
A Simplified Binary Artificial Fish Swarm Algorithm for

0–1 Quadratic Knapsack Problems

Md. Abul Kalam Azada,∗, Ana Maria A.C. Rochaa,b, Edite M.G.P.
Fernandesa

aAlgoritmi R&D Centre
bDepartment of Production and Systems

School of Engineering, University of Minho, 4710-057 Braga, Portugal

Abstract

This paper proposes a simplified binary version of the artificial fish swarm
algorithm (S-bAFSA) for solving 0–1 quadratic knapsack problems. This is a
combinatorial optimization problem, which arises in many fields of optimiza-
tion. In S-bAFSA, trial points are created by using crossover and mutation.
In order to make the points feasible, a random heuristic drop item procedure
is used. The heuristic add item is also implemented to improve the quality of
the solutions, and a cyclic reinitialization of the population is carried out to
avoid convergence to non-optimal solutions. To enhance the accuracy of the
solution, a swap move heuristic search is applied on a predefined number of
points. The method is tested on a set of benchmark 0–1 knapsack problems.

Keywords: 0–1 knapsack problem, heuristic, artificial fish swarm, swap
move

1. Introduction1

In this paper, we are particularly interested in the 0–1 quadratic knap-2

sack problem (QKP) consisting in maximizing a quadratic objective function3

subject to a linear capacity constraint. This problem was introduced in [6]4
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and may be expressed as follows:1

maximize f(x) ≡
n∑

i=1

pixi +

n−1∑

i=1

n∑

j=i+1

pijxixj

subject to
n∑

i=1

wixi ≤ c

xi ∈ {0, 1}, i = 1, 2, . . . , n,

(1)

where x is the n-dimensional vector of the 0/1 decision variables (items), pi is2

a profit achieved if item i is selected and pij (i = 1, 2, . . . , n−1, j = i+1, . . . , n)3

is a profit achieved if both items i and j (j > i) are selected. wi is the weight4

coefficient of item i and c is the capacity of the knapsack. pi, pij and wi are5

positive integers and c is an integer such that max{wi : i = 1, 2, . . . , n} ≤ c <6 ∑n
i=1wi. The goal is to find a subset of n items that yields maximum profit7

f without exceeding knapsack capacity c. We may observe that if pij = 08

then the problem becomes a 0–1 linear knapsack problem (LKP).9

The 0–1 QKP arises in a variety of real world applications, including fi-10

nance, VLSI design, compiler construction, telecommunication, flexible man-11

ufacturing systems, location of airports, railway stations, freight handling12

terminals, hydrological studies. Classical graph and hypergraph partition-13

ing problems can also be formulated as the 0–1 QKP. Several deterministic14

solution methods [2, 3, 4, 5, 6, 8, 9, 10, 15, 20, 23] as well as stochastic solu-15

tion methods [7, 13, 17, 26] have been proposed to solve (1). Billionnet and16

Soutif [2] used a linear reformulation technique for the 0–1 QKP and solved17

them efficiently using a standard mixed integer programming tool. In [3], an18

exact method based on the computation of an upper bound by Lagrangian19

decomposition is proposed. Caprara et al. [5] investigated an exact branch20

and bound algorithm for the 0–1 QKP, where upper bounds are computed by21

considering a Lagrangian relaxation which is solvable through a number of22

(continuous) knapsack problems. Létocart et al. [15] presented reoptimiza-23

tion techniques for improving the efficiency of the preprocessing phase of the24

0–1 quadratic knapsack resolution. In [20], an exact algorithm which makes25

usage of aggressive reduction techniques to decrease the size of the instance26

to a manageable size is introduced. An exact solution method based on a27

new linearization scheme is proposed in Rodrigues et al. [23].28

The deterministic and exact methods are suitable for small dimensional29

problems. However, when the dimension increases, they cannot solve the30

problems within a reasonable time period. This is the main motivation to31
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develop stochastic methods and heuristics for solving QKP. In the context1

