
Scuola Normale Superiore

TESI DI PERFEZIONAMENTO IN CHIMICA
(Ph.D. Thesis in Chemistry)

Candidato (Candidate)

Andrea Salvadori

Relatori (Advisors)

Prof. Vincenzo Barone

Dr. Giordano Mancini

Anno accademico 2016/2017

Design and development of a
cross-platform molecular viewer for
Immersive Virtual Reality systems

"Visualization is daydreaming with a purpose"

Robert “Bo” Bennett

Contents

Introduction 9

1 Basic concepts of Scientific Visualization 13
1.1 Introduction to Visualization . 13
1.2 The Visualization pipeline . 15

1.2.1 Acquisition . 16
1.2.2 Data filtering and processing 17
1.2.3 Mapping . 17
1.2.4 Rendering . 18
1.2.5 Results investigation and user interaction 18
1.2.6 Implementing the visualization pipeline 18

1.3 Overview of the rendering process in real-time computer graphics . . 19
1.3.1 Vertex processing . 22
1.3.2 Primitive assembly and processing 23
1.3.3 Clipping and face culling . 23
1.3.4 Rasterization and fragment processing 24
1.3.5 Visibility test and blending 25
1.3.6 Texture mapping . 26

2 Molecular Graphics 27
2.1 A brief history of Molecular Graphics 27

2.1.1 Structural diagrams . 27
2.1.2 Physical models and molecular illustrations 28
2.1.3 Computer-based Molecular Graphics 33

2.2 Representation of molecular systems and state of the art rendering
algorithms . 38
2.2.1 Atomistic models . 38
2.2.2 Backbone models . 44
2.2.3 Surface models . 47
2.2.4 Visualization of volumetric molecular properties 55

5

2.2.5 Enhancing depth perception of molecular structures 62

3 Virtual Reality in Molecular Sciences 67
3.1 A brief introduction to Virtual Reality 67
3.2 Creating artificial sensory perceptions 69

3.2.1 Visual feedback . 69
3.2.2 Acoustic feedback . 71
3.2.3 Haptic feedback . 72
3.2.4 Vestibular feedback . 72

3.3 Coherency of the sensory feedback and VR sickness 73
3.4 IVR systems . 73
3.5 Augmented Reality . 76
3.6 How Scientific Visualization can benefit from IVR 77
3.7 Research on IVR in Molecular Sciences 78

4 Included Paper:
“Moka: Designing a Simple Scene Graph Library for Cluster-Based
Virtual Reality Systems” 87

5 The Caffeine molecular viewer 107
5.1 Introduction . 107
5.2 Development tools . 107
5.3 Caffeine “desktop” version . 108

5.3.1 Graphical interface overview 108
5.3.2 Loading a molecular system from file 110
5.3.3 Managing diagrams . 111
5.3.4 Filter visible fragments in a diagram 112
5.3.5 Atomistic representations . 112
5.3.6 Ribbons diagrams . 114
5.3.7 Isosurface diagrams . 119
5.3.8 Playing trajectories . 123
5.3.9 Key-frames . 125
5.3.10 Plotting scalar data . 125
5.3.11 Render to file . 129

5.4 Caffeine “CAVE” version . 131
5.4.1 CAVE configuration tool . 133

5.5 VR Helmets support in Caffeine . 138

6

6 Caffeine: Implementation details 139
6.1 GPU-based ray casting of spheres and cylinders 139
6.2 “Tubes” modelling . 142
6.3 Ribbon diagrams . 149

6.3.1 Polypeptides . 149
6.3.2 Polynucleotides . 153

6.4 Head-tracked stereoscopy . 156
6.5 Real-time rendering of semi-transparent surfaces 161
6.6 Caffeine’s Frame Graph . 165

7 Included Paper:
“Immersive virtual reality in computational chemistry: Applications to
the analysis of QM and MM data” 169

Future perspectives 187

Acknowledgments 189

Bibliography 191

7

Introduction

Scientific discoveries and technological evolution from the second half of the XX
century made available computers capable of performing complex numerical sim-
ulations and measuring instruments ever more accurate and sophisticated. These
tools brought an essential contribution to our understanding of the physical uni-
verse but at the cost of increasing the size and complexity of the data sets. While
this situation led to the development of automatic data analysis procedures, it does
not diminish the need for the insight and reasoning capabilities of the human mind.

Visualization is a discipline that tries to exploit the capabilities of the human
visual system to quickly identify structures, patterns, an anomalies in images in
order to stimulate the mental processes of insight and understanding about large
sets of data or complex phenomena. The field of Scientific Visualization focusing
on the graphical representation of molecular structures and properties is known
as Molecular Graphics. The rapid evolution of computer graphics and Virtual
Reality technologies has made feasible their employment in Scientific Visualization.
In particular, the exploitation of Immersive Virtual Reality (IVR) may “provide
substantial benefit to computational molecular sciences” [1]. The reason is that,
since most of the analyzed data have are inherently three-dimensional, stereoscopic
displays can definitely have a positive impact on their understanding, as well as on
the visual identification of relations, patterns and anomalies in them. Important is
also the ability to physically explore the world with the movements of our our body,
in order to both observe the objects from different perspectives and to encourage
spatial judgments (of sizes, distances and angles) based on proprioception.

Although scientists are trying to exploit of IVR technologies in molecular sciences
since the late 60’s (e. g., “Project GROPE” started in 1967 [2]), their use within
scientific fields is still limited, partly due to limits and costs of the specialized
hardware and partly to the infancy of software using such technologies [3]. However,
the recent introduction of a new generation of consumer-grade immersive helmets
(such as the Oculus Rift and the Vive from HTC and Valve) may change this
scenario, hopefully leading to a wide adoption of IVR technologies both for research

9

and dissemination purposes. The only obstacle, at this point, is the availability of
proper software capable to fully exploit the potential of these technologies.

In this thesis, I will discuss the features, the design choices and the algorithmic
details of Caffeine, a new molecular viewer developed at the SMART Laboratory
of Scuola Normale Superiore. The project has two main objectives:

1. To exploit modern Immersive Virtual Reality (IVR) technologies.

2. To reduce the gap between the state-of-the-art research in molecular graphics
and the actual molecular graphics systems used day-by-day by researchers
and students.

This latest point is often underestimated: the use of advanced rendering algorithms
is not aimed only at producing pleasant images, but mainly to obtain superior
performance. In a VR environment, high frame-rates are essential to provide a
fluid and immersive experience, and to avoid common symptoms like dizziness,
headache and nausea. Furthermore, if carefully chosen, pleasant graphical effects
can contribute to produce clearer and more informative images.

Caffeine supports both standard desktop computers as well as IVR systems such as
the CAVE theater installed at SNS. It allows to visualize both static and dynamic
structures using the most widespread representations (all-atoms and ribbons), iso-
surfaces extracted interactively by volume data sets, and line charts displaying
additional scalar data resulting from further data analysis. In an IVR context,
these charts are visualized as part of the 3D scene and kept always in front of
the user in an “augmented reality fashion”. This vis-a-vis comparison between
represented structures and charted data helps in perceiving interesting features
and encourages the user to exploit his “chemical intuition”. Finally, Caffeine has
been successfully used in the VIS (Virtual Immersions in Science, http://vis.sns.it),
project which was awarded a prize for science outreach [4].

This thesis is based on the following works:

• [5] “Graphical Interfaces and Virtual Reality for Molecular Sciences”, A. Sal-
vadori, D. Licari, G. Mancini, A. Brogni, N. De Mitri, and V. Barone, in
Reference Module in Chemistry, Molecular Sciences and Chemical Engineer-
ing, Elsevier, 2014. DOI: 10.1016/B978-0-12-409547-2.11045-5

• [6] “Moka: Designing a Simple Scene Graph Library for Cluster-Based Virtual
Reality Systems”, A. Salvadori, A. Brogni, G. Mancini, and V. Barone, in
Augmented and Virtual Reality: First International Conference, AVR 2014,

10

Lecce, Italy, September 17-20, 2014, Revised Selected Papers (L. T. De Paolis
and A. Mongelli, eds.), vol. 8853 of Lecture Notes in Computer Science, pp.
333–350, Springer International Publishing, 2014. DOI: 10.1007/978-3-319-
13969-2_25

• [7] “Immersive virtual reality in computational chemistry: Applications to
the analysis of QM and MM data”, A. Salvadori, G. Del Frate, M. Pagliai,
G. Mancini, and V. Barone, International Journal of Quantum Chemistry,
vol. 116, pp. 1731–1746, nov 2016. DOI: 10.1002/qua.25207

A good part of the contents of [5] have been heavily re-elaborated, extended and
updated to form the firsts three chapters of this thesis. The works [6] and [7],
instead, have been included respectively as Chapter 4 and 7.

In particular, this thesis is organized as follows. Chapter 1 discusses the basic
concepts of Scientific Visualization. Chapter 2 present a brief history of Molecular
Graphics, followed by a survey on the graphical representations of molecular struc-
tures and properties and the related state of the art rendering algorithms. Chapter
3 provides a brief overview about Virtual Reality and discuss its employment in
molecular sciences. Chapter 4 is constituted by the paper [6], which describes the
motivations for the development of a Distributed Scene Graph as base of Caffeine,
its design and implementation. The reasons of its recent removal from Caffeine
are also discussed. Chapter 5 present Caffeine from the user’s point of view, illus-
trating its features and its use. Chapter 6 describes in detail some relevant aspects
about the implementation of Caffeine and the related algorithms. Chapter 7 is con-
stituted by the paper [7], which discuss some case studies specifically conducted
to illustrate the usefulness and advantages that can be gained by analyzing the
resulting data in a VR environment with Caffeine, and present some benchmarks
conducted to test the performance of the program. This thesis concludes discussing
the future perspectives of Caffeine.

11

1 Basic concepts of Scientific
Visualization

1.1 Introduction to Visualization

Vision has an important role in human beings for the acquisition of knowledge :
about one-third of the neurons of our brain cortex is devoted to this task [8]. From
what said it follows that humans have a natural predisposition to to use pictures
to communicate information: the earliest form of artworks we know of so far are
cave paintings from about 40 thousand years ago [9], long before the appearance
of the first known forms of writing, which are dated back to the second half of the
fourth millennium B.C. [10].

Scientific discoveries and technological evolution of the XX century made available
measuring instruments ever more accurate and sophisticated and computers capa-
ble of performing complex numerical simulations. These tools brought an essential
contribution to our understanding of the physical universe but at the cost of the
increasing size and complexity of the resulting data. While this situation led to
the development of automatic data analysis procedures, it does not diminish the
need for the insight and reasoning capabilities of the human mind. Citing Richard
Hamming [11]: “The purpose of computing is insight, not numbers”.

Visualization tries to exploit the capabilities of the human visual system to quickly
identify structures, patterns, and anomalies in an image, so to stimulate the men-
tal processes of insight and understanding about large sets of data or complex
phenomena. To this end, Visualization studies the principles and techniques to
meaningfully represent complex data sets by means of interactive computer graph-
ics technologies. Visualization is widely used by scientists, engineers and man-
agers both to extract knowledge (e.g. identify structures, trends, relationships and
anomalies) about a phenomenon under study and for communication purposes (in
order to effectively present and explain such results to an audience).

13

Chapter 1 Basic concepts of Scientific Visualization

The discipline of Visualization can be classified in various sub-fields, according to
the nature of the data they focus on, which often require dedicated strategies and
algorithms for their management, analysis and graphical representation. Tradition-
ally, the two major sub-fields are Scientific Visualization (SciVis) and Information
Visualization (InfoVis): Scientific Visualization deals with quantities having an
intrinsic spatial and/or temporal nature and resulting from measurements or nu-
merical simulations; Information Visualization, on the other hand, focuses on ab-
stract data and relations which are non-inherently spatial. Of course, being part
of the same discipline, SciVis, InfoVis and other sub-fields share many goals and
basic principles, and the techniques developed in one specific context could be suc-
cessfully applied to other sub-fields. After all, as pointed out by Prof. Tamara
Munzner1 [12]: “scientific visualization isn’t uninformative, and information visu-
alization isn’t unscientific”. In the following, the discussion will focus on Scientific
Visualization, being of primary interest for this thesis.

