-
eter u and it is usually updated at every iteration.

A different class of column generation approaches obtains interior points of the
dual feasible set without (directly) modifying the RMP. Mitchell and Borchers [96] and
Mitchell [94] have addressed the solution of two classes of combinatorial optimization
problems by a cutting plane method using the primal-dual interior point method. For
those particular applications, the cutting planes are found by full enumeration. Ad-
ditionally, several heuristic procedures are proposed to improve the solution (primal
heuristic), drop cutting planes and fix variables. Notice that these approaches can-
not be directly applied in the general context of column generation, as usually the
columns cannot be fully enumerated, but are rather generated by solving a possibly
time-consuming problem (NP-hard in many cases).

The analytic centre cutting plane method (ACCPM) [4, 34, 49, 53] is an interior
point approach that relies on central prices. The strategy consists of computing a dual
point u which is an approximate analytic centre of the localization set associated with
the current RMP. The localization set is given by the intersection of the dual space of
the RMP with a half-space given by the best lower bound found for the optimal dual
value of the RMP. Note that the ACCPM can cope with second order information.
However, since our RMPs have linear objectives, we have simplified its presentation.
Let us define the localization set of the dual of the current RMP (3.11) as

Lk = {u : bTu ≥ θ, ATu ≤ c, },

where A is the coefficient matrix of the current RMP and θ the best bound found so
far. Having added slack variables s0 ∈ R and si ∈ R|N | to the two constraints, we
define the weighted logarithmic barrier function associated with this localization set as
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follows

F (s0, s) = −w0 log s0 −
|N |∑
i=1

wi log si,

where w0 and wi for every i ∈ N are non negative barrier penalties. Relying on
points in the centre of the localization set usually prevents the unstable behaviour
between consecutive dual points and also contributes to the generation of deeper cuts.
A very important property of this approach is given by its theoretical fully polynomial
complexity [2, 50, 80]. The use of the ACCPM in a branch-and-bound framework is
proposed in [34]. The use of stabilization terms within the analytic centre cutting plane
method has been successful, as shown in [5]. The proximal analytic centre cutting plane
method solves the following quadratic program

min F (s0, s) +
ρ

2
‖u− u‖2, (3.20)

s.t. ATu+ s = c, (3.21)

bTu− s0 = θ, (3.22)

s0 > 0, (3.23)

s > 0, (3.24)

where ρ is the penalization term for deviating from the best dual variables found so far.
The algorithm used to calculate the (proximal) analytic centre is a Newton method. A
thorough comparison of the method proposed in this thesis with the implementation
of the ACCPM [5] is provided in Chapter 5.

Although other polynomial cutting plane methods are proposed in the literature,
no efficient computational implementations are publicly available for them [95].

Another column generation method based on an interior point approach is the
primal-dual column generation method (PDCGM). Proposed in [62], the technique
uses an infeasible primal-dual interior point method to find non-optimal solutions of
the RMPs. In the first column generation iterations, each RMP is solved with a loose
tolerance. This tolerance is dynamically adjusted throughout the iterations as the
relative gap approaches zero. Gondzio and Sarkissian present promising computational
results for the nonlinear multicommodity network flow problem, whose linearisation
is solved by column generation. A similar strategy is used by [89] to solve linear
programming problems by combining Dantzig-Wolfe decomposition and a primal-dual
interior point method. Martinson and Tind also report a substantial reduction in the
number of outer iterations when compared to other column generation procedures.

To the best of our knowledge, the PDCGM has never been applied in the context of
integer programming, where column generation is used to solve linear relaxations that
typically arise from Dantzig-Wolfe reformulations.
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Chapter 4

A Selection of Problems:
Formulation and Decomposition

In this section we describe the problems we have considered in our computational
studies. All these problems belong to the (mixed-)integer programming optimization
class and their structure can be exploited by the use of the Dantzig-Wolfe decomposition
principle. For each application, we state its original formulation, and then describe
how the Dantzig-Wolfe decomposition principle is applied to it. We explicitly define
the master problem and the subproblems to be used in column generation. For details
on the size of the problems, see Appendix A.

Remark For clarity purposes, in the remainder of this chapter, we have adopted a
compact representation of vectors. For a given set I = {1, . . . , n} of indices, we denote
by [xi]i∈I the vector (x1, . . . , xn) and the vector (x11, . . . , x1n, . . . , xnn) is represented
by [xij ]i,j∈I

4.1 Cutting stock problem

The cutting stock problem (CSP), in its one-dimensional case, can be posed as an
integer programming problem which aims to find the smallest number of rolls of width
W needed to be cut so demands dj of pieces of width wj are satisfied, for every j ∈
M = {1, 2, . . . ,m} [10, 46, 47, 76]. An upper bound n on the number of rolls needed
to satisfy the demands is known and an index i ∈ N = {1, 2, . . . , n} is associated with
each roll. A mathematical formulation for CSP is given by [10]

min
∑
i∈N

yi, (4.1a)

s.t.
∑
i∈N

xij ≥ dj , ∀j ∈M, (4.1b)∑
j∈M

wjxij ≤Wyi, ∀i ∈ N, (4.1c)

yi ∈ {0, 1}, ∀i ∈ N, (4.1d)

xij ≥ 0 and integer, ∀i ∈ N, ∀j ∈M, (4.1e)

where yi = 1, if the roll i is used, and 0, otherwise. The integer variable xij denotes
the number of times a piece of width wj is cut from roll i. Constraints (4.1b) ensure
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that all demands are satisfied while constraints (4.1c) guarantee that the sum of the
widths of all pieces obtained from a roll does not exceed its width W .

4.1.1 Dantzig-Wolfe decomposition

The coefficient matrix of problem (4.1) has a special structure with coupling constraints
given by (4.1b) which links the rolls. Hence, the problem is well-suited to the application
of DWD. Consider the set X as the set which contains all solutions satisfying constraints
(4.1c) - (4.1e). Moreover, we define the subset Xi, for each i ∈ N , such that X =
X1 × . . . × Xn and replace each Xi by its convex hull conv(Xi), which is a bounded
set and hence can be fully described by convex combinations of its extreme points (see
Section (3.1) for details). Let Pi be the set of indices of all extreme points of conv(Xi)
for every i ∈ N . These extreme solutions are then denoted by (yip, [x

i
pj ]j∈M ), for each

i ∈ N and p ∈ Pi. Using this notation, we obtain the following master problem

min
∑
i∈N

∑
p∈Pi

yipλ
i
p, (4.2a)

s.t.
∑
i∈N

∑
p∈Pi

xipjλ
i
p ≥ dj , ∀j ∈M, (4.2b)

∑
p∈Pi

λip = 1, ∀i ∈ N, (4.2c)

λip ≥ 0, ∀i ∈ N, ∀p ∈ Pi. (4.2d)

Let us define u ∈ Rm+ and v ∈ Rn as the dual variables associated with constraints
(4.2b) and (4.2c), respectively. The oracle associated with the master problem (4.2)
is given by a set of n subproblems. Hence, for every i ∈ N , we have the following
subproblem

min yi −
∑
j∈M

ujxij − vi, (4.3a)

s.t. (yi, [xij ]j∈M ) ∈ conv(Xi), (4.3b)

where u = (u1, . . . , um) and v = (v1, . . . , vn) represent an arbitrary dual solution.
One should note that since the stock pieces are identical (i.e., have the same width

W ), we have that conv(X1) = conv(X2) = . . . = conv(Xn). This implies that for a
fixed dual solution (u, v), the subproblems are the same for every i ∈ N and that the
oracle will generate n identical columns. To avoid this, we aggregate variables in the
master problem as explained in Section 3.4.1. The resulting aggregated master problem
is given by

min
∑
p∈P

ypλp, (4.4a)

s.t.
∑
p∈P

xpjλp ≥ dj , ∀j ∈M, (4.4b)

λp ≥ 0, ∀p ∈ P, (4.4c)

where set P contains the indices of all extreme solutions of conv(X̄ ), with X̄ := X1 =
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. . . = Xn. Also, since (yi, [xij ]j∈M ) = 0 is a feasible solution, we have dropped the
convexity constraint. This is because n is an inactive upper bound in the constraint∑

p∈P λp ≤ n. Moreover, the oracle is now given by only one subproblem, which is
the same as (4.3), except for dropping the index i and vi. Instead of dealing with a
subproblem of form (4.3), it is common that one solves the knapsack problem associated
with it, which has the following form

max
∑
j∈M

ujxj , (4.5a)

s.t.
∑
j∈M

wjxj ≤W, (4.5b)

xj ≥ 0 and integer, ∀j ∈M. (4.5c)

An optimal solution (x?1, . . . , x
?
m) of this subproblem is used to generate a column

for (4.4). If
∑

j∈M ujx
?
j > 1, then the column is generated by setting yp := 1 and

xpj := x?j for all j ∈ M . Otherwise, the column is generated by setting yp := 0 and
xpj := 0 for all j ∈M which represents an empty pattern.

4.2 Vehicle routing problem with time windows

Consider a set of customers C = {1, 2, . . . , n} with demands di, for every i ∈ C which
has to be served by a fleet of vehicles represented by set V = {1, 2, . . . , v}. Each
vehicle has a fixed capacity q and can serve as many customers in a route as long as its
capacity is not exceeded by the customers’ requirements. Demand di, cannot be split
and, therefore, each customer i ∈ C must be served by only one vehicle. Additionally,
a vehicle can only service a customer within a time window [ai, bi] and usually a service
time is considered for every customer. Arrivals after time bi are not allowed. Also, if a
vehicle arrives earlier than ai, it will need to wait until ai to serve customer i ∈ C. We
assume all the vehicles are identical (all the same capacity and costs) and are initially
at the same depot. Moreover, it is also assumed that every route must finish at the
depot. The objective is to design a set of minimum cost routes in order to serve all the
customers within their time windows [28, 72, 112].

Let N = {0, 1, . . . , n, n + 1} be a set of vertices such that vertices 0 and n + 1
represent the depot, and the remaining vertices correspond to the customers in C. The
time of travelling from vertex i to vertex j, represented by tij , satisfies the triangle
inequality. With all these elements in mind, the vehicle routing problem with time
windows (VRPTW) can be formulated as follows
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min
∑
k∈V

∑
i∈N

∑
j∈N

cijxijk, (4.6a)

s.t.
∑
k∈V

∑
j∈N

xijk = 1, ∀i ∈ C, (4.6b)

∑
i∈C

di
∑
j∈N

xijk ≤ q, ∀k ∈ V, (4.6c)

∑
j∈N

x0jk = 1, ∀k ∈ V, (4.6d)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0, ∀h ∈ C, ∀k ∈ V, (4.6e)

∑
i∈N

xi,n+1,k = 1, ∀k ∈ V, (4.6f)

sik + wi + tij − Tij(1− xijk) ≤ sjk, ∀ i, j ∈ N, ∀k ∈ V, (4.6g)

ai ≤ sik ≤ bi, ∀i ∈ N, ∀k ∈ V, (4.6h)

xijk ∈ {0, 1}, ∀ i, j ∈ N, ∀k ∈ V. (4.6i)

The binary variable xijk determines whether vehicle k ∈ V visits customer/depot
i ∈ N and then goes immediately to vertex j ∈ N . The continuous variable sik
represents the time vehicle k ∈ V starts to serve customer i ∈ C. Usually, the cost
cij is calculated as the Euclidean distance between customers i and j, although other
measures can be used. The service time required to serve customer i ∈ C is denoted
by wi. Constraints (4.6b) together with (4.6i) guarantee that each customer must
be visited by only one vehicle. Constraints (4.6c) make sure that a vehicle cannot
exceed its capacity. These three sets of constraints together ensure that the demand of
each customer is satisfied by only one vehicle. While constraints (4.6d) assure that each
vehicle has to start its route at the depot, constraints (4.6f) guarantee that each vehicle
has to finish its route at the depot. Constraints (4.6e) ensure that once a vehicle visits
a customer and serves it, it must then move to another customer or end its route at
the depot. Constraints (4.6g) link the vehicle departure time from a customer and its
immediate successor. Indeed, if xijk = 1 then the constraint becomes sik+wi+tij ≤ sjk.
On the other hand, if xijk = 0 and for a suitable large value of Tij , the constraint is
always satisfied. The value of Tij can be defined as max{0, bi +wi + tij − aj} for every
i, j ∈ N . Constraints (4.6h) enforce that the vehicle k serves customer i between time
ai and bi. Note that if a vehicle is not used, its route is defined as (0, n+ 1) with
associated cost equal to 0. The parameters considered for this application such as time
windows, capacity of the vehicles, demands and costs are non-negative and usually
integers.

4.2.1 Dantzig-Wolfe decomposition

The coefficient matrix of the above formulation has a special structure that can be
exploited by DWD, with coupling constraints given by (4.6b) which link all the vehicles.
Defining X as the set of all extreme solutions satisfying constraints (4.6c) - (4.6i) and
defining v independent subsets Xk from X , for each k ∈ V , such that X = X1× . . .×Xv,
separability is gained. Let us replace each Xk by its convex hull conv(Xk) which can
be fully represented by its set of extreme points ([xkijp]i,j∈N , [s

k
ip]i∈N ). For every k ∈ V ,
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the set of indices of all the extreme solutions of conv(Xk) is represented by Pk. Then,
the resulting master problem is defined as

min
∑
k∈V

∑
i∈N

∑
j∈N

∑
p∈Pk

cijx
k
ijpλ

k
p, (4.7a)

s.t.
∑
k∈V

∑
j∈N

∑
p∈Pk

xkijpλ
k
p = 1, ∀i ∈ C, (4.7b)

∑
p∈Pk

λkp = 1, ∀k ∈ V, (4.7c)

λkp ≥ 0, ∀k ∈ V,∀p ∈ Pk, (4.7d)

where for a given p ∈ Pk, xkijp are the components of the corresponding extreme point of
conv(Xk), for all i, j ∈ N . Since the vehicles are identical (i.e., have the same capacity q
and cost of going from i to j), we have that conv(X1) = conv(X2) = . . . = conv(Xv) and
hence the oracle will generate v identical columns. We can avoid this by aggregating
variables and using the following master problem

min
∑
i∈N

∑
j∈N

∑
p∈P

cijxijpλp, (4.8a)

s.t.
∑
j∈N

∑
p∈P

xijpλp = 1, ∀i ∈ C, (4.8b)

λp ≥ 0, ∀p ∈ P, (4.8c)

where P is the set of indices of all extreme points of conv(X̄ ), with X̄ := X1 = . . . = Xv.
Since ([xkijp]i,j∈N , [s

k
ip]i∈N ) = 0 is a feasible solution the convexity constraint can be

dropped since v is a loose upper bound in the constraint
∑

p∈P λp ≤ v. Let u ∈ Rn
denote the dual variables associated with constraints (4.8b). Furthermore, let u =
(u1, . . . , un) be an arbitrary dual solution, and assume u0 = un+1 = 0. The oracle
associated with problem (4.8) is given by the subproblem

min
∑
i∈N

∑
j∈N

(cij − uj)xij , (4.9a)

s.t. ([xij ]i,j∈N , [si]i∈N ) ∈ conv(X̄ ). (4.9b)

Subproblem (4.9) is known as the elementary shortest path problem with resource
constraints [72]. An optimal solution ([x?ij ]i,j∈N , [s

?
i ]i∈N ) of this problem is an extreme

point of conv(X̄ ). To generate a column for (4.8), we set xijp = x?ij , for all i, j ∈ N
which turns to be a vector composed of 0’s and 1’s elements.

4.3 Capacitated lot-sizing problem with setup times

Consider a set of time periods denoted by N = {1, . . . , n} and a set of items denoted by
M = {1, . . . ,m} which are processed by a single machine. The objective is to minimize
the total cost of producing, holding and setting up the machine in order to satisfy
the demands djt of item j ∈ M at each time period t ∈ N . The production, holding
and setup costs of item j in period t are denoted by cjt, hjt and fjt, respectively.
The processing and setup times required to manufacture item j in time period t are
represented by ajt and bjt, respectively. The capacity of the machine in time period t
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is denoted by Ct. This problem is known as the capacitated lot sizing problem with
setup times (CLSPST). Following [114] this problem can be formulated as

min
∑
t∈N

∑
j∈M

(cjtxjt + hjtsjt + fjtyjt) (4.10a)

s.t.
∑
j∈M

(ajtxjt + bjtyjt) ≤ Ct, ∀t ∈ N (4.10b)

sj(t−1) + xjt = djt + sjt, ∀j ∈M,∀t ∈ N, (4.10c)

xjt ≤ Dyjt, ∀j ∈M,∀t ∈ N, (4.10d)

xjt ≥ 0, ∀j ∈M, ∀t ∈ N, (4.10e)

sjt ≥ 0, ∀j ∈M, ∀t ∈ N, (4.10f)

yjt ∈ {0, 1}, ∀j ∈M, ∀t ∈ N, (4.10g)

where xjt represents the production level of item j in period t and sjt is the number of
units in stock of item j at the end of time period t. If yjt = 1, item j is produced in time
period t, while yjt = 0 otherwise. Constraints (4.10b) ensure that for every time period
t, the capacity required for the production plan should not exceed the available capacity
of the machine in that period. Note that the production plan considers processing and
setup times. Constraints (4.10c) are the balance constraints which guarantee that for
every item j, the production in period t and units in stock at the beginning of that
period are equal to the demand and the units in stock at the end of period t. Note
that backlogging is not allowed. Constraints (4.10d) ensure that if item j is produced
in period t, then the machine must be set up, where D is a sufficiently large number.
Constraints (4.10e) and (4.10f) guarantee that the level of production and stock at each
period t for each item j is non-negative. Usually, the initial and final inventory levels
for every product j are assumed to be zero (i.e., sj0 = sjn = 0).

4.3.1 Dantzig-Wolfe decomposition

The coefficient matrix of the above formulation has a special structure. Constraints
(4.10b) are the coupling constraints which link the items. Let us define X as the set
of all points satisfying constraints (4.10c) - (4.10g). For each j ∈ M , we can define
the subset Xj such that X = X1 × . . . × Xm. Following the developments discussed in
Section 3.1, we replace each Xj by its convex hull, conv(Xj), for every j ∈ M which

can be fully represented by its extreme points [xjpt, s
j
pt, y

j
pt]t∈N since it is a bounded set.

The resulting master problem is

min
∑
j∈M

∑
t∈N

∑
p∈Pj

(
cjtx

j
pt + hjts

j
pt + fjty

j
pt

)
λjp (4.11a)

s.t.
∑
j∈M

∑
p∈Pj

(
ajtx

j
pt + bjty

j
pt

)
λjp ≤ Ct, ∀t ∈ N, (4.11b)

∑
p∈Pj

λjp = 1, ∀j ∈M, (4.11c)

λjp ≥ 0, ∀j ∈M,∀p ∈ Pj , (4.11d)

where Pj is the set of indices of all extreme points of conv(Xj), for every j ∈ M . To
obtain the oracle associated with this master problem, let u ∈ Rn− and v ∈ Rm denote
the dual variables associated with constraints (4.11b) and (4.11c), respectively. Note
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that u is restricted to be non-positive. Let u = (u1, . . . , un) and v = (v1, . . . , vm) be an
arbitrary dual solution. The oracle is then defined by m subproblems of the form:

min
∑
t∈N

((cjt − ajtut)xjt + hjtsjt + (fjt − bjtut)yjt)− vj (4.12a)

s.t. [xjt, sjt, yjt]t∈N ∈ conv(Xj), (4.12b)

for each j ∈M . Observe that each subproblem is a single-item lot sizing problem with
modified production and setup costs, and without capacity constraint. Moreover, and
unlike the other two cases, the subproblems are very likely to be different since the
demands and costs are likely to be different. Therefore, m subproblems have to be
solved at every iteration and m columns can be added to the RMP at each column
generation iteration. For a given j ∈ M , if the optimal value of the subproblem
is negative, the corresponding optimal solution [x?jt, s

?
jt, y

?
jt]t∈N is used to generate a

column for (4.11) by setting xjpt = x?jt, s
j
pt = s?jt and yjpt = y?jt. Otherwise, the solution

is discarded and no column is generated from that subproblem.
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Chapter 5

Primal-Dual Column Generation
Method

In this chapter we present theoretical and computational developments of the primal-
dual column generation method (PDCGM). Firstly, we describe the method and its
main components and provide evidence of its convergence. In the second part, we
present the results of computational tests whose aim is to compare the performance
of the primal-dual column generation method with the standard column generation
method (SCGM) and the analytic centre cutting plane method (ACCPM). All the
descriptions and results in this chapter closely follow the developments presented in
[58].

As discussed briefly in Chapter 3, standard column generation and analytic centre
approaches are extremal strategies, as they are based on optimal solutions but for
different objective functions. With the former strategy one obtains an optimal vertex
solution at every iteration while, with the latter, the solution of the barrier problem
associated with the localization set in the dual space. In fact, the analytic centre of a
feasible set corresponds to the optimal solution of a modified dual problem associated
with the RMP. From this point of view, the primal-dual column generation technique
is somewhere in the middle between these two approaches. It relies on solutions that
are close to optimality (sub-optimal), but at the same time not far from the central
trajectory in the dual feasible set (well-centred).

One of the contributions of using sub-optimal solutions is that fewer inner iterations
are usually needed to solve each RMP. This is due to the method not requiring high
accuracy at an initial stage. Hence, the running time per outer iteration is usually
reduced. Another benefit of this strategy is that the dual variables are not expected
to change dramatically from one iteration to another due to the use of well-centred
solutions (close to the central path). This provides stability and reduces the heading-in
effect. As a consequence, fewer outer iterations as well as less total CPU time will
usually be required to solve the MP.

In Figure 5.1, we illustrate the possible dual solutions found by the aforementioned
column generation strategies.
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Hola

Figure 5.1: Schematic illustration of solutions provided by the SCGM (◦), the PDCGM
(�) and the ACCPM (�) strategies in the dual space

The area represented by horizontal lines is the localization set and the dashed line
represents the best dual bound found so far. The circle denotes the solution obtained
by the standard column generation method based on the simplex method which is at
the vertex of the feasible region. On the other hand, the square represents the solution
obtained by the analytic centre cutting plane method. The central trajectory (in a
very particular space) is denoted by the dashed-dotted curved line while the diamond
figure illustrates the solution obtained by the primal-dual column generation method.
Note that the solution obtained by the PDCGM becomes closer to the optimal facet
of the polytope in the dual space as the method approaches the termination. This is
explained in the next section.

The strategy known as the PDCGM was first proposed in [62]. It uses a primal-dual
interior point method to get solutions which have a non-zero distance to optimality and
at the same time, are well-centred in the feasible set. Note that this is not achievable if
one would like to use a simplex-type method since, in general, the distance to optimality
is not known in advance.

5.1 Theoretical developments

Recalling the notation introduced in Chapter 3, we consider that a given RMP is
represented by (3.11). Its optimal primal-dual solution is denoted by (λ, u). As with
standard column generation, the PDCGM starts with an initial RMP with enough
columns to ensure a bounded solution. Nevertheless, at every iteration, instead of
solving the RMP to optimality, a sub-optimal feasible solution (λ̃, ũ) of the current
RMP is obtained. This sub-optimal solution is defined as follows.

Definition 5.1. A primal-dual feasible solution (λ̃, ũ) of the RMP is called a sub-
optimal solution, or ε-optimal solution, if it satisfies

0 ≤ (cT λ̃− bT ũ) ≤ ε(1 + |cT λ̃|),

for some tolerance ε > 0.

We denote by z̃RMP = cT λ̃ the objective value corresponding to the sub-optimal
solution (λ̃, ũ). Since cT λ̃ ≥ cTλ = zRMP , we have the following inequalities zMP ≤
zRMP ≤ z̃RMP and therefore, z̃RMP is a valid upper bound on the optimal value of the
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MP. Once a sub-optimal solution of the RMP is obtained, we send the dual solution
ũ to the oracle. Then the oracle returns either zSP (ũ) = 0, if no columns could be
generated using the proposed query point, or zSP (ũ) < 0, together with one or more
columns to be added to the RMP. Observe that when zSP (ũ) < 0 at least one column
can always be generated, as ũ is dual feasible for the RMP and, hence, all columns
already generated must have a non-negative reduced cost.

Having defined the concept of sub-optimal solutions, we can now show that the
bounds provided by using such solutions, are valid in a column generation context.

To do so, let us first consider the value κ > 0 defined as in (3.14). The value of
κ depends on the application; however, it is usually a known parameter. According
to the following lemma, a lower bound of the optimal value of the MP can still be
obtained. It is the classical Lagrangian bound (see e.g. [11, 17]), but derived from a
column generation scheme and using a subpotimal solution.

Lemma 5.2. Let z̃SP := zSP (ũ) be the value of the oracle corresponding to the sub-
optimal solution (λ̃, ũ). Then, κz̃SP + bT ũ ≤ z?.

Proof. Let λ? be an optimal primal solution of the MP. By using (3.10b) and z̃SP ≤ 0,
we have that

cTλ? − bT ũ =
∑
j∈N

cjλ
?
j −

∑
j∈N

λ?ja
T
j ũ

=
∑
j∈N

λ?j (cj − aTj ũ)

≥
∑
j∈N

λ?j z̃SP

≥ κz̃SP .

Therefore, we have that z? = cTλ? ≥ κz̃SP + bT ũ.

The solution (λ̃, ũ) should also be well-centred in the primal-dual feasible set, in
order to provide more stable dual information to the oracle. We say a point (λ, u) is
well-centred if it satisfies

γµ ≤ (cj − uTaj)λj ≤ (1/γ)µ, ∀j ∈ N, (5.1)

for some γ ∈ (0, 1), where µ = (1/|N |)(cT − uTA)λ. For a given value of γ, condition
(5.1) resembles our definition of the symmetric neighbourhood in (2.16), noting that
sj = cj − uTaj and λj = xj , for every j ∈ N .

By imposing (5.1), we ensure that the point is not too close to the boundary of
the primal-dual feasible set and, therefore, the oscillation of the dual solutions of two
consecutive problems will be relatively small. As pointed out in [57], (5.1) is a natural
way of stabilizing the dual solutions if a primal-dual interior point method is used to
solve the RMP.

One important observation is that the tolerance ε which controls the distance of
(λ̃, ũ) to optimality can be “large” at the beginning of the column generation process,
as a very rough approximation of the MP is known at this time. We exploit this fact
and during the first iterations, the PDCGM aims to find interesting columns as quickly
as possible by solving the RMP to a predefined tolerance. However, solving the RMPs
to a loose tolerance is likely to hamper convergence to the optimal MP so at some
point along the process this tolerance needs to be tightened to ensure that the method
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converges. The best way we have to identify when column generation is converging to
an optimal solution of the MP is by using the relative gap in the outer iterations, which
is given by

gap :=
cT λ̃− (κz̃SP + bT ũ)

1 + |cT λ̃|
, (5.2)

where z̃SP := zSP (ũ), as defined in Lemma 5.2. Then, at the end of every outer
iteration, we recompute the relative gap, and the tolerance ε used in the PDCGM is
updated using

εk := min{εmax, gap
k−1/D}, (5.3)

where D > 1 is the degree of optimality that links the tolerance εk to the relative gap
at iteration k− 1. In our theoretical developments and computational experiments, we
consider D as a fixed parameter. Also, a threshold εmax is used so that the sub-optimal
solution is not too far away from the optimum. Note that the update of the tolerance
after reaching the break point is done gradually and we do not require the method to
solve every RMP to optimality apart from the last iterations. By using this dynamically
adjusted tolerance, we expect to reduce the problems arising when using the standard
column generation, namely the heading-in and the tailing-off effects.

Figure 5.2 shows the behaviour of the PDCGM when solving random instances
of the cutting stock problem, the vehicle routing problem with time windows and
the capacitated lot-sizing problem with setup times adding one column per iteration.
These figures illustrate the changes in the relative duality gap over the iterations in a
logarithmic scale. We have included the results obtained with the SCGM. Note that
these figures show the results for the same instances used in Figure 3.3. If one considers
the heading-in stage, the PDCGM spends fewer iterations than the SCGM. We believe
this is due to the use of well-centred dual solutions so columns with richer information
are obtained earlier in the process. Once the method has obtained enough information,
it converges in fewer iterations than the SCGM reducing the tailing-off effect. One can
observe from these figures that the rate of convergence of the PDCGM at this stage is
much faster than the rate of convergence of the SCGM. These could be explained again
by the use of well-centred dual solutions as well as the use of a primal-dual interior
point method and the dynamic adjustment of the tolerance used in the PDCGM. These
figures are only a sample of the results obtained with the PDCGM. For more extensive
computational experiments, refer to Section 5.2. Note that increments in the relative
duality gap with the PDCGM occur due to the use of sub-optimal solutions.
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Figure 5.2: Comparison between the standard column generation method and the
primal-dual column generation method
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During all the process, we pass to subproblems the well-centred solutions provided
by the use of the primal-dual interior point method and considering the symmetric
neighbourhood.

Notice that unlike the standard approach, z̃SP = 0 does not guarantee convergence
of the method since there may still be a difference between cT λ̃ and bT ũ. Lemma 5.3
below shows that the gap is still reduced in this case, and the progress of the algorithm
is guaranteed.

Lemma 5.3. Let (λ̃, ũ) be the sub-optimal solution of the RMP, found at iteration k
with tolerance εk > 0. If z̃SP = 0, then the new relative gap is strictly smaller than the
previous one, i.e., gapk < gapk−1.

Proof. We have that z̃RMP = cT λ̃ is an upper bound of the optimal solution of the MP.
Also, from Lemma 5.2 we obtain the lower bound bT ũ, since z̃SP = 0. Hence, the gap
in the current iteration is given by

gapk =
cT λ̃− bT ũ
1 + |cT λ̃|

.

Notice that from Definition 5.1, the right-hand side of this equality is less or equal than
εk, the tolerance used to obtain (λ̃, ũ). Hence, gapk ≤ εk. We have two possible values
for εk. If εk = εmax, then by (5.3) gapk−1 ≥ Dεk > εk. Otherwise, εk = gapk−1/D
and, again, gapk−1 > εk which completes the proof.

Algorithm 5.1 summarizes the main steps of the primal-dual column generation
method. Notice that this column generation method has a simple algorithmic descrip-
tion, similar to the standard approach (Algorithm 3.1). Hence, it can be implemented
with the same level of difficulty if a primal-dual interior point solver is readily available.
Notice that κ is known in advance and is problem dependent. Also, the upper bound
of the RMP, z̃RMP , may increase slightly from one iteration to another due to the use
of sub-optimal solutions and, hence, we store the best value found so far in UB (Step
3 in Algorithm 5.1).