of constrained problems, the widely used approach is based on penalty func-2

tions. In this approach, a penalty term is added to the objective function3

aiming to penalize constraint violation. The penalty function method can4

be applied to any type of constraints, but the performance of penalty-type5

method is not always satisfactory due to the choice of appropriate penalty6

parameter values. Hence, other alternative constraint handling techniques7

have emerged in the last decades.8

Examples of stochastic population-based methods to solve the 0–1 QKP9

follow. Glover and Kochenberger [7] reformulated the 0–1 QKP to un-10

constrained binary quadratic problem and solved using Tabu search. In11

[13], a hybridization of the genetic algorithm with greedy heuristic based12

on the absolute-profit to weight ratio is proposed. Here, the capacity con-13

straint is handled by never generating chromosomes whose solutions violate14

it. Narayan and Patvardhan [17] introduced a novel quantum evolutionary15

algorithm for the 0–1 QKP and Xie and Liu [26] presented an agent-based16

mini-swarm algorithm using the absolute-profit to weight ratio to repair and17

improve the solutions.18

Unlike the stochastic methods, the outcome of a deterministic method19

does not depend on pseudo random variables. In general, its performance20

depends heavily on the structure of the problem since the design relies on21

the mathematical attributes of the optimization problem. In comparison22

with the deterministic methods, the implementation of stochastic algorithms23

is often easier. A survey of different methods for solving the 0–1 QKP is24

found in [19].25

The artificial fish swarm algorithm (AFSA) is an example of a stochas-26

tic method that has recently appeared to solve continuous and engineering27

design optimization problems [11, 12, 24, 25]. When applied to an optimiza-28

tion problem, a ‘fish’ represents an individual point in a population. The29

algorithm simulates the behavior of a fish swarm inside water. At each iter-30

ation, trial points are generated from the current ones using either a chasing31

behavior, a swarming behavior, a searching behavior or a random behavior.32

Each trial point competes with the corresponding current and the one with33

best fitness is passed to the next iteration as current point. There are in the34

scientific literature different versions and hybridizations of AFSA [18, 21, 22].35

This paper presents a simplified binary version of AFSA for solving the36

0–1 QKP. A previous binary version of AFSA, denoted by bAFSA, is pre-37

sented in [1], where a set of small 0–1 multidimensional knapsack problems38
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were successfully solved. Nevertheless, the computational effort required by1

bAFSA when solving large dimensional problems is not satisfactory. To cre-2

ate the trial points from the current ones in a population, bAFSA chooses3

each point/fish behavior according to the number of points inside its ‘visual4

scope’, i.e., inside a closed neighborhood centered at the point. To identify5

those points, the Hamming distance between pairs of points is used. When6

the chasing behavior is chosen, the trial point is created after performing an7

uniform crossover between the individual point and the best point inside the8

‘visual scope’. On the other hand, when the swarming behavior is chosen,9

a uniform crossover between the individual point and the central point of10

the ‘visual scope’ is performed to create the trial point. When the search-11

ing behavior is chosen, the trial point is created by performing a uniform12

crossover between the individual point and a randomly chosen point from13

the ‘visual scope’. Finally, in the random behavior, the trial point is created14

by randomly setting a binary string of 0/1 bits of length n. Past experience15

has shown that the time related with the computation of the ‘visual scope’16

of all points, at each iteration, is O(Nn2), where N is the number of points17

in the population.18

The purpose of the herein presented study is to simplify the procedures19

that are used to choose which behavior is to be performed to each current20

point in order to create the corresponding trial point. The main goal is to21

reduce the computational requirements, in terms of number of iterations and22

execution time, to reach the optimal solution. This is a new simplified binary23

version of AFSA, henceforth denoted by S-bAFSA. Briefly, for all points of24

the population, except the best, random, searching and chasing behavior25

are randomly chosen using two target probability values 0 ≤ τ1 ≤ τ2 ≤ 1,26

and thereafter an uniform crossover is operated to create the trial points.27

A simple 4-flip mutation is performed in the best point of the population28

to generate the corresponding trial point. To make the points feasible, the29

new S-bAFSA uses a random heuristic drop item procedure followed by an30

add item operation aiming to increase the profit throughout the adding of31

more items in the knapsack. Furthermore, to improve the accuracy of the32

solutions obtained by the algorithm, a swap move heuristic search [14] and a33

cyclic reinitialization of the population are implemented. A benchmark set34

of 0–1 knapsack problems is used to test the performance of the S-bAFSA.35

The organization of this paper is as follows. The proposed simplified bi-36

nary version of the artificial fish swarm algorithm is described in Section 2.37

Section 3 describes the experimental results and finally we draw the conclu-38
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sions of this study in Section 4.1