Until few decades ago, representation of scientific data usually consisted in illus-
trations on paper or models made of wood, metal or plastic (several examples are
reported in [13]). Today, thanks to the advances in the field of real-time computer
graphics, researchers can analyze the results of their simulations and experiments
by means of interactive software. Interactivity plays a fundamental role in Visual-
ization: allowing the user to change the representation of the data, filter the less
relevant aspects, inspect different quantities related to a same phenomenon at the
same time etc., all performed in real-time, provides a crucial help in understanding
the behavior and the peculiarities of the phenomena under study. In this regard, a
popular guideline for designing user interfaces for visualization systems is the so-
called “visual information seeking mantra” coined by Shneiderman [14]: “Overview
first, zoom and filter, details on demand”. In fact, many data sets are so large that
even if would be possible (from a technological point of view) to represent them in
their entirety and in every detail, the obtained images will convey so many infor-
mation that will result (almost) incomprehensible. For this reason it is convenient,
in the first place, to provide to the user a “first look” of the entire data set (e.g. by
hiding of most details or by aggregating the information related many data items
and present the summarized info a single visual element), so that he can notice pat-
terns and regions containing information of interest in the data. Then the user can
focus on those regions through navigation (zooming) and discard unneeded data
by filtering. Finally, the user can select a particular group of items to visualize

1Department of Computer Science, University of British Columbia, Canada

14

1.2 The Visualization pipeline

in detail the value of their attributes. Of course, this can’t be a one-way process,
since the user will probably need to switch back and forth between different levels
of detail during his investigation [15].

1.2 The Visualization pipeline

Visualization can be thought as a process that takes raw data as input and produce
an image on screen as output. Conceptually, this process can be described as a
sequence of transformation steps, each one taking a set of data as input, and
producing a different set of data as output (see Figure 1.1). This “visualization
pipeline”, first introduced by Upson et al. [16] and further refined by Haber and
McNabb [17], is usually described in literature in terms of the following macro-
steps (briefly discussed in the following sub-sections) : acquisition, data filtering
and processing, mapping and rendering.

Figure 1.1: The visualization pipeline.

15

Chapter 1 Basic concepts of Scientific Visualization

1.2.1 Acquisition

In the case of Scientific Visualizations the data to be visualized are obtained from
real-world measurements or computer simulations. Once produced, they can be
stored on file or a database (so to allow their analysis at a later time) or can
fed into the visualization application as a live stream. In either case, the first
step of the visualization process consists in acquiring these data and store them
in data structures defined by the program. Usually this involves a conversion
between the format in which these information are provided and the one adopted
by the application (and possibly chosen by the user). In both choosing which
data structures to employ and in implementing the conversion procedure, care
should be taken in order to minimize the loss of information, which could led from
inaccurate up to erroneous final results which can not be rectified in later stages.
Furthermore, often the user is given the opportunity to import only a subset of the
original data set. While this is sometimes necessary in the case of massive data
sets (if the program does not implements “out-of-core” strategies), this pre-filtering
may compromise the possibility to extract some derived information. In conclusion,
as pointed out by Prof. Alexandru C. Telea2 in his book about data visualization
[18]: “data importing step should try to preserve as much of the available input
information as possible, and make as few assumptions as possible about what is
important and what is not”.

As an example, consider the Protein Data Bank (PDB) file format [19], a widely
employed file format for storing the structure of macromolecules. PDB files are con-
stituted by a list of records having a fixed length of 80 characters. The ATOM and
HETATM records provides information about an atom of the considered molecu-
lar system. When di erent alternate locations are reported for an atom, the file
contains multiple records for the same atom, having the same atom name (that ac-
cording to the file format specification should be unique only within a residue) but
di erent serial numbers. In order to correctly identifying the alternate locations of
an atom, a special field is allocated in each ATOM/HETATM record, denoting the
location “name” with a character. Unfortunately, many cheminformatics libraries
(including OpenBabel [20]) and molecular viewers just ignore this field. This de-
ficiency, together with the not always strict observance of the rule of uniqueness
of the atom name within a residue, makes impossible to recover information about
alternate locations subsequently. An usual consequence of this misinterpretation of

2Department of Computer Science, Institute Johann Bernoulli, University of Groningen, Nether-
lands.

16

1.2 The Visualization pipeline

the acquired data is the construction of erroneous structures, presenting additional
inexistent atoms and bonds.

1.2.2 Data filtering and processing

Since the imported information usually consist in an huge amount of data, their
entire processing would preclude the responsiveness (and hence the interactivity) of
the application. Furthermore, by also having a computer capable to process large
data sets in real-time, the quantity of information displayed to the user would be
overwhelming, thus preventing their understanding. To solve both problems, data
are subject to filtering, so to select the portion of the entire data set to be further
processed and finally displayed. Many filtering strategies exists. As examples, data
can be filtered by spatial location (so to obtain detailed information about a set
of elements lying within a specific region of space), by selecting only a subset of
the attributes/quantities associated to each element or, in the case of time-varying
data, according to a given time interval.

Apart from filtering and according to the aims of the user’s analysis, imported data
can be processed in a number of ways before being visualized. An example is the
aggregation, a data reduction method in which the original data set is partitioned
and each partition is replaced by an aggregate value (computed as a function of
the elements of the partition). In other cases, instead, there might be the need
to interpolate the data, so to obtain a finer-grained data set. Finally, derived
quantities can be computed.

Multiple filtering and processing transformations, combined in various ways, can be
employed as part of a single visualization, depending on the information of interest
for the specific analysis performed by the user and on the characteristics of the
related data.

1.2.3 Mapping

The purpose of this step is to map data resulting from filtering/processing pro-
cedures in sets of graphics primitives (e.g. points, lines, triangles) and related
attributes (e.g. color, transparency, reflectance, surface textures) to be fed into
the rendering engine to generate an image on screen. The mapping functions (also
known as “transfer functions”) implemented by this stage of the pipeline are the

17

Chapter 1 Basic concepts of Scientific Visualization

core of the visualization process, since they define how numerical data will be
represented in the resulting image.

1.2.4 Rendering

The rendering process generates 2D images starting from the graphics primitives
and related attributes produced by the mapping stage. It will be discussed in
section 1.3.

1.2.5 Results investigation and user interaction

The images generated by the visualization process are analyzed by the user with
the aim to gain further knowledge regarding the phenomenon under investigation.
It is important to note that, in most cases, a single attempt will not be sufficient
to obtain a full comprehension of the data: the user will probably iterate over the
visualization process multiple times, e.g. by changing the filtering parameters so
to visualize different portions of the data set or acting on the mapping functions in
order to produce different representations. The ability of the user to interact with
the visualization systems transform visualization from a linear to a cyclic process
[16].

In theory, and as shown in Figure 1.1, the user could affect every stage of the
visualization process. In practice, however, how and how much the user can affect
the process depends on the specific visualization system. Particularly interesting
are those systems in which the user not only can monitor in real-time the results
produced by a running simulation, but can also interactively “steer” the course of
the simulation by adjusting some of its parameters. Systems providing such feature
are known as “interactive steering systems”.

1.2.6 Implementing the visualization pipeline

Visualization pipeline also provides a good abstract model for the implementation
of visualization software libraries and tools, since it maps well with the data-flow
programming paradigm. According to this paradigm, the code is structured in the
form of a Directed Acyclic Graph (DAG), in which each node is an executable entity
that wait for incoming data in its “input ports”, transforms them and forwards the
results to the nodes “connected” to its “output ports”. The arcs of the graphs,

18

1.3 Overview of the rendering process in real-time computer graphics

instead, are unidirectional “channels” connecting the output ports of a node to the
input ports of a following node. In other words, in this model the data “flow” from
one or more “source nodes” to one or more “sink nodes”, passing through a sequence
of “processing nodes” that performs a transformation on them and forwards the
results to the subsequent stages. An advantage of the dataflow paradigm is its
inherent support to concurrency: in fact, since each node is an processing module
that (once received the proper input) can perform its task independently by the
other nodes, the execution of each node can be delegated to a separate thread
or process. Furthermore, programs following this paradigm are well suited to be
implemented graphically, by means of so called “visual programming languages”.
Further details on the data-flow programming paradigm can be found in [21].

In the context of visualization, each nodes of the data-flow will implement an ac-
quisition, data filtering and processing, mapping or rendering procedure. Several
popular scientific visualization libraries and tools employ this paradigms, for ex-
ample the Application Visualization System (AVS) [16], its successor AVS/Express
[22], IRIS Explorer [23] and the Visualization Toolkit (VTK) [24].

1.3 Overview of the rendering process in real-time
computer graphics

The process of generating 2D images starting from the description of a 3D scene is
called “rendering”. The input of this process is usually constituted by:

• The description of one or more virtual cameras. In fact, the rendering process
tries to simulate the result that would be obtained by using cameras to film
a virtual world. Although in the simplest case only one camera is used, more
advanced scenarios where multiple cameras are employed are possible. In such
cases, multiple rendering “passes” are performed for each frame, one pass for
each active camera. The final image will then be obtained by compositing the
images related to each camera (e.g. by dividing the final image in multiple
regions). It follows that the properties of the virtual cameras, such as their
position, orientation, field of view etc., are part of the input of the rendering
process.

• One or more sets of geometric primitives (e.g. points, lines and triangles)
representing the objects of the virtual world. For each geometric primitive
a set of attributes associated to each of its vertices is provided. The type of

19

Chapter 1 Basic concepts of Scientific Visualization

these attributes is application dependent, but common choices are the posi-
tion of the vertex, its color and an associated normal vector. In the case of 3D
objects, it is common to describe only their external surface, approximated
by a set of polygons. Since graphics hardware is heavily optimized to process
triangles, the use of this kind of polygons is the de-facto standard in real-time
computer graphics. One relevant exception is constituted by direct volume
rendering representation, in which a volume of scalar data is drawn by em-
ploying an optical model which defines how the light is reflected, scattered,
absorbed, occluded or emitted by the volume, as a function of the scalar value
associated to each voxel [25].

• A set of transformation matrices defining the position, the orientation and
the size of the objects within the 3D world.

• A set of light sources with their properties (type, position, color, ...).

• Etc.

In the following the functioning of the rendering process is briefly described, with
particular reference to real-time computer graphics, which is of primary interest
for this thesis. In this field, the rendering process is often described in terms of
a pipeline, in which each stage takes as input a sequence of elements, performs
a specific elaboration on each element, and produces as output another sequence
of elements. Since each stage operates on different elements and each element is
considered in isolation, stages can operate in parallel and (in most cases) they can
be internally parallelized by replicating their functionality on multiple processing
units, so that each stage can process multiple elements at the same time. In order
to boost the performance, Graphics Processing Units (GPU s) which implements
in hardware the rendering pipeline are usually exploited. While earlier generation
of GPU s was specialized processor with a hard-wired behavior (although config-
urable by means of a graphics API such as OpenGL or DirectX), their evolution
led to an increasing programmability of their functioning, by means of dedicated
programs known as shaders. Ever more stages of rendering pipeline have become
programmable, giving the opportunity to replace their standard behavior with a
custom one defined in a dedicated shader. It is important to note that one in-
stance of shader is executed for each element to be processed by the related stage
of the pipeline and that these instances are executed in parallel on different cores
(processing units) of the GPU.

A simplified rendering pipeline is summarized in Figure 1.2 and its stages will be

20

1.3 Overview of the rendering process in real-time computer graphics

described in the following sub-sections. Although the discussion will primarily
refers to OpenGL 3.3, the exposed concepts are mostly generals. Interested readers
can refer to [26] for an in depth discussion about the rendering pipeline of the latest
version of OpenGL.

Figure 1.2: A simplified rendering pipeline.

21

Chapter 1 Basic concepts of Scientific Visualization

1.3.1 Vertex processing

The primary purpose of this stage is to compute the coordinates of each vertex of
each geometric primitive in a normalized reference frame. Since modern graphics
hardware allows to program the operation performed by this stage by means of a
so called “vertex shader”, there are no restriction on how the vertex coordinates
are computed. However, a common procedure to compute such coordinates is the
following:

• Vertex coordinates are provided as input to the pipeline expressed in their
own reference frame.