Algorithm 5.1 The Primal-Dual Column Generation Method

Input: Initial RMP; parameters κ, εmax > 0, D > 1, δ > 0.
Set: LB = −∞, UB =∞, gap =∞, ε = 0.5;

1: while (gap ≥ δ) do
2: find a well-centred ε-optimal solution (λ̃, ũ) of the RMP;
3: UB = min{UB, z̃RMP };
4: call the oracle with the query point ũ and set z̃SP := zSP (ũ);
5: LB = max{LB, κz̃SP + bT ũ};
6: gap = (UB− LB)/(1 + |UB|);
7: ε = min{εmax, gap/D};
8: if (z̃SP < 0) then add the new columns to the RMP;
9: end while

Since the PDCGM relies on sub-optimal solutions of each RMP, it is important to
provide guarantees that it is a valid column generation procedure. In other words, we
have to ensure that the method is a finite iterative process that delivers an optimal
solution, λ?, of the MP. Despite the fact that the optimality tolerance ε decreases
geometrically in the algorithm, there is a special case in which the subproblem value,
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zSP (ũ), is zero which would cause the PDCGM to stall. However, by using Lemma 5.3
we can ensure that the primal-dual column generation method still converges to the
optimal solution of the MP. The proof of convergence is given in Theorem 5.4.

Theorem 5.4. Let z? be the optimal value of the MP. Given δ > 0, the primal-dual
column generation method converges in a finite number of steps to a primal feasible
solution λ̂ of the MP with objective value z̃ that satisfies

(z̃ − z?) < δ(1 + |z̃|). (5.4)

Proof. Consider an arbitrary iteration k of the primal-dual column generation method,
with corresponding sub-optimal solution (λ̃, ũ). After calling the oracle, two situations
may occur:

1. z̃SP < 0 and new columns have been generated. These columns correspond to dual
constraints of the MP that are violated by the dual point ũ. Since the columns
are added to the RMP, the corresponding dual constraints will not be violated in
the next iterations. Therefore, it guarantees the progress of the algorithm. Also,
this case can only happen a finite number of times, as there are a finite number
of columns in the MP.

2. z̃SP = 0 and no columns have been generated. If additionally we have εk < δ,
then from Lemma 5.3 the gap in the current iteration satisfies gapk < δ, and the
algorithm terminates with the sub-optimal solution (λ̃, ũ). Otherwise, we also
know from Lemma 5.3 that the gap is still reduced, and although the RMP in
the next iteration will be the same, it will be solved to a tolerance εk+1 < εk.
Moreover, the gap is reduced by a factor of 1/D which is less than 1 and, hence,
after a finite number of iterations we obtain a gap less than δ.

At the end of the iteration, if the current gap satisfies gapk < δ, then the algorithm
terminates and we have

z̃RMP − (κz̃SP + bT ũ)

1 + |z̃RMP |
< δ.

Since κz̃SP + bT ũ ≤ z?, the inequality (5.4) is satisfied with z̃ = z̃RMP . The primal
solution λ̃ leads to a primal feasible solution of the MP, given by λ̂j = λ̃j , ∀j ∈ N , and

λ̂j = 0, otherwise. If gapk ≥ δ, a new iteration is carried out and we have one of the
above situations again.

Having shown that the PDCGM converges to an optimal solution in a finite number
of iterations, we now provide some remarks about its implementation.

Since we require well-centred primal-dual solutions, we rely on a state-of-the-art
primal-dual interior point solver that uses a symmetric neighbourhood of the central
path. In our implementation, each RMP is solved by the interior point solver HOPDM
[54] which keeps the iterates inside a neighbourhood which has the form (5.1). To
achieve this, the solver makes use of multiple centrality correctors [21, 55].

Also, an efficient warmstarting technique is crucial for the good performance of a
column generation technique based on an interior point method such as the PDCGM.
In the course of the column generation process, closely-related problems are solved.
Taking advantage of the similarities between these problems could reduce the compu-
tational effort of solving a sequence of them. In our implementation, we rely on the
reoptimization technique available in the solver HOPDM [56]. The main idea of this
strategy consists of storing a near-optimal and well-centred iterate when solving a given
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RMP. After a modification is carried out on the RMP (addition of new columns), the
stored point is adjusted to create a full-dimensional initial point to start from. Warm-
starting is a key aspect of a successful column generation implementation. Therefore,
in Chapter 6 we include a thorough analysis of this feature and propose a new warm-
starting strategy in this context.

Finally, obtaining sub-optimal primal-dual solutions is a key feature of the PDCGM.
Hence a primal-dual interior point method is well-suited for the implementation of the
PDCGM. Moreover, standard simplex-based methods cannot straightforwardly provide
sub-optimal solutions nor solutions which are well-centred in the dual space. Instead,
the primal and dual solutions are always on the boundaries of their corresponding feasi-
ble sets. Besides, simplex-based approaches do not provide control on the infeasibilities
of the solutions before optimality is reached.

Before moving to the next section of the chapter, it is important to clarify that the
PDCGM is more than just a strategy which replaces the simplex method with a primal-
dual interior point method in column generation. It has to be understood as a new
column generation strategy that exploits the rich information provided by a primal-
dual interior point method (distance to optimality) to obtain sub-optimal solutions as
needed. Also, the dynamic adjustment of the tolerance ensures that the method does
not stall and converges to the optimal solution. Finally, the method requires only two
parameters to be set which have straightforward meanings: εmax defines the tolerance
for the initial iterations when a loose approximation of the MP is at hand, while D,
determines how fast we would like to approach optimality.

5.2 Computational study

In this section we present extensive numerical results obtained by using different column
generation strategies for different applications. Note that the results included here
follow a different presentation than the ones discussed in [58].

As benchmarks we have chosen three different applications which are well known in
the column generation literature and have been described already in Chapter 4: the cut-
ting stock problem (CSP), the vehicle routing problem with time windows (VRPTW),
and the capacitated lot sizing problem with setup times (CLSPST). A description of
the instances used in this study and the class they belong to is available in Appendix A.
For each application, we have implemented three different column generation strategies
which were already described. A brief summary of each strategy and some implemen-
tation considerations are given below:

� Standard column generation method (SCGM): each RMP is solved to optimality
by a simplex-type method to obtain an extreme optimal dual solution. The
implementation closely follows the steps presented in Algorithm 3.1. We have
used one of the best available linear programming solvers, IBM ILOG CPLEX
v.12.1 [71] to obtain such a solution. Preliminary tests using the default settings
for each solver show that the primal simplex method is slightly better than the
dual method as the optimal basis remains primal feasible from one outer iteration
to another. The overall performance using the barrier method (with crossover)
was inferior to the other two methods.

� Primal-dual column generation method (PDCGM): the sub-optimal solutions of
each RMP are obtained by using the interior point solver HOPDM [54], which
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is able to efficiently provide well-centred sub-optimal dual points. The algorithm
has been already described in Algorithm 5.1.

� Analytic centre cutting plane method (ACCPM): the dual point at each iteration
is an approximate analytic centre of the localization set associated with the cur-
rent RMP described in Section 3.5. The applications were implemented on top
of the open-source solver OBOE/COIN [19], a state-of-the-art implementation of
the analytic centre strategy with additional stabilization terms [5].

For each application and for the aforementioned column generation strategies, the
subproblems are solved using the same source code. We provide more details of the
oracle solvers used in each application later. Also, the SCGM and the PDCGM are
initialized with the same columns and, hence, have the same initial RMP. The ACCPM
requires an initial dual point to start from, instead of a set of initial columns. After
preliminary tests, we have chosen initial dual points that led to better performance of
the method on average. We have used different initial dual points for each application,
as specified later. All the computational experiments in this section have been obtained
using a computer with a 2.26 Ghz Intel Core 2 Duo processor, 4 GB RAM, and Linux
operating system.

For each of the strategies, we stop the column generation procedure when the rela-
tive gap becomes smaller than the default accuracy δ = 10−6.

The purpose of comparing the PDCGM with the SCGM is to provide evidence of
how much can be gained in overall performance in relation to the standard approach
which uses extreme dual solutions without any stabilization. It is important to note
that due to degeneracy issues an extreme optimal dual solution obtained by the SCGM
can be at any vertex of the optimal facet of the feasible polyhedra. Undoubtedly,
it would be interesting to consider stabilized versions of standard column generation
in our computational comparisons. However, the lack of publicly available codes of
stabilized versions discouraged us from including them. For the interested reader,
available comparisons between standard and stabilized column generation are available
in the literature for the same applications [11, 17, 109]. A brief discussion about some
of these results is presented in Section 5.2.5.

Additionally, we have included the ACCPM in our experiments for being a strategy
that also relies on an interior point method (although essentially different) providing
well-centred dual solutions.

Before continuing, the performance of interior point methods in column generation
by solving each RMP to optimality by a state-of-the-art solver (HOPDM) has been
tested. The results obtained were not better than the ones obtained by the PDCGM
which shows that an appropriate use of an interior point method is essential for its
success in the column generation context.

In the applications addressed in this thesis, the column generation schemes are
obtained by applying the Dantzig-Wolfe decomposition principle to the corresponding
integer programming formulations [25, 116]. In each application, the decomposition
leads to an integer MP and also an integer (pricing) subproblem. As shown in Chapter
4, we relax the integrality of the variables in the integer MP and then solve it by column
generation, which gives a lower bound on the optimal value of the original formulation.
To obtain an integer solution, it would be necessary to combine column generation
with a branch-and-bound search, which is called a branch-and-price method [8, 86].
However, this combination is beyond the scope of this thesis, as we are concerned with
the behaviour of the column generation strategies. A very recent attempt of combining
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the primal-dual column generation method in a branch-and-price context to solve the
vehicle routing problem with time windows can be found in [98]. This study shows
encouraging results when compared to the state-of-the-art method to solve this class
of problems.

5.2.1 Cutting stock problem

To analyse the performance of the different column generation strategies addressed
here, we have initially selected 262 instances from the one-dimensional CSP literature.
All the instances were obtained from http://www.math.tu-dresden.de/~capad/.

For this application, the initial RMP consists of columns generated by m homo-
geneous cutting patterns, which corresponds to selecting only one piece per pattern
as many times as possible without violating the width W . In the ACCPM approach
and after testing with different values, we have used the initial guess u0 = 0.5e which
has provided the best results for this strategy. The knapsack problem is solved using a
branch-and-bound method described in [82], the implementation of which was provided
by the Leão.

Adding one column to the RMP per iteration In the first set of numerical
experiments we consider that only one column is generated by the subproblem solver at
each iteration. We have classified the instances into different classes. Table 5.1 presents
for each class and strategy: the average number of outer iterations (ite), the average
CPU time spent in the oracle in seconds (or(s)) and the average CPU time required
for the column generation procedure in seconds (tot(s)). The number of instances per
class is shown in column #. Additionally, the last four columns show the ratio between
the extreme strategies and the PDCGM.

From the results of our first set of experiments, it seems clear that the PDCGM
does not offer any savings in terms of CPU time compared to the SCGM when “easy”
instances are solved (classes MTP0xJES, MTP0, hard28, 7hard, 53NIRUPs and gau3).
Note that these classes are considered “easy” since the total time required to solve the
subproblems (oracle time) for all the strategies is less than 1 second on average. Among
these classes, the SCGM is the strategy that offers the best performance if total CPU
time is considered. Note that the value of m (number of different widths) included
in this class varies from 20 to 189. For all these classes, the PDCGM is the strategy
that achieves the smallest number of iterations on average. Similar results are obtained
when considering the class with most instances (mX), where m varies from 197 to 200.
For this class, the oracle solver requires more time to find the columns and, therefore,
the savings in terms of iterations start to pay off. Finally, if we consider class U, with
m varying from 15 to 585, the best overall performance is provided by the PDCGM in
both performance measures, number of iteration and total CPU time. Note that for
this class the three strategies require a considerable time to solve the subproblems and,
therefore, savings in number of iterations have an important impact on the total CPU
time. The ACCPM does not offer any benefit in any class when compared to the other
two strategies.

Observe that the RMPs solved at each outer iteration are actually small/medium
size linear programming problems. The number of columns in the last RMP is ap-
proximately the number of initial columns plus the number of outer iterations. Note
that for the SCGM the time spent in solving the RMPs is very small in relation to the
time required to solve the subproblems, regardless the size of the instances. It happens
because the simplex method implementation available in CPLEX is very efficient on
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solving/reoptimizing these linear programming problems. For the PDCGM and the
ACCPM, the proportion of the total CPU time required to solve the RMP and the
oracle varies according to the size of the instances.

Table 5.1: Average results on 262 instances of CSP for the SCGM, the PDCGM and
the ACCPM adding one column at a time.

SCGM PDCGM ACCPM SCGM/PDCGM ACCPM/PDCGM

class # ite or(s) tot(s) ite or(s) tot(s) ite or(s) tot(s) ite tot(s) ite tot(s)

U 20 975.6 632.1 636.8 782.7 134.4 154.7 871.5 582.9 694.7 1.2 4.1 1.1 4.5
mX 145 803.6 4.1 5.2 504.2 4.2 9.2 651.6 6.3 20.5 1.6 0.6 1.3 2.2
MTP0xJES 3 379.7 0.8 0.9 244.7 0.8 1.6 294.0 0.8 2.2 1.6 0.6 1.2 1.4
MTP0 5 383.0 0.7 0.8 264.0 0.6 1.5 303.6 0.7 2.4 1.5 0.5 1.2 1.6
hard28 28 535.7 0.3 0.8 386.4 0.5 2.9 475.8 0.7 6.1 1.4 0.3 1.2 2.1
7hard 7 390.6 0.2 0.4 275.1 0.2 1.4 342.9 0.3 2.6 1.4 0.3 1.2 1.8
53NIRUPs 53 356.6 0.2 0.4 221.0 0.2 1.1 273.5 0.3 2.1 1.6 0.3 1.2 1.8
gau3 1 87.0 0.0 0.0 73.0 0.0 0.2 116.0 0.0 0.1 1.2 0.1 1.6 0.7

Adding k-best columns to the RMP per iteration The knapsack solver used
to solve CSP subproblems is able to obtain not only the optimal solution, but also the
k-best solutions for a given k > 0. Hence, we can generate up to k columns in one call
to the oracle to be added to the RMP. It usually improves the performance of a column
generation procedure, since more information is gathered at each iteration. With this
in mind, we carry out a second set of experiments for CSP in which we have tested
these strategies for three different values of k.

Table 5.2: Average results on 262 instances of CSP for the SCGM, the PDCGM and
the ACCPM adding up to k columns at a time.

SCGM PDCGM ACCPM SCGM/PDCGM ACCPM/PDCGM

k class ite or(s) tot(s) ite or(s) tot(s) ite or(s) tot(s) ite tot(s) ite tot(s)

10

U 304.4 311.9 315.0 176.2 57.4 62.5 293.4 328.8 435.9 1.7 5.0 1.7 7.0
mX 219.6 1.9 2.5 143.0 1.7 4.0 365.6 5.3 53.0 1.5 0.6 2.6 13.1
MTP0xJES 82.0 0.3 0.3 60.0 0.3 0.6 133.3 0.7 2.3 1.4 0.6 2.2 3.9
MTP0 84.2 0.2 0.3 61.8 0.3 0.6 137.6 0.6 2.9 1.4 0.5 2.2 4.8
hard28 149.1 0.2 0.5 110.7 0.3 1.4 257.9 0.8 16.1 1.3 0.4 2.3 11.7
7hard 85.3 0.1 0.2 70.0 0.1 0.5 170.6 0.3 4.7 1.2 0.4 2.4 8.7
53NIRUPs 82.6 0.1 0.2 59.2 0.1 0.5 141.9 0.3 4.1 1.4 0.4 2.4 8.5
gau3 25.0 0.0 0.0 21.0 0.0 0.1 78.0 0.0 0.3 1.2 0.3 3.7 4.3

50

U 186.8 223.8 228.2 103.2 64.0 69.7 277.6 106.4 372.5 1.8 3.3 2.7 5.3
mX 109.8 3.9 4.5 89.1 4.2 7.6 408.4 23.4 223.2 1.2 0.6 4.6 29.2
MTP0xJES 35.3 0.3 0.4 35.0 0.6 0.8 122.3 1.9 4.8 1.0 0.5 3.5 5.7
MTP0 31.8 0.3 0.3 34.6 0.5 0.8 137.8 1.7 7.1 0.9 0.4 4.0 9.2
hard28 66.5 0.6 0.9 68.8 0.9 2.4 279.0 4.4 57.3 1.0 0.4 4.1 23.9
7hard 37.0 0.2 0.3 42.4 0.4 0.9 183.1 1.6 14.6 0.9 0.4 4.3 16.6
53NIRUPs 33.8 0.2 0.3 35.8 0.3 0.7 148.8 1.3 12.6 0.9 0.4 4.2 17.4
gau3 13.0 0.0 0.0 20.0 0.0 0.1 84.0 0.2 0.7 0.7 0.2 4.2 5.7

100

U 137.6 248.5 252.5 85.2 72.1 79.3 291.6 158.1 548.3 1.6 3.2 3.4 6.9
mX 84.8 8.4 9.0 76.4 9.6 14.9 464.2 68.1 468.8 1.1 0.6 6.1 31.5
MTP0xJES 22.7 0.4 0.5 28.7 1.0 1.3 131.3 3.6 8.3 0.8 0.4 4.6 6.6
MTP0 25.4 0.5 0.5 28.4 0.8 1.1 144.0 3.7 11.0 0.9 0.5 5.1 9.7
hard28 48.2 1.3 1.5 57.1 2.2 4.2 304.1 13.3 105.5 0.8 0.4 5.3 25.2
7hard 27.0 0.5 0.6 37.4 0.9 1.5 198.3 4.3 35.7 0.7 0.4 5.3 23.6
53NIRUPs 23.5 0.4 0.5 30.5 0.7 1.2 158.4 3.4 25.7 0.8 0.4 5.2 21.4
gau3 8.0 0.0 0.0 17.0 0.1 0.2 87.0 0.3 3.6 0.5 0.2 5.1 21.1

In Table 5.2, we present the results obtained by adding more than one column at
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each iteration. For the “easy” classes, the SCGM is more efficient than the PDCGM
and the ACCPM, regardless the number of columns added at each iteration. Similar
results are obtained when class mX is considered. However, when instances in class U
are solved, the PDCGM is on average more efficient than the SCGM and the ACCPM
in terms of both outer iterations and CPU time. For instance, if we consider k = 100,
the PDCGM is 3.2 times faster than the SCGM and 6.9 times faster than the ACCPM.
Clearly, the behaviour of the ACCPM is adversely affected by the number of columns
added at a time, as the number of iterations and the CPU time required for solving
the RMPs are considerably increased for larger values of k. The main reason for
this behaviour is that the localization set may be drastically changed from one outer
iteration to another if many columns are added. Hence, finding the new analytic centre
can be very expensive in this case. A discussion about the warmstarting strategy
proposed for the ACCPM is included in Chapter 6.

To conclude this initial set of experiments, it has been observed that the PDCGM
outperforms the other two strategies in solving the instances which challenge the column
generation strategies (class U). In order to study whether this relative performance can
be extended to even larger and more difficult instances, we have performed a second
set of experiments.

Additionally, and in order to study the impact of the size of the problems on the
different strategy behaviours we have further selected 14 large instances from http:

//www.math.tu-dresden.de/~capad/ and compared the performance of the three col-
umn generation approaches. These instances have m varying from 615 to 1005, which
leads to larger restricted master problems and also larger subproblems. Table 5.3 shows
the results of this experiment when 100 columns are added per iteration. In all cases,
the PDCGM is faster and requires fewer iterations than the SCGM and the ACCPM,
which supports the conclusion that the relative performance of the PDCGM is improved
as the instances become larger and more difficult.

Table 5.3: Results on 14 large instances of CSP for the SCGM, the PDCGM and the
ACCPM adding up to 100 columns at a time.

SCGM PDCGM ACCPM SCGM/PDCGM ACCPM/PDCGM

name m ite or(s) tot(s) ite or(s) tot(s) ite or(s) tot(s) ite tot(s) ite tot(s)

U09498 1005 548 12760 12947 293 5545 5678 762 10054 21254 1.9 2.3 2.6 3.7
U09513 975 518 9741 9904 267 4169 4277 779 7404 19362 1.9 2.3 2.9 4.5
U09528 945 541 9011 9173 276 4811 4924 740 6586 15920 2.0 1.9 2.7 3.2
U09543 915 506 7676 7798 263 3624 3724 723 5255 13449 1.9 2.1 2.7 3.6
U09558 885 482 5479 5585 265 2631 2730 683 4222 10861 1.8 2.0 2.6 4.0
U09573 855 473 4694 4771 230 1980 2054 672 3732 9794 2.1 2.3 2.9 4.8
U09588 825 467 4876 4950 247 1574 1649 658 3983 9376 1.9 3.0 2.7 5.7
U09603 795 465 3894 3962 237 1598 1668 627 3055 7504 2.0 2.4 2.6 4.5
U09618 765 424 2773 2830 203 1042 1092 617 2156 6467 2.1 2.6 3.0 5.9
U09633 735 432 2833 2878 217 912 969 595 1751 5308 2.0 3.0 2.7 5.5
U09648 705 424 2611 2659 209 808 857 582 1403 4466 2.0 3.1 2.8 5.2
U09663 675 381 2156 2187 202 613 654 534 1074 3325 1.9 3.3 2.6 5.1
U09678 645 376 1745 1775 173 387 418 542 1043 3395 2.2 4.3 3.1 8.1
U09693 615 384 1324 1347 165 401 427 520 876 2773 2.3 3.2 3.2 6.5

5.2.2 Vehicle routing problem with time windows

In order to test the behaviour of the different column generation strategies for VRPTW,
we have selected 87 instances from the literature (http://www2.imm.dtu.dk/~jla/
solomon.html), which were originally proposed in [112]. The initial columns of the
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RMP have been generated by n single-customer routes which correspond to assigning
one vehicle per customer. In the ACCPM approach, we have considered the initial guess
u0 = 100.0e which after testing various settings has proven to be the choice which gives
the best overall results for this application. Note that although several algorithms
are available in the literature for solving the pricing problem (see [72] for a survey),
solving it to optimality may require a relatively large CPU time, especially when the
time windows are wide. As a consequence, a relaxed version is solved in practice,
in which non-elementary paths are allowed (i.e., paths that visit the same customer
more than once). Even though the lower bound provided by the column generation
scheme may be slightly worse in this case, the CPU time to solve the subproblem is
considerably reduced. In all our implementations, the subproblem is solved by our own
implementation of the bounded bidirectional dynamic programming algorithm proposed
in [107], with state-space relaxation and identification of unreachable nodes [37]. For
more details about this implementation, we refer the reader to [98].

Adding one column to the RMP In Table 5.4 we compare the performance of
the three strategies when only one column is added to the RMP at each iteration. For
each class and strategy we present: the number of outer iterations (ite), the average
CPU time to solve the subproblems in seconds (or(s)) and the average total CPU time
required for the column generation method in seconds (tot(s)). Column # contains
the number of instances per class. In the last four columns, the ratios between the
extreme strategies and the PDCGM in terms of outer iterations and total CPU time,
are presented. The instances are grouped in terms of the distribution of the customers
(C: cluster; R: random; RC: a combination of both) and number of customers (25,
50 and 100). For instance, class C50 contains instances in which 50 customers are
distributed in clusters.

For all the classes, the PDCGM shows the best average performance in every class in
the number of iterations and total CPU time compared with the other two strategies.
When the size of the instances increases, the difference between the SCGM and the
other two strategies increases as well, with the SCGM being the one which shows the
worst overall performance. Considering the most challenging instances (i.e., C100,
R100 and RC100), the PDCGM is on average between 3.0 and 6.4 and between 1.0 and
1.4 times faster than the SCGM and the ACCPM, respectively.

Notice that, differently from what was observed on CSP results, the CPU time
required for solving the RMPs (difference between tot(s) and or(s)) is very small not
only for the SCGM, but also for the PDCGM and the ACCPM. For VRPTW, the
RMPs have the set covering structure, which corresponds to a very sparse coefficient
matrix, a property that is well exploited by the solvers.
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Table 5.4: Average results on 87 instances of VRPTW for the SCGM, the PDCGM
and the ACCPM adding one column at a time.

SCGM PDCGM ACCPM SCGM/PDCGM ACCPM/PDCGM

class # ite or(s) tot(s) ite or(s) tot(s) ite or(s) tot(s) ite tot(s) ite tot(s)

C25 9 142.3 1.0 1.0 35.7 0.3 0.3 53.6 0.3 0.4 4.0 3.1 1.5 1.1
R25 12 77.8 0.3 0.4 52.9 0.2 0.3 146.0 0.2 0.4 1.5 1.1 2.8 1.1
RC25 8 85.3 1.1 1.2 57.1 0.8 0.9 107.0 1.0 1.2 1.5 1.3 1.9 1.4
C50 9 446.7 32.1 32.3 60.3 4.4 4.5 74.6 4.4 4.6 7.4 7.1 1.2 1.0
R50 12 211.6 12.2 12.3 122.7 4.8 5.1 214.9 6.4 6.8 1.7 2.4 1.8 1.3
RC50 8 193.8 18.2 18.3 115.5 9.8 10.1 182.6 12.7 13.1 1.7 1.8 1.6 1.3
C100 9 1049.7 333.8 334.8 115.8 51.9 52.3 127.9 50.0 50.4 9.1 6.4 1.1 1.0
R100 12 700.6 549.0 549.7 260.2 157.5 158.4 375.6 205.9 207.8 2.7 3.5 1.4 1.3
RC100 8 660.1 503.5 504.1 254.1 168.7 169.5 351.9 227.4 229.2 2.6 3.0 1.4 1.4

Adding k-best columns to the RMP Since the subproblem solver is able to pro-
vide the k-best solutions at each iteration, we have run a second set of experiments. For
each column generation method, we have solved each instance with k equal to 10, 50,
100, 200 and 300. In Table 5.5 we show the results of these experiments where column
k denotes the maximum number of columns added at each iteration to the RMP.

For the three classes with 25 customers (C25, R25 and RC25), the SCGM and
the PDCGM have a similar overall performance up to a point in which the SCGM
outperforms the PDCGM. This is due to the fact that the RMPs are solved more
efficiently by the solver in CPLEX than HOPDM. However, it is important to note
that all the instances in these classes, are solved in less than 1 second on average by
the two strategies. Now, if we take into account classes with 50 and 100 customers, the
results obtained considering the total CPU time show that the PDCGM is consistently
more efficient than the SCGM for every k. In terms of column generation iterations,
the results obtained with the PDCGM and the SCGM for different values of k when
50 customers are considered are similar and there is not a clear winner. However,
if larger instances are considered (i.e., 100 customers), the PDCGM outperforms the
SCGM. On the other hand, the PDCGM is consistently better than the ACCPM in
both performance measures, for all the classes and for all the choices of k. Note that the
performance of the ACCPM seems to be unaffected by the number of columns added
per iteration.

52



Table 5.5: Average results on 87 instances of VRPTW for the SCGM, the PDCGM
and the ACCPM adding up to k columns at a time.

SCGM PDCGM ACCPM SCGM/PDCGM ACCPM/PDCGM

k class ite or(s) tot(s) ite or(s) tot(s) ite or(s) tot(s) ite tot(s) ite tot(s)

10

C25 35.8 0.4 0.4 18.9 0.1 0.2 44.3 0.2 0.3 1.9 2.2 2.3 1.6
R25 19.3 0.1 0.1 22.9 0.1 0.2 126.9 0.1 0.3 0.8 0.7 5.5 1.8
RC25 25.6 0.4 0.4 25.1 0.3 0.4 99.1 0.9 1.0 1.0 1.1 3.9 2.7
C50 101.1 9.4 9.5 28.1 1.8 1.9 56.8 3.3 3.4 3.6 4.9 2.0 1.8
R50 49.8 3.9 3.9 40.1 2.0 2.2 158.0 4.4 4.8 1.2 1.8 3.9 2.2
RC50 53.4 5.8 5.9 45.0 3.8 3.9 141.3 9.3 9.6 1.2 1.5 3.1 2.4
C100 271.9 93.5 94.3 49.3 16.5 16.9 91.7 32.0 32.5 5.5 5.6 1.9 1.9
R100 152.4 125.4 125.8 86.2 52.0 52.7 205.5 105.2 106.9 1.8 2.4 2.4 2.0
RC100 147.8 118.3 118.7 78.3 52.0 52.6 207.1 135.7 137.1 1.9 2.3 2.6 2.6

50

C25 20.0 0.3 0.3 17.8 0.1 0.2 43.1 0.2 0.3 1.1 1.4 2.4 1.5
R25 10.2 0.1 0.1 17.3 0.1 0.1 126.8 0.1 0.3 0.6 0.6 7.4 2.2
RC25 14.5 0.3 0.3 19.6 0.2 0.3 95.4 0.9 1.1 0.7 0.8 4.9 3.3
C50 49.6 5.2 5.3 23.0 1.4 1.6 55.1 3.1 3.3 2.2 3.3 2.4 2.1
R50 24.3 2.4 2.4 26.7 1.3 1.5 155.8 4.3 4.7 0.9 1.5 5.8 3.0
RC50 27.8 3.2 3.2 29.8 2.3 2.5 139.3 9.4 9.8 0.9 1.3 4.7 3.8
C100 131.0 46.8 47.7 40.6 12.9 13.6 88.4 31.0 32.0 3.2 3.5 2.2 2.4
R100 68.2 58.8 59.3 55.3 32.3 33.6 195.9 95.1 97.9 1.2 1.8 3.5 2.9
RC100 69.5 58.0 58.4 47.5 31.4 32.2 205.4 133.6 135.4 1.5 1.8 4.3 4.2

100

C25 16.6 0.2 0.2 16.6 0.1 0.2 43.9 0.2 0.4 1.0 1.2 2.7 1.8
R25 8.8 0.1 0.1 15.8 0.1 0.2 126.8 0.1 0.3 0.6 0.5 8.1 2.1
RC25 12.3 0.2 0.2 18.4 0.2 0.3 95.1 0.9 1.1 0.7 0.7 5.2 3.3
C50 39.3 4.4 4.5 21.0 1.5 1.8 55.6 3.2 3.6 1.9 2.4 2.6 2.0
R50 18.5 2.0 2.0 23.4 1.1 1.4 154.5 4.2 4.8 0.8 1.4 6.6 3.5
RC50 22.3 2.8 2.8 25.3 1.8 2.1 139.5 9.5 10.0 0.9 1.4 5.5 4.9
C100 94.7 35.2 36.3 31.8 11.8 12.8 90.9 31.1 32.9 3.0 2.8 2.9 2.6
R100 53.1 45.7 46.2 40.0 23.3 24.6 196.8 94.2 98.2 1.3 1.9 4.9 4.0
RC100 50.9 43.0 43.4 41.6 25.3 26.5 204.4 130.2 132.7 1.2 1.6 4.9 5.0

200

C25 13.6 0.2 0.2 15.9 0.1 0.3 44.7 0.2 0.4 0.9 0.8 2.8 1.6
R25 7.0 0.1 0.1 15.1 0.1 0.2 126.8 0.2 0.3 0.5 0.4 8.4 1.8
RC25 9.9 0.2 0.2 18.0 0.2 0.4 94.4 0.9 1.1 0.5 0.5 5.2 2.8
C50 31.1 3.5 3.6 19.3 1.1 1.6 57.6 3.0 3.8 1.6 2.3 3.0 2.4
R50 14.8 1.6 1.7 21.5 1.0 1.4 155.6 4.2 4.9 0.7 1.2 7.2 3.5
RC50 18.1 2.1 2.1 22.6 1.6 2.1 140.0 9.6 10.2 0.8 1.0 6.2 4.9
C100 69.3 27.0 28.2 27.9 9.7 11.2 92.7 31.0 34.9 2.5 2.5 3.3 3.1
R100 41.4 36.3 36.9 35.0 19.5 21.5 198.8 90.3 100.8 1.2 1.7 5.7 4.7
RC100 41.6 35.4 35.9 33.5 21.1 22.7 204.3 127.5 132.8 1.2 1.6 6.1 5.8

300

C25 12.3 0.2 0.2 16.3 0.1 0.4 46.1 0.2 0.5 0.8 0.5 2.8 1.3
R25 6.6 0.1 0.1 14.3 0.1 0.2 126.8 0.1 0.3 0.5 0.3 8.8 1.6
RC25 10.3 0.2 0.2 17.4 0.2 0.5 96.0 0.9 1.2 0.6 0.4 5.5 2.5
C50 26.3 3.0 3.2 19.1 1.2 2.0 58.6 2.9 4.1 1.4 1.6 3.1 2.0
R50 12.8 1.5 1.5 20.6 0.9 1.4 155.5 4.2 5.1 0.6 1.1 7.6 3.6
RC50 16.4 2.1 2.1 21.8 1.6 2.2 140.0 9.2 9.9 0.8 1.0 6.4 4.5
C100 57.0 24.2 25.8 28.0 9.5 11.9 96.6 31.2 38.6 2.0 2.2 3.4 3.2
R100 35.7 30.8 31.5 33.4 18.7 21.7 197.6 85.4 100.3 1.1 1.5 5.9 4.6
RC100 36.9 30.7 31.3 32.6 20.0 22.3 206.4 124.6 132.0 1.1 1.4 6.3 5.9

Additionally, we have tested the three described column generation strategies in
more challenging instances with 200, 400 and 600 customers, which were proposed in
[70]. Table 5.6 shows the results of this third round of experiments, adding 300 columns
per iteration. The columns have the same meaning as in Table 5.4. For all these
instances, the PDCGM requires less CPU time and fewer iterations when compared
with the SCGM and the ACCPM. For the most difficult instance the PDCGM is 2.1
and 6.4 times faster than the SCGM and the ACCPM, respectively.