2. The Proposed S-bAFSA2

In the previous binary version of AFSA [1], each trial point is created3

from the current one by using the original concept of ‘visual scope’ of a point.4

To identify the points inside the ‘visual scope’ of each individual point, the5

Hamming distance is used. For points of equal bits length, this distance is6

the number of positions at which the corresponding bits are different. The7

computational requirement of this procedure grows rapidly with problem’s8

dimension. Furthermore, in some cases the population stagnates and the9

algorithm converges to a non-optimal solution.10

To address these issues, we present a simplified binary version with the11

following properties.12

• The concept of ‘visual scope’ of an individual point is discarded.13

• The selection of each fish/point behavior does not depend on the num-14

ber of points in the neighborhood of that point but rather on two target15

probability values.16

• The swarming behavior is never performed since the central point may17

not depict the center of the distribution of solutions.18

• A random heuristic drop item procedure to make infeasible solutions19

to feasible ones, and an add item operation, are combined to further20

improve the feasible solutions.21

• A simple heuristic search based on swap moves is implemented on a22

predefined number of points randomly selected from the population,23

aiming to obtain more accurate solutions.24

• The population is randomly reinitialized to diversify the search and25

avoid convergence to a non-optimal solution.26

Details of the proposed S-bAFSA to solve the 0–1 knapsack problem (1)27

are described in the following. The first step of S-bAFSA is to design a suit-28

able representation scheme of an individual point in a population for solving29

the 0–1 QKP. Since we consider the 0–1 knapsack problem, N individual30

points, xk, k = 1, . . . , N , each represented by a binary string of 0/1 bits of31

length n, are randomly generated [1, 16]. We note that there are at most 2n32

possible different solutions of binary strings of 0/1 bits of length n. The33
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pseudocode of the herein proposed S-bAFSA for solving the 0–1 QKP (1) is1

shown in Algorithm 1.

Algorithm 1 S-bAFSA
Require: Tmax and fopt and other values of parameters
1: Set t := 1. Initialize population xk, k = 1, 2, . . . , N
2: Perform random drop item and add item, evaluate the population and identify xbest

and fbest
3: while ‘termination conditions are not met’ do
4: if MOD(t, R) = 0 then
5: Reinitialize population xk, k = 1, 2, . . . , N − 1
6: Perform random drop item and add item, evaluate population and identify xbest

and fbest
7: end if
8: for k = 1 to N do
9: if k = best then
10: Perform 4 flip-bit mutation to create trial point yk

11: else
12: if rand(0, 1) ≤ τ1 then
13: Perform random behavior to create trial point yk

14: else if rand(0, 1) ≥ τ2 then
15: Perform chasing behavior to create trial point yk

16: else
17: Perform searching behavior to create trial point yk

18: end if
19: end if
20: end for
21: Perform random drop item and add item to get yk, k = 1, 2, . . . , N and evaluate

them
22: Select the population of next iteration xk, k = 1, 2, . . . , N
23: Perform the swap move heuristic search
24: Identify xbest and fbest
25: Set t := t+ 1
26: end while

2

Generating trial points in S-bAFSA After initializing N individual3

points, crossover and mutation are performed to create trial points in succes-4

sive iterations based on the fish behavior of random, searching and chasing.5

We introduce the probabilities 0 ≤ τ1 ≤ τ2 ≤ 1 in order to perform the move-6

ments of random, searching and chasing. The fish behavior in S-bAFSA that7

create the trial points are outlined as follows.8

In random behavior, a fish with no other fish in its neighborhood to9

follow, moves randomly looking for food in another region. This behavior10
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is implemented when a uniformly distributed random number rand(0, 1)1 is1

