3,646 research outputs found

    Ambient occlusion and shadows for molecular graphics

    Get PDF
    Computer based visualisations of molecules have been produced as early as the 1950s to aid researchers in their understanding of biomolecular structures. An important consideration for Molecular Graphics software is the ability to visualise the 3D structure of the molecule in a clear manner. Recent advancements in computer graphics have led to improved rendering capabilities of the visualisation tools. The capabilities of current shading languages allow the inclusion of advanced graphic effects such as ambient occlusion and shadows that greatly improve the comprehension of the 3D shapes of the molecules. This thesis focuses on finding improved solutions to the real time rendering of Molecular Graphics on modern day computers. The methods of calculating ambient occlusion and both hard and soft shadows are examined and implemented to give the user a more complete experience when navigating large molecular structures

    The Computer Graphics Scene in the United States

    Get PDF
    We briefly survey the major thrusts of computer graphics activities, examining trends and topics rather than offering a comprehensive survey of all that is happening. The directions of professional activities, hardware, software, and algorithms are outlined. Within hardware we examine workstations, personal graphics systems, high performance systems, and low level VLSI chips; within software, standards and interactive system design; within algorithms, visible surface rendering and shading, three-dimensional modeling techniques, and animation. Note: This paper was presented at Eurographics\u2784 in Copenhagen, Denmark

    Whole brain emulation: a roadmap

    Get PDF

    Interactive in situ visualization of large volume data

    Get PDF
    Three-dimensional volume data is routinely produced, at increasingly high spatial resolution, in computer simulations and image acquisition tasks. In-situ visualization, the visualization of an experiment or simulation while it is running, enables new modes of interaction, including simulation steering and experiment control. These can provide the scientist a deeper understanding of the underlying phenomena, but require interactive visualization with smooth viewpoint changes and zooming to convey depth perception and spatial understanding. As the size of the volume data increases, however, it is increasingly challenging to achieve interactive visualization with smooth viewpoint changes. This thesis presents an end-to-end solution for interactive in-situ visualization based on novel extensions proposed to the Volumetric Depth Image (VDI) representation. VDIs are view-dependent, compact representations of volume data than can be rendered faster than the original data. Novel methods are proposed in this thesis for generating VDIs on large data and for rendering them faster. Together, they enable interactive in situ visualization with smooth viewpoint changes and zooming for large volume data. The generation of VDIs involves decomposing the volume rendering integral along rays into segments that store composited color and opacity, forming a representation much smaller than the volume data. This thesis introduces a technique to automatically determine the sensitivity parameter that governs the decomposition of rays, eliminating the need for manual parameter tuning in the generation of a VDI. Further, a method is proposed for sort-last parallel generation and compositing of VDIs on distributed computers, enabling their in situ generation with distributed numerical simulations. A low latency architecture is proposed for the sharing of data and hardware resources with a running simulation. The resulting VDI can be streamed for interactive visualization. A novel raycasting method is proposed for rendering VDIs. Properties of perspective projection are exploited to simplify the intersection of rays with the view-dependent segments contained within the VDI. Spatial smoothness in volume data is leveraged to minimize memory accesses. Benchmarks are performed showing that the method significantly outperforms existing methods for rendering the VDI, and achieves responsive frame rates for High Definition (HD) display resolutions near the viewpoint of generation. Further, a method is proposed to subsample the VDI for preview rendering, maintaining high frame rates even for large viewpoint deviations. The quality and performance of the approach are analyzed on multiple datasets, and the contributions are provided as extensions of established open-source tools. The thesis concludes with a discussion on the strengths, limitations, and future directions for the proposed approach

    Computer Aided Industrial Design

    Get PDF
    None provided

    Synthetic movies

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1989.Includes bibliographical references (leaves 67-70).by John A. Watlington.M.S

    Cross pollination

    Get PDF
    A descriptive narration of a project to create a 3-D computer animated film about a cross-pollination that occurs between plants on a planet and nanites (nanoparticle robots) that arrive on a space ship. Includes original thesis proposal, original storyboard, color stills, and technical notes

    I-Light Symposium 2005 Proceedings

    Get PDF
    I-Light was made possible by a special appropriation by the State of Indiana. The research described at the I-Light Symposium has been supported by numerous grants from several sources. Any opinions, findings and conclusions, or recommendations expressed in the 2005 I-Light Symposium Proceedings are those of the researchers and authors and do not necessarily reflect the views of the granting agencies.Indiana University Office of the Vice President for Research and Information Technology, Purdue University Office of the Vice President for Information Technology and CI
    • …
    corecore