Finally, the benefits of using the PDCGM for solving the relaxation of VRPTW
after applying DWD are accentuated with the size and difficulty of the instances, so
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Table 5.6: Results on 9 large instances of VRPTW for the SCGM, the PDCGM and
the ACCPM adding 300 columns at a time.

SCGM PDCGM ACCPM SCGM/PDCGM ACCPM/PDCGM

name ite or(s) tot(s) ite or(s) tot(s) ite or(s) tot(s) ite tot(s) ite tot(s)

C200 85 33 41 29 13 15 169 72 82 2.9 2.7 5.8 5.4
R200 57 36 43 45 26 34 423 192 202 1.3 1.2 9.4 5.9
RC200 67 105 110 57 77 88 385 567 607 1.2 1.2 6.8 6.9
C400 137 453 552 53 171 186 272 886 909 2.6 3.0 5.1 4.9
R400 131 793 865 84 596 640 636 2994 3076 1.6 1.4 7.6 4.8
RC400 189 2706 2789 113 1360 1436 521 6548 6649 1.7 1.9 4.6 4.6
C600 183 1921 2335 48 496 510 482 5115 5173 3.8 4.6 10.0 10.1
R600 222 7226 7558 118 4142 4260 897 25599 25870 1.9 1.8 7.6 6.1
RC600 258 18701 18972 150 8677 8844 923 56177 56683 1.7 2.1 6.2 6.4

the larger the instance, the larger the benefits of using this column generation strategy.

5.2.3 Capacitated lot-sizing problem with setup times

In order to cover a wider spectrum of applications, we have considered the capacitated
lot-sizing problem with setup times described in Chapter 4. The problem decom-
poses naturally in blocks for different items and therefore m different subproblems are
obtained (one per item). This allows testing of column generation strategies when m
essentially different columns are added in a disaggregated framework which differs from
the previous two applications. Each subproblem is a single-item lot sizing problem with
modified production and setup costs, and without capacity constraints. Hence, it can
be solved by the Wagner-Whitin algorithm [119].

We have selected 751 instances proposed in [114] to test the aforementioned column
generation strategies. The SCGM and the PDCGM approaches are initialized using
a single-column Big-M technique. The coefficients of this column are set to 0 in the
capacity constraints and 1 in the convexity constraints. In the ACCPM approach,
after several settings, we have chosen u0 = 10.0e as the initial dual point. For all
the column generation strategies we use the same subproblem solver which is our own
implementation of the Wagner-Whitin algorithm [119].

For each column generation strategy, we found that the 751 instances were solved
in less than 100 seconds. The majority of them were solved in less than 0.1 seconds.
From these results, no meaningful comparisons and conclusions can be derived, so we
have modified the instances in order to challenge the column generation approaches.
For each instance and for each product we have replicated their demands 5 times and
divided the capacity, processing time, setup time and costs by the same factor. Also,
we have increased the capacity by 10%. Note that we have increased the size of the
problems in time periods but not in items and therefore, all instances remain feasible.

In Table 5.7, we show a summary of our findings using these modified instances. We
have grouped the instances in seven different classes. Small instances are included in
classes E, F and W while classes G, X1, X2 and X3 contain larger instances. Instances
in classes E and F contain 6 items and 75 time periods while instances in class W have
4 or 8 items and 75 time periods. In class G, the instances have 6, 12 or 24 items and
75 or 150 time periods. Classes X1, X2 and X3 contain instances with 100 time periods
and 10, 20 and 30 items, respectively.

For each class and strategy we present: the number of column generation iterations
(ite), the average CPU time required to solve the subproblems in seconds (or(s)) and
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Table 5.7: Average results on 751 instances of CLSPST for the SCGM, the PDCGM
and the ACCPM adding one column per subproblem at a time.

SCGM PDCGM ACCPM1 SCGM/PDCGM ACCPM/PDCGM

class # ite or(s) tot(s) ite or(s) tot(s) ite or(s) tot(s) ite tot(s) ite tot(s)

E 58 38.1 0.7 0.7 29.7 0.5 0.9 38.3 0.7 0.8 1.3 0.9 1.3 1.0
F 70 33.4 0.6 0.6 28.0 0.5 0.8 40.4 0.7 0.9 1.2 0.8 1.4 1.1
W 12 66.4 1.2 1.2 55.3 1.0 1.8 48.6 0.8 1.1 1.2 0.7 0.9 0.6
G 71 44.8 6.6 6.6 32.4 3.9 4.7 43.2 5.2 5.6 1.4 1.4 1.3 1.2
X1 180 47.5 4.2 4.2 28.8 2.4 3.0 35.2 3.0 3.3 1.7 1.4 1.2 1.1
X2 180 42.6 7.4 7.5 20.5 3.5 3.9 27.4 4.6 5.0 2.1 1.9 1.3 1.3
X3 180 48.9 12.7 12.8 18.7 4.7 5.2 24.3 6.1 6.7 2.6 2.5 1.3 1.3

1 A subset of 7 instances could not be solved by the ACCPM using the default accuracy level, δ = 10−6 (4 from
class X2 and 3 from class X3). To overcome this we have used δ = 10−5

the average total CPU time required for the column generation procedure (tot(s)) in
seconds. Column # indicates the number of instances per class.

From Table 5.7, we can conclude that the strategies have different performances
for the classes with small instances and on average each strategy requires less than 2
seconds to solve an instance from these classes. If we consider the total CPU time, the
SCGM is slightly better for classes E and F, and the ACCPM outperforms the other
two strategies only in class W. Considering the oracle times, we observe that for small
instances the PDCGM outperforms the SCGM due to the reduction in the number
of outer iterations. However this reduction is somehow lost due to the fact that the
PDCGM requires considerable time to solve the RMPs while the time required by the
SCGM is negligible. Now, if we observe the performance of the strategies on the classes
with larger instances (i.e., G, X1, X2 and X3), the PDCGM outperforms the other two
strategies on average in both performance measures.

In addition to the previous experiment, we have created a set of more challenging
instances. We have taken 3 instances from [114], which were used in [27] as a comparison
set. Additionally, we have selected 8 instances from the sets of larger classes, X2 and
X3. This small set of 11 instances (i.e., G30, G53, G57, X21117A, X21117B, X21118A,
X21118B, X31117A, X31117B, X31118A, X31118B) has been replicated 5, 10, 15 and
20 times following the same procedure described above. The summary of our findings is
presented in Table 5.8, where column r denotes the factor used to replicate the selected
instances. From the results, we see that for every choice of r, the PDCGM requires
fewer outer iterations and less CPU time on average, when compared with the ACCPM
and the SCGM. The PDCGM, and depending on the class, is between 2.7 and 3.0 and
between 2.1 and 2.6 times faster than the SCGM and the ACCPM, respectively.

Table 5.8: Average results on 11 modified instances of CLSPST for the SCGM, the
PDCGM and the ACCPM adding one column per subproblem at a time.

SCGM PDCGM ACCPM SCGM/PDCGM ACCPM/PDCGM

r ite or(s) tot(s) ite or(s) tot(s) ite or(s) tot(s) ite tot(s) ite tot(s)

5 27.5 4.7 4.7 11.5 1.5 1.6 22.5 3.1 3.2 2.4 3.0 2.0 2.1
10 32.0 62.7 62.7 15.6 20.4 21.0 29.5 49.1 49.5 2.0 3.0 1.9 2.4
15 38.4 308.8 308.8 20.0 103.8 106.2 36.4 273.2 274.3 1.9 2.9 1.8 2.6
20 45.5 975.6 975.8 25.9 350.5 358.4 42.4 938.7 941.0 1.8 2.7 1.6 2.6

If we consider the average CPU time per iteration for CLSPST modified instances,
the PDCGM is the most efficient among the studied strategies, while the SCGM and
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the ACCPM have very similar times per iteration. From the evidence gathered so far,
one could infer that for some applications taking optimality and stabilization strategies
as separated objectives may not originate any saving. However, if one can combine
both objectives the resulting method can produce important savings in terms of CPU
time and column generation iterations.

5.2.4 Performance profiles for large instances

In order to complement our numerical comparisons, we have included performance
profiles [31] for each application considering only large instances. To do this, we have
removed from this analysis instances considered in the three preceding sections which
were small and were efficiently solved by all the strategies. For CSP, instances in class
U (Tables 5.1 and 5.2) and the 14 large instances (Table 5.3) were considered. For
VRPTW, instances in classes C100, R100, RC100 (Tables 5.4 and 5.5) and the 9 large
instances (Table 5.6) were included. Finally, for CLSPST instances in classes G, X1,
X2, X3 (Table 5.7) and the replicated instances with r equal to 10, 15 and 20 (Table
5.8) were considered.

In short, performance profiles provide information about the behaviour of different
methods for a given metric when solving a set of instances. In our case we are interested
in two type of metrics.

When comparing the PDCGM with the SCGM and the ACCPM, we are interested
in the number of outer iterations (calls to the subproblem(s)) and the total CPU time
needed to solve an instance. For a better understanding of performance profiles, we
will briefly describe the methodology proposed in [31].

Having the result for a particular metric (e.g., total CPU time or outer iterations)
obtained by using different methods, let us define M and I as the set of methods and
instances, respectively. Then, for every i ∈ I and m ∈ M, we define ti,m as the result
of the metric when solving instance i with method m.

The baseline for every instance will be given by the best result obtained by any of
the methods. In our case, and for all metrics considered, this is the minimum of the
values among all methods. Therefore, the performance ratio can be defined as:

ri,m =
ti,m

min
k∈M

{ti,k}
,∀i ∈ I,∀m ∈M. (5.5)

Additionally, if we define Sm(τ) = {i ∈ I : ri,m ≤ τ}, then the cumulative distribution
function of method m for the performance ratio is

ρm(τ) =
1

|I|
|Sm(τ)|,∀m ∈M.

where ρm(τ) represents the probability that the result of method m is between a ratio
τ with respect to the best result among all methods. Note that this type of analysis can
cope with solver/method failures so it gives a good measure of robustness. Then, in
order to generate the cumulative distribution plots of every method for a set of instances
(performance profiles), we set several values of τ (x-axis) and plot them against the
corresponding ρm(τ) (y-axis). The figures we present in the next section were created
with an slightly modified MATLAB [90] script available at http://www.mcs.anl.gov/

~more/cops/.
Having the results for the aforementioned applications in terms of average and

classified by number of columns added per iteration give us a good idea of the efficiency
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of the methods. It shows clearly that the larger the instances, the better the overall
performance of the PDCGM. In order to mitigate the influence of poor performances
of some of the strategies in very specific instances (large CPU times or number of outer
iterations), we also present the performance profile results for all the difficult instances
and all the column strategies. We have selected only instances which challenge the
column generation for every application.

Cutting stock problem

In Figures 5.3(a) and 5.3(b) we have the performance profiles in terms of outer iterations
and total CPU time, respectively. We have considered instances in class U (Tables 5.1
and 5.2)and the 14 large instances (Table 5.3) and all values of k previously considered.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
m

(τ
)

 

 

 SCGM

 PDCGM

 ACCPM

(a) Outer iterations

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
m

(τ
)

 

 

 SCGM

 PDCGM

 ACCPM

(b) Total CPU time

Figure 5.3: Performance profiles for CSP with the the SCGM, the PDCGM and the
ACCPM (large instances)

These results clearly complement the discussion in the previous section. It clarifies
any doubt and shows that the PDCGM is the best method to solve large instances for
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this class of problems. Independently of the number of columns added per iteration
and instances considered, the PDCGM always requires fewer outer iterations than the
SCGM and the ACCPM as shown in Figure 5.3(a). Also, in terms of CPU time the
PDCGM is the most efficient technique for the vast majority of larger instances and
when it is not the best, it does not perform badly (only at a factor less than 1.5 from
the best strategy). One can observe that the ACCPM is not very competitive and that
more than 50% of the instances require at least 6 times more CPU time to be solved
than the best result obtained with either the PDCGM or the SCGM.

Vehicle routing problem with time windows

For VRPTW, we have considered instances in classes C100, R100 and RC100 (Tables
5.4 and 5.5) and the 9 large instances with 200, 400 and 600 customers (Table 5.6). In
Figures 5.4(a) and 5.4(b) we present the performance profiles for outer iterations and
total CPU time, respectively obtained by the three column generation strategies.
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Figure 5.4: Performance profiles for VRPTW with the SCGM, the PDCGM and the
ACCPM (large instances)
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Similar to the results for CSP considering large instances, the PDCGM is the most
efficient method among the three approaches considered. It performs consistently bet-
ter than the SCGM and the ACCPM in more than 90% of the instances in both
performance measures.

Capacitated lot-sizing problem with setup times

For the perfomance profiles of CLSPST, we have considered instances in classes G,
X1, X2 and X3 (Table 5.7). Additionally, we have included the replicated instances
with r equal to 10, 15 and 20 (Table 5.8). In Figures 5.5(a) and 5.5(b) we have the
performance profiles for outer iterations and total CPU time, respectively.
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Figure 5.5: Performance profiles for CLSPST with the SCGM, the PDCGM and the
ACCPM (large instances)

Again, the PDCGM is the strategy that obtains the best results for most of the
selected instances. It is the most efficient strategy in terms of CPU time in more than
75% of the cases and when it is not the best, it does not perform poorly compared to
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the other two strategies. Differently to the results with other two applications, namely
CSP and VRPTW, the ACCPM performs much better than the SCGM and it offers
the best performance in terms of CPU time in almost 20% of the instances.

With these additional comparisons we aim to provide the reader with enough evi-
dence to support our conclusion that the PDCGM is the variant with the best overall
performance among the ones considered in this study when large instances in the con-
text of integer programming are considered.

5.2.5 Additional comments about stabilized column generation

Although no computational study has been performed considering an artificially stabi-
lized column generation based on simplex, we would like to refer to two papers which
provide us with some notion on how much can be gained by stabilizing the applications
considered in this thesis.

In Rousseau et al. [109], they propose an interior point column generation technique
in which the dual solutions are convex combinations of extreme dual points of the RMP.
These solutions are obtained by modifying the dual objective function randomly. To
analyse the computational performance of their approach, Rousseau et al. have used the
set of large VRPTW instances with 100 customers, namely instances included in classes
C100, R100 and RC100. Only the results of 22 out of 29 instances are available. Their
comparison involves the implementations of the standard column generation as well as
the BoxPen stabilization technique [32]. Since a different subproblem solver, another
version of CPLEX and a different machine have been used in their computational
experiments, it would not be fair to make a straightforward comparison of the figures
presented in their tables with those presented in Tables 5.4 and 5.5. Hence, we have
considered the gains obtained by each approach in relation to the standard column
generation. According to their results, a well-tuned implementation of the BoxPen
stabilization reduces the number of outer iterations by 16%, on average, while the total
difference regarding CPU time is negligible when compared with the standard column
generation. The interior point stabilization (IPS) proposed in [109] shows a better
performance than the BoxPen stabilization, being 1.4 times faster than the standard
column generation technique. For the same set of instances (22 out of 29 instances,
with n = 100), the PDCGM is 2 times faster than the SCGM on average (k = 200).

In Briant et al. [17], a thorough computational study is presented. They compare
the standard column generation (Kelley cutting plane method) with the bundle method
which is a stabilized cutting plane method which uses quadratic stabilization terms as
shown in Section 3.5. In the computational experiments in [17] results for CSP and
CLSPST (MILS problem in their paper) are included. Their results for CSP, indicate
that using the bundle method may slightly reduce the number of column generation
iterations at the cost of worsening the total CPU time by a factor greater than 3 (see
Tables 1 and 2 in [17]). Furthermore, in the results obtained for CLSPST, the bundle
method shows a poor behaviour in terms of the number of outer iterations and CPU
time when compared with the standard column generation (see Table 12 in [17]). In our
computational experiments, and considering these two applications, namely CSP and
CLSPST, the overall results obtained with the PDCGM outperform the ones obtained
with the SCGM.

Two final comments with regard to the ACCPM are needed. Looking at our compu-
tational results and considering all the applications studied in this thesis, it seems that
the ACCPM suffers when multiple columns are added at each iteration of the column
generation procedure. As mentioned in [9], the starting point is critical for the success
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of the ACCPM [9] in the context of column generation and Lagrangian relaxation for
integer programming problems.

Initializing the ACCPM with poor columns may originate unnecessary iterations
at the beginning of the column generation process, which is expensive. This may
be emphasised by the addition of unnecessary columns at every iteration making the
method converge slowly. A remedy to this could be to choose carefully the initial point
for each instance. However, this is impractical and beyond the scope of this study. Also,
in order to guarantee a good performance of the ACCPM so it can efficiently reoptimize
after new columns are added, the theory requires some safeguards. For instance, if
multiple columns are added in one iteration and the old analytic centre deeply violates
these new constraints in the dual space, theoretically the ACCPM struggles and no
warmstarting is possible [51, 52].

As a final remark of this chapter, from our results one can observe that unlike
the SCGM, the strategies based on interior point methods, namely the PDCGM and
the ACCPM, spend a non-negligible amount of time solving the RMPs. This is be-
cause reoptimizing interior point methods is not as straightforward as reoptimizing with
simplex-type methods. This issue will be extensively discussed in the next chapter.
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Chapter 6

A New Reoptimization
Technique for the Primal-Dual
Column Generation Method

In this chapter we present a new warmstarting technique applicable in the context
of the primal-dual column generation method described in Chapter 5. We first review
some warmstarting techniques for interior point methods. Then, a thorough theoretical
analysis of a new approach is performed and computational experiments are presented
to show its behaviour in practice. This chapter follows closely the developments and
results available in [59].

A warmstarting strategy is understood as the use of previous information gathered
in the solution process of a given problem in order to solve a subsequent related problem.
The aim of such a strategy is to ease the solution process for the modified problem. In
contrast, a coldstart approach is when no prior information is used and the modified
problem is solved from scratch. The difficulty of interior point methods to reoptimize
when compared to active set methods is a well-known issue (see for instance [13]).

Finding a warmstarting point with a simplex-type method can be easily done if the
optimal basis of the previous problem remains either primal feasible or dual feasible so
the new problem can efficiently be solved by the primal or the dual simplex method,
respectively. In the case of column generation, when new columns are added to the
RMP, the optimal solution of the previous RMP can be used as a basis for the new
RMP (the variables corresponding to the new columns are set to zero).

The difficulties reoptimizing interior point methods result from the way these meth-
ods approach optimality. To guarantee fast convergence IPMs work in the interior of
the feasible set (by exploiting the notion of central path and forcing the iterates to
stay in its neighbourhood) and approach the boundary of the feasible region only close
to termination. Keeping the iterates in the interior of the feasible set is the great ad-
vantage of IPMs and responsible for their spectacular efficiency [57, 121]. However, it
becomes a problem if one tries a naive warmstarting with these methods. In general
IPMs should not use the optimal solution of the previous problem as initial iterate to
reoptimize because such point may be close to the boundary of the feasible set and is
very likely to be far away from the new central path [56].

An illustration of this situation and how the central path changes after the addition
of one constraint in the dual space is depicted in Figure 6.1.
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(a) RMPk (b) RMPk+1

Figure 6.1: Differences between two consecutive RMPs - Changes in the central path
and its neighbourhood

To overcome these difficulties, several reoptimization strategies have been proposed
in the literature which are described in the next section.

6.1 Warmstarting strategies

There have been several solutions proposed to overcome the difficulties of warmstarting
IPMs. They essentially differ and are specialised for two different situations: one in
which the problem size remains the same but the problem data changes and one in
which both the problem size and its data change.

In [44], Freund has proposed a shifted barrier method for solving linear programs
using an infeasible warmstart. Freund has shown that under suitable assumptions his
potential function reduction algorithm runs in polynomial time. In the same spirit,
Benson and Shanno [13] have presented an exact primal-dual penalty approach. They
have proposed a method which relaxes the non-negativity constraints of primal and
dual problems and penalizes any violation of them. This method accounts for small
changes in the data and requires the setting of some penalization parameters which
may be non-trivial. Engau et al. [35] have reformulated the primal-dual pair using a
slacked form (without penalization terms). Theoretical guarantees under which warm-
started IPMs outperform coldstart IPMs are presented. Engau et al. have tested their
approach considering changes in the data (linear programming) as well as in a cutting
plane context (combinatorial optimization). One of the most remarkable features of
this strategy is that it does not require extensive setting of parameters and is readily
applicable to a wide variety of problems. All the aforementioned methods, [13, 35, 44]
modify the original problem, adding auxiliary variables to deal with infeasible initial
points. Then these methods drive these auxiliary variables to zero, obtaining the opti-
mal solution of the original problem.

A different class of warmstarting methods calculates a warmstarting point and
reoptimizes the modified problem from this point without adding extra parameters.

In [93], Mitchell has studied different strategies to obtain an interior point when
adding constraints (cutting planes) and variables to a linear programming problem.
These methods rely on calculating directions based on the projection onto the null
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space of the constraint matrix. A step towards these directions is always possible so
the methods recover feasibility in one step. The methods have been implemented us-
ing the primal projective standard-form variant of Karmarkar’s algorithm for linear
programming within a cutting plane method applied to matching problems [93, 97].
Additionally, Mitchell and Borchers [96] have studied a different and practical warm-
starting strategy using the primal-dual barrier method applied to solve linear ordering
problems.

Goffin and Vial in [51] and [52] have studied how to deal with the addition of single
and multiple cuts in a cutting plane framework, respectively. They have proposed a
way of restarting the analytic centre cutting plane method [49] already described in
Chapter 3. The strategy assumes that the cuts are central using a Dikin’s ellipsoid
as reference. In order to determine the direction that recovers feasibility, the method
requires a non-linear optimization problem to be solved. Goffin and Vial have provided
bounds on the number of steps to recover an analytic centre which depends on the
number of cuts added. Similarly, Oskoorouchi et al. [103] propose a method that
recovers dual feasibility in a cutting plane framework under the condition that the
constraints added are moderately deep. As stated in [51, 52], if there is at least one
deep constraint (constraint which does not intersect the Dikin’s ellipsoid around the
query point), the proposed method recovers only primal feasibility.

A different approach has been presented by Gondzio [56] in a primal-dual cutting
plane method context. He has proposed fixing the initial values of the new primal and
dual variables and then restoring primal and dual feasibilities independently. To cal-
culate the warmstarting point, modified Newton steps have to be performed. Gondzio
has distinguished between deep and shallow cuts, adjusting his strategy accordingly.
Although a successful implementation has been developed, no theoretical guarantee for
its performance has been provided.

In [60], Gondzio and Grothey introduced a primal-dual interior point method that
relies on multiple-centrality corrector techniques to find a warmstarting solution. From
this point their method seeks feasibility. They have shown the conditions under which
their short and long step path following methods can absorb data perturbations in one
step or a few steps (for larger perturbations). They have extended their analysis to
problems with special structures (primal and dual block angular structures). Gondzio
and Grothey have also studied an unblocking strategy based on sensitivity analysis [61].
The proposed method deals with the blocking issue that any advanced starting point
may suffer from by increasing the step size allowed in the Newton direction. First, their
strategy identifies which components the blocking originates from. Then, the method
aims to remove the blocking components using sensitivity analysis. Conditions that
an unblocking direction must satisfy and proofs of the existence of such direction have
been provided. They have observed that a large value of the duality measure can absorb
more infeasibility in one step than a small value. Additionally, a well-centred point can
allow an IPM to absorb more infeasibility.

Yildirim and Wright [123] have studied different criteria to determine a well-suited
warmstarting point. They have compared several different strategies of direction search-
ing (i.e., (weighted) least-square and Newton approaches) and given complexity and
convergence results for each of these methods after changes in the data. They have de-
termined the size of the perturbation that can be absorbed by each of these methods.
Numerical experiments and further developments in this direction have been presented
by John and Yildirim in [74].

Fliege in [40] introduces a new approach to solve convex multicriteria optimization
problems where changes in the objective function coefficients are common. Having two

64



closely related problems, the method applies few centering steps to the old iterate, so
the new point is very close to the new central path. He shows that to compute a finite
set of discrete points to describe the solution set, his method runs in polynomial time.

A very different warmstarting approach has recently been proposed by Skajaa et
al. [111]. In that paper, they employ a self-dual embedding linear programming model
which facilitates taking any point as a warmstarting candidate including points close
to the boundary of the feasible region.

Finally, in [35, 56] computational experiments demonstrate how efficient warmstart-
ing methods are when compared to coldstart in a cutting plane framework.

6.2 Theoretical developments

In this section we introduce a specialized warmstarting strategy applicable within the
primal-dual column generation scheme described in Chapter 5. It is specialized because
we take advantage of some structure/properties which are often present when solving
combinatorial optimization problems. We have observed that in many applications
all the elements in A of every RMP are non-negative. For instance, columns in the
primal space describing cutting patterns (CSP), routes (VRPTW) or production plans
(CLSPST) by definition contain only non-negative entries. In our developments we do
consider this observation and therefore, the analysis and results should be understood
in this context.

Before describing the new strategy, let us recall the notation introduced in Chapter 2
and assume that we are in an intermediate iteration of the column generation process.
The current RMP (see (2.1)) characterized by A, b, c has been solved and the oracle
generates k new columns with parameters (Ā, c̄). Note that c̄j − ĀTj y < 0 for all
j ∈ K = {1, . . . , k} for a dual solution y of the current RMP (recall that we only add
columns with negative reduced costs). Hence, the modified primal-dual pair can be
written as

P1 := min cTx+ c̄T x̄, s.t. Ax+ Āx̄ = b, x ≥ 0, x̄ ≥ 0, (6.1a)

D1 := max bT y, s.t. AT y + s = c, ĀT y + s̄ = c̄, s ≥ 0, s̄ ≥ 0, (6.1b)

where k is the number of columns (variables) added to the original problem (2.1),
x̄ ∈ Rk is the vector of new primal variables and s̄ ∈ Rk is the vector of new dual
slack variables. Ā ∈ Rm×k represents the coefficient matrix for the new variables and
c̄ ∈ Rk the vector of objective function coefficients. Note that new variables in the
primal space are associated with new constraints in the dual space. As we associate
variables with columns, constraints in the dual space can be interpreted as the cuts
which restrict the dual localization set. From now on we will use the terms columns
and cuts interchangeably, where the former term refers to the primal space and the
latter to the dual. This will allow us to describe some concepts and correspondence
with other strategies.

Similar to system (2.7) obtained after applying the first order optimality conditions
to (6.1), the new Newton-like system of equations is

A Ā 0 0 0
0 0 AT I 0
0 0 ĀT 0 I
S 0 0 X 0
0 S̄ 0 0 X̄




∆x
∆x̄
∆y
∆s
∆s̄

 =


ξb̄
ξc
ξc̄

τµe−XSe
τµe− X̄S̄e

 , (6.2)
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where ξb̄ = b−Ax− Āx̄, ξc̄ = c̄− ĀT y− s̄, X̄ = diag{x̄1, . . . , x̄k}, S̄ = diag{s̄1, . . . , s̄k},
µ = (xT s+ x̄T s̄)/(n+ k) and τ ∈ (0, 1) is the centering parameter.