less than or equal to τ1. In this behavior the trial point yk is created by2

randomly setting 0/1 bits of length n.3

The chasing behavior is implemented when a fish, or a group of fish in the4

swarm, discover food and the others find the food dangling quickly after it.5

This behavior is implemented when rand(0, 1) ≥ τ2 and it is related to the6

movement towards the best point found so far in the population, xbest. Here,7

the trial point yk is created using a uniform crossover between xk and xbest.8

In uniform crossover, each bit of the trial point is created by copying the9

corresponding bit from one or the other current point with equal probability.10

When fish discovers a region with more food, by vision or sense, it goes11

directly and quickly to that region. This is the searching behavior and is12

related to the movement towards a point xrand where ‘rand’ is an index13

randomly chosen from the set {1, 2, . . . , N}. This behavior is implemented14

in S-bAFSA when τ1 < rand(0, 1) < τ2. A uniform crossover between xrand
15

and xk is performed to create the trial point yk.16

In S-bAFSA, the three fish behavior previously described are implemented17

to create N − 1 trial points; the best point xbest is treated separately. A18

mutation is performed in the point xbest to create the corresponding trial19

point y. In mutation, a 4 flip-bit operation is performed, i.e., four positions20

are randomly selected and the bits of the corresponding positions are changed21

from 0 to 1 or vice versa.22

Making feasible solutions There are a number of standard ways of deal-23

ing with constraints in binary represented population-based methods. In24

S-bAFSA, we use a random heuristic procedure called drop item in order to25

make the solutions feasible. At first, a set i = {i1, i2, . . . , in} is defined with26

n randomly generated indices. Then the drop item is performed on xk using27

the set i to make the point feasible. Following the sequence of indices in the28

set i, one item is dropped (changing bit 1 to 0) each time from the knapsack,29

if with this item the point does not satisfy the constraint. This procedure is30

continued until the feasible solution is reached. The advantage of this proce-31

dure is that dropping an item starts from any index and randomly continues32

selecting an index until the feasible solution is reached, aiming to obtain a33

promising solution.34

1We note that the procedure used to generate a random number in C
(rand()/(RAND MAX + 1)) may give a zero number but will never give a one.
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After making the point feasible, a greedy-like heuristic called add item is1

implemented to each feasible individual point aiming to improve that point2

without violating the knapsack constraint. This heuristic procedure uses the3

information of the absolute-profit to weight ratio, δi, which is defined as the4

ratio of the sum of all profit associated with the item i to its weight [13],5

i.e., δi = (pi +
∑

j �=i pij)/wi. The greater the ratio, the higher the chance6

of inclusion of that item in the knapsack. In S-bAFSA, all δi are sorted in7

decreasing order and a set j = {j1, j2, . . . , jn} is defined with the indices of8

the δi in decreasing order. One item is added (changing bit 0 to 1) each time9

in the knapsack, if with this item the point does not violate the constraint10

following the sequence of indices in the set j. This procedure is continued11

until the entire sequence of indices has been used.12

The absolute-profit to weight ratios δi, i = 1, 2, . . . , n can also be used in13

order to make the points feasible. In this case, all δi are sorted in increasing14

order and one item is dropped from the knapsack, if with this item the point15

does not satisfy the constraint. This procedure is continued until the feasible16

solution is reached.17

Selection of the new population At each iteration, each trial point yk
18

competes with the current xk, in order to decide which one should become19

a member of the population in the next iteration. Hence, if f(yk) ≥ f(xk),20

then the trial point becomes a member of the population in the next iteration,21

otherwise the current point is preserved to the next iteration.22

Swap move heuristic search A heuristic search is often important to23

improve a current solution. It searches for a better solution in the neigh-24

borhood of the current solution. If such solution is found then it replaces25

the current solution. In S-bAFSA, we implement a simple heuristic search26

based on swap moves [14] after the selection procedure. In this search, the27

swap moves change the value of a 0 bit of an individual point to 1 and si-28

multaneously another 1 bit to 0, so that the total number of items in the29

knapsack does not change. Here, the swap move heuristic search method has30

two parameters: Nloc, which gives the number of points selected randomly31

from the population to perform the heuristic search and nswap, which sets the32

number of positions selected randomly in a point to perform the swap moves.33

They are defined as follows: Nloc = τ3N with τ3 ∈ (0, 1) and nswap = τ4Nbit 0,34

where τ4 ∈ (0, 1) and Nbit 0 is the number of 0 bits in a point. After per-35

forming the swap move heuristic search, the new points are made feasible by36

using the random drop item algorithm and thereon the add item. Then they37
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become members of the population if they improve the objective function1