• Further three matrices are passed as input to this stage of the pipeline, com-
monly known as “model matrix”, “view matrix” and “projection matrix”.

• The model matrix transforms the vertex coordinates in the “global” reference
frame of the virtual world.

• Then the view matrix is applied to transform these coordinates in the cam-
era’s reference frame. In fact, the view matrix is computed as a function of
the position and on the orientation of the camera with respect to the “global”
reference frame.

• Finally, the vertex coordinates are once again transformed by means of the
projection matrix. Despite its name, the projection matrix does not projects
the three-dimensional vertices on a planar surface. Instead, its purpose is
to pass from a three-dimensional coordinate system (the camera’s reference
frame) to another three-dimensional coordinate system in which the “view
volume” (i.e. the closed region of space delimited by six planes which de-
fines the field of view of the camera) is distorted in a normalized cube (or
rectangular parallelepiped). This last transformation has two main purposes
[27]:

– It simplifies the definition of the following stages of the pipeline, since
both the perspective and orthographic view volumes are reduced to a
canonical orthogonal one.

– It simplifies the “clipping” process (taking place later in the pipeline),
since the six clipping planes (bounding the normalized view volume) are
aligned with the coordinate axes.

Apart from position, others per-vertex attributes (such as the associated color
and normal vector) can be fetched and/or computed in this stage and propagate

22

1.3 Overview of the rendering process in real-time computer graphics

through the pipeline. Finally, it is important to note that the vertex shader is
executed once for each each vertex and it can access only the data related to that
vertex, without any knowledge about the other vertices nor about the geometric
primitive the processed vertex belongs to.

1.3.2 Primitive assembly and processing

The output of the first stage of the pipeline is fed into the “primitive assembly”
stage, where the vertices are collected and converted in a sequence of primitives
(points, lines or triangles). Then an optional “primitive processing” stage may take
place. The operations performed by this stage must be defined by the developer by
means of an appropriate “geometry shader”. The geometry shader is executed once
for each primitive, have access to all the data related to the vertices forming that
primitive and can output zero or more primitives, possibly of a different type. That
implies that a geometry shader not only can transform the data of the vertices of
the primitive, but may also discard (i.e. remove from the pipeline) the primitive,
generate multiple instances of the same primitive type, or output one or more
primitives of a different type. As an example, a geometry shader may take a
line as input and output zero, one or more triangles. The type of the input /
output primitives accepted / generated by a geometry shader is fixed as part of its
definition. However the number of the outputted primitives is not fixed (although
upper-bounded), since it depends on the logic implemented by the shader and on
its input.

1.3.3 Clipping and face culling

The “clipping” and “face culling” processes are performed by a non-programmable
(yet configurable) stage of the pipeline. Their purpose is to detect and discard
primitives that will not be visible in the final image, so to not waste further pro-
cessing on them.

The clipping process tests if the primitive lies completely inside, partially inside
or completely outside the normalized view volume. In the first case the primitive
is passed to the next stage of the pipeline without modifications. If instead the
primitive lies completely outside the view volume it is discarded. Finally, if the
primitive lies across the boundaries of the view volume, then the part lying outside
is clipped away. In the simpler cases this operation only requires the alteration of

23

Chapter 1 Basic concepts of Scientific Visualization

some vertices. However, in the case of triangles, it may result in the generation of
multiple triangles replacing the original primitive.

As previously mentioned, in real time computer graphics the objects of the virtual
world are commonly described by approximating their external surface with a set of
triangles, called “triangle mesh”. Since these meshes are usually closed and opaque,
and since triangles in 3D space have two sides, each triangle of the mesh will have
one side oriented towards the interior of the object (known as “back” side) and the
other side pointing outwards (known as “front” side). It follows that a triangle
belonging to a closed opaque mesh can be visible only if it’s “front” side is oriented
toward the virtual camera: in fact the triangles whose “back” side point toward the
camera depict the internal side of a closed surface, so they will not appear in the
final image. This fact is exploited by the “face culling” process, who discards from
the pipeline the triangles whose “back” side points toward the camera, so to avoid
useless further processing. In the case of OpenGL, the developer is responsible for
defining which is the “front” and the “back” side of each triangle. This is done by
providing the vertices of triangles in a conventional order. Finally note that, since
there are cases in which open or semi-transparent surfaces have to be drawn, “face
culling” can be enabled or disabled on a “per-object” basis.

1.3.4 Rasterization and fragment processing

“Rasterization” is the process of determining which pixels of the final image might
be covered by the primitive being processed. The result of such process is a set of
“fragments” corresponding to the input primitive. Fragments are a sort of “proto-
pixels” whose processing will result in the generation of real pixels on final image.
In particular, fragments not only have a 2D coordinate identifying the position
on final image they are trying to occupy, but they also maintains a depth value.
Together, these 3D coordinates are known as “window coordinates”. Furthermore,
each fragment carries with it a set of attributes obtained by interpolating vertex
attributes across the primitive.

The set of fragments resulting from rasterization are fed into the subsequent stage of
the pipeline, in charge of their processing. The operation performed by this stage
can be programmed by means of a “fragment shader”. Similar to other shaders
an instance of fragment shader is executed for each fragment (usually multiple
instances run in parallel on dedicated cores of the GPU), and each instance is
responsible for outputting a color and a depth value for the processed fragment,

24

1.3 Overview of the rendering process in real-time computer graphics

without any knowledge about the other fragments. Although the main purpose of
fragments shaders is to compute a color for the processed fragment as a function of
its attributes, they can also discard the fragment or adjust its depth. However they
can’t modify the fragment’s position within the final image (i.e. they can modify
only on the z component of the window coordinates associated to the fragment).

1.3.5 Visibility test and blending

The last step of the rendering process consists in adding the processed fragments
to the “color buffer”, a block of memory (usually allocated on the GPU ’s memory)
storing the color for each pixel of the final image. Before storing the color of an
incoming fragment into the color buffer, however, a visibility test is performed.
This is necessary because the incoming fragment could be occluded by another
fragment (processed earlier) belonging to a primitive closer to the virtual camera
in the 3D scene. The standard algorithm employed in interactive computer graphics
for visibility testing is known as “Z-Buffering”. This algorithm requires the use of
another buffer, the “Z-Buffer”, having the same resolution of the color buffer. Each
element of the Z-Buffer stores the minimum depth value among all the fragments
already processed for the corresponding pixel. When a new fragment is fed into
this stage, its depth value is compared with the one stored in the corresponding
element of the Z-Buffer: if the fragment’s depth is smaller than the one contained
in the Z-buffer (i.e. the fragment is closer to the camera than the previous ones),
then the new color and depth are written respectively into the color buffer and Z-
buffer. Otherwise the fragment is discarded. It is important to note that, although
this algorithm works perfectly when drawing opaque objects occluding each others
(the common scenario), there are cases where this behavior is not appropriate (e.g.
rendering of semi-transparent objects or other advanced graphical effects). For that
reason, as in the case of every “fixed-function” stage of the pipeline, the functioning
of this stage is configurable: for example it is possible to disable the depth test for
a subset of the 3D objects, or to keep the test active while disabling the writing on
the Z-Buffer for some objects, or even change the testing condition. Furthermore,
while the default behavior in the case of a fragment passing the depth test is to
store its color in the corresponding element of the color buffer (thus replacing the
previous content of that element), it is also possible to configure this stage such
that the old and the new color will be combined according to a specified “blend
equation”. This procedure is known as “blending”, and it is used to simulate semi-
transparent materials as well as other various kinds of graphical effects.

25

Chapter 1 Basic concepts of Scientific Visualization

1.3.6 Texture mapping

Texture mapping was born as an efficient method to simulate materials in three-
dimensional virtual scenes and, in its basic form, consists in “attaching” one or more
bi-dimensional images to the surface of a three-dimensional object (like a decal).
This techniques was introduced in 1974 by Ed Catmull [28] and refined by Blinn
and Newell in 1976 [29]. However, graphics hardware natively supporting texture
mapping was not available until early 1990s (the first was the Silicon Graphics
RealityEngine released in 1992 [30]). Today, texture mapping is widely supported
(i.e. accelerated in hardware) by every GPU.

In order to select a particular piece of image to be applied over a surface, a coor-
dinate system must be associated to the texture (image), known as texture space.
In this way it is possible to pick the color corresponding to a particular point of
the texture by knowing the point’s coordinates in texture space. It follows that,
when defining the geometry of a 3D object to texturize, proper texture coordinates
must be included among the attributes of each vertex. During rasterization, each
fragment resulting from processing a geometric primitive (e.g. a triangle) will be
coupled with proper texture coordinates, computed by interpolating those of the
vertices of the primitive. Then, during fragment processing, the texture is sampled
as a function of the texture coordinates of the fragment. The resulting color will
be then employed in the computation of the final color for the fragment.

Nowadays, texturing capabilities provided by modern hardware and graphics li-
braries allows to use texture mapping for purposes that go far beyond to apply a
preloaded image to surface. By allowing to define 1D, 2D, or 3D textures storing
integer or floating-point numbers representing arbitrary quantities, texture map-
ping is actually a mechanism by means of which to transfer sets of sampled values
to the GPU. Note that, starting from these discrete data sets and thanks to the
automatic interpolation performed in hardware when sampling a texture, it is very
easy and efficient to approximate the value of the considered quantity for a generic
point (within the ranges of the dataset).

Texture mapping is widely employed in scientific visualization algorithms, for ex-
ample to implement color mapping, direct volume rendering, volume slicing etc.
(see section 2.2 for examples of these visualization techniques in the context of
molecular properties).

26

2 Molecular Graphics

Molecular Graphics is a field of Scientific Visualization focusing on the graphical
representation of molecular structures and related properties. According to the
“Glossary of terms used in computational drug design (IUPAC Recommendations
1997)” [31], Molecular Graphics can be defined as:

"a technique for the visualization and manipulation of molecules on
a graphical display device"

Although the modern conception of Molecular Graphics (as well as Scientific Vi-
sualization) implies the use of computer graphics technologies, the description of
molecules in a graphical way has been a fundamental topic of chemistry since the
XIX century. In fact, graphical representations provide a concise and convenient
way to record and communicate knowledge about molecules, and in some cases
they also lead to further discoveries (some important examples are quoted in the
following).

2.1 A brief history of Molecular Graphics

This section briefly retrace the history and the evolution of the conventions and
methods proposed from the mid of the XIX century to visually represent molecular
structures: from bi-dimensional diagrams on paper (structural formulas) to the
advent of the computer graphics, passing through the construction of physical
models. The discussion is based on the timeline elaborated by James A. Perkins
in his work on the history of molecular representations [32, 33].

2.1.1 Structural diagrams

Although the origin of diagrams to depict the arrangement of atoms in compounds
is unknown, early structural diagrams can be found in a paper by Archibald Scott

27

Chapter 2 Molecular Graphics

Couper published in 1858 [34], in which atoms were indicated by their chemical
symbol and bonds was depicted as dotted lines. This notation was later refined by
Alexander Crum Brown [35, 36] and by August Kekulé [37]. However, these repre-
sentations lacked of stereochemical information because the spatial arrangement of
atoms was unknown at the time. Near the end of the nineteenth century, Hermann
Emil Fischer proposed a new bi-dimensional notation for the representation of car-
bohydrates, today known as Fischer projection, in which horizontal lines depicts
bonds pointing above the plane of the paper, while vertical lines depicts bonds
pointing below the plane of the paper [38]. Today, a common way to represent
molecules is according to the Natta projection [39] (named after Giulio Natta and
also known as “zigzag structure”) in which stereochemical information are provided
by means of wedge lines (representing bonds bonds pointing above the plane of the
paper) and dashed lines (representing bonds bonds pointing above the plane of the
paper). An example of Natta projection is shown in Figure 2.1.

Figure 2.1: Natta projection (“zigzag structure”) of doxorubicin, an anti-cancer drug.

2.1.2 Physical models and molecular illustrations

Although structural formulas are a convenient way to represent small molecules and
functional groups, they are not suited to visualize the structure of macromolecules,
such as proteins and nucleic acids. Before the availability of computer graphics,
three-dimensional physical models were build, using wood, metal, paper or plastics.
An important example of discoveries lead by physical models, was the intuition by
Linus Pauling about the alpha-helix structure. In 1948, while Pauling was in bed
recovering from a cold when...