The process of finding a warmstarting point has been divided into two stages. In
the first stage, we need to find a point from a list of stored iterates which, in the dual
space, is not too deeply violated by the added cuts. The conditions to determine this
point are discussed in Section 6.2.4. In the other stage, an adjustment (∆x,∆y,∆s)
has to be computed taking this point as a reference. After this, a full step is taken
in this direction and the old point is updated in the new dimensions to produce a
full-dimension warmstarting point. From this point we continue iterating and solving
system (6.2). Our aim is to find a starting point which reduces the number of iterations
required to solve problem (6.1) when compared to a coldstart approach. To develop
such a two-stage approach we need to deal with two problems: (a) feasibility in the
primal and dual spaces and (b) centrality of the new warmstarting point. We address
both issues later.

An illustration of this strategy can be found in Figure 6.2 where the circles indicate
stored iterates.

(a) RMPk (b) RMPk+1

Figure 6.2: The one step primal-dual restoration strategy

Since we are designing a new warmstarting technique to be applied in the PDCGM,
it is sensible to point out the similarities and main differences with the strategy currently
in use [56] and other strategies presented in the literature such as the ones studied in
[123] and [52].

Despite the fact that our developments follow the idea in [56] of treating primal and
dual infeasibilities separately, our approach differs in two key aspects. Firstly, in the
choice of x̄ and s̄. The aforementioned paper sets

s̄j = max
{
|c̄j − ĀTj y|, µ1/2

}
, (6.3)

for every added cut j. Since it is likely to have (deep) cuts where c̄j − ĀTj y � 0, s̄j
usually takes large values. Furthermore, since the complementarity products of the
new variables are set to x̄j s̄j = µ, for every j = 1, 2, . . . , k, such strategy is likely to
produce small values of x̄j . This goes against the expectations that the new variables
corresponding to the recently appended (deep) cuts are likely to take non-zero values at
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the optimal solution. In our strategy we do not choose x̄j as a function of s̄j . Instead,
we choose these values bearing in mind their impact on centrality.

A second difference between the strategy of [56] and the one proposed in this thesis
is in the definition of the search direction to find the new warmstarting point. In the
method proposed in [56], the search direction is calculated using a variation of system
(6.2) via target t̄ as shown in (6.4), which is a consequence of the choice of x̄j and s̄j .
The system to be solved is

A Ā 0 0 0 0
0 0 AT I 0 0
0 0 ĀT 0 I 0
S 0 0 X 0 0
0 S̄ 0 0 X̄ −I
0 0 0 0 I 0





∆x
∆x̄
∆y
∆s
∆s̄
t̄

 =



0
0

z − s̄
0

X̄S̄e
−s̄

 , (6.4)

where zj = ĀTj y0 − c̄j . Solving (6.4) gives t̄ = −S̄(ĀT (AΘAT )−1Ā)−1z. In the dual
space, the method ensures that after a full step is taken in this direction, dual feasi-
bility is recovered in the new components. However, this method does not guarantee
the same for the old components since some blocking in small components may oc-
cur. In the primal space, feasibility can relatively easily be restored by choosing small
x̄j ’s. It is accepted that the complementarity products for the old variables may get
significantly worse as a price to pay for recovering primal and dual feasibilities. In our
proposed strategy, we aim to restore primal and dual feasibilities using auxiliary linear
optimization problems. The principal aim of both, primal and dual auxiliary problems,
is to seek feasibility while minimizing changes in those old variables which are small.
The rationale is to minimize changes in the complementarity products.

Our approach follows a variation of a weighted least-square strategy proposed in
[123]. It differs from [123] in the sense that we only consider small variables and that
we have extra constraints to satisfy in both primal and dual spaces.

Additionally, the method presented in this chapter has several other different char-
acteristics when compared with the strategy proposed in [52]. Firstly, in [52, 103], the
strategy recovers primal and dual feasibility by solving a non-linear problem while in
our approach we aim to minimize large variations in those old components which are
small using linear functions and extra constraints. Secondly, the strategies proposed in
[52, 103] work very well if all the new constraints traverse the Dikin’s ellipsoid around
the query point while our approach relies on a different assumption which is that the
depth of the added constraints does not exceed a reference value which is a function of
µ and γ. Thirdly, we are able to retreat back in the list of iterates, while the strategies
in [52, 103] take the last iterate as the reference point and adjust it. In spirit, the
strategies developed for the analytic centre cutting plane method [52, 103] and the one
described in this chapter have the same objective which is to obtain a well-centred
warmstarted iterate after adding new columns/constraints. However, while our tech-
nique relies on the notion of the central path, the other approaches aim to get a point
close to the new analytic centre.

In what follows in this chapter, we analyse the restoration of primal and dual
feasibilities, the consequences for the new complementarity products and describe the
complete algorithm. At the end, we provide computational evidence that the method
compares favourably with coldstart.
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6.2.1 Technical conditions

Let (x0, y0, s0) be a feasible solution of the primal-dual pair (2.1). Also, let us recall
the primal-dual strictly feasible set and the symmetric neighbourhood of the central
path defined in Chapter 2 as

F0 = {(x, y, s) : Ax = b;AT y + s = c; (x, s) > 0},

Ns(γ) = {(x, y, s) ∈ F0 : γµ ≤ xjsj ≤
1

γ
µ;∀j = 1, 2, ..., n}.

We are interested in (x0, y0, s0) ∈ Ns(γ) for a fixed γ ∈ (0, 1). The reader must
note that our definition of the neighbourhood is a slight modification of the wide neigh-
bourhood N−∞(γ) in [121] proposed in [60]. The aim of our specialized warmstarting
algorithm is to find an initial point from which to start solving the modified problem
(6.1). This initial point is obtained from information gathered when solving problem
(2.1) via system of equations (2.7). Note that (x0, y0, s0) ∈ Ns(γ), implies ξb = ξc = 0.

Before continuing, let N = {1, . . . , n}, M = {1, . . . ,m} and K = {1, . . . , k} be index
sets. Additionally, let us state the following general assumptions which are technical
conditions we will use in our theoretical results in the following sections.

(A.1) All elements in matrices A and Ā are non-negative.

(A.2) We are able to store a list of iterates which are strictly feasible and well-centred
(i.e., (x0, y0, s0) ∈ Ns(γ)).

(A.3) There exists a Uv such as ‖x0, s0‖∞ ≤ Uv.

(A.4) U2
v > 1.

Assumption (A.1) is motivated by the applications we are interested in solving.
There are several examples in combinatorial optimization where this assumption is
valid. We refer the reader to Chapter 4 to see three applications in which this condition
holds. Additionally, there is a wide variety of problems which satisfy this condition. See
for instance the travelling salesman problem in [17] and the references therein, or the
uncapacitated facility location problems [22], just to mention a few of them. Although
this assumption is not valid for general combinatorial optimization problems, it covers
a wide variety of applications.

Assumption (A.2) is easily met if the feasible path following algorithm is used to
solve the problem.

Assumption (A.3) is a technical requirement similar to the one used in [123] which
bounds the largest primal and dual slack variables. Note that in [123, Theorem 2.1.],
and following the analysis in [102], Yildirim and Wright have shown that for a strictly
feasible point (x, y, s) which does not necessarily lie exactly on the central path but
belongs to its neighbourhood, the following two bounds are satisfied

‖x‖2 ≤ C(d)

(
C(d) +

µn

‖d‖2

)
,

‖s‖2 ≤ 2‖d‖2 C(d)

(
C(d) +

µn

‖d‖2

)
,

where d represents a triplet containing the instance data (d = (A, b, c)), and C(d) is
the condition number [102]. Similarly, in our case it is easy to see that C(d) < ∞
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(feasible RMPs) and since we use a path-following method and a minor variation of the
neighbourhoods used in [123], Assumption (A.3) is satisfied.

Assumption (A.4) is also a technical condition which can be easily imposed by
setting Uv = max{‖x0, s0‖∞; 1 + ε}, where ε = 10−8.

In addition to these assumptions and due to the nature of our applications, we
can always initialize the column generation procedure with some initial columns so the
initial RMP is feasible (for instance, see the initializations used in Chapter 5).

Using our definition of the central path neighbourhood for (x0, y0, s0) ∈ Ns(γ), we
have

γµ0 ≤ x0
js

0
j ≤

1

γ
µ0 ∀j ∈ N. (6.5)

Both this definition and the upper bound Uv allow us to bound x0
j and s0

j , for every
j ∈ N , as follows

γµ0

Uv
≤ x0

j ≤ Uv, (6.6a)

γµ0

Uv
≤ s0

j ≤ Uv. (6.6b)

The similarities between the initial RMP and the modified RMP are one of the
key elements to take into consideration when a warmstarting strategy is designed for
an interior point method. If there is no similarity between the initial and modified
problems, we can expect that a warmstarting strategy will not lead to any substantial
improvement when compared with a coldstart approach. This could be the case when
the new RMP has a completely different feasible region around the optimal solution
and a close-to-optimality solution deeply violates the new constraints. Therefore, any
information previously gathered close to the optimal solution will not help to speed up
the solution process of the modified problem. Then, there is a need to understand the
relation between the added cuts and the previous RMP. A sensible way to proceed is to
measure the size of the newly added cuts in terms of the current penalty parameter, µ0.
Let the inequality −(c̄j − ĀjT y0) ≤ f(µ0) be used to determine the depth of the cuts,
where f(µ0) is an increasing function of µ0. Note that by using this idea of associating
the depth of the cuts to µ0 and having a list of iterates, we could retreat far enough in
the iteration process to make the cuts relatively shallower. In other words, for all the
cuts we could choose a suitably large µ0 to decrease their relative depth.

As mentioned earlier, the choices of x̄ and s̄ have important consequences in the
primal-dual infeasibilities and in the complementarity conditions. We aim to find a
warmstart which: (a) is feasible in the primal and dual space; and (b) keeps the com-
plementarity products reasonably small and inside a slightly modified neighbourhood if
the cuts satisfy some desirable properties. We expect the duality gap to increase since
we are adding variables/constraints to the primal/dual problem. However, we would
like to keep this duality measure relatively close to the old one.

Now, let us define some sets and parameters used throughout the chapter.

Definition 6.1. Let B0 be the set containing all indices j such that x0
j ≥ s0

j , where j ∈
N . We call this set the primal dominant partition at solution (x0, y0, s0). Conversely,
the dual dominant partition at solution (x0, y0, s0) is defined as N0 and contains all
indices j such that x0

j < s0
j , where j ∈ N . Clearly B0 ∪N0 = N and B0 ∩N0 = ∅.

The reader familiar with the simplex method may be tempted to interpret the sets
B0 and N0 as a guess of the basic-nonbasic partition. In the spirit of IPM, these sets
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provide only an early guess of the primal-dual strictly complementarity partition which
in general is not equivalent to the basic-nonbasic partition.

Definition 6.2. Considering A ∈ Rm×n+ , let us define

Amin := min
i∈M,j∈N :Aij>0

{Aij},

as the minimum non-zero element of matrix A. Similarly,

amin := min
i∈M :ai>0

{ai},

is the minimum non-zero element of vector a ∈ Rm+ . Additionally, σmax(A) and σmin(A)
denote the maximum and minimum singular value of matrix A, respectively and

σmax = max{σmax(A), σmax(Ā)}.

In the following three sections we will prove the main results of this chapter. Namely,
we will provide the methodology to choose a good warmstart solution such that the
primal and dual feasibilities may be restored in one Newton step and will show that
this can be achieved without significantly affecting the proximity of the new iterate to
the new central path.

6.2.2 Dual feasibility restoration

In order to minimize the impact of restoring dual feasibility and to measure its effect on
complementarity products, we have defined an auxiliary linear optimization problem.
Taking the second and third equations of (6.2) and considering (x0, y0, s0) ∈ F0, we
have

AT∆y + ∆s = 0, (6.7)

ĀT∆y + ∆s̄ = c̄− ĀT y0 − s̄. (6.8)

Such a formulation allows for a considerable freedom in the choice of ∆y. This system
of equations is likely to have multiple solutions.

The following auxiliary linear optimization problem minimizes the relative change
of variables in the primal dominant partition (i.e., corresponding to small s0

j ) when a
solution of problem (2.1) is available.

minimize
∑
j∈B0

∆sj
s0
j

, (6.9a)

subject to
∑
i∈M

Āij∆yi + ∆s̄j = c̄j −
∑
i∈M

Āijy
0
i − s̄j , ∀j ∈ K, (6.9b)

−
∑
i∈M

Aij∆yi = ∆sj , ∀j ∈ B0, (6.9c)

∆yi ≤ 0, ∀i ∈M, (6.9d)

s̄wj ≥ max

{
γµ0

Āmin√
m Uv σmax

, c̄j − ĀTj y0

}
, ∀j ∈ K, (6.9e)

where s̄wj = ∆s̄j + s̄j , for every j ∈ K. Observe that by solving this linear problem,

70



feasibility for the new components is achieved via constraints (6.9b) (the third equation
of system (6.2)). Note that the aim of this linear program is to minimize the relative
change of small slacks of the dual problem while a full step is feasible for all components.
The motivation behind this objective is that we would like to perturb the previous
solution as little as possible. Constraints (6.9e) ensure that the new slack variables are
bounded away from zero. Although one would expect to have

γµ0
Āmin√

m Uv σmax
> 0 > c̄j − ĀTj y0, ∀j ∈ K,

this is not always the case due to the backtracking feature of our strategy. This will be
explained in more detail later in this chapter.

The linear problem (6.9) can be simplified by the following steps. First, let us
eliminate ∆sj for every j ∈ B0 by using constraints (6.9c) and substituting ∆y = −∆ȳ.

Also, let us introduce a new parameter fi for every i ∈ M such that fi =
∑

j∈B0
Aij

s0j
.

Additionally, let us set

s̄j = max

{
γµ0

Āmin√
m Uv σmax

, c̄j − ĀTj y0

}
, ∀j ∈ K. (6.10)

Now, we can rewrite problem (6.9) as

Daux :=minimize
∑
i∈M

fi∆ȳi, (6.11a)

subject to
∑
i∈M

Āij∆ȳi−∆s̄j=−(c̄j−
∑
i∈M

Āijy
0
i−s̄j), ∀j ∈ K, (6.11b)

∆ȳi ≥ 0, ∀i ∈M, (6.11c)

∆s̄j ≥ 0, ∀j ∈ K. (6.11d)

To avoid unbounded solutions, if fi = 0 for a given i ∈M , we set fi = 1. Observe then
that by assumption (A.1), fi > 0 for every i ∈ M . Therefore, the problem (6.11) can
be interpreted as finding the minimum adjustment ∆ȳ of dual variables y such that at
the new point y + ∆y (= y − ∆ȳ) all dual feasibility constraints in (6.1b), including
the ones corresponding to new deep cuts, are satisfied. The objective function (6.11a)
promotes such changes ∆ȳ which do not alter the primal dominant components of s0

(the components corresponding to small values s0
j ). The purpose of the next lemma is

to show that the problem Daux has a bounded solution.

Lemma 6.3. Given c̄j− ĀTj y0 for every j ∈ K representing the reduced cost of column

j, where Āj represents the j-th column of matrix Ā, Āij ≥ 0 for every i ∈ M, j ∈ K,
problem (6.11) has a bounded solution.

Proof. From (6.11b) we have

ĀT∆ȳ −∆s̄ = −(c̄− ĀT y0 − s̄) = d. (6.12)

If c̄j − ĀTj y
0 < γµ0

Āmin√
m Uv σmax

and from definition (6.10), clearly dj > 0. When

c̄j − ĀTj y0 ≥ γµ0
Āmin√

m Uv σmax
, the corresponding dj = 0. Note that we could determine

a feasible solution to problem (6.11) in the following way. For every j ∈ K, calculate
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Υj = dj/(Āj)min. Then, define ∆ȳi for every i ∈M as

∆ȳi = max
j∈K
{Υj}. (6.13)

This solution is feasible since it will produce ∆s̄j ≥ 0 for every j ∈ K. Also, observe
that any value of ∆ȳi exceeding (6.13) will not improve the objective function and
therefore, equation (6.13) determines an upper bound for the ∆ȳ components. In other
words, and for every i ∈ M , ∆ȳ?i ≤ maxj∈K{Υj}, where ∆ȳ?i is the optimal solution
of problem (6.11). Hence, we can conclude that the problem (6.11) has a bounded
solution.

If dj = 0 for every j ∈ K, the trivial solution (∆ȳ,∆s̄) = 0 is the optimal solution.
This case is unlikely since we expect columns with negative reduced costs, namely
c̄j − ĀTj y0 < 0. However, and as it will be explained later, due to our strategy in some
occasions this may happen.

The next lemma states that by calculating direction ∆ȳ from (6.11) infeasibilities
are absorbed in the old components and a dual feasible point for the new problem is
obtained.

Lemma 6.4. Let (x0, y0, s0) ∈ F0. If ∆ȳ is chosen by solving (6.11) then a full step
in the old components is feasible. Therefore, dual feasibility is restored in one step.

Proof. From the definition of problem (6.11), we have ∆ȳi ≥ 0 for every i ∈ M and
therefore, ∆yi ≤ 0 for every i ∈ M . Since Aij ≥ 0 for every j ∈ N and i ∈ M and
using (6.7), we have:

∆sj = −
∑
i∈M

Aij∆yi ≥ 0, ∀j ∈ N.

Recalling that s0
j > 0, s0

j + ∆sj > 0,∀j ∈ N as required.

Even though our objective is to minimize the variation of the dual elements in the
primal dominant partition, we cannot guarantee this variation to be small. This is an
unavoidable consequence of the fact that there is no control of the depth of the new
cuts and a large variation of some components ∆s is expected. Despite the lack of
control, we can still determine an upper bound for ∆s in the old components. Note
that from (6.7) and ∆y = −∆ȳ, we have

∆s = AT∆ȳ, (6.14)

Also, from (6.13) we have the following bound on ∆ȳi for every i ∈M

∆ȳi ≤
dmax
Āmin

, (6.15)

where, following (6.12), dmax is defined as

dmax = max
j∈K

{
−c̄j +

∑
i∈M

Āijy
0
i + s̄j

}
.
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Applying l∞ norm to (6.14) and considering the upper bound of (6.15), we obtain

||∆s||∞ ≤ ||AT ||∞||∆ȳ||∞.

≤
√
m σmax(A) dmax

Āmin
.

Thus,

∆sj ≤
√
m σmax dmax

Āmin
, ∀j ∈ N. (6.16)

Additionally, considering (6.12), for every j ∈ K, we have

s̄j + ∆s̄j ≤
√
m σmax dmax

Āmin
+ (c̄j − ĀTj y0), ∀j ∈ K. (6.17)

6.2.3 Primal feasibility restoration

Similar to the recovery of dual feasibility, we aim to restore feasibility in the primal
space by solving an auxiliary linear optimization problem and using the notion of primal
dominant and dual dominant partitions. Considering the first equation of system (6.2)
and (x0, y0, s0) ∈ F0, we have

A∆x = −Ā(x̄+ ∆x̄) (6.18)

To simplify the notation, let us define x̄wj = x̄j + ∆x̄j for every j ∈ K. Primal
feasibility could be easily restored if we could set x̄w = 0. Since in interior point
methods this is not possible, we need to fix or determine a positive value for x̄w. In
practice, primal feasibility could still be easily achieved by setting x̄w sufficiently small.
We could apply for example the primal feasibility restoration direction proposed in
[56], ∆x = −ΘAT (AΘAT )−1Āx̄w for non-degenerate systems where Θ = XS−1 is a
diagonal scaling matrix. This is a generalization of Mitchell’s direction presented in
[93] and applied in the primal projective algorithm to handle multiple cuts. Setting a
small value for x̄w seems to be sensible since primal infeasibility depends on this value.
We have designed a slightly different strategy which takes into account setting x0

j small
but also considers centrality aspects. For now, it is enough to say that our choice of
x̄w is the maximum possible value in order to ensure that: (a) a full step in the primal
direction is possible, and (b) primal feasibility is restored. Similar to the dual feasibility
restoration, we have defined the following auxiliary linear optimization problem.

Paux := minimize
∑
j∈N0

∆x+
j + ∆x−j
x0
j

, (6.19a)

subject to
∑
j∈N

Aij∆xj = −
∑
j∈K

Āij x̄j
w, ∀i ∈M, (6.19b)

∆xj ≥ x0
j (δl − 1), ∀j ∈ N, (6.19c)

∆xj = ∆x+
j −∆x−j , ∀j ∈ N0, (6.19d)

∆x+
j ≥ 0, ∀j ∈ N0, (6.19e)

∆x−j ≥ 0, ∀j ∈ N0, (6.19f)

where δl is a given parameter which satisfies 0 < δl < 1 and its meaning will be
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explained later in this chapter. In the primal case, and similar to what we did for the
dual variables in the primal dominant partition, we minimize the relative change of
the variables in the dual dominant partition (corresponding to small x0

j ). Note that
in this case we allow positive and negative directions and therefore we minimize the
absolute value of such directions. Constraints (6.19b) guarantee that by taking a full
step in direction ∆x, feasibility in the primal space is completely restored. Constraints
(6.19c) ensure that if we take a full step in direction ∆x, the new iterate will remain
positive. Constraints (6.19d)-(6.19f) are additional requirements that help to calculate
the absolute value of every ∆xj in the dual dominant partition. If ∆xj > 0, then
∆x+

j > 0 and ∆x−j = 0. If ∆xj < 0, then ∆x−j > 0 and ∆x+
j = 0. Finally, if ∆xj = 0,

then both ∆x+
j and ∆x−j are zero. Note that ensuring a non-empty feasible set in Paux

for general A and Ā is a non-trivial task. For instance, large values on x̄w may lead
to large negative values in some ∆xj and therefore, satisfying constraint (6.19c) may
not be possible. Later we will define conditions to ensure that primal infeasibility is
completely absorbed in one step.

Following [123], let us use the following QR factorization of AT ,

AT = Q

[
R
0

]
= [Q1, Q2]

[
R
0

]
= Q1R, (6.20)

where Q1 is an n ×m matrix, Q2 is an n × (n −m) matrix, [Q1, Q2] is a matrix with
orthogonal columns, and R is an m ×m upper triangular matrix. It is easy to check
that for the aforementioned factorization and given x̄w

∆x = −Q1R
−T Āx̄w, (6.21)

satisfies equation (6.18). If N0 = ∅, problem (6.19) becomes a feasibility problem and
it only requires to find a solution which solves (6.19b) and (6.19c). Such a solution
can be obtained from (6.21) given a suitable value of x̄wj for every j ∈ K, as we will
show later. It is known as the minimum norm solution. However, this is not the only
solution ∆x which satisfies (6.18). Applying the l2 norm to (6.21), we have

||∆x|| ≤ ||Q1|| ||R−T ||||Āx̄w||.

Since ||Q1|| = 1, ||R−T || = σmin(R)−1 and σmin(R) = σmin(A), it follows that

||∆x|| ≤ ||Āx̄w||
σmin(A)

.

≤
√
k σmax(Ā) x̄wmax

σmin(A)
. (6.22)

From (6.22), and using our definition of σmax, we can derive loose upper and lower
bounds for every ∆xj , with j ∈ N . These bounds are

−
√
k σmax x̄

w
max

σmin(A)
≤ ∆xj ≤

√
k σmax x̄

w
max

σmin(A)
, (6.23)

and problem (6.19) has a bounded solution.
Let us define the feasible set of ∆x associated with Paux as SP = {∆x : (6.19b) −

(6.19c) are satisfied}. In addition, let us define a closely related set SQ = {∆x :
(6.19b) are satisfied}. Observe that ∆x from (6.21) satisfies (6.19b) hence ∆x ∈ SQ.
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However, it does not have to satisfy (6.19c) and therefore in general ∆x /∈ SP . The
next lemma states that given a particular choice of x̄w and the correct choice of µ0, we
can guarantee that ∆x ∈ SP .

Lemma 6.5. Let (x0, y0, s0) ∈ Ns(γ) for γ ∈ (0, 1), Aij ≥ 0, ∀i ∈ M, ∀j ∈ N , Āij ≥
0, ∀i ∈M,∀j ∈ K. If

x̄wj ≤ γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}
, ∀j ∈ K, (6.24)

and 0 < δl < 1, then constraint (6.19c) is satisfied.

Proof. To ensure this, we have to show that (6.19c) is satisfied for every ∆xj from
(6.23). Hence, we have to prove that(

1− δl
)
x0
j ≥
√
k σmax x̄

w
max

σmin(A)
.

Since we need to ensure this for every j ∈ N , it suffices if we check that this inequality is
satisfied for the smallest possible x0

j . We know from (6.6a) that x0
j ≥ (γµ0)/Uv, ∀j ∈ N .

Therefore, we need to verify that(
1− δl

)γµ0

Uv
≥
√
k σmax x̄

w
max

σmin(A)
.

This condition is satisfied if we choose x̄wj for every j ∈ K satisfying (6.24) and by
noting that µ0 ≥ min{µ0, 1/µ0}.

Note that with our choice of x̄wj satisfying (6.24) for every j ∈ K, we can find a
solution to problem (6.19). As in the dual case, we now guarantee that a full step can
be taken in direction ∆x.

Lemma 6.6. Let (x0, y0, s0) ∈ Ns(γ) with γ ∈ (0, 1) and 0 < δl < 1. By choosing ∆x
from (6.19) and setting

x̄wj = γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}
, ∀j ∈ K, (6.25)

we have x0
j + ∆xj ≥ 0 and a full step in the primal space is feasible. Therefore, primal

feasibility is restored in one step.

Proof. Similarly to Lemma 6.4, from constraints (6.19c) and since x0
j > 0 and 0 < δl <

1, we deduce x0
j + ∆xj > 0 as required. Since this solution satisfies condition (6.19b),

we conclude that the warmstart is primal feasible.

Additionally, using the bounds in (6.23), the choice of x̄w in (6.25) and since 0 <
δl < 1, we can guarantee

−(1− δl) ≤
∆xj
x0
j

≤ (1− δl). (6.26)

Note that our choice of x̄wj is independent of s̄wj for every j ∈ K. Moreover, and
as described in Section 6.2.2, s̄wj for every j ∈ K is not fixed and must be calculated.
However, and as we will see in the next section, both values are related via other
parameters (i.e., µ0 and γ) in order to guarantee that complementarity products are
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still inside a slightly modified neighbourhood and that the new duality gap is also
bounded.

Summarizing our findings so far, we have shown that by the use of Paux and Daux
and choosing carefully s̄j and x̄wj , for every j ∈ K, we could take a full step in direc-
tion (∆x,∆y,∆s) recovering primal and dual feasibilities. Now, we will analyse the
consequences that such warmstarting approach has in the complementarity products.

6.2.4 Centrality

The main motivation why we have chosen to minimize a variation of the weighted-least
squares approach in our linear optimization problems is to avoid having large variations
(∆x,∆s) on small components. We would like to keep the terms |∆xj |/|x0

j |, j ∈ N0

and |∆sj |/|s0
j |, j ∈ B0 bounded by some constant so that we could have some control

on the complementarity products (centrality) of the warmstarting point and therefore,
a control on the new duality gap.

To analyse the effect of our warmstarting strategy on centrality of the new iterate,
let us first determine the depth of the cut for which our analysis holds. As stated before,
the depth of cut j is defined by −(c̄j − ĀTj y0) for every j ∈ K. It is not surprising
that if the depth of the cuts is large, we will need to backtrack to an earlier iterate.
This is considered in our analysis by the notion of µ0 which is a reference barrier term
that measures the depth of the cuts. When cuts are deep, µ0 is large so we may need
to backtrack far from optimality, but when the cuts get shallower, µ0 gets smaller and
therefore, we could choose an iterate close to optimality. Now, let us state the relation
between the depth of the cuts and µ0 using the following expression for every j ∈ K

1

γ
µ0

√
k Uv σmax

(1− δl) σmin(A)
max

{
µ0,

1

µ0

}
︸ ︷︷ ︸

Uc

≥ c̄j − ĀjT y0≥−γµ0
Āmin√

m Uv σmax
. (6.27)

Note that we have some control with regards to the size of the cut. This means
that we could retreat further back in the list of saved iterates to find a suitable large
enough µ0 and the corresponding (x0, y0, s0) solution for which this condition is satis-
fied. Observe that increasing µ0 will expand both sides of inequality (6.27) increasing
the chances to satisfy this condition. Also, observe that the left hand side inequality
provides us with a very loose upper bound when, by retreating back in the list of stored
iterates, some of the reduced costs become positive. This bound becomes useful when
defining the upper bound of the complementarity products obtained by our warmstart-
ing strategy. Finally, it is fair to say that in some iterations (6.27) may not be satisfied
by any of the stored iterates and therefore, we use coldstart instead.

Now, using definition (6.27) and the definition of s̄j in (6.10), from (6.12) we deduce
for every j ∈ K that

dj = −(c̄j − ĀTj y0) + s̄j ,

≤ 2γµ0
Āmin√

m Uv σmax
.
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Hence,

dmax = 2γµ0
Āmin√

m Uv σmax
. (6.28)

Substituting dmax in (6.16) and (6.17) we obtain

∆sj ≤ 2γµ0
1

Uv
, ∀j ∈ N, (6.29)

and

s̄j + ∆s̄j ≤ 2γµ0
1

Uv
+ Uc, ∀j ∈ K, (6.30)

respectively, where Uc denotes the left hand side term of inequality (6.27).
Now, let us analyse the consequences of our choices of s̄w and x̄w and their impact

on the complementarity products of the warmstarting iterate. To do so, first let us
define δl as

δl := min

{
C

µ0 + C
,
C

1
µ0

+ C

}
, (6.31)

where

C :=
γσmin(A)Āmin√
k
√
m U2

v σ
2
max

. (6.32)

From (6.31) it is clear that 0 < δl < 1. Additionally, let us define δu as

δu := 6. (6.33)

These values represent the coefficients used to expand the neighbourhood from
below and above, respectively. As mentioned earlier, we expect the new warmstarting
point to be inside a modified neighbourhood. Note that the parameter δl contains
valuable information regarding the old problem and the new columns appended to it,
through matrices A and Ā. Also, note that δu is problem independent. As we will
discuss later, this is one of the key results of the analysis since it guarantees that
regardless the size of the cut, and if some conditions hold, the new duality gap will be
bounded by the old duality gap and a constant.

The following theorem states conditions and analyses complementarity products
when our specialized warmstarting strategy is used. Let us introduce the following
notation: N̂ = {1, . . . , n, n + 1, . . . , n + k}, x̂w = [xw; x̄w], ŝw = [sw; s̄w], ĉ = [c; c̄] and
Â =

[
A Ā

]
.