value with respect to the corresponding current points.2

Termination conditions Let Tmax be the maximum number of iterations.3

Let fbest be the maximum objective function value attained at iteration t and4

fopt be the known optimal value available in the literature. The proposed5

S-bAFSA terminates when the known optimal solution is reached within a6

tolerance ε > 0, or Tmax is exceeded, i.e., when7

t > Tmax or |fbest − fopt| ≤ ε (2)

holds. However, if the optimal value of the given problem is not known, the8

algorithm may use another condition, for example, one based on the total9

number of function evaluations or the computational time since the start of10

the algorithm.11

Reinitialization of the population When testing bAFSA [1], it was no-12

ticed that, in some cases, the points in a population converge to a non-optimal13

point. To diversify the search, we propose to randomly reinitialize the popu-14

lation, every R iterations, keeping the best solution found so far. In practical15

terms, this technique has greatly improved the quality of the solutions.16

3. Experimental Results17

We code S-bAFSA in C and compile with Microsoft Visual Studio 10.018

compiler in a PC having 2.5 GHz Intel Core 2 Duo processor and 4 GB19

RAM. We consider 80 benchmark 0–1 QKP test instances2 with n = 10020

and 200 items, and density d = 0.25, 0.50, 0.75 and 1.00. The density means21

that the non-zeros in the profit coefficients should be 100d percentage. These22

instances are widely used for the measurement of effectiveness of an algorithm23

in the optimization community. Since they are benchmark instances, the24

optimal solution, fopt, is known and the termination condition (2) can be25

used to terminate the algorithm.26

Firstly, we analyze the performance of S-bAFSA with different values of27

τ1 and τ2. We consider 10 instances with n = 100, d = 0.25 and 10 instances28

with n = 200, d = 1.00. We set N = n, Tmax = 10n and ε = 10−4. After29

several experiments, we set the parameter R = 100 for the reinitialization30

2 (http://cedric.cnam.fr/~soutif/QKP/)
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of the population. The results are analyzed for four combinations of τ1 and1

τ2: i) τ1 = 0.0, τ2 = 0.0, ii) τ1 = 0.0, τ2 = 1.0, iii) τ1 = 0.1, τ2 = 0.9 and iv)2

τ1 = 1.0, τ2 = 1.0. Fifty independent runs were carried out for each instance3

with each combination of τ1 and τ2. If the algorithm finds the optimal solution4

(or near optimal according to an error tolerance) to an instance in a run, then5

the run is considered to be a successful one. Table 1 contains the acronyms6

of the performance criteria used in this paper.

Table 1: Acronyms of the performance criteria

AIT – average number of iterations among 50 runs and successful runs
aAIT – average of AIT over 10 instances
T – computational time (in seconds)
aT – average of T over 10 instances
AT – average computational time (in seconds) among 50 runs and successful runs
aAT – average of AT over 10 instances
BT – best computational time to reach best solution among 50 runs
aBT – average of BT over 10 instances
Nsr – number of successful runs among 50 runs
aNsr – average of Nsr over 10 instances
SR – percentage of successful runs among 50 runs
aSR – average of SR over 10 instances
favg – average objective function value among 50 runs

7

The results obtained among 50 runs and among successful (succ.) runs8

of the two sets of problems are summarized in Table 2. From the table, it is

Table 2: Results of different values for τ1 and τ2 of S-bAFSA

50 runs succ. runs

Prob. τ1 τ2 aAIT aAT aNsr aAIT aAT

100 (d = 0.25) 0.0 0.0 541 6.78 27 197 2.44
0.0 1.0 289 3.55 40 180 2.19
0.1 0.9 267 3.29 40 124 1.53
1.0 1.0 766 10.91 13 – –