“I took a sheet of paper and sketched the atoms with the bonds between
them and then folded the paper to bend one bond at the right angle, what

28

2.1 A brief history of Molecular Graphics

I thought it should be relative to the other, and kept doing this, making
a helix, until I could form hydrogen bonds between one turn of the helix
and the next turn of the helix, and it only took a few hours of doing
that to discover the alpha-helix.” [40]

A formal presentation of the alpha-helices was published in 1951 in a paper by
Pauling, Corey and Branson [41], rapidly followed by another paper by Pauling
and Corey introducing the beta-sheets [42]. A couple of years later, in 1953, Corey
and Pauling published a paper in which they describe a method to build accurate
physical models of amino acids, peptides and proteins [43]. In these models atoms
was represented as a spheres with radius proportional to the corresponding van
der Waals radius (“space-filling” representation). Later, Walter Koltun refined the
method for the construction of these types of physical models and called them
“Corey-Pauling-Koltun” (CPK) models [44].

In 1953, James Watson and Francis Crick published a paper on Nature describing
the double helix structure of deoxyribose nucleic acid (DNA) [45]. They also build
a six feet tall physical model in metal of part of a DNA (see Figure 2.2).

Figure 2.2: Model of part of a DNA molecule build by Watson and Crick (1953).
Courtesy of and copyright by the Cold Spring Harbor Laboratory
(http://www.dnalc.org).
Licensed under a Creative Commons Attribution - Noncommercial - No Derivative
Works 3.0 United States License
(http://creativecommons.org/licenses/by-nc-nd/3.0/us/).

At the end of the 1950s, John Kendrew and co-workers built the first models of a
macro-molecule, the Myoglobin. They subjected to X-ray diffraction a crystal of
muscle cell of sperm whale, and computed the three-dimensional inverse Fourier

29

Chapter 2 Molecular Graphics

transformation at six angstroms resolution on a EDSAC Mark I computer at Cam-
bridge [46]. Contour maps was derived from the results and traced on sixteen
lucite sheets, each one representing a bi-dimensional slice of the electron density
distribution within the cell. The electron density across the cell was approximated
by stacking the sheets on top of one another. These data was employed to build
a rough model of the protein (Figure 2.3a), showing the regions of space having
high electron density. Since these regions are mainly due to the presence of the
backbone of the polypeptide chain or of the heme group, the resulting model pro-
vided a coarse approximation of the tertiary structure of the protein. However,
the Fourier synthesis at six angstroms resolution was too coarse to observe details
of the polypeptide at the atomic level. Driven by the desire to build a detailed
three-dimensional structural model of a protein, Kendrew and co-workers repeated
their analysis at a finer resolution [47]. They pushed the new EDSAC Mark II
computer to its limits by computing a Fourier synthesis at two angstroms resolu-
tion, achieving a detailed representation of the electron density distribution traced
on fifty lucite sheets. In order to build the skeletal model, they erected a “forest”
of steel rods on which they placed colored clips to represent points of high density
(various colors was used to represent different density values). Finally they built
the skeleton model by careful observing the spatial distribution of the clips (see
Figure 2.3b).

The 1960s also saw the affirmation of “molecular illustration”, thanks to very tal-
ented artists like Irving Geis and Roger Hayward. A couple of paintings by Geis
illustrating molecular structures are shown in Figure 2.4. Probably the most fa-
mous drawings by Geis is the one depicting the skeletal structure of myoglobin
(Figure 2.4a), accompanying the Kendrew’s article of 1961 [47].

Skeleton models like the one made by Kendrew and co-workers gained some popu-
larity, although difficult to build. To simplify their construction, Frederic Richards
proposed in 1968 a device (later nicknamed “Richard’s box”) capable of providing
an optical superposition between the electron-density maps and the skeleton model
under construction [49].

In the 1970s another type of physical models of polypeptides take hold, called
“alpha-Carbon models”. In these models, the tertiary structure of polypeptide
chains was approximated by bending and/or soldering metal rods so to obtain the
trace of the alpha-carbons. In other words, in these models, each linear trait of rod
represented a segment connecting the alpha-carbons of two consecutive amino-acid
residues in the chain. While early construction methods (such as the one proposed

30

2.1 A brief history of Molecular Graphics

(a) “Sausage” model of
myoglobin [46]. The
white tubes are a coarse
approximation of the
tertiary structure of the
protein, while the red
disk represents the heme
group.
Courtesy of and copy-
right by the Medical
Research Council Lab-
oratory of Molecular
Biology in Cambridge,
United Kingdom.

(b) Kendrew with his “forest of rods” model of myo-
globin [47].
Courtesy of and copyright by the Medical Re-
search Council Laboratory of Molecular Biology
in Cambridge, United Kingdom.

Figure 2.3: Kendrew’s models of myoglobin.

by Haas [50]) required to weld together linear traits of rod, in 1972 Byron Rubin
and Jane Richardson invented a machine able to produce an alpha-Carbon model of
a polypeptide by bending a single metal wire [51]. Alpha-Carbon models becomes
popular thanks to their small size and weight (hence portability), and their analysis
and comparison led to significant scientific discoveries, as Eric Martz1 recount on
his website on the history of visualization of biological macro-molecules [52]:

“An example illustrating the importance of models from Byron’s Ben-
der occurred at a scientific meeting in the mid 1970’s. At this time,
less than two dozen protein structures had been solved. David Davies
brought a Bender model of an immunoglobulin Fab fragment, and Jane
and David Richardson brought a Bender model of superoxide dismutase.
While comparing these physical models at the meeting, they realized that
both proteins use a similar fold, despite having only about 9% sequence
identity. This incident was the first recognition of the occurrence of
what is now recognized as the immunoglobulin super-family domain in

1Professor Emeritus, Department of Microbiology, University of Massachusetts, Amherst.

31

Chapter 2 Molecular Graphics

(a) "Myoglobin" by Irving Geis. This painting
was published in [47]
Illustration, Irving Geis. Used with per-
mission from the Howard Hughes Medical
Institute (www.hhmi.org). All rights re-
served.

(b) "Cytochrome C" by Irving Geis.
This painting was published in [48]
Illustration, Irving Geis. Used with
permission from the Howard Hughes
Medical Institute (www.hhmi.org).
All rights reserved.

Figure 2.4: Paintings depicting molecular structures by Irving Geis.

proteins that are apparently unrelated by sequence. The insight was
published in a paper entitled ’Similarity of three-dimensional structure
between the immunoglobulin domain and the copper, zinc superoxide
dismutase subunit’ [53]”.

The evolution of the alpha-Carbon models are the nowadays called “ribbon dia-
grams”, in which the backbone of a polypeptide is represented by a smooth ribbon
whose spatial arrangement approximate the trace of the alpha-carbons, while dif-
ferent colors and/or shapes are used to visualize secondary structures. Early ribbon
representations was employed since the end of the 1960s (e.g. they appears in [54–
56] etc.), but they becomes popular in the 1980s thanks to a survey on protein
structures by Jane Richardson, in which the author illustrated the full range of
known protein structures (75 at the time) with a consistent representation (the
ribbon representation still in use today), so to allow their visual comparison and
classification [57].

32

2.1 A brief history of Molecular Graphics

2.1.3 Computer-based Molecular Graphics

The first computer system capable of providing a graphical and interactive repre-
sentation of a molecular structure was developed at the Massachusetts Institute of
Technology in the early 1960s [58]. The structure was displayed in a “wireframe”
representation by a computer-controlled monochrome oscilloscopes. The program
was actually a molecular modeler for proteins, since polypeptide chains could be
built by sequentially specifying the type of the amino-acid residues, the angles
formed by subsequent peptide planes and the rotation angles of the side chains.
This choice derives from the need to avoid to specify the three-dimensional coordi-
nates for each atom: these coordinates were then automatically calculated by the
program by employing a fixed predefined structure for the standard amino-acid
residues. The program was also able to compute an approximate folding for the
protein, by minimizing the total free energy of the system. Since the automatic
procedure usually resulted in a configuration with a local minimum energy, the
experience and the insight of the user was exploited to understand the reason for
the local minimum. The user could then chose among a set of predefined proce-
dures to introduce pseudo-energy terms in the system, so to pull or push parts
of the structure. Users could interact with the system by typing commands on a
keyboard, by acting on a “globe” to adjust the direction and speed of rotation and
by pointing with a light pen.

In the same period, Carroll Johnson developed the Oak Ridge Thermal Ellipsoid
Plot Program (ORTEP) [59]. This program allowed to draw molecular structures
by means of a pen plotter. The structures was depicted in a “ball-and-stick” rep-
resentation, but with the ability to replace spheres with ellipsoids to show the
thermal-motion probability on the atomic sites. Furthermore, stereoscopic pairs of
a same model could be drawn. Being able to automatically produce drawings of
molecular structures, ORTEP was widely employed by crystallographers to produce
illustrations for presentations and publications.

In 1971 Lee and Richards introduced the concept of “Solvent-Accessible Surface”
(SAS) and implemented a program capable of computing the accessible surface area
of atoms, or groups of atoms, with respect to solvent molecules [60]. The program
was also able to plot slices of the van der Waal’s and/or of the Solvent-Accessible
surfaces of a molecular system. By reproducing these slices on a stack of clear
plastic sheets, the authors was able to built physical models representing these two
types of surfaces.

33

Chapter 2 Molecular Graphics

Until the early 1970s, computers were employed to compute electron density maps
from X-ray diffraction patterns and began to be used to draw molecular structures
thanks to the early molecular graphics systems. However, the determination of the
atomic structure from electron density maps was still a manual process, involving
the construction of a Kendrew’s-like physical model from which the coordinates of
the atoms had to be measured and then passed as input to the molecular graph-
ics system. In the following years several computer system was designed with the
aim of analyze electron density maps and helping the users to construct three-
dimensional molecular structures from them. Because of their purpose, these sys-
tems was initially called “electronic Richard’s boxes”. Some of the most popular
were GRIP-75 [61] (said to be the computer graphics system thanks to which the
complete three-dimensional structure of a large molecule was determined for the
first time [62]), Molecular Modeling System-X (MMS-X) [63] and FRODO [64].

The advent of raster displays pushed the development of algorithms to create CPK
representations of molecules. Among the several proposed techniques, Porter pre-
sented in 1978 a fast algorithm to generate images of shaded intersecting spheres
without creating polygonal models [65]. The importance of Porter’s work is also
due to the fact that it represent the starting point on top of which Roger Sayle
developed the rendering algorithm of RasMol (see below).

In the same year, Greer and Bush produced the first computer generated images
of “Solvent-Excluded Surface” (SES) [66], a concept introduced just a year earlier
by Richards [67]. In particular, Greer and Bush proposed a numerical method
for computing the SES of a molecule according to a chosen view direction, and to
plot the resulting surface topography. These plots could also be enriched by others
atomic or molecular attributes (such as polarity, charge distribution etc.). In 1983
Connolly presented the first analytical description of the SES and a method for its
computation [68]. He also described two applications of this formulation: the com-
putation of the area of the SES and its visualization by means of vector computer
graphics. A couple of years later, Connolly proposed the first algorithm to triangu-
late the SES starting from its analytical piecewise description [69]. Thanks to these
and others contributions on the subject, the SES is also known as “Connolly sur-
face”. After the Connolly’s original algorithm, several others have been developed
to compute the SES analytically in a more fast and/or reliable way. Particularly
relevant is the one proposed by Sanner in 1996 [70]. By exploiting the concept of
“Reduced Surface” (RS, a compact way to describe the geometrical characteristics
of molecular surfaces, developed by Sanner for his PhD thesis) he was able to im-

34

2.1 A brief history of Molecular Graphics

plement a fast and reliable program to compute the analytical description of both
SES and SAS. The program was named MSMS, and it was capable of computing
and exporting the RS, the analytical description of the SAS/SES and a possible
triangulation. The MSMS software package is currently used by many popular
molecular graphics systems (such as VMD [71] and UCSF Chimera [72]) to build
molecular surfaces. In the same year, another notable algorithm for deriving the
analytical description of the SES, called “contour-buildup”, algorithm presented by
Totrov and Abagyan [73]. As discussed in section section 2.2.3, both the RS and
the “contour-buildup” algorithm are at the base of several state-of-the-at methods
for computing and visualizing the SES.