Theorem 6.7. Let assumptions (A.1)-(A.4) hold and let (x0, y0, s0) ∈ Ns(γ) with
γ ∈ (0, 1). Additionally, let δl and δu be defined by (6.31) and (6.33), respectively.
Also, let us set

x̄wj = γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}
, ∀j ∈ K,

and

s̄j = max

{
γµ0

Āmin√
m Uv σmax

, c̄j − ĀTj y0

}
, ∀j ∈ K.

Having c̄j − ĀjT y0 satisfying (6.27), for every j ∈ K, and choosing ∆x from (6.19)
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and (∆y,∆s) from (6.11) where ∆y = −∆ȳ, we have that

(x̂w, yw, ŝw) ∈ N̂s(γ),

where

N̂s(γ) =

{
(x̂w, yw, ŝw) ∈ F̂0 : δlγµ0 ≤ x̂wj ŝwj ≤ δu

1

γ
µ0,∀j ∈ N̂

}
,

and
F̂0 =

{
(x̂w, yw, ŝw) : Âx̂w = b; ÂT yw + ŝw = ĉ; (x̂w, ŝw) > 0

}
.

Proof. It is not difficult to show that by choosing δl from (6.31) and δu from (6.33),
and using our previous choices for x̄wj (see (6.25)), and s̄wj = s̄j + ∆s̄j (see (6.10) and
(6.30)), the complementarity products for the new components, namely x̄wj s̄

w
j for every

j ∈ K which correspond to x̂wj ŝ
w
j for every j ∈ {n+1, . . . , n+k}, are inside the modified

neighbourhood, N̂s(γ). Let us prove first that the upper bound holds. For every j ∈ K,
we have that

x̄wj s̄
w
j = x̄wj (s̄j + ∆s̄j),

≤ γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}(
2γµ0

1

Uv
+ Uc

)
.

Since 0 < γ < 1, 0 < δl < 1, U2
v > 1, k ≥ 1, min{µ0, 1/µ0} ≤ 1, and the definition of

Uc, it is clear that

x̄wj s̄
w
j ≤ 2γµ0

1

Uv
γ(1− δl)

σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}
+ µ0,

< δuµ0, ∀j ∈ K, (6.34)

holds. If we now consider the lower bound for the complementarity products of the
new components, we have that for every j ∈ K

x̄wj s̄
w
j = x̄wj (s̄j + ∆s̄j),

≥ γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}(
γµ0

Āmin√
m Uvσmax

)
.

Using (6.32), we get

x̄wj s̄
w
j ≥ γC(1− δl)µ0 min

{
µ0,

1

µ0

}
, ∀j ∈ K.

Then, by choosing δl from (6.31), we have

x̄wj s̄
w
j ≥ δlγµ0, ∀j ∈ K, (6.35)

Hence, and considering γ ∈ (0, 1), (6.34) and (6.35) the following result holds

δlγµ0 ≤ x̄wj s̄wj ≤ δu
1

γ
µ0, ∀j ∈ K, (6.36)

which completes the first part of the prove.
Now, we prove that the complementarity products of the old components, namely
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xwj s
w
j for every j ∈ N , corresponding to x̂wj ŝ

w
j for every j ∈ {1, . . . , n}, are inside the

modified neighbourhood, N̂s(γ). Firstly, let us prove that the upper bound holds for
every j ∈ N . By definition and conditions (6.6) and (6.26), we have that for every
j ∈ N

xwj s
w
j = x0

js
0
j

(
1 +

∆xj
x0
j

)(
1 +

∆sj
s0
j

)
,

≤ x0
js

0
j

(
2
)(

1 + ∆sj
Uv
γµ0

)
.

Hence, and by using (6.29) and (6.33), we get

xwj s
w
j ≤ δu

1

γ
µ0, ∀j ∈ N.

To prove that the lower bound holds we recall constraints (6.19c) which guarantee

∆xj ≥ x0
j (δl − 1), ∀j ∈ N. (6.37)

Also, from (6.9), ∆sj ≥ 0. Hence for every j ∈ N

xwj s
w
j = x0

js
0
j

(
1 +

∆xj
x0
j

)(
1 +

∆sj
s0
j

)
,

≥ x0
js

0
j

(
1 +

∆xj
x0
j

)
. (6.38)

From (6.37) and since x0
j > 0, we know that

1 +
∆xj
x0
j

≥ δl, ∀j ∈ N.

Replacing this in (6.38) gives

xwj s
w
j ≥ δlx0

js
0
j , ∀j ∈ N,

which completes the proof.

6.2.5 Algorithm

Now we are in position to describe the algorithm proposed to find a warmstarting point
after columns with reduced costs satisfying c̄j − ĀjT y < 0 are added to the RMP. Note
that this algorithm is embedded inside a major algorithm which is the primal-dual
column generation method (see Algorithm 5.1). Let us define T = {1, 2, . . . , h} as
the set of indices of iterates which are strictly feasible and well-centred in the initial
problem. Observe that T , h and their corresponding list of stored solutions vary at
each outer iteration of PDCGM. The list is created in ascending order so the last stored
iterate and the closest-to-optimality solution is denoted by (xh, yh, sh). Algorithm 6.1
summarizes the principal steps of our specialized warmstarting strategy.
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Algorithm 6.1 One Step Primal-Dual Warmstarting Strategy

Input: A, b, c, c̄, Ā, Uv, n, k, m, γ ∈ (0, 1), list of (xt, yt, st) ∈ Ns(γ) and µt =
(xt)T st/n, where t ∈ T .
Steps:

1: If no column is returned by the oracle, set (xw, yw, sw) = (xh, yh, sh), and then go
to 8. Otherwise, go to 2.

2: Calculate the smallest µ from the list of stored iterates such that

Uc ≥ c̄j − ĀjT y0 ≥ −γµ0
Āmin√

m Uv σmax
,

is satisfied. If there exists such µ, define µ = µ0, denote its associated solution as
(x0, y0, s0), and go to 3. If not, use coldstart and go to 8.

3: Define

δl := min{ C
µ0 + C

,
C

1
µ0

+ C
}, where C :=

γĀminσmin(A)√
k
√
m U2

v σ
2
max

.

4: For every j ∈ K, set

s̄j = max

{
γµ0

Āmin√
m Uv σmax

, c̄j − ĀTj y0

}
,

x̄wj = γ(1− δl)
σmin(A)√
k Uv σmax

min

{
µ0,

1

µ0

}
,

and define B0 and N0.
5: Solve Daux. Output: (∆y,∆s).
6: Solve Paux. Output: ∆x.
7: Define (xw, x̄w, yw, sw, s̄w) = (x0 + ∆x, x̄w, y0 + ∆y, s0 + ∆s, s̄w).
8: Continue with the usual primal-dual interior point method by solving the Newton

system of equations in the old/new dimensions.

Observe that a new list of stored iterates is used every time we initialize Algorithm
6.1. Note that Step 1 in Algorithm 6.1 accounts for the case in which no columns with
negative reduced costs are obtained from the oracle. This is a particular feature of the
PDCGM (as explained in Chapter 5). There is no point in using a warmstarting strat-
egy since the current iterate is already well-centred and strictly feasible and therefore
starting from it is the best we could do. Also, it is important to note that every cut
c̄j − ĀjT yh < 0 is generated using (xh, yh, sh). Hence, for any iterate (xt, yt, st), where
t ∈ T , some of the new columns (cuts) may actually become dual feasible, or at least
less infeasible (shallower cuts). The following theorem summarizes the main discussion
and results of this section.

Theorem 6.8. Using Algorithm 6.1, and given that a suitable (x0, y0, s0) is available
from the list of iterates, the solution (x̂w, yw, ŝw) ∈ N̂s(γ) and the new duality gap is
bounded by

(x̂w)T ŝw ≤ 6
(
n+ k

)1

γ
µ0. (6.39)

Proof. The proof follows from Lemmas 6.4 and 6.6 and Theorem 6.7.

In summary, our strategy aims to restore primal and dual feasibilities separately
by means of auxiliary linear optimization problems. We can ensure that primal and
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dual feasibilities are fully recovered if a suitable µ can be found. Note that Theo-
rem 6.8 provides a guarantee that the new duality gap is bounded by the old duality
gap multiplied by a constant which depends on the number of columns added to the
old problem. Our analysis takes into account special classes of problems arising in
combinatorial optimization with non-negative technological coefficients.

6.3 Computational study

We have implemented the proposed warmstarting strategy inside the primal-dual col-
umn generation method. This column generation implementation has a built-in proce-
dure which allows to store an advanced iterate in order to use it for future warmstart.
We have taken advantage of this to implement our strategy. We have tested three dif-
ferent strategies to solve the relaxation of the one-dimensional cutting stock problem
(CSP) and the vehicle routing problem with time windows (VRPTW) after applying
the Dantzig-Wolfe reformulation described in Chapter 4.

The strategies considered to find a suitable candidate from which to start solving
each RMP are:

� Coldstart (CS). It refers to solving a given RMP without considering any infor-
mation of the previously solved RMP and therefore, every RMP is solved from
scratch. We rely on the presolving and heuristic procedures included in HOPDM
[54].

� Partial feasibility restoration (PFR). This strategy was introduced in [56] and has
been successfully applied to speed up the column generation procedure in [62].
This strategy ensures that dual feasibility is fully restored in the new components
if cuts are not too deep. However, it does not ensure the same in the old com-
ponents. Additionally, it sets the new components in the primal space to a small
value so primal feasibility can be easily restored. Moreover, this strategy is the
one used in the computational experiments presented in Chapter 5.

� One step primal-dual restoration (1SPDR). This strategy is described in Algo-
rithm 6.1 and aims to recover primal and dual feasibilities in one step by solving
two auxiliary problems. Also, theoretical guarantees are provided so the warm-
starting iterate stays close to the new central path.

Similar to the previous computational experiments, the subproblems obtained after
applying the reformulation to CSP and VRPTW are solved using the same source code,
i.e., knapsack solver [82] (CSP) and our own implementation of the bounded bidirec-
tional dynamic programming algorithm proposed in [107], with state-space relaxation
and identification of unreachable nodes [37] (VRPTW). For the three aforementioned
strategies (CS, PFR and 1SPDR), the RMPs are initialized with the same columns.
However, after the first iteration every RMP may be different and therefore, we may
expect that some of the strategies will require fewer outer iterations than others. To
run the tests we have used a laptop with a 2.3 Ghz Intel Core i5 processor, 4 GB RAM
and a Linux operating system. The implementations have been developed in C (solv-
ing the two auxiliary problems) and FORTRAN (HOPDM native language). For each
of the strategies, we stop the column generation procedure when the relative duality
gap becomes smaller than the default accuracy δ = 10−6. Note that the results may
be different from the ones presented in the previous chapter. This is due to using a
different machine to run the experiments.
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In the results presented in Chapter 5, it was observed that the time spent solving
the RMP was considerable when compared with the time spent in the oracle when
solving CSP. On the other hand, the dominant task when solving VRPTW was the
oracle and the RMP time only accounted for a small portion of the total time. By
presenting the results for these two applications, we could get a better understanding
of the situations where we can expect a warmstarting strategy to perform better than
coldstart and how much the gain can be.

Before continuing, it is important to give some remarks about our implementation.
Note that for advanced column generation iterations, the coefficients of the objective
function, in the primal and dual auxiliary problems (1/s0

j in (6.9) and 1/x0
j in (6.19)),

can lead to very badly-scaled problems (some very large coefficients and others very
small). Therefore, we have decided to scale these coefficients and restrict them to a
narrower range. In other words, if a given coefficient is greater/smaller than a predefined
threshold, we have used this threshold as the coefficient for this specific variable. Note
that by doing this, we do not affect the primal and dual feasible sets, only the scaling of
that particular auxiliary problem and therefore, the strategy still recovers primal and
dual feasibility in one step. Additionally, since PDCGM is based on HOPDM [54], an
infeasible primal-dual interior point method is used to solve every RMP which keeps the
iterates inside a neighbourhood of the central path by making use of multiple centrality
corrector steps [21]. We have considered this in our developments in the following way.
When the column generation process approaches optimality and the depth of the cuts
is small, that is when µ and (c̄j − ĀTj y0

j ) are small, instead of solving the primal and

dual auxiliary problems, we set the values of new components to x̄wj =
√
µ/γ and

s̄wj =
√
γµ for every j ∈ K. We keep the old iterates unchanged. This choice is

justified since the cuts at this stage are likely to be shallow and therefore, by choosing
the new components in this way, we only generate small infeasibilities which HOPDM
(and any infeasible primal-dual interior point method) can easily handle. Additionally,
with these choices, we ensure that the complementarity products for the new iterates
are inside the neighbourhood described in (6.5). Moreover, and after some testing,
the directions, and therefore, the correction steps, obtained by solving the auxiliary
problems in an advanced stage of the column generation process, are very short and
do not change significantly the stored iterate. By performing this small change in the
algorithm, we aim to reduce the CPU time of the method by avoiding unnecessary calls
to the auxiliary problems and taking advantage of the infeasible primal-dual interior
point method. Finally, to solve the primal and dual auxiliary problems we rely on the
solver HOPDM.

6.3.1 Cutting stock problem

To analyse the performance of these three strategies for solving CSP, we have se-
lected 262 instances from the literature in the one-dimensional CSP (http://www.
math.tu-dresden.de/~capad/). The size of the instances vary between 15 and 285
items. The column generation procedure is initialized with columns generated by ho-
mogeneous cutting patterns, which corresponds to selecting only one piece per pattern,
as many times as possible without violating the width of the rolls.

In Table 6.1, we summarize our findings. In the first column we denote by k the
number of columns added at each iteration of the column generation procedure. Note
that by adding more columns at every iteration we are targeting to reduce the number
of calls to the oracle. However, in terms of warmstarting this may have an important
impact since the similarities between two consecutive RMPs are likely to be lost. We

82



have grouped the instances in the same way as in Chapter 5 (for number of instances per
class, refer to Table 5.1). In row ALL, we have included the average results when all the
instances are considered for that particular value of k. For each strategy we show the
average number of inner iterations (inner) and the average CPU time required to solve
the RMPs (rmp(s)). Inner iterations refer to the total number of iterations required to
solve the RMPs while the RMP time considers the time required to solve the RMPs
and the time of any warmstating procedure. For instance, for 1SPDR, it is the overall
time of solving the primal and dual auxiliary problems and the time of solving each
RMP. Moreover, we also include the total time required for the PDCGM to converge
to an optimal solution (tot(s)).

Table 6.1: Average results on 262 instances of CSP for PFR, CS and 1SPDR strategies
adding k columns at a time: RMP iterations and times (RMP and total).

PFR CS 1SPDR PFR/1SPDR CS/1SPDR

k class inner rmp(s) tot(s) inner rmp(s) tot(s) inner rmp(s) tot(s) inner tot(s) inner tot(s)

1

U 2628.2 26.3 144.0 7714.9 100.9 257.1 5953.8 52.2 167.9 0.4 0.9 1.3 1.5
mX 3171.4 13.5 23.7 5973.3 28.2 40.1 2920.4 10.1 18.8 1.1 1.3 2.0 2.1
MTP0xJES 927.7 2.5 4.5 2879.3 4.6 6.3 1752.3 3.1 4.6 0.5 1.0 1.6 1.3
MTP0 959.2 2.7 4.3 3034.8 5.1 6.8 1762.6 3.6 5.0 0.5 0.8 1.7 1.3
hard28 1895.5 6.6 8.1 5210.6 14.1 15.4 2396.8 6.6 7.7 0.8 1.1 2.2 2.0
7hard 1279.0 3.7 4.5 3351.9 6.7 7.4 1814.0 4.1 4.6 0.7 1.0 1.8 1.6
53NIRUPs 1063.9 2.8 3.4 2755.6 5.2 5.8 1448.4 2.9 3.4 0.7 1.0 1.9 1.7
gau3 488.0 0.6 0.6 692.0 0.7 0.7 321.0 0.4 0.4 1.5 1.6 2.2 1.9

ALL 2438.5 10.9 25.9 5192.1 26.2 45.0 2723.2 11.1 25.0 0.9 1.0 1.9 1.8

10

U 765.2 6.6 52.5 2721.7 36.9 88.3 1443.5 14.8 49.2 0.5 1.1 1.9 1.8
mX 1035.5 6.1 10.4 1992.5 10.5 15.0 1073.9 5.6 9.8 1.0 1.1 1.9 1.5
MTP0xJES 278.0 0.8 1.5 741.0 1.4 2.2 486.0 1.1 1.9 0.6 0.8 1.5 1.1
MTP0 307.8 0.8 1.6 771.6 1.7 2.3 467.0 1.2 1.9 0.7 0.8 1.7 1.2
hard28 654.5 2.9 3.8 1739.0 6.8 7.7 911.3 3.6 4.4 0.7 0.9 1.9 1.7
7hard 379.0 1.2 1.5 961.0 2.7 3.1 555.0 1.5 1.8 0.7 0.8 1.7 1.7
53NIRUPs 339.2 1.0 1.4 816.1 2.1 2.4 469.5 1.3 1.5 0.7 0.9 1.7 1.6
gau3 114.0 0.2 0.2 237.0 0.3 0.3 156.0 0.2 0.2 0.7 1.0 1.5 1.3

ALL 789.7 4.4 10.6 1711.2 9.9 16.5 926.8 5.0 10.1 0.9 1.0 1.8 1.6

50

U 534.3 7.3 59.4 1640.0 24.8 62.5 877.1 12.5 41.3 0.6 1.4 1.9 1.5
mX 729.7 8.7 19.6 1526.8 17.2 28.4 1090.3 11.8 20.7 0.7 0.9 1.4 1.4
MTP0xJES 205.7 0.7 2.1 457.3 1.5 2.8 307.3 0.9 2.1 0.7 1.0 1.5 1.4
MTP0 191.8 0.8 2.3 455.2 1.5 2.7 319.0 1.1 2.3 0.6 1.0 1.4 1.2
hard28 483.0 4.3 7.6 1200.6 8.5 11.4 686.8 4.7 7.1 0.7 1.1 1.7 1.6
7hard 277.6 1.4 2.7 669.3 3.1 4.2 413.6 1.7 2.7 0.7 1.0 1.6 1.6
53NIRUPs 240.4 1.3 2.4 545.3 2.4 3.3 334.2 1.4 2.2 0.7 1.1 1.6 1.5
gau3 136.0 0.3 0.4 180.0 0.4 0.5 122.0 0.2 0.3 1.1 1.5 1.5 1.5

ALL 558.8 6.2 16.8 1241.3 13.0 22.6 832.5 8.3 15.9 0.7 1.1 1.5 1.4

100

U 493.7 7.9 64.2 1277.6 22.0 59.3 758.3 13.3 47.0 0.7 1.4 1.7 1.3
mX 688.9 9.1 29.2 1479.3 26.7 52.8 1100.4 21.1 43.7 0.6 0.7 1.3 1.2
MTP0xJES 181.0 0.6 2.7 371.3 1.4 3.7 274.3 1.2 3.5 0.7 0.8 1.4 1.1
MTP0 178.8 0.7 2.7 425.4 1.7 4.2 261.6 1.2 3.5 0.7 0.8 1.6 1.2
hard28 443.9 3.7 9.0 1081.0 9.9 15.8 654.1 6.1 11.4 0.7 0.8 1.7 1.4
7hard 259.1 1.3 3.5 678.3 4.6 7.1 357.9 2.0 4.1 0.7 0.8 1.9 1.7
53NIRUPs 212.1 1.1 2.7 495.9 2.7 4.6 292.4 1.6 3.3 0.7 0.8 1.7 1.4
gau3 103.0 0.2 0.4 206.0 0.4 0.6 100.0 0.2 0.4 1.0 1.0 2.1 1.5

ALL 522.1 6.3 22.8 1163.3 18.2 36.7 814.0 13.8 29.9 0.6 0.8 1.4 1.2

Note that the best performance in terms of CPU time for each of the strategies
and each group of instances is obtained when 10 columns are added at each iteration.
From our results it seems that by adding 10 columns, the number of column generation
iterations is reduced considerably when compared to a single-column approach and at
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the same time, each strategy (re)initializes and solves the RMPs efficiently. Note that
considering all instances, the best performance is achieved by 1SPDR when adding
10 columns. It is also fair to say that the performance of PFR is comparable to
the one proposed in this study when this number of columns is added per iteration.
Both warmstarting strategies outperform a coldstart approach in both number of inner
iterations and CPU times.

Let us now compare CS and 1SPDR. Since 1SPDR successfully restores primal and
dual feasibility in almost all the column generation iterations and keeps the complemen-
tarity products of the warmstarting iterate inside a slightly modified neighbourhood,
the number of inner iterations to solve the new problem is reduced when compared to
CS. The reductions vary between 23% (class U when k = 1) and 54% (class hard28
when k = 1). Considering all the instances, the reductions in RMPs iterations are be-
tween 30% (k = 100) and 48% (k = 1). The savings in time are due to these reductions
and also the efficiency of calculating the new warmstarting iterate. The gains in total
CPU time by using 1SPDR range between 19% to 45%.

The differences between 1SPDR and PFR are due to the nature of each of these
strategies and the environment for which they were developed. It is necessary to remark
that 1SPDR aims to recover primal and dual feasibility while keeping the warmstarted
iterate inside a slightly modified neighbourhood, but PFR aims to recover only feasibil-
ity in the new dual components and does not ensure the same for the old components.
Additionally, the latter was designed to take full advantage of an infeasible primal-
dual interior point method while the former has being developed considering a feasible
primal-dual interior point method and only takes advantage of the infeasibility nature
of the solver at the end of the column generation process, namely when the primal-
dual column generation method is close to termination. In general, PFR outperforms
1SPDR in number of inner iterations. This may be due to the nature of PFR, which
delivers close to feasible solutions but at the same time, the iterates are far enough
from the boundaries. Then, only few centring steps are needed to recover feasibility
and return to the neighbourhood of the new central path. On the other hand, 1SPDR
ensures primal and dual feasibility restorations. However, and as a consequence of such
restorations, it slightly increases the neighbourhood and therefore, at some iterations
the warmstarting iterate may be too close to the boundaries. This originates a some-
times excessive number of centring steps in order to return to the neighbourhood of
the new central path and therefore has a big impact on the number of iterations. It
is important to point out that this belief is just empirical since no theoretical support
is given for PFR with respect to complementarity after the restoration is performed.
In terms of CPU time, it is not clear which method performs better. However, the
best performance in terms of total CPU time is obtained when using 1SPDR when 10
columns are added.

Table 6.2: Average results on 262 instances of CSP for PFR, CS and 1SPDR adding k
columns at a time: column generation calls, time and inner iterations per RMP.

PFR CS 1SPDR

k ite rmp(s)/ite inner/ite ite rmp(s)/ite inner/ite ite rmp(s)/ite inner/ite

1 440.4 0.02 5.5 487.5 0.05 10.7 423.2 0.03 6.4
10 120.0 0.04 6.6 146.2 0.07 11.7 111.9 0.04 8.3
50 73.8 0.08 7.6 91.9 0.14 13.5 67.5 0.12 12.3
100 62.8 0.10 8.3 78.6 0.23 14.8 59.9 0.23 13.6
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Additionally, in Table 6.2 we present more results of these experiments considering
all the instances for different values of k. We have included the number of column gen-
eration iterations (ite), the average CPU time required to solve every RMP (rmp(s)/ite)
and the average number of inner iterations per RMP (inner/ite).

It is clear from Table 6.2 that by aiming to add more columns to the RMP at each
iteration (k), the number of outer iterations is reduced for all the strategies. Also,
from Table 6.2 similar behaviour in terms of outer iterations can be observed by every
reinitialization strategy for every number of column strategy considered. This result is
not surprising since we are using the same column generation strategy and therefore one
may expect differences of only few iterations. However, the CPU time is not affected in
the same way. This is explained because while adding more columns at each iteration
reduces the number of calls to the oracle (which is the most time consuming task for
this application), it makes the task of warmstarting more difficult since the new RMP
is likely to be very different from the old RMP. This can be seen in the average time
required to solve the RMPs. Finally, it seems that 1SPDR is more sensible to the
number of columns added per iteration than PFR in terms of inner iterations required
to solve the RMPs. Considerable savings in inner iterations are achieved when k is
small. However, these benefits start to vanish for large values of k when compared to
CS.

Finally, in Figures 6.3(a) and 6.3(b) we have plotted the performance profiles of the
PDCGM using these three reinitialization strategies with respect to inner iterations
and CPU time, respectively. We have included the results of all the instances and
all the values of k considered previously. Note that in terms of inner iterations, PFR
is the strategy that requires fewer inner iterations in nearly 80% of the cases while
1SPDR is the best strategy for the remaining 20% for the same performance measure.
If we now consider the total CPU time metric, 1SPDR is the best strategy closely
followed by PFR. Although PFR requires in general fewer inner iterations, 1SPDR
offers reductions in the number of outer iterations and therefore, it performs slightly
better. It is clear that CS approach does not offer any benefits for this application
in terms of inner iterations nor total CPU time and it is outperformed by one of the
warmstarting strategies in all the instances for any value of k.
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Figure 6.3: Performance profiles for CSP with PFR, CS and 1SPDR

6.3.2 Vehicle routing problem with time windows

From VRPTW literature we have selected 87 instances (http://www2.imm.dtu.dk/

~jla/solomon.html) originally proposed in [112]. We have used the same classification
as in Section 5.2.2. The column generation procedure is initialized with n single-
customer routes, which corresponds to assigning one vehicle per customer.
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Table 6.3: Average results on 87 instances of VRPTW for PFR, CS and 1SPDR adding
k columns at a time: RMP iterations and times (RMP and total).

PFR CS 1SPDR PFR/1SPDR CS/1SPDR

k class inner rmp(s) tot(s) inner rmp(s) tot(s) inner rmp(s) tot(s) inner tot(s) inner tot(s)

1

C25 166.2 0.2 0.7 194.3 0.2 0.6 319.1 0.3 0.6 0.5 1.0 0.6 0.9
R25 206.8 0.3 0.8 203.5 0.2 0.5 371.7 0.3 0.6 0.6 1.3 0.5 0.8
RC25 227.0 0.4 1.7 281.3 0.2 1.2 412.3 0.4 1.3 0.6 1.3 0.7 0.9
C50 272.7 0.4 4.4 322.7 0.3 4.3 569.8 0.5 3.7 0.5 1.2 0.6 1.2
R50 481.9 0.8 6.6 663.0 0.7 5.2 1060.3 1.1 5.3 0.5 1.3 0.6 1.0
RC50 411.8 0.6 9.4 547.8 0.5 10.0 910.3 0.9 9.3 0.5 1.0 0.6 1.1
C100 509.6 0.8 39.1 722.8 0.8 40.3 1150.3 1.6 42.0 0.4 0.9 0.6 1.0
R100 944.5 1.5 139.3 1364.1 1.7 147.4 2574.6 3.8 162.6 0.4 0.9 0.5 0.9
RC100 797.5 1.2 151.0 1164.1 1.4 155.1 2233.9 2.9 159.2 0.4 0.9 0.5 1.0

ALL 455.4 0.7 39.7 619.2 0.7 41.1 1090.6 1.4 43.7 0.4 0.9 0.6 0.9

10

C25 118.9 0.2 0.4 104.9 0.1 0.3 161.9 0.2 0.3 0.7 1.1 0.6 0.8
R25 132.8 0.2 0.3 113.4 0.1 0.3 175.2 0.2 0.3 0.8 1.1 0.6 0.8
RC25 146.1 0.2 0.6 130.5 0.2 0.6 191.3 0.2 0.6 0.8 1.1 0.7 1.0
C50 205.4 0.3 1.9 171.6 0.2 1.7 252.6 0.3 1.7 0.8 1.1 0.7 1.0
R50 251.9 0.4 2.3 214.7 0.3 2.3 364.6 0.5 2.3 0.7 1.0 0.6 1.0
RC50 269.6 0.4 3.9 234.0 0.3 3.7 387.9 0.5 3.8 0.7 1.0 0.6 1.0
C100 372.7 0.6 12.9 269.3 0.4 12.6 541.9 0.9 14.1 0.7 0.9 0.5 0.9
R100 562.0 1.1 47.1 529.1 1.1 48.6 967.3 2.0 48.9 0.6 1.0 0.5 1.0
RC100 443.9 0.8 47.7 407.3 0.8 52.0 740.5 1.4 49.8 0.6 1.0 0.5 1.0

ALL 281.7 0.5 13.2 245.7 0.4 13.7 428.1 0.7 13.8 0.7 1.0 0.6 1.0

50

C25 114.1 0.2 0.3 114.9 0.2 0.4 152.7 0.3 0.4 0.7 0.8 0.8 1.0
R25 108.0 0.2 0.3 105.8 0.1 0.3 138.0 0.2 0.3 0.8 0.8 0.8 0.9
RC25 127.0 0.2 0.5 130.9 0.2 0.6 172.9 0.3 0.6 0.7 0.8 0.8 1.0
C50 183.2 0.4 1.3 159.7 0.5 1.7 198.6 0.5 1.4 0.9 0.9 0.8 1.2
R50 217.3 0.4 1.6 171.8 0.4 1.8 257.7 0.5 1.8 0.8 0.9 0.7 1.0
RC50 225.0 0.4 2.5 204.3 0.5 2.9 269.9 0.5 2.7 0.8 0.9 0.8 1.1
C100 354.8 0.9 10.1 314.2 1.1 11.0 468.2 1.5 10.6 0.8 0.9 0.7 1.0
R100 464.3 1.5 28.8 411.8 2.1 36.9 708.8 2.7 30.6 0.7 0.9 0.6 1.2
RC100 373.1 1.1 29.8 339.3 1.4 33.5 509.8 1.7 30.8 0.7 1.0 0.7 1.1

ALL 243.1 0.6 8.4 218.0 0.8 10.1 324.7 0.9 8.9 0.7 0.9 0.7 1.1

100

C25 109.4 0.2 0.3 116.0 0.3 0.4 147.7 0.3 0.4 0.7 0.8 0.8 0.9
R25 105.8 0.2 0.3 106.2 0.2 0.3 135.0 0.2 0.3 0.8 0.8 0.8 0.8
RC25 130.1 0.2 0.5 141.0 0.3 0.6 162.4 0.3 0.6 0.8 0.9 0.9 1.0
C50 169.9 0.5 1.6 144.0 0.6 1.7 207.1 0.7 1.7 0.8 1.0 0.7 1.0
R50 187.8 0.4 1.4 161.9 0.5 1.6 255.2 0.7 1.6 0.7 0.9 0.6 0.9
RC50 196.9 0.4 2.1 199.6 0.6 2.5 268.9 0.7 2.4 0.7 0.9 0.7 1.0
C100 293.6 1.3 9.6 254.6 1.4 10.6 394.3 2.3 11.7 0.7 0.8 0.6 0.9
R100 397.4 1.7 22.0 327.4 2.1 25.0 532.8 3.0 23.8 0.7 0.9 0.6 1.0
RC100 337.4 1.3 22.4 280.0 1.6 17.4 419.3 2.0 22.7 0.8 1.0 0.7 0.8

ALL 215.7 0.7 6.8 192.4 0.8 6.9 283.0 1.2 7.3 0.8 0.9 0.7 0.9

200

C25 128.0 0.3 0.4 116.8 0.4 0.5 151.9 0.4 0.5 0.8 0.8 0.8 0.9
R25 104.3 0.2 0.3 108.7 0.2 0.3 124.4 0.3 0.4 0.8 0.8 0.9 0.9
RC25 134.4 0.3 0.6 140.6 0.4 0.7 165.1 0.4 0.7 0.8 0.8 0.9 1.1
C50 168.3 0.7 1.6 155.0 0.8 1.9 222.1 1.1 2.0 0.8 0.8 0.7 0.9
R50 194.7 0.6 1.5 167.3 0.7 1.7 248.1 0.8 1.7 0.8 0.9 0.7 1.0
RC50 195.0 0.6 2.3 221.9 1.0 2.8 282.1 1.0 2.6 0.7 0.9 0.8 1.1
C100 323.0 2.2 10.1 261.6 2.3 9.9 348.8 2.8 10.0 0.9 1.0 0.7 1.0
R100 394.3 2.5 19.8 315.9 3.0 21.8 510.6 4.2 21.1 0.8 0.9 0.6 1.0
RC100 347.8 2.1 21.1 306.1 2.6 24.8 456.1 3.3 23.6 0.8 0.9 0.7 1.0

ALL 222.0 1.1 6.4 198.3 1.3 7.2 279.6 1.6 7.0 0.8 0.9 0.7 1.0

300

C25 126.0 0.4 0.5 132.9 0.5 0.6 149.7 0.5 0.6 0.8 0.8 0.9 1.0
R25 102.5 0.2 0.3 109.0 0.3 0.4 125.3 0.3 0.4 0.8 0.8 0.9 0.9
RC25 138.6 0.4 0.7 151.6 0.5 0.8 176.5 0.6 0.8 0.8 0.9 0.9 0.9
C50 186.2 1.1 2.1 157.9 1.2 2.1 208.1 1.2 2.0 0.9 1.1 0.8 1.0
R50 194.8 0.7 1.6 173.0 0.9 1.8 270.6 1.1 2.0 0.7 0.8 0.6 0.9
RC50 213.3 0.9 2.3 222.5 1.2 2.9 284.0 1.3 2.8 0.8 0.8 0.8 1.0
C100 353.4 3.0 10.0 253.8 2.4 9.2 383.2 3.8 11.0 0.9 0.9 0.7 0.8
R100 419.8 3.4 19.1 310.4 3.9 21.9 533.6 5.6 21.6 0.8 0.9 0.6 1.0
RC100 347.0 2.5 20.1 284.9 3.1 22.4 468.9 3.9 21.5 0.7 0.9 0.6 1.0

ALL 232.0 1.4 6.3 198.6 1.6 7.0 290.3 2.1 7.0 0.8 0.9 0.7 1.0
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In Table 6.3 we present the results of our computational experience for VRPTW.
As in Section 6.3.1, the first two columns denote the number of columns we aim to
add per iteration to the RMP and the classification, respectively. We also present the
average number of inner iterations (inner), the average RMP time in seconds (rmp(s))
and the average total time (tot(s)) per strategy and number of columns aimed to add
per iteration (k).