200 (d = 1.00) 0.0 0.0 947 112.69 31 414 40.57
0.0 1.0 87 11.31 50 87 11.31
0.1 0.9 31 3.13 50 31 3.13
1.0 1.0 1739 224.09 9 – –

– No successful run in some test instances
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1

shown that based on all performance criteria, S-bAFSA with τ1 = 0.1, τ2 =2

0.9 gives better performance. Although S-bAFSA with τ1 = 0.0, τ2 = 1.03

gives similar performance based on ‘aNsr’, it takes more iterations and com-4

putational time (among 50 runs and among successful runs) than the version5

with τ1 = 0.1 and τ2 = 0.9. When τ1 = 1.0, τ2 = 1.0, some instances in6

the set of problems were not solved to optimality. According to the algo-7

rithm (See Algorithm 1), when τ1 = 0.0, τ2 = 0.0 S-bAFSA performs chasing8

behavior mostly (never performing searching), when τ1 = 0.0, τ2 = 1.0 S-9

bAFSA performs searching behavior mostly (never performing chasing) and10

when τ1 = 1.0, τ2 = 1.0 S-bAFSA performs random behavior only. Hereafter11

S-bAFSA will be tested with τ1 = 0.1, τ2 = 0.9.12

We now aim to analyze the effect of different types of crossover (used to13

create trial points in chasing and searching behavior) on the performance of14

S-bAFSA. They are: i) uniform crossover, ii) one point crossover, iii) two15

point crossover and iv) two point uniform crossover. The first three types16

are usually used in evolutionary algorithms. The proposed two point uniform17

crossover, with equal probability, aims to combine the bit grouping of two18

point crossover with the randomness of uniform crossover. It proceeds as fol-19

lows. Taking two points, two positions are randomly selected to make three20

groups of bits in each point. Then, each group of bits in a trial point will21

be copied from the corresponding group from one or the other point, with22

equal probability. This procedure is repeated for the other groups of bits.23

We note that in uniform and two point uniform crossover, one trial point is24

created from two points, whereas in one point and two point crossover, two25

trial points are created from two points, and the best (based on the objective26

function values) is selected. We consider the above mentioned 20 instances27

and 50 independent runs were carried out for each instance with each type28

of crossover. The parameters were maintained as previously defined. Ta-29

ble 3 shows the obtained results among 50 runs and among successful runs.30

We observe that, based on all performance criteria, S-bAFSA using uniform31

crossover gives the best performance when solving the 0–1 QKP.32

Secondly, we compare S-bAFSA with bAFSA to evaluate their perfor-33

mances. Here also we consider 10 instances with n = 100, d = 0.25 and34

10 instances with n = 200, d = 1.00. We set in both algorithms, N = n,35

Tmax = 10n, R = 100 and ε = 10−4. The parameter values in bAFSA are set36

as suggested in [1]. Fifty independent runs were carried out with each in-37

stance using each algorithm. Figure 1 shows the comparison based on ‘Nsr’,38
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Table 3: Results of different types of crossover used in S-bAFSA

50 runs succ. runs

Prob. Crossover aAIT aAT aNsr aAIT aAT

100 (d = 0.25) uniform 267 3.29 40 124 1.53
one point 452 7.59 31 214 3.48
two point 569 9.39 26 232 3.87

two point uniform 541 7.34 27 194 2.59

200 (d = 1.00) uniform 31 3.13 50 31 3.13
one point 857 126.26 33 389 54.46
two point 1109 156.58 27 589 70.52

two point uniform 918 107.99 31 407 45.94

‘AT’, and ‘BT’. Both bAFSA and S-bAFSA solved all the problems with1

n = 200 to optimality in all runs. We observe that S-bAFSA performs better2

than the bAFSA, in particular with the largest problems.
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Figure 1: Comparison of bAFSA and S-bAFSA (on the left n = 100, d = 0.25 and on the
right n = 200, d = 1.00)

3

Thirdly, we compare S-bAFSA with the greedy version of the genetic4

algorithm (GGA) [13]. We note that GGA and S-bAFSA have in common5

the use of two operators from the evolutionary algorithms (to create new6

points): crossover and mutation. It should be noted that S-bAFSA was run7
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with Tmax = 10n (value set in GGA). The comparative results are shown in1

Table 4. S-bAFSA performs rather well when solving the largest problems,2

with n = 200 and d = 1.00, and has a surprisingly bad performance on the3

smallest problems when compared with GGA.