At the end of the 1980s Mike Carson presented an algorithm to efficiently draw
three-dimensional ribbon diagrams of proteins [74, 75]. Although other computer
programs have been previously implemented to generate ribbon drawings (see [76]
as an example), the one proposed by Carson can be considered a milestone in
the history of Molecular Graphics, since many of today’s molecular graphics sys-
tems (including Caffeine) use an improved version of his algorithm. In his pa-
pers, Carson describes how to smooth the alpha-Carbon trace of a polypeptide by
means of a B-spline curve and how to generate a 3D ribbon following that curve
and oriented according to the peptide planes. Later Carson refined his algorithm
and implemented it in a program named “RIBBONS 2.0” [77], capable of draw-
ing customizables shaded ribbons diagrams in real-time on a Silicon Graphics 4D
workstation.

In 1991 the first version of MolScript [78] was released. This program was focused
on the production of publication-quality illustrations of molecular structures. The
program required as input one or more coordinate files and a script file contain-
ing the parameters for generating the 3D scene (which part of the structure to
draw and in which representation, the position and orientation of the resulting 3D
object etc.) and other graphical settings. MolScript supported several represen-
tations such as wire-frame, ball-and-stick, CPK and ribbons that could be mixed
freely. Furthermore, text could be added to label the displayed elements. The re-
sulting image was outputted as a PostScript file (a file format for describing vector
graphics, supported by many printers of the time), but the program also allowed
to export the resulting 3D scene as input files for Raster3D [79] (a ray-tracing soft-
ware for molecular graphics). Although MolScript was not an interactive program,
it’s use in conjunction with Raster3D becomes one of the most popular ways to
produce molecular graphics for publications.

35

Chapter 2 Molecular Graphics

In 1992, David and Jane Richardson released a software package for the creation
and the fruition of “kinemages” (short for “kinetic images”) [80]. With this term the
authors referred to “a scientific illustration presented as an interactive computer
display” [80], i.e. a sort of an interactive three-dimensional illustration/presentation
that can be played on personal computers. The software package consisted in
two programs: “PREKIN” to create a kinemage from a PDB file, and “MAGE”
to both view and authoring kinemages. The aim of the project was to provide
molecular scientists a tool for creating interactive content “to better communicate
ideas that depend on three-dimensional information” [80], e.g. by providing the
kinemage file as supplement material accompanying a paper. In accordance to
such aim, both the programs and some kinemages was released in a floppy-disk
accompanying the 1992 paper on the first issue of the journal “Protein Science”.
The software was initially developed for Macintosh computers (a popular series of
personal computer featuring theWindows, Icons, Menus, Pointer (WIMP) human-
computer interface), a choice that has facilitated its adoption. On the other hand,
due to the performance constraints and in order to ensure interactivity, the first
version of MAGE was limited to wire-frame graphics.

Another program that made history in molecular graphics is RasMol (short for
“Raster Molecules”) [81, 82]. It was originally developed in 1989 by Roger Sayle
(an undergraduate student at the time) as part of a final-year project. Initially it
was focused on the rendering of large (for the time) molecules in space-filling rep-
resentation, being able to display a fair amount of intersecting shaded spheres with
specular highlights and shadows. At this end, RasMol implemented an hybrid scan
line-based rendering algorithm. In particular, the rendering of each row of pixels
of the final image (scan line) was computed by two stages: The first stage had
the purpose to determine, for each pixel, which sphere was closest to the virtual
camera (if any) and the depth of the spherical surface at that point. In the second
stage shading and lighting model calculations was performed: in addition to the
usual local shading model, a sort of ray-tracing algorithm was performed to deter-
mine, for each pixel of the scan line, if the corresponding point on the sphere was
in shadow or not (i.e. if the line segment between the point and the light sources
was intersected by other spheres). As mentioned before, the rendering algorithm
implemented by RasMol was based on the one proposed by Porter [65], apart from
the two stages approach and the ray-tracing procedure used to determine the shad-
ows. Furthermore, thanks to its scan line-based nature, the RasMol’s algorithm
was easily parallelizable: that was a key feature, since the program was originally
developed for execution on distributed memory systems. The program was further

36

2.1 A brief history of Molecular Graphics

developed during the 90s, by adding several features (such as additional graph-
ical representations, see Figure 2.5) and the support for Unix workstations and
Windows / Macintosh PCs, up to become one of the most widespread interactive
molecular visualizers.

Figure 2.5: Ribbon diagram of a plant seed protein (PDB ID: 1CRN, [83]) rendered with RasMol
2.7.5

Nowadays many molecular graphics system are available; many of them are free to
use (at least for personal or educational/research purposes) and provide the ability
to extend their functionality through scripts or plug-ins. Among those oriented
to biochemistry and structural biology, probably the most popular are VMD [71],
UCSF Chimera [72], PyMOL [84] and Jmol [85]. Other quite popular software
in these fields are Avogadro [86], YASARA [87] and CCP4mg [88]. Recently, a
promising new molecular viewer and modeler called SAMSON (Software for Adap-
tive Modeling and Simulation Of Nanosystems) was developed by the NANO-D
group at the French Institute for Research in Computer Science and Automation
(INRIA)2. It has been developed using modern technologies (such as the Qt frame-
work [89] and OpenGL 3.2) and it is accompanied by a Software Developed Kit
(SDK) for the development of new modules. These modules, called “Elements”,
can be shared with the SAMSON community via the “SAMSON Connect” website
[90]. However, apart from basic stereo rendering without head-tracking, it has no
documented support for advanced virtual reality visual display systems, such as
CAVEs or Head Mounted Displays. As regard to quantum chemistry, some popu-
lar molecular graphics system are Molden [91], GaussView [92] and Molekel [93];
XCrySDen [94] and PLATON [95] focus instead on crystallography and material

2https://team.inria.fr/nano-d/

37

Chapter 2 Molecular Graphics

science.

Most of the cited software originally exploited the state-of-the-art computer graph-
ics technologies available at the time of their conception, However, many of them
are still bound to those technologies (that in some cases dates back to twenty years
ago) or update themselves with non-negligible difficulties. That situation creates a
disparity between the state-of-the-art research in molecular graphics, which rapidly
exploit the advances in computer graphics, and the actual molecular graphics sys-
tems used day-by-day by researchers and students. One of the aims of Caffeine is
therefore to try to reduce this gap.

2.2 Representation of molecular systems and state of
the art rendering algorithms

As illustrated in section 2.1, in the last two centuries many conventions has been
developed to graphically represent molecular structures and related properties. Dif-
ferent representations allows to depict the system under investigation with different
levels of chemical detail and to highlight different peculiarities of the system. Fur-
thermore it is common to combine more representations in the same image to
communicate different types of information and properties about the molecular
system.

In the following, a brief description about the commonly used and the recently
proposed representations of molecular structures and related properties is provided,
accompanied by a survey about the state-of-art algorithms for their rendering in
real time.

2.2.1 Atomistic models

This category includes the representations of molecular structures depicting the po-
sition of each atom in the three-dimensional space. Atoms are usually represented
as spheres having a radius proportional to the van der Waals (or the covalent)
radius of the element they represent, while covalent bonds are usually represented
by lines or cylinders. Other types of interactions between atoms (such as hydro-
gen bonds) can also be represented, using lines or similar visual elements. Widely
used representations such as “wire-frame”, “licorice”, “ball-and-stick” and “CPK”
belongs to this category. Atoms (spheres) can be drawn according to various color

38

2.2 Representation of molecular systems and state of the art rendering algorithms

schemes, in order to represent their chemical element, the residue/fragment they
belongs to or according to some atomic or molecular property, such as temperature
factor, charge, hydrophobicity, solvent accessibility etc. (see Figure 2.6). Bonds
can be colored in accordance to the related atoms or using a color map to visualize
their intensity / order. It is also common to represent double and triple covalent
bonds respectively with two and three cylinders connecting the same pair of atoms.

Figure 2.6: Ball-and-stick representation of ubiquitin (PDB ID: 1UBQ, [96]). Different color
schemes have been employed in drawing atoms: (a) by element; (b) by residue; (c)
by temperature factor. Images rendered with CCP4mg [88].

Although the common way in interactive computer graphics to describe a three-
dimensional model is by means of a set of triangles approximating its external
surface (since graphics hardware is heavily optimized to process triangles), this
traditional approach does not suits well for atomistic models. The reason is that,
to obtain a good approximation of curved surfaces, like spheres or cylinders, a
significant number of triangles is required. When dealing with large molecular as-
semblies, this fact may compromise the frame rate and, in turn, the responsiveness
of the application. On the other hand, approximating these surfaces with a low

39

Chapter 2 Molecular Graphics

number of triangles saves the performance at the cost of a much lower visual qual-
ity. Although traditional techniques like multi-resolution tessellations (in order
to reduce the number of polygons as a function of the distance from the virtual
camera) or visibility-based culling (i.e. trying to detect the elements that will not
be visible in the final image so to avoid drawing them, or at least process them
as little as possible) can be employed to contain this problem (see [97, 98] as ex-
amples), a technique known as “GPU-based ray casting of implicit surfaces” has
proven to be a better solution. First introduced by Gumhold [99] in 2003 to render
a large number of ellipsoids representing tensor fields, this technique consists in
feeding the GPU with a simple bounding geometry (e.g. a quad or a box) in place
of each implicit surface to be draw and to analytically compute, in a fragment
shader, the intersection between the view direction and the implicit surface for
each fragment resulting from the rasterization of the bounding geometry. In 2004,
Bajaj et al. presented TexMol [100], a molecular viewer exploiting a texture-based
depth-corrected impostor rendering for both ball-and-stick and ribbon visualiza-
tions. The rendering technique employed by TexMol can be considered an early
approximation of the actual GPU-based ray casting, since depths and normals are
not calculated on a per-fragment basis, but stored in pre-computed textures which
are simply fetched by the fragment shader. In the same year, Toledo and Levy
generalized GPU-based ray casting to any quadric surface [101]; the method was
then further improved by Sigg et al. in 2006 [102]. It should be noted that, al-
though this technique can be applied to any implicit surface, it provides excellent
results in the case of quadrics (such as spheres and cylinders), since the intersec-
tion test requires solving a simple second degree equation. For that reason, it has
been successfully employed in numerous research works about the visualization of
molecular structures (several of which are cited in the following), and implemented
in several molecular viewers such as VMD [71] (for spheres only), UnityMol [103],
MegaMol [104] and Caffeine. Further details about this algorithm, with particular
reference to the implementation used in Caffeine, will be given in section 6.1.

Chavent et al. exploited the GPU-based ray casting of quadric surfaces to design
a new atomistic representation called “HyperBalls” [105]. HyperBalls is a variant
of the “ball-and-stick” where bonds are represented as hyperboloids instead of
cylinders (see Figure 2.7). In fact, while cylinders are usually employed to depict
a binary relation (presence or absence of a bond), the shape of the hyperboloids
can be parameterized as a function of some physical/chemical property, such as
the intensity of the bond. By being able to change the shape of each hyperboloid
by tuning only a shrink factor, this representation results particularly suited to

40

2.2 Representation of molecular systems and state of the art rendering algorithms

Figure 2.7: Benzene molecule drawn according to the “HyperBalls” representation [105]. Bonds
are depicted as hyperboloids, whose thickness is a function of the distance between
the bonded atoms.

represent dynamic phenomena, such as the the formation and decay of inter-atomic
interactions.

Although traditional GPU-based ray casting of quadric surfaces allows to visualize
static assembly formed by some millions of atoms at interactive frame rates on
commodity hardware, and although the use of proxy geometries requires only a
small amount of data to be transferred to the GPU for each quadric surface, spe-
cial optimizations must be employed when dealing with large time-varying and/or
massive systems.