As shown in Chapter 5, the most expensive task for this application in the PDCGM
is solving the oracle (difference between the total and RMP times). When the number
of columns aimed to be added per iteration is small, the RMP time accounts as a small
proportion of the total CPU time. Therefore, it might seem a bit odd to see that for
some classes the total CPU time is slightly lower while the RMP time is slightly higher.
This is only due to savings in the number of outer iterations and therefore, in oracle
time. The importance of the RMP time with respect to the total CPU time increases
with the number of columns allowed to be added per iteration. This can be explained
since the RMP becomes computationally more expensive (the instance becomes larger
and the warmstarting strategy procedure, if any, consumes time) while the total CPU
time is reduced.

Similarly, in Table 6.4 we include more information to help with the interpretation
of our results, namely, the average number of outer iterations (ite), the average ra-
tio between the time required to solve the RMPs and the number of outer iterations
(rmp(s)/ite) and the average number of inner iterations per RMP (inner/ite).

Table 6.4: Average results on 87 instances of VRPTW for PFR, CS and 1SPDR adding
k columns at a time: columns added, column generation calls and time per RMP.

PFR CS 1SPDR

k ite rmp(s)/ite inner/ite ite rmp(s)/ite inner/ite ite rmp(s)/ite inner/ite

1 121.6 0.01 3.7 124.9 0.01 5.0 124.9 0.01 8.7
10 44.4 0.01 6.3 45.7 0.01 5.4 45.2 0.02 9.5
50 30.6 0.02 8.0 33.8 0.02 6.5 31.1 0.03 10.4
100 25.6 0.03 8.4 28.8 0.03 6.7 26.1 0.04 10.8
200 23.3 0.05 9.5 26.6 0.05 7.5 23.4 0.07 11.9
300 22.2 0.06 10.4 25.4 0.06 7.8 22.0 0.09 13.2

At first it seems surprising that CS performs so well. One explanation is that the
presolving techniques used by HOPDM are very effective for this class of problems.
Note that when one column is added, the average number of inner iterations per RMP
for CS is 5.0 (column inner/ite in Table 6.4).

For this applications and the instances chosen, the depth of the cut is usually
very large when compared with the reference parameter µ and therefore, the method
retreats back in the list of iterates moving far away from the region close to optimality
and therefore few more steps are required to reach the desirable sub-optimal solution
of the modified problem.

However, the relative large number of inner iterations required for our strategy on
average when compared to PFR and CS, does not have a significant impact on the
efficiency of the method. If we compare the average time per iteration spent in solving
the RMP, one can conclude that the RMP is solved very efficiently regardless the initial
iterate (PFR, CS or 1SPDR). 1SPDR requires slightly more time to solve the RMP
since this approach has to solve two auxiliary problems. The difficulty in solving the
RMP increases in all cases with the number of columns added per iteration.
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Similar to the results with CSP, the results for VRPTW show the robustness of the
PDCGM in terms of outer iterations. Indeed, for the same number of columns added
per iteration this figure remains almost constant, no matter if we use coldstart or any
of the warmstarting strategies.
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Figure 6.4: Performance profiles for VRPTW with PFR, CS and 1SPDR

Additionally, in Figures 6.4(a) and 6.4(b) we have the performance profiles for
VRPTW considering all the instances for all the values of k considered previously.
The figures show the performance profiles for the inner iterations and total CPU time
metrics obtained by the PDCGM when using PFR, CS and 1SPDR. Note that in
terms of inner iterations, CS and PFR behave similarly while 1SPDR behaves poorly,
being always outperformed by CS or PFR. Considering the total CPU time metric, the
three strategies seem to provide similar results for the vast majority of instances. This
supports the conclusion that for VRPTW all the reinitilization strategies used for the
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PDCGM are more or less equally good.
It is important to point out that the columns obtained for VRPTW are very different

from the ones obtained for CSP. While for CSP, the columns represent cutting patterns
which have non-zero integer entries and may be dense, VRPTW has columns containing
only few non-zero integer entries representing routes. Due to the vehicle capacity and
time window constraints one may expect that only few customers are served by each
vehicle so sparse columns are common. On the other hand for CSP, the more challenging
instances are the ones with large width allowing more dense columns.

The structure of VRPTW adversely affects 1SPDR. It has been observed that if
only few components of a new column have non-zero entries, the set of possible di-
rections which recovers primal and dual feasibilities may be very limited. Therefore,
large variations in small components are expected and as consequence of this, a bad
performance of this strategy in practice.

Finally, from our computational experiments, one can conclude than in some situ-
ations, CS (understood as the initialization provided by HOPDM) may be competitive
to an efficient warmstarting strategy. Nevertheless, we strongly believe that this is
more an exception than the rule and therefore, warmstarting is indeed needed in this
context. Note that for VRPTW all strategies studied here are efficient and solve each
RMP in less than a tenth of a second.
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Chapter 7

Conclusions and Further
Developments

In this final chapter we summarise the main contributions of this thesis. We start with
a summary of each chapter pointing out the key elements and giving some concluding
remarks. Finally, we describe some avenues for future research.

7.1 Summary and concluding remarks

In this thesis we have presented a series of developments in order to combine efficiently
column generation and interior point methods. Although both techniques have their
own story of success in solving large linear programming problems, few attempts have
been made to combine them.

In Chapter 2 we have described the primal-dual interior point method and the
concept of neighbourhood of the central path, which is the driving force and the reason
of the efficiency of this class of interior point methods. While the central path is the
target that the primal-dual IPM follows to achieve convergence, the neighbourhood
prevents the iterates from getting too close to the boundaries “too early”. This is what
keeps the iterates in the relative interior of the feasible set, allowing larger steps towards
optimality, and only permitting iterates to get close to the boundaries when the duality
gap is small. In this thesis we have considered the symmetric neighbourhood of the
central path, Ns(γ), which bounds the complementarity products of the primal and
dual slack variables from above and from below. We have shown that a feasible path-
following method that uses the symmetric neighbourhood, keeps the same convergence
and complexity results as if we were using the wide neighbourhood, N−∞, converging
in O(n log 1

ε ) iterations, where ε is the tolerance and n the dimension of the problem.
In Chapter 3, we have described the Dantzig-Wolfe decomposition principle (DWD)

and the column generation technique. We have also shown the equivalence of DWD
and Lagrangian relaxation and justified the use of DWD over linear relaxation so that
improved bounds are obtained. Additionally, we have discussed different cases one
may encounter after using DWD such as aggregated and disaggregated master problem
formulations and the addition of single or multiple columns per iteration. Also, we
have described some well-known stabilization techniques to avoid the heading-in and
tailing-off effects observed when the standard column generation method is applied.

In Chapter 4, we have presented three well-known problems in the context of com-
binatorial optimization, namely the cutting stock problem (CSP), the vehicle routing
problem with time windows (VRPTW) and the capacitated lot-sizing problem with
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setup times (CLSPST), which can be tackled by DWD and column generation provid-
ing a tighter bound for a branch-and-bound (or branch-and-price) method. We have
provided the standard formulation of these applications and derived the master problem
and the subproblems formulations. These applications are standard problems in this
context and provide different characteristics to test the new developments proposed in
the following chapters.

In Chapter 5, we have presented the first developments in theory and new appli-
cations of the primal-dual column generation method (PDCGM). The technique relies
on a primal-dual interior point method that obtains sub-optimal and well-centred so-
lutions of the restricted master problems (RMP), leading to a more stable approach in
relation to the standard column generation technique. The natural stabilization of the
method is provided by the use of sub-optimal solutions delivered by the primal-dual
interior point method together with the use of the symmetric neighbourhood. The
PDCGM relies on an adaptive adjustment of the tolerance used to solve each restricted
master problem (RMP). During the first stage of column generation, the RMPs are
solved with a loose tolerance while in the second stage, when the column generation
gap has closed enough, the method tightens this tolerance dynamically enforcing so-
lutions closer to the optimal (Algorithm 5.1). A theoretical analysis is provided to
show that the PDCGM converges to an optimum of the master problem if such exists,
even though sub-optimal dual solutions are used in the course of the column genera-
tion process (Theorem 5.4). Additionally, computational experiments show that the
method is competitive when compared with the standard column generation method
(SCGM) and the analytic centre cutting plane method (ACCPM). These experiments
were based on linear relaxations of integer master problems obtained from applying
DWD to integer programming formulations of CSP, VRPTW and CLSPST. Different
types of master problem formulations are obtained for these applications: an aggregated
master problem in CSP with dense columns, an aggregated master problem with a set
covering structure in VRPTW with sparse columns, and a disaggregated master prob-
lem in CLSPST. We have tested the addition of different numbers of columns at each
outer iteration, which typically affects the behaviour of the methods. By analysing the
computational results, we conclude that the PDCGM achieves the best overall perfor-
mance when compared to the SCGM and the ACCPM when solving large and difficult
instances. Although the SCGM is usually the most efficient for the small instances,
we have observed that the relative performance of the PDCGM improves when larger
instances are considered. The comparison of the PDCGM with the SCGM gives an
idea of how much can be gained by using sub-optimal and well-centred dual solutions
provided by a primal-dual interior point method. One important characteristic of the
PDCGM is that no specific tuning was necessary for each application, while the success
of using a stabilization technique for the SCGM and the ACCPM sometimes strongly
depends on the appropriate choice of parameters for a specific application. The natural
stabilization available in the PDCGM, due to the use of well-centred interior point solu-
tions, is a very attractive feature of this column generation approach. Some additional
comparisons are also discussed at the end of the chapter to show that some stabiliza-
tion techniques neither speed up nor noticeably reduce the number of iterations when
CSP and CLSPST are considered. Finally, for VRPTW, the computational evidence
suggests that the efficiency of the PDCGM is comparable to that of the stabilization
proposed in [109].

In Chapter 6 we have presented a new strategy to warmstart the PDCGM. Although
the current strategy used by the PDCGM seems to be efficient, it lacks theoretical devel-
opments and no complete information about primal and dual feasibility nor centrality
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of the proposed warmstarting iterate is available. In order to close this gap, we have
designed a new warmstarting technique that aims to recover primal and dual feasibility
while keeping control in the new complementarity products. This is done by solving
two auxiliary linear programming problems which aim to minimise the change in small
components in the primal and dual spaces. Once the direction calculated by these
two auxiliary problems is available, a full step towards this direction is taken and we
continue the primal-dual interior point iteration from this point (Algorithm 6.1). By
avoiding large variations in small components we aim to perturb the complementarity
products only slightly and, therefore, prevent any major increase in duality gap. We
have provided evidence that the method recovers primal and dual feasibilities in one
step after k new columns are appended to the RMP (Lemmas 6.4 and 6.6). Addition-
ally, we have shown that the method obtains a new iterate that belongs to a slightly
modified symmetric neighbourhood and therefore is well-centred (Theorem 6.7). Also,
we have stated conditions to guarantee that the new duality gap is bounded by a con-
stant and the old duality gap (Theorem 6.8). Despite the fact that the main objective
of this part of the study was to develop a theoretical framework for warmstarting the
PDCGM, we have also implemented the strategy to show its behaviour with respect to
coldstart (CS) and the current warmstarting procedure used for the PDCGM (PFR)
[56]. We have performed some computational experiments for solving a reformulation
of CSP to demonstrate the benefits of using our warmstarting strategy (1SPDR) and
compared it with CS. In general, savings between 30% ∼ 48% in the number of inner
iterations and 19% ∼ 45% in CPU time can be achieved on average for different column
generation scenarios. The advantages of the proposed method with respect to CS are
consistent no matter the number of columns added to each restricted master problem
at each iteration. Also, we have provided computational evidence that the proposed
strategy and CS behave similarly in terms of CPU time for solving a reformulation
of VRPTW, both strategies being very efficient due to the structure of the restricted
master problems and the presolving embedded in the interior point solver, HOPDM.
Additionally, we have compared our strategy with PFR which restores dual feasibility
in the new components after new columns are added. Both warmstarting strategies are
competitive in terms of CPU time for both applications, with 1SPDR slightly better
for CSP and PFR slightly better for VRPTW. As observed from our computational
experiments with CSP and VRPTW, it seems that the warmstarting strategies for the
PDCGM are useful when dense columns are added to the RMP (CSP), since they
consistently reduce CPU time and also the number of iterations required to solve the
RMPs on average. On the other hand, when sparse columns are added (VRPTW) and
the RMPs remain very simple, CS becomes very efficient and therefore warmstarting
does not make the task of solving the RMPs any easier.

7.2 Further studies

Several avenues are available for further studies involving the primal-dual column gen-
eration technique and the warmstarting techniques presented here which were beyond
the scope of this thesis but seem to be promising directions.

A possible direction of research is to combine the PDCGM with a branch-and-bound
algorithm to obtain a branch-and-price or a branch-price-and-cut framework able to
solve the original integer programming problems. This will require the development
of several components such as branching rules, cutting plane methods to tighten the
formulations at every node of the tree and a (slightly) different warmstarting technique.
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A successful attempt to integrate some of these components has been proposed in [98],
showing encouraging results for VRPTW where the idea of using well-centred and sub-
optimal solutions in the PDCGM has been extended to the cut generation procedure,
improving the general efficiency of the combined approach. Generalizations to other
applications could be an avenue for further developments.

Also, a performance comparison of the PDCGM with advanced column generation
methods such as bundle methods [43, 69, 79], the volume algorithm [6] and the BoxPen
stabilization [32] for a similar selection of applications could be another extension of
this research.

In a similar direction, we are currently investigating the performance of the PDCGM
when solving large scale problems arising in several very different applications. In con-
trast with the computational study presented in Chapter 5, in which the applications’
bottleneck were the subproblems which allowed us to solve medium size instances, we
are interested in finding what the benefits of using the PDCGM in larger instances are,
if any. So far, we have implemented the PDCGM to deal with multicommodity network
flow (MCNF) [104], the multiple kernel learning (MKL) [113] and two-stage stochastic
programming (TSS) [124] problems. Preliminary results show that the PDCGM out-
performs several methods available in the literature for all these applications. We have
compared the PDCGM with a wide variety of stabilized/unstabilized techniques, such
as the analytic centre cutting plane method (ACCPM) [5], semi-infinite linear program-
ming algorithm (unstabilized cutting plane method) [113], subgradient methods with
a weighted l2-norm regularization [105], Benders decomposition with regularisation by
the level method [124], regularised decomposition [110] and the trust region method
[83]. We believe that in addition to the efficiency of the method, the lack of extensive
tuning and its straightforward description make the PDCGM an attractive option when
solving problems by column generation/cutting plane methods. The new paper is in
its final stage and will be submitted for publication shortly after the submission of this
thesis.

In terms of warmstarting, there are some aspects that remain attractive for future
research such as extensions of the current warmstarting strategy and some issues in its
implementation.

Firstly, there is the issue of studying a warmstarting strategy that considers primal
and dual infeasibilities so one could take advantage of the infeasible primal-dual inte-
rior point method solver HOPDM. It was noted in our computational experiments in
Chapter 6 that the performance of PFR is favoured by the use of infeasible solutions
which can be handled by the HOPDM. Therefore, providing theoretical guarantees of
the centrality or convergence for such an infeasible method may be an attractive di-
rection of research. Additionally, this might be a way to deal with sparse columns by
allowing the method to have a larger pool of possible directions in order to generate a
warmstarting mildly infeasible point.

Additionally, it was also observed that there is a trade-off for 1SPDR between
the number of columns added per iteration and the time required to calculate the
warmstarting iterate. For large values of k, solving two linear programming problems
at every column generation iteration is an expensive task and therefore results in an
excessively large CPU time. If we could bring down this time, it would have a great
impact on the overall performance of the method. Hence, investigating more efficient
ways of calculating these directions in the primal and dual spaces, bearing in mind the
same objective, namely minimizing large perturbations of small components, seems to
be a natural way of extending this study.

Moreover, studying how 1SPDR has to be modified so that it is able to calculate
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a warmstarting iterate after some data perturbation, where the dimension of two con-
secutive problems remains unchanged, could be another possible direction of research.

Finally, it has been observed in Chapter 6 (and in [59]) that, although focusing on
minimizing the change of the small components seems to be a reasonable way to proceed
to avoid large variations in the complementarity products and centrality, one could
achieve a similar objective by restricting the values of δl and δu which, together, bound
the expansion of the symmetric neighbourhood of the central path, so these expansion
factors are the minimum possible allowing the method to recover primal and dual
feasibility. Undoubtedly, this new development requires the design of a new strategy
for the PDCGM and, therefore, remains an attractive avenue for further developments.
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Appendix A

Test problems

In this section we provide all the statistics for the instances used in this study. The
description of each application can be found in Chapter 4. The number of constraints
and variables were calculated using these descriptions without considering any presolv-
ing stage and are stated here as an indicative on how large the problems can be if they
are tackled by a direct approach. Computational experiments using AMPL [42] and
CPLEX [71] to solve the linear relaxation of the cutting stock problem and the vehicle
routing problem with time windows, have shown that for large instances (over one mil-
lion of variables and constraints), a direct approach struggles finding a solution. On the
other hand, using column generation (particularly, the primal-dual variant), a solution
is found in a reasonable time (see Chapter 5 and the computational experiments in
Section 5.2).

A.1 Cutting stock problem

The benchmark instances for the one-dimensional cutting stock problem were obtained
from http://www.math.tu-dresden.de/~capad/. In Tables A.1 and A.2, we show
the statistics of each instance. For every instance we provide the name, class, number
of rolls (m), number of customers (n), width (W), number of constraints (nbC) and
number of integer variables (nbI).

Table A.1: CSP instance statistics - Set A

name class m n W nbC nbI
BPP U09708 10292 U 585 1,463 30,000 2,048 857,318
BPP U09723 10277 U 555 1,388 30,000 1,943 771,728
BPP U09738 10262 U 525 1,313 30,000 1,838 690,638
BPP U09753 10247 U 495 1,238 30,000 1,733 614,048
BPP U09768 10232 U 465 1,163 30,000 1,628 541,958
BPP U09783 10217 U 435 1,088 30,000 1,523 474,368
BPP U09798 10202 U 405 1,013 30,000 1,418 411,278
BPP U09813 10187 U 375 938 30,000 1,313 352,688
BPP U09828 10172 U 345 863 30,000 1,208 298,598
BPP U09843 10157 U 315 788 30,000 1,103 249,008
BPP U09858 10142 U 285 713 30,000 998 203,918
BPP U09873 10127 U 255 638 30,000 893 163,328
BPP U09888 10112 U 225 563 30,000 788 127,238
BPP U09903 10097 U 195 488 30,000 683 95,648
BPP U09918 10082 U 165 413 30,000 578 68,558
BPP U09933 10067 U 135 338 30,000 473 45,968
BPP U09948 10052 U 105 263 30,000 368 27,878
BPP U09963 10037 U 75 188 30,000 263 14,288
BPP U09978 10022 U 45 113 30,000 158 5,198
BPP U09993 10007 U 15 38 30,000 53 608
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Table A.1 – Continued from previous page
name class m n W nbC nbI
NN10 mX 200 76,071 100,000 76,271 15,290,271
NN1081 mX 199 93,607 100,000 93,806 18,721,400
NN1104 mX 199 141,246 100,000 141,445 28,249,200
NN1140 mX 200 56,223 100,000 56,423 11,300,823
NN121 mX 200 158,791 100,000 158,991 31,916,991
NN1223 mX 198 85,494 100,000 85,692 17,013,306
NN1234 mX 199 115,818 100,000 116,017 23,163,600
NN124 mX 199 69,454 100,000 69,653 13,890,800
NN1240 mX 200 80,189 100,000 80,389 16,117,989
NN1272 mX 200 95,160 100,000 95,360 19,127,160
NN1430 mX 200 66,201 100,000 66,401 13,306,401
NN1554 mX 199 60,289 100,000 60,488 12,057,800
NN1587 mX 198 60,847 100,000 61,045 12,108,553
NN1591 mX 200 187,973 100,000 188,173 37,782,573
NN1597 mX 200 94,873 100,000 95,073 19,069,473
NN170 mX 200 84,216 100,000 84,416 16,927,416
NN1788 mX 200 134,140 100,000 134,340 26,962,140
NN1853 mX 198 99,191 100,000 99,389 19,739,009
NN1898 mX 200 138,297 100,000 138,497 27,797,697
NN2110 mX 200 73,618 100,000 73,818 14,797,218
NN2408 mX 199 229,767 100,000 229,966 45,953,400
NN2662 mX 200 71,607 100,000 71,807 14,393,007
NN2710 mX 199 210,208 100,000 210,407 42,041,600
NN2727 mX 199 98,923 100,000 99,122 19,784,600
NN2784 mX 200 86,448 100,000 86,648 17,376,048
NN2815 mX 200 132,586 100,000 132,786 26,649,786
NN2911 mX 198 74,570 100,000 74,768 14,839,430
NN2916 mX 199 47,037 100,000 47,236 9,407,400
NN2935 mX 198 102,520 100,000 102,718 20,401,480
NN2971 mX 199 92,012 100,000 92,211 18,402,400
NN2978 mX 199 83,164 100,000 83,363 16,632,800
NN303 mX 200 50,049 100,000 50,249 10,059,849
NN3054 mX 200 75,744 100,000 75,944 15,224,544
NN3130 mX 199 73,649 100,000 73,848 14,729,800
NN3196 mX 199 44,324 100,000 44,523 8,864,800
NN3262 mX 199 164,998 100,000 165,197 32,999,600
NN3486 mX 199 96,402 100,000 96,601 19,280,400
NN3498 mX 199 124,920 100,000 125,119 24,984,000
NN352 mX 200 123,590 100,000 123,790 24,841,590
NN3534 mX 198 121,245 100,000 121,443 24,127,755
NN3535 mX 200 80,146 100,000 80,346 16,109,346
NN3536 mX 200 56,573 100,000 56,773 11,371,173
NN3570 mX 200 114,920 100,000 115,120 23,098,920
NN3582 mX 199 93,914 100,000 94,113 18,782,800
NN3623 mX 200 68,016 100,000 68,216 13,671,216
NN3675 mX 200 59,238 100,000 59,438 11,906,838
NN37 mX 199 67,043 100,000 67,242 13,408,600
NN3721 mX 200 101,520 100,000 101,720 20,405,520
NN3764 mX 200 115,881 100,000 116,081 23,292,081
NN3956 mX 200 139,638 100,000 139,838 28,067,238
NN4062 mX 198 196,674 100,000 196,872 39,138,126
NN4163 mX 200 181,036 100,000 181,236 36,388,236
NN4242 mX 199 75,696 100,000 75,895 15,139,200
NN4404 mX 199 85,478 100,000 85,677 17,095,600
NN4524 mX 200 93,276 100,000 93,476 18,748,476
NN4770 mX 200 149,194 100,000 149,394 29,987,994
NN4919 mX 199 91,612 100,000 91,811 18,322,400
NN4920 mX 200 95,706 100,000 95,906 19,236,906
NN5017 mX 200 245,725 100,000 245,925 49,390,725
NN5162 mX 200 84,798 100,000 84,998 17,044,398
NN5183 mX 200 76,530 100,000 76,730 15,382,530
NN5332 mX 200 68,043 100,000 68,243 13,676,643
NN535 mX 199 55,944 100,000 56,143 11,188,800
NN5384 mX 200 103,103 100,000 103,303 20,723,703
NN5415 mX 199 100,287 100,000 100,486 20,057,400
NN5468 mX 200 218,408 100,000 218,608 43,900,008
NN5587 mX 199 60,994 100,000 61,193 12,198,800
NN5662 mX 200 292,081 100,000 292,281 58,708,281
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Table A.1 – Continued from previous page
name class m n W nbC nbI
NN57 mX 199 77,463 100,000 77,662 15,492,600
NN5720 mX 199 72,290 100,000 72,489 14,458,000
NN5773 mX 200 58,987 100,000 59,187 11,856,387
NN5891 mX 200 50,306 100,000 50,506 10,111,506
NN6062 mX 200 54,494 100,000 54,694 10,953,294
NN609 mX 197 204,046 100,000 204,243 40,401,108
NN6134 mX 199 61,480 100,000 61,679 12,296,000
NN6192 mX 199 177,865 100,000 178,064 35,573,000
NN6260 mX 200 72,575 100,000 72,775 14,587,575
NN6293 mX 200 53,556 100,000 53,756 10,764,756
NN636 mX 199 100,344 100,000 100,543 20,068,800
NN6373 mX 199 56,426 100,000 56,625 11,285,200
NN6425 mX 197 324,902 100,000 325,099 64,330,596
NN6458 mX 199 72,968 100,000 73,167 14,593,600
NN6475 mX 200 59,658 100,000 59,858 11,991,258
NN6507 mX 199 138,457 100,000 138,656 27,691,400
NN6523 mX 200 111,888 100,000 112,088 22,489,488
NN6609 mX 199 219,955 100,000 220,154 43,991,000
NN6756 mX 200 69,918 100,000 70,118 14,053,518
NN678 mX 200 411,589 100,000 411,789 82,729,389
NN7110 mX 200 68,197 100,000 68,397 13,707,597
NN7251 mX 198 53,964 100,000 54,162 10,738,836
NN7407 mX 200 200,085 100,000 200,285 40,217,085
NN7413 mX 199 198,003 100,000 198,202 39,600,600
NN7501 mX 199 72,022 100,000 72,221 14,404,400
NN7507 mX 198 46,591 100,000 46,789 9,271,609
NN7522 mX 200 52,739 100,000 52,939 10,600,539
NN7524 mX 199 53,416 100,000 53,615 10,683,200
NN7553 mX 197 129,531 100,000 129,728 25,647,138
NN7587 mX 200 75,561 100,000 75,761 15,187,761
NN7588 mX 199 43,826 100,000 44,025 8,765,200
NN7715 mX 199 186,530 100,000 186,729 37,306,000
NN7731 mX 200 52,822 100,000 53,022 10,617,222
NN7760 mX 200 120,200 100,000 120,400 24,160,200
NN7776 mX 199 71,484 100,000 71,683 14,296,800
NN7790 mX 199 69,330 100,000 69,529 13,866,000
NN7815 mX 200 77,341 100,000 77,541 15,545,541
NN7919 mX 200 244,989 100,000 245,189 49,242,789
NN7942 mX 200 55,191 100,000 55,391 11,093,391
NN7965 mX 200 59,439 100,000 59,639 11,947,239
NN798 mX 200 107,848 100,000 108,048 21,677,448
NN7983 mX 200 58,892 100,000 59,092 11,837,292
NN8054 mX 200 63,994 100,000 64,194 12,862,794
NN8078 mX 199 106,792 100,000 106,991 21,358,400
NN8127 mX 199 93,394 100,000 93,593 18,678,800
NN8261 mX 199 162,417 100,000 162,616 32,483,400
NN8335 mX 200 86,666 100,000 86,866 17,419,866
NN8361 mX 200 170,327 100,000 170,527 34,235,727
NN837 mX 199 111,231 100,000 111,430 22,246,200
NN838 mX 200 241,088 100,000 241,288 48,458,688
NN8471 mX 200 106,700 100,000 106,900 21,446,700
NN8472 mX 199 242,035 100,000 242,234 48,407,000
NN850 mX 199 129,555 100,000 129,754 25,911,000
NN8555 mX 199 62,007 100,000 62,206 12,401,400
NN8559 mX 200 116,062 100,000 116,262 23,328,462
NN8560 mX 199 51,930 100,000 52,129 10,386,000
NN857 mX 198 104,521 100,000 104,719 20,799,679
NN8633 mX 200 66,920 100,000 67,120 13,450,920
NN8661 mX 199 288,945 100,000 289,144 57,789,000
NN8686 mX 199 110,487 100,000 110,686 22,097,400
NN87 mX 199 199,674 100,000 199,873 39,934,800
NN8724 mX 200 61,562 100,000 61,762 12,373,962
NN8727 mX 199 149,843 100,000 150,042 29,968,600
NN8741 mX 200 131,906 100,000 132,106 26,513,106
NN889 mX 200 68,025 100,000 68,225 13,673,025
NN8897 mX 199 121,053 100,000 121,252 24,210,600
NN8920 mX 199 90,251 100,000 90,450 18,050,200
NN90 mX 200 74,398 100,000 74,598 14,953,998
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NN9082 mX 200 190,345 100,000 190,545 38,259,345
NN9313 mX 199 56,914 100,000 57,113 11,382,800
NN9380 mX 198 156,144 100,000 156,342 31,072,656
NN9589 mX 198 65,443 100,000 65,641 13,023,157
NN9637 mX 199 74,945 100,000 75,144 14,989,000
NN9660 mX 198 163,065 100,000 163,263 32,449,935
NN968 mX 200 155,119 100,000 155,319 31,178,919
NN9773 mX 199 130,609 100,000 130,808 26,121,800
NN9871 mX 199 116,138 100,000 116,337 23,227,600
18013075 003 MTP0xJES 110 348 1,000 458 38,628
18014074 072 MTP0xJES 114 336 1,000 450 38,640
20013072 054 MTP0xJES 115 366 1,000 481 42,456
16005085 033 MTP0 122 452 1,000 574 55,596
16005086 091 MTP0 124 478 1,000 602 59,750
18013075 003 MTP0 127 392 1,000 519 50,176
18014074 072 MTP0 124 360 1,000 484 45,000
20013072 054 MTP0 133 406 1,000 539 54,404
BPP119 hard28 173 1,376 1,000 1,549 239,424
BPP13 hard28 161 1,852 1,000 2,013 300,024
BPP14 hard28 136 1,008 1,000 1,144 138,096
BPP144 hard28 173 1,238 1,000 1,411 215,412
BPP175 hard28 185 1,160 1,000 1,345 215,760
BPP178 hard28 178 2,274 1,000 2,452 407,046
BPP181 hard28 157 1,034 1,000 1,191 163,372
BPP195 hard28 161 2,430 1,000 2,591 393,660
BPP359 hard28 164 895 1,000 1,059 147,675
BPP360 hard28 148 1,009 1,000 1,157 150,341
BPP40 hard28 144 965 1,000 1,109 139,925
BPP419 hard28 189 1,351 1,000 1,540 256,690
BPP47 hard28 158 1,276 1,000 1,434 202,884
BPP485 hard28 163 2,457 1,000 2,620 402,948
BPP531 hard28 175 1,265 1,000 1,440 222,640
BPP561 hard28 177 2,307 1,000 2,484 410,646
BPP60 hard28 144 546 1,000 690 79,170
BPP640 hard28 165 918 1,000 1,083 152,388
BPP645 hard28 141 1,766 1,000 1,907 250,772
BPP709 hard28 160 940 1,000 1,100 151,340
BPP716 hard28 158 1,353 1,000 1,511 215,127
BPP742 hard28 148 872 1,000 1,020 129,928
BPP766 hard28 143 807 1,000 950 116,208
BPP781 hard28 174 2,230 1,000 2,404 390,250
BPP785 hard28 163 1,153 1,000 1,316 189,092
BPP814 hard28 179 2,532 1,000 2,711 455,760
BPP832 hard28 139 972 1,000 1,111 136,080
BPP900 hard28 173 1,646 1,000 1,819 286,404
BPP 10000108 0257 7hard 85 494 1,000 579 42,484
BPP 12000107 0894 7hard 98 550 1,000 648 54,450
BPP 16000108 0149 7hard 123 759 1,000 882 94,116
BPP 18000108 0359 7hard 142 651 1,000 793 93,093
BPP 18000108 0716 7hard 129 721 1,000 850 93,730
BPP 20000108 0175 7hard 143 877 1,000 1,020 126,288
BPP 20005008 0124 7hard 141 564 1,000 705 80,088
BPP02015007 0918 53NIRUPs 20 45 1,000 65 945
BPP04000107 0697 53NIRUPs 38 194 1,000 232 7,566
BPP04005007 0612 53NIRUPs 40 130 1,000 170 5,330
BPP04005009 0361 53NIRUPs 39 115 1,000 154 4,600
BPP06000106 0782 53NIRUPs 58 287 1,000 345 16,933
BPP06000110 0195 53NIRUPs 58 583 1,000 641 34,397
BPP06005007 0033 53NIRUPs 56 234 1,000 290 13,338
BPP06005007 0382 53NIRUPs 57 238 1,000 295 13,804
BPP06005008 0755 53NIRUPs 58 220 1,000 278 12,980
BPP06015006 0067 53NIRUPs 58 143 1,000 201 8,437
BPP06015009 0403 53NIRUPs 57 134 1,000 191 7,772
BPP06015010 0771 53NIRUPs 58 114 1,000 172 6,726
BPP06025005 0639 53NIRUPs 52 139 1,000 191 7,367
BPP08000107 0624 53NIRUPs 73 439 1,000 512 32,486
BPP08005006 0862 53NIRUPs 75 323 1,000 398 24,548
BPP08005007 0394 53NIRUPs 72 304 1,000 376 22,192
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BPP10000107 0508 53NIRUPs 92 678 1,000 770 63,054
BPP10000107 0733 53NIRUPs 93 1,290 1,000 1,383 121,260
BPP10000108 0257 53NIRUPs 92 837 1,000 929 77,841
BPP10015007 0464 53NIRUPs 91 224 1,000 315 20,608
BPP12000107 0894 53NIRUPs 109 1,567 1,000 1,676 172,370
BPP12000108 0035 53NIRUPs 113 916 1,000 1,029 104,424
BPP12000109 0917 53NIRUPs 115 555 1,000 670 64,380
BPP12000110 0655 53NIRUPs 119 666 1,000 785 79,920
BPP12005007 0138 53NIRUPs 112 332 1,000 444 37,516
BPP12005007 0180 53NIRUPs 112 468 1,000 580 52,884
BPP12005007 0324 53NIRUPs 109 431 1,000 540 47,410
BPP12005008 0450 53NIRUPs 112 337 1,000 449 38,081
BPP12015007 0165 53NIRUPs 109 278 1,000 387 30,580
BPP12015009 0740 53NIRUPs 112 240 1,000 352 27,120
BPP14005010 0447 53NIRUPs 134 333 1,000 467 44,955
BPP14015007 0121 53NIRUPs 129 291 1,000 420 37,830
BPP14015008 0373 53NIRUPs 123 310 1,000 433 38,440
BPP16000107 0014 53NIRUPs 136 1,008 1,000 1,144 138,096
BPP16000108 0149 53NIRUPs 146 1,140 1,000 1,286 167,580
BPP16000110 0279 53NIRUPs 144 1,266 1,000 1,410 183,570
BPP16005009 0001 53NIRUPs 141 434 1,000 575 61,628
BPP16005009 0161 53NIRUPs 150 419 1,000 569 63,269
BPP16015007 0206 53NIRUPs 142 346 1,000 488 49,478
BPP16015009 0981 53NIRUPs 141 348 1,000 489 49,416
BPP18000108 0359 53NIRUPs 164 895 1,000 1,059 147,675
BPP18000108 0716 53NIRUPs 158 1,353 1,000 1,511 215,127
BPP18000110 0439 53NIRUPs 162 1,310 1,000 1,472 213,530
BPP18015008 0821 53NIRUPs 161 374 1,000 535 60,588
BPP18015010 0605 53NIRUPs 162 350 1,000 512 57,050
BPP20000107 0119 53NIRUPs 173 1,376 1,000 1,549 239,424
BPP20000108 0025 53NIRUPs 175 1,800 1,000 1,975 316,800
BPP20000108 0175 53NIRUPs 185 1,160 1,000 1,345 215,760
BPP20005008 0124 53NIRUPs 173 634 1,000 807 110,316
BPP20005009 0200 53NIRUPs 175 608 1,000 783 107,008
BPP20005010 0953 53NIRUPs 184 640 1,000 824 118,400
BPP20015007 0637 53NIRUPs 161 466 1,000 627 75,492
BPP20015009 0272 53NIRUPs 178 365 1,000 543 65,335
GAU3 gau3 50 10,033 10,000 10,083 511,683