Table 4: Comparative results of GGA and S-bAFSA

Prob. GGA S-bAFSA

n No. fopt Nsr favg AIT AT BT Nsr favg AIT AT BT

100 1 18558 50 18558.0 45 0.37 0.08 12 18535.2 814 10.63 0.53
(d = 2 56525 50 56525.0 3 0.03 0.02 50 56525.0 3 0.02 0.00
0.25) 3 3752 36 3742.2 184 3.53 0.12 34 3740.8 480 8.36 0.22

4 50382 23 50368.5 96 3.92 0.03 50 50382.0 11 0.09 0.01
5 61494 50 61494.0 1 0.01 0.01 50 61494.0 1 0.01 0.00
6 36360 50 36360.0 26 0.21 0.06 50 36360.0 159 1.63 0.14
7 14657 50 14657.0 9 0.09 0.05 50 14657.0 55 0.79 0.05
8 20452 50 20452.0 8 0.08 0.05 50 20452.0 21 0.29 0.09
9 35438 37 35419.4 235 3.10 0.04 11 35381.4 873 8.22 1.26
10 24930 50 24930.0 11 0.10 0.07 42 24917.5 249 2.84 0.16

Average 45 62 1.14 0.05 40 267 3.29 0.25

200 1 937149 50 937149.0 469 22.72 0.80 50 937149.0 27 1.27 0.45
(d = 2 303058 50 303058.0 103 6.12 1.95 50 303058.0 33 4.54 2.34
1.00) 3 29367 50 29367.0 19 1.37 0.90 50 29367.0 12 2.50 0.48

4 100838 50 100838.0 20 1.47 0.92 50 100838.0 19 3.45 1.42
5 786635 50 786635.0 49 2.61 0.95 50 786635.0 14 0.92 0.50
6 41171 50 41171.0 13 1.01 0.83 50 41171.0 4 0.68 0.26
7 701094 50 701094.0 196 10.25 1.12 50 701094.0 69 5.23 1.17
8 782443 6 782398.1 1571 98.23 54.50 50 782443.0 48 3.08 1.20
9 628992 50 628992.0 66 3.65 0.98 50 628992.0 30 2.51 1.25
10 378442 50 378442.0 179 10.31 2.47 50 378442.0 57 7.09 2.23

Average 46 269 15.77 6.54 50 31 3.13 1.13

4

We also compare S-bAFSA with the algorithms B&B and Mini-Swarm5

described in [3, 26] respectively, using the entire set of 80 instances. The6

comparison with the B&B algorithm is included to show the difficulty in7

solving even moderately sized instances, in terms of computational time. On8

the other hand, the Mini-Swarm algorithm is a heuristic that also relies on9

operators from evolutionary algorithms, and it is probably one of the most10

effective for solving QKP. Table 5 summarizes the results in terms of average11

over the 10 instances of each set. Besides ‘aT’, ‘aAT’, the table also depicts12

13



‘aSR’, and ‘aBT’. We observe that S-bAFSA is outperformed in both criteria1

‘aSR’ and ‘aAT’ by Mini-Swarm, in particular when solving the set of largest2

problems. We note that, during this comparison, Tmax was set to 500 and3

an extra condition was added to the termination conditions in S-bAFSA to4

match those reported in [26]: the algorithm stops if there is no improvement5

in f throughout 100 consecutive iterations. Consequently, the percentage of6

successful runs has decreased when compared with the results of Table 4,7

although the average time has improved.