An interesting optimization for visualizing dynamics molecular system has been
proposed by Lampe et al. [106]. They focused on the visualization of Normal
Modes Analysis (NMA) simulations [107] predicting motions of proteins, in which
residues are approximated as points with a mass and connected by springs. The
results of such simulations consist in roto-translations to be applied to the backbone
elements of residues. It follows that the side chain and the atoms lying on the
peptide planes are considered as rigid bodies joined by Cα atoms. Therefore it
would be a waste of bandwidth to sent to the GPU a new position for each atom
of the protein at each time-step of the simulation. On these premises, Lampe and
co-workers designed an algorithm in which, for each residue and for each time-step,
only the position of Cα atom, a set of angles and the type of the residue is sent to
the GPU. The graphical primitives for each atom are then generated on the fly on
the GPU, by exploiting geometry shader capabilities of graphics hardware. Finally,
spheres are drawn via ray-casting on the fragment shader.

With aim to visualize time-dependent point-based data sets represented as GPU-

41

Chapter 2 Molecular Graphics

based glyphs3, Grottel et al. conducted an in-depth study to compare how render-
ing performance are affected by different strategies in constructing the bounding
geometry, storing/encoding the parameters and uploading the data to the GPU
[108]. Later, the same research team proposed a two-level (coarse- and fine-grained)
occlusion culling algorithm to detect those glyphs that would not be visible in the
final image and thus limit their processing as much as possible [109]. It is based on
the “Hierarchical Z-Buffer Visibility” algorithm by Greene et al. [110]. As prepro-
cessing step, the algorithm construct a regular grid for each frame of the simulation,
storing in each cell a reference to the glyphs lying in that region of space. During
the rendering, the algorithm keeps track of the cells that was visible in the last
frame. When a new frame must be rendered, the algorithm creates a depth map
storing the maximum depth of the glyphs lying in the cells that was visible in the
previous frame (but using the position, rotation, scale and view parameters of the
new frame). This is done by setting the depth map as only render target and by
rendering those glyphs with a simplified ray-casting algorithm that only determine
if a fragment belongs to the considered glyph and assign to it the maximum depth
of the glyph. Then, for each cell of the grid, an occlusion query is requested to the
GPU to determine if the bounding box of the considered cell has a depth greater
than the ones stored at the corresponding region of the depth map computed in
the previous step. If so, the glyphs lying in the cell would not be visible in the
final image, so they are not transferred to the GPU. For those cells visible (at least
in part) in the new frame, a fine-grained occlusion culling algorithm is applied. In
particular, while waiting for the occlusion queries to be resolved by the GPU, an
hierarchical occlusion map is constructed by “mip-mapping” the previously com-
puted depth map. Then, when the glyphs lying in the visible cells are rendered,
the vertex shader compares the image space bounding box of the glyph against the
hierarchical occlusion map. If the glyph results to be occluded, the vertices of its
proxy geometry are “culled” (moved outside the view frustum). This fine-grained
occlusion culling does not prevent the geometry to be transferred to the GPU, but
avoids unnecessary fragment processing. Thanks to this technique, Grottel and co-
workers was able to visualize dynamics data sets consisting of up to one hundred
millions of glyphs at interactive frame rates on commodity hardware. However, as
the authors admit, this technique is effective only in the case of very dense data
sets, such as those resulting from molecular dynamics simulations in the field of

3A glyph is a small visual object (such as a sphere, an arrow, an ellipsoid etc.) having a precise
location in space and used to represent a data element. Its attributes (such as its orientation,
color and size) are defined as a function of the data associated to the element it represents.

42

2.2 Representation of molecular systems and state of the art rendering algorithms

material science.

In 2012, Lindow et al. proposed a method to perform the rendering of biological
structures composed by several billions of atoms at interactive frame rates [111].
When dealing with massive systems, the problem is not only to find a rendering
method capable to produce images at a sufficient frame-rate, but also to find a
strategy to store the data in the limited memory of the graphics card. To cope with
this last problem, Lindow and co-workers exploit the fact that biological structures
usually consist of a large number of recurring substructures. By considering these
substructures as rigid bodies whose atoms have the same relative position within
each instance, it is sufficient to store the information about a single substructure
and a list of transformation matrices defining the position and the orientation of
each instance. Authors chose to render substructures with a method which mixes
the traditional GPU-based ray-casting of quadric surfaces with the GPU-based
“volume ray-marching” (see section 2.2.4). In particular, for each substructure,
information about atoms are stored in a regular grid, whose cells keeps track of the
atoms lying in the corresponding regions of space. Grids are encoded in the form
of three-dimensional textures, so to be easily passed to the GPU. For each instance
of substructure to be drawn, a bounding box (with proper transformations) is feed
to the GPU for rendering. In the fragment shader, “volume ray-marching” takes
places: the cells of the grid traversed by the ray (starting from the camera and
crossing the fragment) are sequentially examined along the ray direction, until an
atom (sphere) crossed by the ray is found or until the ray exits from the bounding
box. If such atom (sphere) is found, the intersection point and the related normal
are computed and used to shade the fragment and to adjust its depth, otherwise the
fragment is discarded. From the benchmarks presented in the original paper results
that, although the traditional GPU-based ray-casting is faster for structures smaller
than some million atoms, the proposed technique obtain good performance with
larger structures, allowing to render assemblies composed by ~150 million atoms
at interactive frame rates on the hardware of the time. The technique proposed
by Lindow and co-workers (described so far) was later optimized and extended by
Falk et al. [112], both to obtain a further gain in performance and to support the
rendering of triangles (in addition to spheres), so to employ further representations
(e.g. molecular surfaces).

Le Muzic et al. presented in 2014 a system capable of generate interactive computer-
animated simulations of molecular reactions in biological networks for educational
and dissemination purposes [113]. The authors exploited several techniques in or-

43

Chapter 2 Molecular Graphics

der to visually represent systems containing up to some million of medium-large
molecules. First of all, they extended the method described by Lampe et al. [106]
for dynamically constructing (static) molecular structures on the GPU. In partic-
ular, their system send to the GPU a single vertex for each molecule to be visual-
ized, delegating the generation of the proxy-geometry for ray casting each atom of
the structure (visualized in CPK representation) to the tessellation and geometry
shaders. The the positions of the atoms for each type of molecule are stored in
texture buffers, so to be retrievable by the shaders. In this way, the authors was
able to produce molecules containing up to ~260000 atoms for each vertex sent to
the GPU. Of course, they exploited the fact that the simulated biological system
contains only a limited number of different molecules, instanced many times and
handled as rigid bodies. Further optimizations includes view-frustum culling of
molecules by the vertex shader and a Level Of Detail (LOD) technique that reduce
the number of generated spheres for each molecule as a function of its distance from
the camera. When this happens, the radii of the remaining spheres is enlarged so
to closely resemble the shape and volume of the original molecule.

2.2.2 Backbone models

Figure 2.8: Ribbon diagrams of a prokaryotic Mechanosensitive Channel of Large Conductance
(MscL) [114]. Three different color schemes are showed: a) by secondary structure;
b) by residue; c) by chain. Images rendered with Caffeine.

44

2.2 Representation of molecular systems and state of the art rendering algorithms

Backbone models abstracts the structure of polymers so to highlight that spatial
conformation of their main chain. The most diffuse backbone model is the so-called
“ribbon” representation for proteins, made popular by Richardson in the 1980s [57].
In this representation the spatial conformation of polypeptide is approximated by a
curve (usually a B-spline) whose control points are the Cα atoms of the amino acid
residues. Secondary structures are represented with a ribbon, oriented according
to the peptide planes (see Figure 2.8) : helices are visualized as a spiral, while β-
strands as an arrow pointing towards the C-terminus of the chain. Random coils
are drawn as tubes. Although in the simplest cases ribbons are colored according to
the secondary structure they represent (Figure 2.8a), the residues they are formed
by (Figure 2.8b), or the chain they belongs to (Figure 2.8c), additional information
about the molecular system can be visualized via color mapping. An example is
shown in Figure 2.9, depicting a Human topoisomerase I in ribbon representation,
where the color and the thickness of the ribbon are functions of the structural
disorder (β factor) [115].

Figure 2.9: Image reproduced from [115]. Ribbon diagram of a Human topoisomerase I. Color
(from blue to red) and thickness of the ribbon are proportional to increasing β factor.

While most of molecular graphics software use the same basic rules to draw ribbon
diagrams for polypeptides, in the case of nucleic acids the situation is more var-
iegated. In general, a ribbon is used to represent the spatial conformation of the
sugar-phosphate backbone. The path of the ribbon is computed by evaluating the
equation of a curve: common choices are cubic B-spline (Caffeine, Chimera [116]
and VMD [71]) or Catmull-Rom spline (VMD). There are also various possibilities
in the choice of the control points for the curve and in the way the orientation
of the ribbon is computed. For example, VMD allows to chose between phospho-

45

Chapter 2 Molecular Graphics

rus and C3’ atoms as control points, and takes into account the position of some
of the phosphate oxygens to compute the normal vectors to the ribbon (i.e. its
orientation). Chimera, instead, use C5’ atoms as control points and computes
the orientation as a function of the position of the C1’ atoms. Finally, Caffeine
uses phosphorus atoms as control points and the versor from C1’ to C3’ as nor-
mal vector for the ribbon. Nucleobase and (deoxy)ribose are represented using
filled pentagons and hexagons. However simpler representations are possible, in
which the sugar is omitted (replaced by a line connecting the ribbon to the base)
and/or in which nucleobase are visualized as boxes, ellipsoids or elliptical tubes
[116]. Figure 2.10 shows the ribbon diagram of a fragment of B-form DNA.

Further details about the geometrical construction of ribbon diagrams in Caffeine
are described in section 6.3.

Figure 2.10: Ribbon diagram of a fragment of B-form DNA rendered by Caffeine.

Several works proposed GPU-accelerated algorithms for drawing ribbons diagrams.
Among the newest, Bagur et al. proposed a method to draw tubes (coils) and
spirals (helices) as quadric surfaces to be ray-cast on the GPU [117]. Although
their method is promising for random coils, it is able to produce only flat helices.
Krone et al. [118] and Wahle et al. [119] proposed algorithms for the geometrical
construction of tessellated ribbons on the GPU. The aim of both methods is to
relieve the CPU by most of the computations required to tessellate the ribbons and,
at the same time, to minimize the amount of data to be transferred to the GPU. It
is important to note that these approaches are convenient only for the visualization
of time-varying systems. In fact, when used for static structures, they introduce a
non-negligible overhead to the rendering procedure, resulting in a consistent drop of
the frame rate with respect to the rendering of pre-computed static geometries. In
the case of time-varying systems, instead, both the computation of the tessellation

46

2.2 Representation of molecular systems and state of the art rendering algorithms

on the CPU and the transfer of the resulting graphics geometry to the GPU may
represent a bottleneck, that can be solved by exploiting GPU-acceleration.

2.2.3 Surface models

While atomistic and backbone models provides valuable information about the
structure of the molecule, they offer little knowledge (with the exception of the
CPK model) about the region of space occupied by the molecule or about the
areas of the molecule exposed to solvent or other molecules. Surface models was
developed to provide these types of indications. Furthermore, it is common to
visualize additional molecular properties over the surface (such as hydrophobicity,
atomic charge, electrostatic potential etc.), via color or texture mapping (see also
section 2.2.4). Molecular surfaces are widely exploited in biochemical research and
structure-based drug design, for example in order to identify cavities or channels
accessible by the solvent or suitable to become the binding site of a ligand.

2.2.3.1 Molecular surfaces and their definition

The most diffused surface models are the “van der Waals Surface” (vdWS, in the
following), the “Solvent Accessible Surface” (SAS) and the Solvent Excluded Surface
(SES). They are usually defined according to the “hard-sphere” model illustrated
in Figure 2.11, where a “probe” sphere approximating a solvent molecule is rolled
over the vdWS.

Figure 2.11: Definition of the van der Waals Surface (vdWS, in black), Solvent Excluded Surface
(SES, in red) and Solvent Accessible Surface (SAS, in green) according to the
“hard-sphere” model. SAS and SES are constructed by rolling a spherical probe
(representing the solvent) over the van der Waals surface.

47

Chapter 2 Molecular Graphics

The “van der Waals Surface” is the simpler surface model and provides an approx-
imation of the volume occupied by the molecule. It is obtained by the union of the
spheres representing the atoms of the molecule and having a radius proportional
to related the van der Waals radius (see Figure 2.11). In other words, the vdWS is
the external surface obtained when representing a molecule according to the CPK
model.