Table A.2: CSP instance statistics - Set B

name m n W nbC nbI
BPP U09498 10502 1,005 2,513 30,000 3,518 2,528,078
BPP U09513 10487 975 2,438 30,000 3,413 2,379,488
BPP U09528 10472 945 2,363 30,000 3,308 2,235,398
BPP U09543 10457 915 2,288 30,000 3,203 2,095,808
BPP U09558 10442 885 2,213 30,000 3,098 1,960,718
BPP U09573 10427 855 2,138 30,000 2,993 1,830,128
BPP U09588 10412 825 2,063 30,000 2,888 1,704,038
BPP U09603 10397 795 1,988 30,000 2,783 1,582,448
BPP U09618 10382 765 1,913 30,000 2,678 1,465,358
BPP U09633 10367 735 1,838 30,000 2,573 1,352,768
BPP U09648 10352 705 1,763 30,000 2,468 1,244,678
BPP U09663 10337 675 1,688 30,000 2,363 1,141,088
BPP U09678 10322 645 1,613 30,000 2,258 1,041,998
BPP U09693 10307 615 1,538 30,000 2,153 947,408

A.2 Vehicle routing problem with time windows

For the vehicle routing problem with time windows we have considered 87 instances from
the literature (http://www2.imm.dtu.dk/~jla/solomon.html), which were originally
proposed in [112]. The name, class, number of customers (n), number of constraints
(nbC), number of integer (nbI) and continuous (nbO) variables for every instance are
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shown in Table A.3. For all the instances the capacity of the vehicle is 200.

Table A.3: VRPTW instance statistics - Set A

name class n nbC nbI nbO name class n nbC nbI nbO
C101 C25 25 19,625 17,550 675 R107 R50 50 140,500 132,600 2,600
C102 C25 25 19,625 17,550 675 R108 R50 50 140,500 132,600 2,600
C103 C25 25 19,625 17,550 675 R109 R50 50 140,500 132,600 2,600
C104 C25 25 19,625 17,550 675 R110 R50 50 140,500 132,600 2,600
C105 C25 25 19,625 17,550 675 R111 R50 50 140,500 132,600 2,600
C106 C25 25 19,625 17,550 675 R112 R50 50 140,500 132,600 2,600
C107 C25 25 19,625 17,550 675 RC101 RC50 50 140,500 132,600 2,600
C108 C25 25 19,625 17,550 675 RC102 RC50 50 140,500 132,600 2,600
C109 C25 25 19,625 17,550 675 RC103 RC50 50 140,500 132,600 2,600
R101 R25 25 19,625 17,550 675 RC104 RC50 50 140,500 132,600 2,600
R102 R25 25 19,625 17,550 675 RC105 RC50 50 140,500 132,600 2,600
R103 R25 25 19,625 17,550 675 RC106 RC50 50 140,500 132,600 2,600
R104 R25 25 19,625 17,550 675 RC107 RC50 50 140,500 132,600 2,600
R105 R25 25 19,625 17,550 675 RC108 RC50 50 140,500 132,600 2,600
R106 R25 25 19,625 17,550 675 C101 C100 100 1,061,000 1,030,200 10,200
R107 R25 25 19,625 17,550 675 C102 C100 100 1,061,000 1,030,200 10,200
R108 R25 25 19,625 17,550 675 C103 C100 100 1,061,000 1,030,200 10,200
R109 R25 25 19,625 17,550 675 C104 C100 100 1,061,000 1,030,200 10,200
R110 R25 25 19,625 17,550 675 C105 C100 100 1,061,000 1,030,200 10,200
R111 R25 25 19,625 17,550 675 C106 C100 100 1,061,000 1,030,200 10,200
R112 R25 25 19,625 17,550 675 C107 C100 100 1,061,000 1,030,200 10,200
RC101 RC25 25 19,625 17,550 675 C108 C100 100 1,061,000 1,030,200 10,200
RC102 RC25 25 19,625 17,550 675 C109 C100 100 1,061,000 1,030,200 10,200
RC103 RC25 25 19,625 17,550 675 R101 R100 100 1,061,000 1,030,200 10,200
RC104 RC25 25 19,625 17,550 675 R102 R100 100 1,061,000 1,030,200 10,200
RC105 RC25 25 19,625 17,550 675 R103 R100 100 1,061,000 1,030,200 10,200
RC106 RC25 25 19,625 17,550 675 R104 R100 100 1,061,000 1,030,200 10,200
RC107 RC25 25 19,625 17,550 675 R105 R100 100 1,061,000 1,030,200 10,200
RC108 RC25 25 19,625 17,550 675 R106 R100 100 1,061,000 1,030,200 10,200
C101 C50 50 140,500 132,600 2,600 R107 R100 100 1,061,000 1,030,200 10,200
C102 C50 50 140,500 132,600 2,600 R108 R100 100 1,061,000 1,030,200 10,200
C103 C50 50 140,500 132,600 2,600 R109 R100 100 1,061,000 1,030,200 10,200
C104 C50 50 140,500 132,600 2,600 R110 R100 100 1,061,000 1,030,200 10,200
C105 C50 50 140,500 132,600 2,600 R111 R100 100 1,061,000 1,030,200 10,200
C106 C50 50 140,500 132,600 2,600 R112 R100 100 1,061,000 1,030,200 10,200
C107 C50 50 140,500 132,600 2,600 RC101 RC100 100 1,061,000 1,030,200 10,200
C108 C50 50 140,500 132,600 2,600 RC102 RC100 100 1,061,000 1,030,200 10,200
C109 C50 50 140,500 132,600 2,600 RC103 RC100 100 1,061,000 1,030,200 10,200
R101 R50 50 140,500 132,600 2,600 RC104 RC100 100 1,061,000 1,030,200 10,200
R102 R50 50 140,500 132,600 2,600 RC105 RC100 100 1,061,000 1,030,200 10,200
R103 R50 50 140,500 132,600 2,600 RC106 RC100 100 1,061,000 1,030,200 10,200
R104 R50 50 140,500 132,600 2,600 RC107 RC100 100 1,061,000 1,030,200 10,200
R105 R50 50 140,500 132,600 2,600 RC108 RC100 100 1,061,000 1,030,200 10,200
R106 R50 50 140,500 132,600 2,600

Additionally, we have considered a set of more challenging instances with 200, 400
and 600 customers, which were proposed in [70]. The statistics of these benchmark
instances are shown in Table A.4.

Table A.4: VRPTW instance statistics - Set B

name n nbC nbI nbO
R1 2 1 200 8,242,000 8,120,400 40,400
C1 2 1 200 8,242,000 8,120,400 40,400
RC1 2 1 200 8,242,000 8,120,400 40,400
R1 4 1 400 64,964,000 64,480,800 160,800
C1 4 1 400 64,964,000 64,480,800 160,800
RC1 4 1 400 64,964,000 64,480,800 160,800
R1 6 1 600 218,166,000 217,081,200 361,200
C1 6 1 600 218,166,000 217,081,200 361,200
RC1 6 1 600 218,166,000 217,081,200 361,200
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A.3 Capacitated lot-sizing problem with setup times

For the capacitated lot-sizing problem with setup times we have modified 751 instances
proposed in [114] by replicating each instance demand 5 times and dividing the capacity,
processing time, setup time and costs by the same factor. Also, we have increased the
capacity by 10%. Note that we have increased the size of the problems in time periods
but not in items and therefore, all instances remain feasible. In Table A.5 and for every
instance, we show the number of periods (n), the number of items (m), the number of
constraints (nbC), the number of integer variables (nbI) and the number of continuous
variables (nbO).