Table 5: Comparative results of B&B, Mini-Swarm and S-bAFSA

S-bAFSA

Prob. B&B Mini-Swarm 50 runs Succ. runs

n d aT aAT aSR aAT aSR aAT aBT

100 0.25 117 0.442 93.9 0.702 71.4 0.549 0.336
0.50 82 0.406 94.2 0.583 79.0 0.506 0.129
0.75 120 0.363 97.5 0.376 90.6 0.335 0.098
1.00 190 0.225 100.0 0.231 96.8 0.209 0.059

200 0.25 3602 1.430 90.3 12.323 55.8 12.986 9.478
0.50 1690 1.805 92.4 8.882 61.8 7.085 3.046
0.75 – 2.165 90.9 7.270 81.2 6.463 2.695
1.00 – 1.197 100.0 3.047 99.4 3.013 1.266

– Not solved within 30000 sec. [3]

8

Finally, we compare S-bAFSA with a novel global harmony search algo-9

rithm, NGHS [27], using a set of ten 0–1 LKP (see Table 6). NGHS used10

the penalty function method for handling the knapsack constraint. Problems11

data and results of NGHS are described in [27]. For a fair comparison with12

NGHS, we set in S-bAFSA N = 5 and Tmax = 10000. We may observe that13

S-bAFSA shows very competitive results when compared with NGHS.14

4. Conclusions15

In this paper, a new binary version of the artificial fish swarm algorithm16

for solving 0–1 quadratic knapsack problems as well as problems with linear17

objective function is presented. In the new version, denoted by S-bAFSA,18

random, searching and chasing behavior are used to move the points accord-19

ing to two target probability values. To create the trial points, crossover20

14



Table 6: Comparative results of NGHS and S-bAFSA

Prob. NGHS S-bAFSA Prob. NGHS S-bAFSA

No. n fopt AIT AT AIT AT No. n fopt AIT AT AIT AT

f1 10 295 263 0.0093 28 0.0017 f6 10 52* 235 0.0052 1 0.0001
f2 20 1024 754 0.0293 67 0.0058 f7 7 107 325 0.0087 19 0.0010
f3 4 35 11 0.0005 1 0.0000 f8 23 9767 1727 0.0617 89 0.0075
f4 4 23 13 0.0006 3 0.0002 f9 5 130 29 0.0023 1 0.0001
f5 15 481.07 579 0.0210 11 0.0008 f10 20 1025 831 0.0307 64 0.0056

* NGHS reported optimal value 50

and mutation are implemented. A random heuristic drop item algorithm1

and an add item operation are used to make the points feasible and improve2

the quality of the solutions. To enhance the search for an optimal solution,3

a swap move heuristic search and a cyclic reinitialization of the population4

are also implemented. Numerical experiments (with a set of well-known 0–15

QKP and LKP) show that our proposals to reduce computational effort in6

terms of number of iterations and execution time need further developments.7

Some work remains to be done in order to accelerate convergence and reduce8

time. Since the performance of S-bAFSA is very competitive when solving9

0–1 LKP, a linearization technique that involves the addition of new variables10

and linking constraints may be applied to the QKP and then hybridized with11

the heuristic S-bAFSA. This type of formulation has been successfully tested12

in the past, see for example [2, 23], although our goal is to address the mixed13

integer linear programming problem using S-bAFSA.14

Furthermore, work is already under way for using a strategy related to15

vanishing points throughout a few iterations and re-creating them again later16

on in a different place of the search space, so that computational require-17

ments could be reduced. Future work will consider using S-bAFSA to solve18

multidimensional knapsack problems effectively. Other NP-hard challenging19

combinatorial optimization problems, like the uncapacitated facility location20

problem and the resource-constrained project scheduling problem will be also21

addressed in the future.22

Acknowledgements23

The authors wish to thank the reviewers for their valuable comments and suggestions.24

The first author acknowledges Ciência 2007 of FCT (Foundation for Science and Tech-25

nology), Portugal for the fellowship grant: C2007-UMINHO-ALGORITMI-04. Financial26

15



support from FEDER COMPETE (Operational Programme Thematic Factors of Compet-1

itiveness) and FCT under project: FCOMP-01-0124-FEDER-022674 is also acknowledged.2

References3

[1] M.A.K. Azad, A.M.A.C. Rocha, E.M.G.P Fernandes, Solving multidi-4

mensional 0-1 knapsack problem with an artificial fish swarm algorithm,5

in: B. Murgante et al. (Eds.), Computational Science and Its Applica-6

tions, ICCSA 2012, Part III, LNCS, vol. 7335, Springer-Verlag, Heidel-7

berg, pp. 72–86.8
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