In 1971, Lee and Richards proposed another type of molecular surface, today known
as “Solvent Accessible Surface” [60]. This model is useful to identify which atoms of
the considered molecule are accessible by the solvent. The SAS can be defined by
rolling a probe sphere over the vdWS of the molecule under investigation. During
this process, the probe must be kept in touch with the vdWS without penetrating
it. The SAS is the surface traced by the center of the probe after rolling over
the entire vdWS. The atoms involved in the construction of the SAS (e.g. those
touched by the probe) can probably be accessible by solvent molecules equals or
smaller then the chosen probe. Another way to obtain the SAS is expanding the
radius of the spheres that form the vdWS by the radius of the probe (usually set
to 1.4Å).

As in the case of the SAS, also the “Solvent Excluded Surface” (also known as “Con-
nolly surface” or simply “molecular surface”) can be defined by rolling a spherical
probe over the vdWS. However, instead of taking into account the center of the
probe, the SES is defined as the surface traced by the exterior of the probe while
rolling overt the vdWS. The SES combine the advantages of both the vdW and
solvent accessible surfaces, by approximating the volume occupied by the molecule
while providing information about the areas accessible by the solvent. A compari-
son between the vdW and the solvent excluded surfaces is shown in Figure 2.12.

The SES was first proposed by Richards in 1977 [67]. Actually, the name was coined
one year later by Greer and Bush, who also proposed an alternative (equivalent)
definition for it and presented the first computer program capable of generating
approximated images of the SES [66]. The first analytical method for computing
the SES was presented by Connolly in 1983 [68]. From his formulation results that
the SES is formed by three types of curved surface patches, joined by circular arcs:

• Convex spherical patches: occurring when the probe is in contact with a single
atom. These patches are the regions of the vdWS in direct contact with the
solvent probe.

• Toroidal (“saddle”) patches: generated when the probe is in touch with two

48

2.2 Representation of molecular systems and state of the art rendering algorithms

Figure 2.12: Comparison between three different types of molecular surface for a human deoxy-
hemoglobin (PDB ID: 2HHB, [120]). Left: van der Waals Surface (vdWS). Cen-
ter: Solvent Excluded Surface (SES). Right: Gaussian density surface generated
according to the algorithm by Krone et al. [121] (named “QuickSurf ” in VMD).
Images created with VMD [71] and the built-in Tachyon Ray Tracing System.

atoms.

• Concave spherical patches: formed when the probe is in contact with three
or more atoms.

Connolly’s paper also presents an algorithm to determine these patches and their
parameters.

In the following years, several others algorithms have been developed to compute
the patches constituting the SES in a more fast and/or reliable way. Particularly
relevant is the method proposed by Sanner et al. [70], which exploit an intermediate
geometric description of the molecular surface called “Reduced Surface” (RS). The
RS is defined by a set of vertices, a set of edges and a set of faces. Recalling the
concept of the solvent probe rolling over the atoms of the molecule, a vertex of
the RS is generated in correspondence of the center of each atom touched by the
probe, an edge of the RS connecting two vertices is generated whenever the probe
can roll over a pair of atoms, and a triangular face (delimited by three RS-edges)
is created when the probe gets in touch with three atoms. Both the analytical
description of the SAS and of the SES can be computed from the RS. In a following
work [122], Sanner and co-workers describes how the RS can be updated in in
consequence of the movement of a subset of atoms. A similar approach has been
proposed by Ryu et al. [123], which exploit a geometric construct called β− shape
[124] (a generalization of the α − shape [125] which allows to employ spheres in
addition to points) as intermediary representation of the molecular surface from
which the analytical description of the SES can be derived. Interestingly, the
resulting β−shape coincide with the Reduced Surface, although the two constructs
are built according to different criteria.

49

Chapter 2 Molecular Graphics

Another relevant result is the “contour-buildup” algorithm by Totrov and Abagyan
[73], which determines a sequence of arcs representing the borders (“contours”) of
the “contact surface” (the regions of the vdWS that the solvent probe can touch
without colliding with other atoms) and then derives from them the analytical de-
scription of the SES. The key idea of the contour-buildup algorithm is that the
spherical patches of the contact surface and those constituting the SAS have the
same shape and only differ in radius. Therefore, the algorithm computes the con-
tours of the patches of the SAS and scale them down to obtain the contours of the
contact surface. Since the contour of each accessible atom does not depends on the
result of the computation for the other atoms, the algorithm is easily parallelizable.

Besides the definitions used so far, it is also possible to define the molecular surfaces
in terms of implicit surfaces. Examples of definition of the vdWS (but applicable
also to the SAS) as the isosurface of a scalar field can be found in [126, 127], where
the implicit function is expressed as the union (maximum) of Gaussian density
distribution centered at atoms positions and parameterized according to the vdW
radii. In their work, Giard and Macq [127] also show how to derive the SES from
such density field: the idea is to use the Fourier transform in order to express the
density field of the vdWS in the frequency domain and then filter it by an ideal
low-pass filter, so to remove the frequencies corresponding to elements smaller than
a solvent molecule. Another analytical definition of the SES in terms of implicit
surfaces was recently elaborated by Parulek and Viola [128]. They defined a set
of implicit functions representing the convex, concave and toroidal patches of the
molecular surface. Later, Parulek and Brambilla [129] exploited implicit surfaces
to define a new molecular surface having a shape that approximate the SES, but
that can be computed more efficiently.

Another interesting class of molecular surfaces are the ones resulting from isosur-
facing a density field given by the summation of Gaussian distribution functions
centered at atoms positions. This approach was originally proposed by Blinn in
1982 [130] and was designed to approximate the model of the electron density maps
of molecular structures. An example of “Gaussian density surfaces”, also known
as “Metaballs” or “Blobby surfaces” is shown in Figure 2.12. The main advantage
of these kind of surfaces is that their computation significantly less expensive of
the SES. On the other hand, SES provide an accessibility model with respect to
the solvent which is much more accurate, although Gaussian density surfaces can
be parameterized so to closely approximate the volume and area of a collection of
intersecting spheres [131] (such as the vdWS or the SAS).

50

2.2 Representation of molecular systems and state of the art rendering algorithms

Several others types of molecular surfaces has been proposed, such as the “Molecu-
lar Skin Surface” [132] (presenting interesting mathematical properties), the “Min-
imal Molecular Surface” [133] (obtained by a process of free energy minimization
simulating the effects of immersing a polar molecule in a polar solvent) or the “Lig-
and Excluded Surface” [134] (which provides an accurate accessibility model with
respect to a specific ligand). However, their use is still limited and/or their com-
putation is expensive (e.g. see [135] for a comparison between the computational
costs required to construct and render the SES and the MSS). For these reasons,
they will not be discussed any further.

2.2.3.2 Rendering of molecular surfaces

The traditional method of rendering molecular surfaces consist in tessellate them
as triangle meshes, since graphics hardware is designed (and heavily optimized)
to render triangles. Due to the popularity of the SES, most of the methods pre-
sented in literature focus on its triangulation, presenting new algorithms to reduce
the (still relevant) cost of its construction and/or to handle/avoid the occurrence
of self-intersecting parts (“singularities”). However, many of them are also able
to construct a triangulation of the vdWS and of the SAS. These algorithms can
be classified in two families. The first computes the triangulation starting from
the analytical description of the surface. Notable examples are the original tri-
angulation algorithm by Connolly [69], the one integrated in the MSMS software
package by Sanner et al. [70], the fast triangulation based on the β − shape of
molecules designed by Ryu et al. [136], or the recent work by Zhang et al. [137].
The second family of algorithms are the “grid-based” methods, which construct
a three-dimensional grid containing the values of some scalar field at discrete lo-
cations of space around the molecule, and then compute the triangulation of an
isosurface by means of one of the many isosurface extraction algorithms, such as
the popular “Marching Cubes” [138] or one of its variants [139]. This category
includes the already cited works by Laskowski [126] and Giard et al. [127] (which
employ a scalar field resulting from the union of Gaussian functions), the method
described by Chan et al. [140], as well as the algorithms by Can et al. [141] and Yu
[142] which exploit respectively level-set methods and a list-based representation
of grid regions in order to speed up the computation of the sampled scalar field.
Recently, Decherchi and Rocchia [143] presented an interesting hybrid approach,
where the values to be stored on the 3D grid are computed by a ray-casting proce-
dure, which tests the intersection between a set of rays starting at regularly spaced

51

Chapter 2 Molecular Graphics

position and the analytical description of the surface (the equations describing set
of patches forming the surface). The surface is then tessellated by applying the
Marching Cubes algorithm on the resulting grid. Finally, it should be noted that
most grid-based method can also be employed to detect surface grooves and internal
cavities.

An alternative approach for rendering molecular surfaces is the one based on the
“GPU-based ray casting” method. Besides producing images with a better visual
quality with respect to tessellated surfaces, this technique also provides the best
performance when rendering the vdWS and the SAS (as opaque surfaces), as al-
ready discussed in section 2.2.1. GPU-based ray casting of the SES is relatively
efficient, since its constituting patches (identified by Connolly) are portions of al-
gebraic surfaces of the second order (spheres) and fourth order (tori). Ray casting
of other types of implicit surfaces on the GPU (like those defined by distance or
Gaussian functions) is also possible [128, 129, 144–146], although computationally
more expensive.

From the point of view of raw rendering performance, drawing a triangle mesh
representing a molecular surface is usually faster then ray-casting implicit surfaces.
However, this second approach provides a superior image quality, does not need
a triangulation procedure and requires a much smaller amount of data to be sent
to the GPU. While for static structures the time spent in triangulating the sur-
face and send the resulting data to the GPU does not constitute a problem (since
those procedures must be performed one time only), it usually represent a relevant
bottleneck in the case of time-varying systems, as discussed int the following sub-
section. On the other hand, it is easier to correctly draw semi-transparent and/or
open surfaces (e.g. because the camera lies inside the surface or a clipping plane
is applied) with triangle meshes. In fact, common implementations of ray-casted
molecular surfaces draw “spurious” (portions of) patches lying within the surface.
These are not visible when the surface is opaque, but produce erroneous images
when it is open or transparent. A simple solution to the transparency problem
consists in drawing only the frontmost portion of the surface on a hidden frame
buffer and then blending it to the main frame buffer, but it only produces approx-
imated results. Kauker et al. [147] recently discussed how to solve this problem
by employing arrays of fragments to obtain both a correct transparency effect and
the removal of spurious inner fragments. Further details on the problems arising
when trying to simulate transparent surfaces in real-time computer graphics and
related solutions are discussed in section 6.5.

52

2.2 Representation of molecular systems and state of the art rendering algorithms

2.2.3.3 Visualization of time-varying molecular surfaces

To recap, the traditional process to visualize a molecular surface consists in the
following steps:

1. Computation of the analytical description of the surface (e.g. the set of the
constituting patches and their parameters).

2. Triangulation of the surface.

3. Transfer of the data to the GPU.

4. Rendering.

When dealing with time-varying structures, a new updated molecular surface must
be computed and rendered at very short time intervals. In order to do so, the
computations of the previous steps must be parallelized or, when possible, avoided.
In the case of short trajectories some of these steps may also be pre-computed and
their results stored in memory for later usage. This is not, however, a general
solution.

GPU-based ray casting of algebraic surfaces is particularly suited for visualizing
dynamic surfaces, since it does not requires triangulation procedures, greatly reduce
the data to be sent to the GPU (with respect to triangle meshes) and offer good
rendering performance. For these reasons, it is employed by several of state-of-the-
art techniques that will be briefly discussed in the following.

In 2009 Krone et al. exploited GPU-based ray casting to visualize SES dynamics
[148]. The Sanner’s Reduced Surface (RS) [70, 122] was chosen to analytically
compute the SES. However this computation was performed on the CPU. The
authors tried to speed up this procedure by exploiting the fact that the RS can
be partially updated [122] when a small subset of atoms (at most 100) changes
their position. In order to apply these partial updates to MD simulations, they
tried to impose a filter on the atomic movements: positional changes lower than a
threshold chosen by the user was ignored. If the number of moving atoms exceeded
the maximum allowed for a partial update, the whole RS was re-computed. On
the hardware of the time, Krone and co-workers was able to visualize dynamics
systems containing ~4000 atoms at a frame rate equals or lower than 20 fps. In a
later work, Krone et al. [149] proposed a parallel algorithm for the RS computation
that can be executed on the GPU. However, the algorithm did not support partial
updates, leading to lower performance with respect to the version with partial

53

Chapter 2 Molecular Graphics

updates computed on the CPU (5 fps for molecular systems composed by ~2500
atoms).