Table A.5: CLSPST instance statistics - Set A

name class n m nbC nbI nbO name class n m nbC nbI nbO
E1 E 6 75 975 450 906 X12427A X1 10 100 2,100 1,000 2,010
E10 E 6 75 975 450 906 X12427B X1 10 100 2,100 1,000 2,010
E11 E 6 75 975 450 906 X12427C X1 10 100 2,100 1,000 2,010
E12 E 6 75 975 450 906 X12427D X1 10 100 2,100 1,000 2,010
E13 E 6 75 975 450 906 X12427E X1 10 100 2,100 1,000 2,010
E14 E 6 75 975 450 906 X12428A X1 10 100 2,100 1,000 2,010
E15 E 6 75 975 450 906 X12428B X1 10 100 2,100 1,000 2,010
E16 E 6 75 975 450 906 X12428C X1 10 100 2,100 1,000 2,010
E17 E 6 75 975 450 906 X12428D X1 10 100 2,100 1,000 2,010
E18 E 6 75 975 450 906 X12428E X1 10 100 2,100 1,000 2,010
E19 E 6 75 975 450 906 X12429A X1 10 100 2,100 1,000 2,010
E2 E 6 75 975 450 906 X12429B X1 10 100 2,100 1,000 2,010
E20 E 6 75 975 450 906 X12429C X1 10 100 2,100 1,000 2,010
E21 E 6 75 975 450 906 X12429D X1 10 100 2,100 1,000 2,010
E22 E 6 75 975 450 906 X12429E X1 10 100 2,100 1,000 2,010
E23 E 6 75 975 450 906 X21117A X2 20 100 4,100 2,000 4,020
E24 E 6 75 975 450 906 X21117B X2 20 100 4,100 2,000 4,020
E25 E 6 75 975 450 906 X21117C X2 20 100 4,100 2,000 4,020
E26 E 6 75 975 450 906 X21117D X2 20 100 4,100 2,000 4,020
E27 E 6 75 975 450 906 X21117E X2 20 100 4,100 2,000 4,020
E28 E 6 75 975 450 906 X21118A X2 20 100 4,100 2,000 4,020
E29 E 6 75 975 450 906 X21118B X2 20 100 4,100 2,000 4,020
E3 E 6 75 975 450 906 X21118C X2 20 100 4,100 2,000 4,020
E30 E 6 75 975 450 906 X21118D X2 20 100 4,100 2,000 4,020
E31 E 6 75 975 450 906 X21118E X2 20 100 4,100 2,000 4,020
E32 E 6 75 975 450 906 X21119A X2 20 100 4,100 2,000 4,020
E33 E 6 75 975 450 906 X21119B X2 20 100 4,100 2,000 4,020
E34 E 6 75 975 450 906 X21119C X2 20 100 4,100 2,000 4,020
E35 E 6 75 975 450 906 X21119D X2 20 100 4,100 2,000 4,020
E36 E 6 75 975 450 906 X21119E X2 20 100 4,100 2,000 4,020
E37 E 6 75 975 450 906 X21127A X2 20 100 4,100 2,000 4,020
E38 E 6 75 975 450 906 X21127B X2 20 100 4,100 2,000 4,020
E39 E 6 75 975 450 906 X21127C X2 20 100 4,100 2,000 4,020
E4 E 6 75 975 450 906 X21127D X2 20 100 4,100 2,000 4,020
E40 E 6 75 975 450 906 X21127E X2 20 100 4,100 2,000 4,020
E41 E 6 75 975 450 906 X21128A X2 20 100 4,100 2,000 4,020
E42 E 6 75 975 450 906 X21128B X2 20 100 4,100 2,000 4,020
E43 E 6 75 975 450 906 X21128C X2 20 100 4,100 2,000 4,020
E44 E 6 75 975 450 906 X21128D X2 20 100 4,100 2,000 4,020
E45 E 6 75 975 450 906 X21128E X2 20 100 4,100 2,000 4,020
E46 E 6 75 975 450 906 X21129A X2 20 100 4,100 2,000 4,020
E47 E 6 75 975 450 906 X21129B X2 20 100 4,100 2,000 4,020
E48 E 6 75 975 450 906 X21129C X2 20 100 4,100 2,000 4,020
E49 E 6 75 975 450 906 X21129D X2 20 100 4,100 2,000 4,020
E5 E 6 75 975 450 906 X21129E X2 20 100 4,100 2,000 4,020
E50 E 6 75 975 450 906 X21217A X2 20 100 4,100 2,000 4,020
E51 E 6 75 975 450 906 X21217B X2 20 100 4,100 2,000 4,020
E53 E 6 75 975 450 906 X21217C X2 20 100 4,100 2,000 4,020
E54 E 6 75 975 450 906 X21217D X2 20 100 4,100 2,000 4,020
E55 E 6 75 975 450 906 X21217E X2 20 100 4,100 2,000 4,020
E56 E 6 75 975 450 906 X21218A X2 20 100 4,100 2,000 4,020
E57 E 6 75 975 450 906 X21218B X2 20 100 4,100 2,000 4,020
E59 E 6 75 975 450 906 X21218C X2 20 100 4,100 2,000 4,020
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E6 E 6 75 975 450 906 X21218D X2 20 100 4,100 2,000 4,020
E60 E 6 75 975 450 906 X21218E X2 20 100 4,100 2,000 4,020
E7 E 6 75 975 450 906 X21219A X2 20 100 4,100 2,000 4,020
E8 E 6 75 975 450 906 X21219B X2 20 100 4,100 2,000 4,020
E9 E 6 75 975 450 906 X21219C X2 20 100 4,100 2,000 4,020
F1 F 6 75 975 450 906 X21219D X2 20 100 4,100 2,000 4,020
F10 F 6 75 975 450 906 X21219E X2 20 100 4,100 2,000 4,020
F11 F 6 75 975 450 906 X21227A X2 20 100 4,100 2,000 4,020
F12 F 6 75 975 450 906 X21227B X2 20 100 4,100 2,000 4,020
F13 F 6 75 975 450 906 X21227C X2 20 100 4,100 2,000 4,020
F14 F 6 75 975 450 906 X21227D X2 20 100 4,100 2,000 4,020
F15 F 6 75 975 450 906 X21227E X2 20 100 4,100 2,000 4,020
F16 F 6 75 975 450 906 X21228A X2 20 100 4,100 2,000 4,020
F17 F 6 75 975 450 906 X21228B X2 20 100 4,100 2,000 4,020
F18 F 6 75 975 450 906 X21228C X2 20 100 4,100 2,000 4,020
F19 F 6 75 975 450 906 X21228D X2 20 100 4,100 2,000 4,020
F2 F 6 75 975 450 906 X21228E X2 20 100 4,100 2,000 4,020
F20 F 6 75 975 450 906 X21229A X2 20 100 4,100 2,000 4,020
F21 F 6 75 975 450 906 X21229B X2 20 100 4,100 2,000 4,020
F22 F 6 75 975 450 906 X21229C X2 20 100 4,100 2,000 4,020
F23 F 6 75 975 450 906 X21229D X2 20 100 4,100 2,000 4,020
F24 F 6 75 975 450 906 X21229E X2 20 100 4,100 2,000 4,020
F25 F 6 75 975 450 906 X21417A X2 20 100 4,100 2,000 4,020
F26 F 6 75 975 450 906 X21417B X2 20 100 4,100 2,000 4,020
F27 F 6 75 975 450 906 X21417C X2 20 100 4,100 2,000 4,020
F28 F 6 75 975 450 906 X21417D X2 20 100 4,100 2,000 4,020
F29 F 6 75 975 450 906 X21417E X2 20 100 4,100 2,000 4,020
F3 F 6 75 975 450 906 X21418A X2 20 100 4,100 2,000 4,020
F30 F 6 75 975 450 906 X21418B X2 20 100 4,100 2,000 4,020
F31 F 6 75 975 450 906 X21418C X2 20 100 4,100 2,000 4,020
F32 F 6 75 975 450 906 X21418D X2 20 100 4,100 2,000 4,020
F33 F 6 75 975 450 906 X21418E X2 20 100 4,100 2,000 4,020
F34 F 6 75 975 450 906 X21419A X2 20 100 4,100 2,000 4,020
F35 F 6 75 975 450 906 X21419B X2 20 100 4,100 2,000 4,020
F36 F 6 75 975 450 906 X21419C X2 20 100 4,100 2,000 4,020
F37 F 6 75 975 450 906 X21419D X2 20 100 4,100 2,000 4,020
F38 F 6 75 975 450 906 X21419E X2 20 100 4,100 2,000 4,020
F39 F 6 75 975 450 906 X21427A X2 20 100 4,100 2,000 4,020
F4 F 6 75 975 450 906 X21427B X2 20 100 4,100 2,000 4,020
F40 F 6 75 975 450 906 X21427C X2 20 100 4,100 2,000 4,020
F41 F 6 75 975 450 906 X21427D X2 20 100 4,100 2,000 4,020
F42 F 6 75 975 450 906 X21427E X2 20 100 4,100 2,000 4,020
F43 F 6 75 975 450 906 X21428A X2 20 100 4,100 2,000 4,020
F44 F 6 75 975 450 906 X21428B X2 20 100 4,100 2,000 4,020
F45 F 6 75 975 450 906 X21428C X2 20 100 4,100 2,000 4,020
F46 F 6 75 975 450 906 X21428D X2 20 100 4,100 2,000 4,020
F47 F 6 75 975 450 906 X21428E X2 20 100 4,100 2,000 4,020
F48 F 6 75 975 450 906 X21429A X2 20 100 4,100 2,000 4,020
F49 F 6 75 975 450 906 X21429B X2 20 100 4,100 2,000 4,020
F5 F 6 75 975 450 906 X21429C X2 20 100 4,100 2,000 4,020
F50 F 6 75 975 450 906 X21429D X2 20 100 4,100 2,000 4,020
F51 F 6 75 975 450 906 X21429E X2 20 100 4,100 2,000 4,020
F52 F 6 75 975 450 906 X22117A X2 20 100 4,100 2,000 4,020
F53 F 6 75 975 450 906 X22117B X2 20 100 4,100 2,000 4,020
F54 F 6 75 975 450 906 X22117C X2 20 100 4,100 2,000 4,020
F55 F 6 75 975 450 906 X22117D X2 20 100 4,100 2,000 4,020
F56 F 6 75 975 450 906 X22117E X2 20 100 4,100 2,000 4,020
F57 F 6 75 975 450 906 X22118A X2 20 100 4,100 2,000 4,020
F58 F 6 75 975 450 906 X22118B X2 20 100 4,100 2,000 4,020
F59 F 6 75 975 450 906 X22118C X2 20 100 4,100 2,000 4,020
F6 F 6 75 975 450 906 X22118D X2 20 100 4,100 2,000 4,020
F60 F 6 75 975 450 906 X22118E X2 20 100 4,100 2,000 4,020
F61 F 6 75 975 450 906 X22119A X2 20 100 4,100 2,000 4,020
F62 F 6 75 975 450 906 X22119B X2 20 100 4,100 2,000 4,020
F63 F 6 75 975 450 906 X22119C X2 20 100 4,100 2,000 4,020
F64 F 6 75 975 450 906 X22119D X2 20 100 4,100 2,000 4,020
F65 F 6 75 975 450 906 X22119E X2 20 100 4,100 2,000 4,020
F66 F 6 75 975 450 906 X22127A X2 20 100 4,100 2,000 4,020
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F67 F 6 75 975 450 906 X22127B X2 20 100 4,100 2,000 4,020
F68 F 6 75 975 450 906 X22127C X2 20 100 4,100 2,000 4,020
F69 F 6 75 975 450 906 X22127D X2 20 100 4,100 2,000 4,020
F7 F 6 75 975 450 906 X22127E X2 20 100 4,100 2,000 4,020
F70 F 6 75 975 450 906 X22128A X2 20 100 4,100 2,000 4,020
F8 F 6 75 975 450 906 X22128B X2 20 100 4,100 2,000 4,020
F9 F 6 75 975 450 906 X22128C X2 20 100 4,100 2,000 4,020
W13 W 4 75 675 300 604 X22128D X2 20 100 4,100 2,000 4,020
W14 W 4 75 675 300 604 X22128E X2 20 100 4,100 2,000 4,020
W15 W 4 75 675 300 604 X22129A X2 20 100 4,100 2,000 4,020
W16 W 4 75 675 300 604 X22129B X2 20 100 4,100 2,000 4,020
W17 W 4 75 675 300 604 X22129C X2 20 100 4,100 2,000 4,020
W18 W 4 75 675 300 604 X22129D X2 20 100 4,100 2,000 4,020
W19 W 8 75 1,275 600 1,208 X22129E X2 20 100 4,100 2,000 4,020
W20 W 8 75 1,275 600 1,208 X22217A X2 20 100 4,100 2,000 4,020
W21 W 8 75 1,275 600 1,208 X22217B X2 20 100 4,100 2,000 4,020
W22 W 8 75 1,275 600 1,208 X22217C X2 20 100 4,100 2,000 4,020
W23 W 8 75 1,275 600 1,208 X22217D X2 20 100 4,100 2,000 4,020
W24 W 8 75 1,275 600 1,208 X22217E X2 20 100 4,100 2,000 4,020
G1 G 6 75 975 450 906 X22218A X2 20 100 4,100 2,000 4,020
G10 G 6 75 975 450 906 X22218B X2 20 100 4,100 2,000 4,020
G11 G 6 75 975 450 906 X22218C X2 20 100 4,100 2,000 4,020
G13 G 6 75 975 450 906 X22218D X2 20 100 4,100 2,000 4,020
G14 G 6 75 975 450 906 X22218E X2 20 100 4,100 2,000 4,020
G16 G 6 75 975 450 906 X22219A X2 20 100 4,100 2,000 4,020
G17 G 6 75 975 450 906 X22219B X2 20 100 4,100 2,000 4,020
G18 G 6 75 975 450 906 X22219C X2 20 100 4,100 2,000 4,020
G19 G 6 75 975 450 906 X22219D X2 20 100 4,100 2,000 4,020
G2 G 6 75 975 450 906 X22219E X2 20 100 4,100 2,000 4,020
G20 G 6 75 975 450 906 X22227A X2 20 100 4,100 2,000 4,020
G21 G 6 75 975 450 906 X22227B X2 20 100 4,100 2,000 4,020
G22 G 6 75 975 450 906 X22227C X2 20 100 4,100 2,000 4,020
G23 G 6 75 975 450 906 X22227D X2 20 100 4,100 2,000 4,020
G24 G 6 75 975 450 906 X22227E X2 20 100 4,100 2,000 4,020
G25 G 6 75 975 450 906 X22228A X2 20 100 4,100 2,000 4,020
G26 G 6 75 975 450 906 X22228B X2 20 100 4,100 2,000 4,020
G27 G 6 75 975 450 906 X22228C X2 20 100 4,100 2,000 4,020
G28 G 6 75 975 450 906 X22228D X2 20 100 4,100 2,000 4,020
G29 G 6 75 975 450 906 X22228E X2 20 100 4,100 2,000 4,020
G3 G 6 75 975 450 906 X22229A X2 20 100 4,100 2,000 4,020
G30 G 6 75 975 450 906 X22229B X2 20 100 4,100 2,000 4,020
G31 G 6 75 975 450 906 X22229C X2 20 100 4,100 2,000 4,020
G32 G 6 75 975 450 906 X22229D X2 20 100 4,100 2,000 4,020
G33 G 6 75 975 450 906 X22229E X2 20 100 4,100 2,000 4,020
G34 G 6 75 975 450 906 X22417A X2 20 100 4,100 2,000 4,020
G35 G 6 75 975 450 906 X22417B X2 20 100 4,100 2,000 4,020
G36 G 6 75 975 450 906 X22417C X2 20 100 4,100 2,000 4,020
G37 G 6 75 975 450 906 X22417D X2 20 100 4,100 2,000 4,020
G38 G 6 75 975 450 906 X22417E X2 20 100 4,100 2,000 4,020
G39 G 6 75 975 450 906 X22418A X2 20 100 4,100 2,000 4,020
G4 G 6 75 975 450 906 X22418B X2 20 100 4,100 2,000 4,020
G40 G 6 75 975 450 906 X22418C X2 20 100 4,100 2,000 4,020
G42 G 6 75 975 450 906 X22418D X2 20 100 4,100 2,000 4,020
G44 G 6 75 975 450 906 X22418E X2 20 100 4,100 2,000 4,020
G45 G 6 75 975 450 906 X22419A X2 20 100 4,100 2,000 4,020
G46 G 6 75 975 450 906 X22419B X2 20 100 4,100 2,000 4,020
G47 G 6 75 975 450 906 X22419C X2 20 100 4,100 2,000 4,020
G48 G 6 75 975 450 906 X22419D X2 20 100 4,100 2,000 4,020
G49 G 6 75 975 450 906 X22419E X2 20 100 4,100 2,000 4,020
G5 G 6 75 975 450 906 X22427A X2 20 100 4,100 2,000 4,020
G50 G 6 75 975 450 906 X22427B X2 20 100 4,100 2,000 4,020
G51 G 12 75 1,875 900 1,812 X22427C X2 20 100 4,100 2,000 4,020
G52 G 12 75 1,875 900 1,812 X22427D X2 20 100 4,100 2,000 4,020
G53 G 12 75 1,875 900 1,812 X22427E X2 20 100 4,100 2,000 4,020
G54 G 12 75 1,875 900 1,812 X22428A X2 20 100 4,100 2,000 4,020
G55 G 12 75 1,875 900 1,812 X22428B X2 20 100 4,100 2,000 4,020
G56 G 24 75 3,675 1,800 3,624 X22428C X2 20 100 4,100 2,000 4,020
G57 G 24 75 3,675 1,800 3,624 X22428D X2 20 100 4,100 2,000 4,020
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G58 G 24 75 3,675 1,800 3,624 X22428E X2 20 100 4,100 2,000 4,020
G59 G 24 75 3,675 1,800 3,624 X22429A X2 20 100 4,100 2,000 4,020
G6 G 6 75 975 450 906 X22429B X2 20 100 4,100 2,000 4,020
G60 G 24 75 3,675 1,800 3,624 X22429C X2 20 100 4,100 2,000 4,020
G61 G 6 150 1,950 900 1,806 X22429D X2 20 100 4,100 2,000 4,020
G62 G 6 150 1,950 900 1,806 X22429E X2 20 100 4,100 2,000 4,020
G63 G 6 150 1,950 900 1,806 X31117A X3 30 100 6,100 3,000 6,030
G64 G 6 150 1,950 900 1,806 X31117B X3 30 100 6,100 3,000 6,030
G65 G 6 150 1,950 900 1,806 X31117C X3 30 100 6,100 3,000 6,030
G66 G 12 150 3,750 1,800 3,612 X31117D X3 30 100 6,100 3,000 6,030
G67 G 12 150 3,750 1,800 3,612 X31117E X3 30 100 6,100 3,000 6,030
G68 G 12 150 3,750 1,800 3,612 X31118A X3 30 100 6,100 3,000 6,030
G69 G 12 150 3,750 1,800 3,612 X31118B X3 30 100 6,100 3,000 6,030
G7 G 6 75 975 450 906 X31118C X3 30 100 6,100 3,000 6,030
G70 G 12 150 3,750 1,800 3,612 X31118D X3 30 100 6,100 3,000 6,030
G71 G 24 150 7,350 3,600 7,224 X31118E X3 30 100 6,100 3,000 6,030
G72 G 24 150 7,350 3,600 7,224 X31119A X3 30 100 6,100 3,000 6,030
G73 G 24 150 7,350 3,600 7,224 X31119B X3 30 100 6,100 3,000 6,030
G74 G 24 150 7,350 3,600 7,224 X31119C X3 30 100 6,100 3,000 6,030
G75 G 24 150 7,350 3,600 7,224 X31119D X3 30 100 6,100 3,000 6,030
G8 G 6 75 975 450 906 X31119E X3 30 100 6,100 3,000 6,030
G9 G 6 75 975 450 906 X31127A X3 30 100 6,100 3,000 6,030
X11117A X1 10 100 2,100 1,000 2,010 X31127B X3 30 100 6,100 3,000 6,030
X11117B X1 10 100 2,100 1,000 2,010 X31127C X3 30 100 6,100 3,000 6,030
X11117C X1 10 100 2,100 1,000 2,010 X31127D X3 30 100 6,100 3,000 6,030
X11117D X1 10 100 2,100 1,000 2,010 X31127E X3 30 100 6,100 3,000 6,030
X11117E X1 10 100 2,100 1,000 2,010 X31128A X3 30 100 6,100 3,000 6,030
X11118A X1 10 100 2,100 1,000 2,010 X31128B X3 30 100 6,100 3,000 6,030
X11118B X1 10 100 2,100 1,000 2,010 X31128C X3 30 100 6,100 3,000 6,030
X11118C X1 10 100 2,100 1,000 2,010 X31128D X3 30 100 6,100 3,000 6,030
X11118D X1 10 100 2,100 1,000 2,010 X31128E X3 30 100 6,100 3,000 6,030
X11118E X1 10 100 2,100 1,000 2,010 X31129A X3 30 100 6,100 3,000 6,030
X11119A X1 10 100 2,100 1,000 2,010 X31129B X3 30 100 6,100 3,000 6,030
X11119B X1 10 100 2,100 1,000 2,010 X31129C X3 30 100 6,100 3,000 6,030
X11119C X1 10 100 2,100 1,000 2,010 X31129D X3 30 100 6,100 3,000 6,030
X11119D X1 10 100 2,100 1,000 2,010 X31129E X3 30 100 6,100 3,000 6,030
X11119E X1 10 100 2,100 1,000 2,010 X31217A X3 30 100 6,100 3,000 6,030
X11127A X1 10 100 2,100 1,000 2,010 X31217B X3 30 100 6,100 3,000 6,030
X11127B X1 10 100 2,100 1,000 2,010 X31217C X3 30 100 6,100 3,000 6,030
X11127C X1 10 100 2,100 1,000 2,010 X31217D X3 30 100 6,100 3,000 6,030
X11127D X1 10 100 2,100 1,000 2,010 X31217E X3 30 100 6,100 3,000 6,030
X11127E X1 10 100 2,100 1,000 2,010 X31218A X3 30 100 6,100 3,000 6,030
X11128A X1 10 100 2,100 1,000 2,010 X31218B X3 30 100 6,100 3,000 6,030
X11128B X1 10 100 2,100 1,000 2,010 X31218C X3 30 100 6,100 3,000 6,030
X11128C X1 10 100 2,100 1,000 2,010 X31218D X3 30 100 6,100 3,000 6,030
X11128D X1 10 100 2,100 1,000 2,010 X31218E X3 30 100 6,100 3,000 6,030
X11128E X1 10 100 2,100 1,000 2,010 X31219A X3 30 100 6,100 3,000 6,030
X11129A X1 10 100 2,100 1,000 2,010 X31219B X3 30 100 6,100 3,000 6,030
X11129B X1 10 100 2,100 1,000 2,010 X31219C X3 30 100 6,100 3,000 6,030
X11129C X1 10 100 2,100 1,000 2,010 X31219D X3 30 100 6,100 3,000 6,030
X11129D X1 10 100 2,100 1,000 2,010 X31219E X3 30 100 6,100 3,000 6,030
X11129E X1 10 100 2,100 1,000 2,010 X31227A X3 30 100 6,100 3,000 6,030
X11217A X1 10 100 2,100 1,000 2,010 X31227B X3 30 100 6,100 3,000 6,030
X11217B X1 10 100 2,100 1,000 2,010 X31227C X3 30 100 6,100 3,000 6,030
X11217C X1 10 100 2,100 1,000 2,010 X31227D X3 30 100 6,100 3,000 6,030
X11217D X1 10 100 2,100 1,000 2,010 X31227E X3 30 100 6,100 3,000 6,030
X11217E X1 10 100 2,100 1,000 2,010 X31228A X3 30 100 6,100 3,000 6,030
X11218A X1 10 100 2,100 1,000 2,010 X31228B X3 30 100 6,100 3,000 6,030
X11218B X1 10 100 2,100 1,000 2,010 X31228C X3 30 100 6,100 3,000 6,030
X11218C X1 10 100 2,100 1,000 2,010 X31228D X3 30 100 6,100 3,000 6,030
X11218D X1 10 100 2,100 1,000 2,010 X31228E X3 30 100 6,100 3,000 6,030
X11218E X1 10 100 2,100 1,000 2,010 X31229A X3 30 100 6,100 3,000 6,030
X11219A X1 10 100 2,100 1,000 2,010 X31229B X3 30 100 6,100 3,000 6,030
X11219B X1 10 100 2,100 1,000 2,010 X31229C X3 30 100 6,100 3,000 6,030
X11219C X1 10 100 2,100 1,000 2,010 X31229D X3 30 100 6,100 3,000 6,030
X11219D X1 10 100 2,100 1,000 2,010 X31229E X3 30 100 6,100 3,000 6,030
X11219E X1 10 100 2,100 1,000 2,010 X31417A X3 30 100 6,100 3,000 6,030
X11227A X1 10 100 2,100 1,000 2,010 X31417B X3 30 100 6,100 3,000 6,030
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X11227B X1 10 100 2,100 1,000 2,010 X31417C X3 30 100 6,100 3,000 6,030
X11227C X1 10 100 2,100 1,000 2,010 X31417D X3 30 100 6,100 3,000 6,030
X11227D X1 10 100 2,100 1,000 2,010 X31417E X3 30 100 6,100 3,000 6,030
X11227E X1 10 100 2,100 1,000 2,010 X31418A X3 30 100 6,100 3,000 6,030
X11228A X1 10 100 2,100 1,000 2,010 X31418B X3 30 100 6,100 3,000 6,030
X11228B X1 10 100 2,100 1,000 2,010 X31418C X3 30 100 6,100 3,000 6,030
X11228C X1 10 100 2,100 1,000 2,010 X31418D X3 30 100 6,100 3,000 6,030
X11228D X1 10 100 2,100 1,000 2,010 X31418E X3 30 100 6,100 3,000 6,030
X11228E X1 10 100 2,100 1,000 2,010 X31419A X3 30 100 6,100 3,000 6,030
X11229A X1 10 100 2,100 1,000 2,010 X31419B X3 30 100 6,100 3,000 6,030
X11229B X1 10 100 2,100 1,000 2,010 X31419C X3 30 100 6,100 3,000 6,030
X11229C X1 10 100 2,100 1,000 2,010 X31419D X3 30 100 6,100 3,000 6,030
X11229D X1 10 100 2,100 1,000 2,010 X31419E X3 30 100 6,100 3,000 6,030
X11229E X1 10 100 2,100 1,000 2,010 X31427A X3 30 100 6,100 3,000 6,030
X11417A X1 10 100 2,100 1,000 2,010 X31427B X3 30 100 6,100 3,000 6,030
X11417B X1 10 100 2,100 1,000 2,010 X31427C X3 30 100 6,100 3,000 6,030
X11417C X1 10 100 2,100 1,000 2,010 X31427D X3 30 100 6,100 3,000 6,030
X11417D X1 10 100 2,100 1,000 2,010 X31427E X3 30 100 6,100 3,000 6,030
X11417E X1 10 100 2,100 1,000 2,010 X31428A X3 30 100 6,100 3,000 6,030
X11418A X1 10 100 2,100 1,000 2,010 X31428B X3 30 100 6,100 3,000 6,030
X11418B X1 10 100 2,100 1,000 2,010 X31428C X3 30 100 6,100 3,000 6,030
X11418C X1 10 100 2,100 1,000 2,010 X31428D X3 30 100 6,100 3,000 6,030
X11418D X1 10 100 2,100 1,000 2,010 X31428E X3 30 100 6,100 3,000 6,030
X11418E X1 10 100 2,100 1,000 2,010 X31429A X3 30 100 6,100 3,000 6,030
X11419A X1 10 100 2,100 1,000 2,010 X31429B X3 30 100 6,100 3,000 6,030
X11419B X1 10 100 2,100 1,000 2,010 X31429C X3 30 100 6,100 3,000 6,030
X11419C X1 10 100 2,100 1,000 2,010 X31429D X3 30 100 6,100 3,000 6,030
X11419D X1 10 100 2,100 1,000 2,010 X31429E X3 30 100 6,100 3,000 6,030
X11419E X1 10 100 2,100 1,000 2,010 X32117A X3 30 100 6,100 3,000 6,030
X11427A X1 10 100 2,100 1,000 2,010 X32117B X3 30 100 6,100 3,000 6,030
X11427B X1 10 100 2,100 1,000 2,010 X32117C X3 30 100 6,100 3,000 6,030
X11427C X1 10 100 2,100 1,000 2,010 X32117D X3 30 100 6,100 3,000 6,030
X11427D X1 10 100 2,100 1,000 2,010 X32117E X3 30 100 6,100 3,000 6,030
X11427E X1 10 100 2,100 1,000 2,010 X32118A X3 30 100 6,100 3,000 6,030
X11428A X1 10 100 2,100 1,000 2,010 X32118B X3 30 100 6,100 3,000 6,030
X11428B X1 10 100 2,100 1,000 2,010 X32118C X3 30 100 6,100 3,000 6,030
X11428C X1 10 100 2,100 1,000 2,010 X32118D X3 30 100 6,100 3,000 6,030
X11428D X1 10 100 2,100 1,000 2,010 X32118E X3 30 100 6,100 3,000 6,030
X11428E X1 10 100 2,100 1,000 2,010 X32119A X3 30 100 6,100 3,000 6,030
X11429A X1 10 100 2,100 1,000 2,010 X32119B X3 30 100 6,100 3,000 6,030
X11429B X1 10 100 2,100 1,000 2,010 X32119C X3 30 100 6,100 3,000 6,030
X11429C X1 10 100 2,100 1,000 2,010 X32119D X3 30 100 6,100 3,000 6,030
X11429D X1 10 100 2,100 1,000 2,010 X32119E X3 30 100 6,100 3,000 6,030
X11429E X1 10 100 2,100 1,000 2,010 X32127A X3 30 100 6,100 3,000 6,030
X12117A X1 10 100 2,100 1,000 2,010 X32127B X3 30 100 6,100 3,000 6,030
X12117B X1 10 100 2,100 1,000 2,010 X32127C X3 30 100 6,100 3,000 6,030
X12117C X1 10 100 2,100 1,000 2,010 X32127D X3 30 100 6,100 3,000 6,030
X12117D X1 10 100 2,100 1,000 2,010 X32127E X3 30 100 6,100 3,000 6,030
X12117E X1 10 100 2,100 1,000 2,010 X32128A X3 30 100 6,100 3,000 6,030
X12118A X1 10 100 2,100 1,000 2,010 X32128B X3 30 100 6,100 3,000 6,030
X12118B X1 10 100 2,100 1,000 2,010 X32128C X3 30 100 6,100 3,000 6,030
X12118C X1 10 100 2,100 1,000 2,010 X32128D X3 30 100 6,100 3,000 6,030
X12118D X1 10 100 2,100 1,000 2,010 X32128E X3 30 100 6,100 3,000 6,030
X12118E X1 10 100 2,100 1,000 2,010 X32129A X3 30 100 6,100 3,000 6,030
X12119A X1 10 100 2,100 1,000 2,010 X32129B X3 30 100 6,100 3,000 6,030
X12119B X1 10 100 2,100 1,000 2,010 X32129C X3 30 100 6,100 3,000 6,030
X12119C X1 10 100 2,100 1,000 2,010 X32129D X3 30 100 6,100 3,000 6,030
X12119D X1 10 100 2,100 1,000 2,010 X32129E X3 30 100 6,100 3,000 6,030
X12119E X1 10 100 2,100 1,000 2,010 X32217A X3 30 100 6,100 3,000 6,030
X12127A X1 10 100 2,100 1,000 2,010 X32217B X3 30 100 6,100 3,000 6,030
X12127B X1 10 100 2,100 1,000 2,010 X32217C X3 30 100 6,100 3,000 6,030
X12127C X1 10 100 2,100 1,000 2,010 X32217D X3 30 100 6,100 3,000 6,030
X12127D X1 10 100 2,100 1,000 2,010 X32217E X3 30 100 6,100 3,000 6,030
X12127E X1 10 100 2,100 1,000 2,010 X32218A X3 30 100 6,100 3,000 6,030
X12128A X1 10 100 2,100 1,000 2,010 X32218B X3 30 100 6,100 3,000 6,030
X12128B X1 10 100 2,100 1,000 2,010 X32218C X3 30 100 6,100 3,000 6,030
X12128C X1 10 100 2,100 1,000 2,010 X32218D X3 30 100 6,100 3,000 6,030
X12128D X1 10 100 2,100 1,000 2,010 X32218E X3 30 100 6,100 3,000 6,030
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Table A.5 – Continued from previous page
name class n m nbC nbI nbO name class n m nbC nbI nbO
X12128E X1 10 100 2,100 1,000 2,010 X32219A X3 30 100 6,100 3,000 6,030
X12129A X1 10 100 2,100 1,000 2,010 X32219B X3 30 100 6,100 3,000 6,030
X12129B X1 10 100 2,100 1,000 2,010 X32219C X3 30 100 6,100 3,000 6,030
X12129C X1 10 100 2,100 1,000 2,010 X32219D X3 30 100 6,100 3,000 6,030
X12129D X1 10 100 2,100 1,000 2,010 X32219E X3 30 100 6,100 3,000 6,030
X12129E X1 10 100 2,100 1,000 2,010 X32227A X3 30 100 6,100 3,000 6,030
X12217A X1 10 100 2,100 1,000 2,010 X32227B X3 30 100 6,100 3,000 6,030
X12217B X1 10 100 2,100 1,000 2,010 X32227C X3 30 100 6,100 3,000 6,030
X12217C X1 10 100 2,100 1,000 2,010 X32227D X3 30 100 6,100 3,000 6,030
X12217D X1 10 100 2,100 1,000 2,010 X32227E X3 30 100 6,100 3,000 6,030
X12217E X1 10 100 2,100 1,000 2,010 X32228A X3 30 100 6,100 3,000 6,030
X12218A X1 10 100 2,100 1,000 2,010 X32228B X3 30 100 6,100 3,000 6,030
X12218B X1 10 100 2,100 1,000 2,010 X32228C X3 30 100 6,100 3,000 6,030
X12218C X1 10 100 2,100 1,000 2,010 X32228D X3 30 100 6,100 3,000 6,030
X12218D X1 10 100 2,100 1,000 2,010 X32228E X3 30 100 6,100 3,000 6,030
X12218E X1 10 100 2,100 1,000 2,010 X32229A X3 30 100 6,100 3,000 6,030
X12219A X1 10 100 2,100 1,000 2,010 X32229B X3 30 100 6,100 3,000 6,030
X12219B X1 10 100 2,100 1,000 2,010 X32229C X3 30 100 6,100 3,000 6,030
X12219C X1 10 100 2,100 1,000 2,010 X32229D X3 30 100 6,100 3,000 6,030
X12219D X1 10 100 2,100 1,000 2,010 X32229E X3 30 100 6,100 3,000 6,030
X12219E X1 10 100 2,100 1,000 2,010 X32417A X3 30 100 6,100 3,000 6,030
X12227A X1 10 100 2,100 1,000 2,010 X32417B X3 30 100 6,100 3,000 6,030
X12227B X1 10 100 2,100 1,000 2,010 X32417C X3 30 100 6,100 3,000 6,030
X12227C X1 10 100 2,100 1,000 2,010 X32417D X3 30 100 6,100 3,000 6,030
X12227D X1 10 100 2,100 1,000 2,010 X32417E X3 30 100 6,100 3,000 6,030
X12227E X1 10 100 2,100 1,000 2,010 X32418A X3 30 100 6,100 3,000 6,030
X12228A X1 10 100 2,100 1,000 2,010 X32418B X3 30 100 6,100 3,000 6,030
X12228B X1 10 100 2,100 1,000 2,010 X32418C X3 30 100 6,100 3,000 6,030
X12228C X1 10 100 2,100 1,000 2,010 X32418D X3 30 100 6,100 3,000 6,030
X12228D X1 10 100 2,100 1,000 2,010 X32418E X3 30 100 6,100 3,000 6,030
X12228E X1 10 100 2,100 1,000 2,010 X32419A X3 30 100 6,100 3,000 6,030
X12229A X1 10 100 2,100 1,000 2,010 X32419B X3 30 100 6,100 3,000 6,030
X12229B X1 10 100 2,100 1,000 2,010 X32419C X3 30 100 6,100 3,000 6,030
X12229C X1 10 100 2,100 1,000 2,010 X32419D X3 30 100 6,100 3,000 6,030
X12229D X1 10 100 2,100 1,000 2,010 X32419E X3 30 100 6,100 3,000 6,030
X12229E X1 10 100 2,100 1,000 2,010 X32427A X3 30 100 6,100 3,000 6,030
X12417A X1 10 100 2,100 1,000 2,010 X32427B X3 30 100 6,100 3,000 6,030
X12417B X1 10 100 2,100 1,000 2,010 X32427C X3 30 100 6,100 3,000 6,030
X12417C X1 10 100 2,100 1,000 2,010 X32427D X3 30 100 6,100 3,000 6,030
X12417D X1 10 100 2,100 1,000 2,010 X32427E X3 30 100 6,100 3,000 6,030
X12417E X1 10 100 2,100 1,000 2,010 X32428A X3 30 100 6,100 3,000 6,030
X12418A X1 10 100 2,100 1,000 2,010 X32428B X3 30 100 6,100 3,000 6,030
X12418B X1 10 100 2,100 1,000 2,010 X32428C X3 30 100 6,100 3,000 6,030
X12418C X1 10 100 2,100 1,000 2,010 X32428D X3 30 100 6,100 3,000 6,030
X12418D X1 10 100 2,100 1,000 2,010 X32428E X3 30 100 6,100 3,000 6,030
X12418E X1 10 100 2,100 1,000 2,010 X32429A X3 30 100 6,100 3,000 6,030
X12419A X1 10 100 2,100 1,000 2,010 X32429B X3 30 100 6,100 3,000 6,030
X12419B X1 10 100 2,100 1,000 2,010 X32429C X3 30 100 6,100 3,000 6,030
X12419C X1 10 100 2,100 1,000 2,010 X32429D X3 30 100 6,100 3,000 6,030
X12419D X1 10 100 2,100 1,000 2,010 X32429E X3 30 100 6,100 3,000 6,030
X12419E X1 10 100 2,100 1,000 2,010

Additionally, we have created instances in order to challenge the column generation
methods. These instances were obtained by replicating each instance demand 5, 10, 15
and 20 times and dividing the capacity, processing time, setup time and costs by the
same factors. Also, we have increased the capacity by 10%. In Table A.6 the statistics
of these instances are shown.

Table A.6: CLSPST instance statistics - Set B

name n m nbC nbI nbO name n m nbC nbI nbO
t05G30 6 75 975 450 906 t15G30 6 225 2,925 1,350 2,706
t05G53 12 75 1,875 900 1,812 t15G53 12 225 5,625 2,700 5,412
t05G57 24 75 3,675 1,800 3,624 t15G57 24 225 11,025 5,400 10,824
t05X21117A 20 100 4,100 2,000 4,020 t15X21117A 20 300 12,300 6,000 12,020
t05X21117B 20 100 4,100 2,000 4,020 t15X21117B 20 300 12,300 6,000 12,020
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Table A.6 – Continued from previous page
name n m nbC nbI nbO name n m nbC nbI nbO
t05X21118A 20 100 4,100 2,000 4,020 t15X21118A 20 300 12,300 6,000 12,020
t05X21118B 20 100 4,100 2,000 4,020 t15X21118B 20 300 12,300 6,000 12,020
t05X31117A 30 100 6,100 3,000 6,030 t15X31117A 30 300 18,300 9,000 18,030
t05X31117B 30 100 6,100 3,000 6,030 t15X31117B 30 300 18,300 9,000 18,030
t05X31118A 30 100 6,100 3,000 6,030 t15X31118A 30 300 18,300 9,000 18,030
t05X31118B 30 100 6,100 3,000 6,030 t15X31118B 30 300 18,300 9,000 18,030
t10G30 6 150 1,950 900 1,806 t20G30 6 300 3,900 1,800 3,606
t10G53 12 150 3,750 1,800 3,612 t20G53 12 300 7,500 3,600 7,212
t10G57 24 150 7,350 3,600 7,224 t20G57 24 300 14,700 7,200 14,424
t10X21117A 20 200 8,200 4,000 8,020 t20X21117A 20 400 16,400 8,000 16,020
t10X21117B 20 200 8,200 4,000 8,020 t20X21117B 20 400 16,400 8,000 16,020
t10X21118A 20 200 8,200 4,000 8,020 t20X21118A 20 400 16,400 8,000 16,020
t10X21118B 20 200 8,200 4,000 8,020 t20X21118B 20 400 16,400 8,000 16,020
t10X31117A 30 200 12,200 6,000 12,030 t20X31117A 30 400 24,400 12,000 24,030
t10X31117B 30 200 12,200 6,000 12,030 t20X31117B 30 400 24,400 12,000 24,030
t10X31118A 30 200 12,200 6,000 12,030 t20X31118A 30 400 24,400 12,000 24,030
t10X31118B 30 200 12,200 6,000 12,030 t20X31118B 30 400 24,400 12,000 24,030
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[86] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Opera-
tions Research, 53(6):1007–1023, 2005.

[87] I. Lustig, R. Marsten, and D. Shanno. On implementing Mehrotra’s predictor-
corrector interior-point method for linear programming. SIAM Journal on Opti-
mization, 2(3):435–449, 1992.

[88] R. E. Marsten, W. W. Hogan, and J. W. Blankenship. The boxstep method for
large-scale optimization. Operations Research, 23(3):389–405, 1975.

[89] R. K. Martinson and J. Tind. An interior point method in Dantzig-Wolfe decom-
position. Computers and Operation Research, 26:1195–1216, 1999.

[90] MATLAB. version 7.9.0.529 (R2009b). The MathWorks Inc., Natick, Mas-
sachusetts, 2009.

[91] N. Meggido. Pathways to the optimal set in linear programming. In N. Megiddo,
editor, Progress in Mathematical Programming Interior-point and related meth-
ods, pages 131–158. Springer-Verlag New York, Inc., USA, 1988.

[92] S. Mehrotra. On the implementation of a primal-dual interior point method.
SIAM Journal on Optimization, 2(4):575–601, 1992.

[93] J. E. Mitchell. Karmarkar’s Algorithm and Combinatorial Optimization Prob-
lems. PhD thesis, School of Operations Research and Industrial Engineering,
Cornell University, 1988.

114



[94] J. E. Mitchell. Computational experience with an interior point cutting plane
algorithm. SIAM Journal on Optimization, 10(4):1212–1227, 2000.

[95] J. E. Mitchell. Polynomial interior point cutting plane methods. Optimization
Methods and Software, 18(5):507–534, 2003.

[96] J. E. Mitchell and B. Borchers. Solving real-world linear ordering problems using
a primal-dual interior point cutting plane method. Annals of Operations Research,
62:253–276, 1996.

[97] J. E. Mitchell and M. J. Todd. Solving combinatorial optimization problems using
Karmarkar’s algorithm. Mathematical Programming, 56:245–284, 1992.

[98] P. Munari and J. Gondzio. Using the primal-dual interior point algorithm within
the branch-price-and-cut method. Computers & Operations Research, 40(8):2026–
2036, 2013.

[99] G. L. Nemhauser. Column generation for linear and integer programming. In
M. Grötschel, editor, Documenta Mathematica - Extra Volume ISMP, pages 65–
73. 2012.

[100] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience, 1988.

[101] J. Nocedal and S. J.Wright. Numerical Optimization. Springer-Verlag, New York,
1999.

[102] M. A. Nunez and R. M. Freund. Condition measures and properties of the central
trajectory of a linear program. Mathematical Programming, 83:1–28, 1998.

[103] M. R. Oskoorouchi, H. R. Ghaffari, T. Terlaky, and D. M. Aleman. An interior
point constraint generation algorithm for semi-infinite optimization with health-
care application. Operations Research, 59(5):1184–1197, 2011.

[104] A. Ouorou, P. Mahey, and J.-P. Vial. A survey of algorithms for convex multi-
commodity flow problems. Management Science, 46(1):126–147, 2000.

[105] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal
of Machine Learning Research, 9:2491–2521, 2008.

[106] T. K. Ralphs and M. V. Galati. Decomposition and dynamic cut generation in
integer linear programming. Mathematical Programming, 106:261–285, 2006.

[107] G. Righini and M. Salani. New dynamic programming algorithms for the resource
constrained elementary shortest path problem. Networks, 51(3):155–170, 2008.

[108] C. Roos, T. Terlaky, and J.-P. Vial. Interior Point Methods for Linear Optimiza-
tion. Springer, 2nd edition, 2006.

[109] L.-M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization for
column generation. Operations Research Letters, 35(5):660–668, 2007.
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