Lindow et al. preferred the “contour-buildup” algorithm for the computation of
the patches of the SES [135], since it is easily parallelizable. In their work, SES
computation was performed on the CPU in a parallel fashion and with the support
for partial updates, while the resulting algebraic surfaces was ray-casted on the
GPU. The authors compared their parallel “contour-buildup” algorithm with the
RS algorithm employed in [146]. For a system composed by ~59000 atoms, the
contour-buildup algorithm built the SES in 0.4s, while the sequential RS employed
2.6s. In another test involving a dynamic system composed by ~4500 atoms with
500 moving atoms, the described system was able to compute (with partial updates)
and draw the SES 33 times per second. According to the authors, partial updates
provided a speedup of 2.5 with respect to the entire re-computation of the SES. One
year later, Krone et al. presented a new parallel variant of the “contour-buildup”
algorithm without partial updates, in which the computations was divided in fine-
grained tasks [150] suited to be executed on graphics hardware. By implementing
the proposed algorithm by means of the CUDA [151] GPGPU technology, they
was able to compute and visualize the entire SES of a molecule of ~10000 atoms
20 times per second.

Previous discussed research works shows how SES computation still represent a
bottleneck when visualizing dynamics systems. For this reason, in a recent work
Krone et al. [121] focussed on the visualization of Gaussian density surfaces (see
Figure 2.12 right) that, if proper parametrized, can approximate electron density
and solvent accessible surfaces. Their algorithm consists in two parts, both imple-
mented in CUDA [151] and thus running on the GPU: the first step computes a
volumetric density map as the sum of Gaussian functions centered at atoms po-
sitions, while the seconds applies the “Marching Cubes” algorithm [138, 139] to
triangulate an isosurface from the resulting three-dimensional grid. The authors
compared the performance with [150], showing that for a protein of ~59000 atoms
the Gaussian density surface can be entirely computed and rendered 19 times per
second (with a grid spacing of 1Å), against the 7 times per second obtained by
the previous approach for visualizing the SES (on comparable hardware). This
algorithm has been integrated in VMD and it is available as “QuickSurf ” drawing
method.

Finally, in an previously cited work of 2013 [129], Parulek and Brambilla defined a
new implicit function whose isosurface resemble the SES and that can be efficiently

54

2.2 Representation of molecular systems and state of the art rendering algorithms

evaluated. The author chose to determine the isosurface on a per-pixel basis by
means of a ray-casting procedure implemented in CUDA [151]. The obtained per-
formance are lower to the ones obtained by Krone et al. [121] (9fps for a molecule of
~34500 atoms), although their molecular surface provides a better approximation
of the SES and the ray-casting strategy produce pixel-perfect images. However,
better performance could be obtained by sampling their implicit function on a 3D
grid and triangulating the surface with the Marching Cubes (as done in [121]).

2.2.4 Visualization of volumetric molecular properties

Many molecular properties are scalar, vector or tensor fields. In numerical simu-
lations, the value of these properties is computed only for discrete locations of the
three-dimensional space, thus producing a volumetric dataset. Formally, a volumet-
ric dataset is a set of pairs < Pi, Vi > called “voxels” (short for “volume elements”),
where Pi is a point in space and Vi is its associated value. Although the location of
the voxels can be chosen arbitrarily, it is common to chose equally spaced locations,
so to obtain a regular three-dimensional grid of values. The value for an arbitrary
point lying within a cell of the grid can then be approximated by interpolating the
values of the eight voxels delimiting the cell.

Volumetric molecular properties are usually visualized using the representations
and techniques developed in the field of Scientific Visualization for scalar, vector
and tensor fields. In the following, the discussion will focus on the visualization
of scalar molecular properties (such as electron density, electrostatic potential,
molecular orbitals, solvent density etc.), since they are the properties of most com-
mon use. Interested readers can refer to [18, 152] for an in-depth discussion on
the visualization of vector and tensor fields, as well as to get an overview of the
state-of-the-art on these topics.

Scalar volume data are usually visualized according to the following representations:
isosurfaces, slicing and direct volume rendering.

2.2.4.1 Isosurfaces

Given a field and a value in it (called isovalue), the resulting isosurface is the
surface formed by the points having the specified value in the considered field. The
main limitation of isosurfaces is that they can only provide limited information
about a field: in order to show how the considered quantity varies in space, multiple

55

Chapter 2 Molecular Graphics

isosurfaces are required. However, it often happens that these isosurfaces are closed
and nested one into the other, so the use of transparency or clipping planes is
required (see Figure 2.13). In the case of interactive applications or movies, another
possibility is to change the isovalue over time, as an animation.

Figure 2.13: Total electron density of an Acrolein molecule represented by multiple nested
isosurfaces. a) A clipping plane has been applied to the isosurfaces in order to reveal
the internal structure. b) The isosurfaces has been drawn as semi-transparent
surfaces. Images generated with Caffeine.

The traditional method to render isosurfaces is by constructing a triangle mesh
approximating the surface by means of one of the many algorithms proposed in
literature [152, 153], such as the popular “Marching Cubes” [138] or one of its im-
proved variants [139]. Alternative approaches exists to render an isosurface without
tessellating it. These techniques are known as “non-polygonal isosurfaces” [154].
Although rendering a triangle mesh representing an isosurface is usually faster
than non-polygonal methods, the latter are better suited in situations in which the
isovalue is changed frequently (e.g. by animating it over time), since they do not re-
quire to re-compute a polygonal representation of the surface. However several par-
allel and GPU-accelerated versions of the Marching Cubes (or similar algorithms)
have been developed over the years to cope with these situations (e.g. [155, 156]).
Finally, the non-polygonal approach can be a convenient solution if the visualiza-
tion system already implement direct volume rendering (see section 2.2.4.3), since
the rendering of isosurfaces can be considered as a special case of direct volume
rendering.

2.2.4.2 Slicing

A popular way to visualize volume data is by slicing the volume by a surface. In
this representation, a surface is introduced in the region of space bounded by the
three-dimensional grid and every point of the surface is colored as a function of the

56

2.2 Representation of molecular systems and state of the art rendering algorithms

value sampled from the data set at that point. Common choices for the surface
with which to slice the volume include planes (Figure 2.14a), isosurfaces (Figure
2.14b) or molecular surfaces.

(a) Planar slice of the total electron density of
an Acrolein molecule.

(b) Aniline electron density isosurface
colored as a function of the cor-
responding electrostatic potential.
Courtesy of Gianluca Del Frate.

Figure 2.14: Examples of volumetric molecular properties visualized by means of slicing surfaces.
Images generated with VMD [71].

This representation is usually implemented by encoding the volume data in a 3D
texture. Furthermore, the surface must be drawn with a proper fragment shader
that, given the relative position of the fragment within the volume (from texture
coordinates), sample the volume value from the 3D texture and compute the cor-
responding value for the fragment according to a color map (usually provided as
an additional texture).

2.2.4.3 Direct Volume Rendering

While “Indirect Volume Rendering” methods visualize the information contained
in the volume as polygonal surfaces (belong of this category the algorithms which
construct triangle meshes representing isosurfaces), “Direct Volume Rendering”
(DVR in the following) methods consider the volume as a sort of “gaseous” light-
emitting medium which can scatter or absorb the emitted light according to the
data values and the chosen optical model [157]. The function that maps data
values to optical properties (usually a color and an opacity factor) is known as
“transfer function”. During rendering, the color of each pixel of the final image
is computed by accumulating the effects of the optical properties of the volume
region corresponding to (i.e. projected on) the considered pixel .

57

Chapter 2 Molecular Graphics

It is important to note that choosing a proper transfer function is critical in order
to produce meaningful images. Furthermore, the quality of a transfer function is
strictly related to the nature of the data to be visualized. Therefore, the knowledge
and the insight of human experts is often essential to define meaningful transfer
functions.

DVR is widely used in Scientific Visualization, especially for medical and engineer-
ing data. However, its use in molecular graphics is not very common. An example
of DVR employed in the visualization of electron densities is shown in Figure 2.15.

Figure 2.15: Electron density rearrangement after metal-ligand bond formation in a nickel di-
carbonyl complex with a chelating diphsofine ligand, visualized via direct volume
rendering. Red regions: electron depletion, blue regions: electron accumulation.
Courtesy of Dr. Sergio Rampino. Image generated with PyMOL [84].

In the last twenty years, many efforts has been devoted to design and develop
fast and visually accurate algorithms for DVR. A complete discussion of these
techniques is beyond the aim of this thesis. For this reason, in the following only
the basic concepts of a couple of GPU-based methods will be briefly described.
Interested readers can refer to [152, 154] for an in-depth discussion on the subject.

The most common GPU-based methods for DVR are the “texture-based” and the
“ray-marching” (also known as “ray-casting”) methods. They will described under
the following assumptions:

• An “Emission-Absorption” optical model is used, in which the volume consists
in particles that both emit and absorb light [157]. This is the most common
optical model in DVR, since an approximate solution for the related rendering
integral can be efficiently evaluated using “alpha-blending” [154].

• The volume data is encoded in a 3D texture, in order to be accessible by the

58

2.2 Representation of molecular systems and state of the art rendering algorithms

shaders and to take advantage of the hardware-accelerated trilinear interpo-
lation when sampling the texture.

Texture-based volume rendering This method is similar to the slicing plane tech-
nique discussed before: the volume is now sliced with multiple planes, and the
resulting semi-transparent colored slices are “alpha-blended” into the frame buffer.
This technique was first proposed by Cullip and Neumann in 1993 [158]. Going
into detail, the region of space bounded by the three-dimensional grid is sliced by
means of a stack of parallel, view-aligned and equidistant planar polygons, with
proper texture coordinates for each vertex (expressing the relative position of the
vertex within the volume). For a correct alpha-blending, the polygons must be
drawn in back-to-front order4 (or front-to-back order using an alternative com-
positing equation). During fragment processing, the texture coordinates of the
considered fragment are used to sample the 3D texture storing the volume data,
thus obtaining the related data value. The transfer function (that can be “hard-
coded” or provided as an additional texture) is then evaluated, thus obtaining the
color and the opacity factor for the considered fragment. Color and opacity will
then be combined with the previous content of the color buffer according to the
alpha-blending equation.

Volume rendering via ray-marching Similarly to the “ray-casting of implicit sur-
faces” discussed in the previous sections, the idea at the base of the DVR via
“ray-marching” (also called “ray-casting” in literature) is to cast an imaginary ray
for each pixel of the final image, starting from the virtual camera and crossing the
considered pixel. If the ray intersect the volume, the volume data is sampled at
multiple locations along the ray, usually “marching” (i.e. advancing along the ray
to the next sampling point) in front-to-back order. The transfer function is eval-
uated for each sampled value, thus obtaining a corresponding color and opacity
factor. The final color for the considered pixel is given by compositing all the col-
ors computed during the “march”, as a function of their alpha value and sampling
order. In the case of front-to-back “marching”, the following compositing equation
is applied:

C ′n = C ′n−1 +
(
1− α′n−1

)
· (αn · Cn)

α′n = α′n−1 +
(
1− α′n−1

)
· αn

(2.1)

4The reason is explained in section 6.5.

59

Chapter 2 Molecular Graphics

where C ′n is the color resulting from the composition of the first n sampled points,
α′n is the opacity factor resulting from the composition of the first n sampled points
(it is required for computing C ′n+1), and (Cn, αn) are respectively the color and
the opacity of the nth sampled point. The base case of the recursion is the chosen
background color: C ′0 = Cbackground and α′0 = 1.

Although CPU-based implementations of ray-marching have been used since 1980’s,
the first GPU-based implementations was proposed in 2003 [159, 160], when graph-
ics hardware with a sufficient fragment shader programmability become available.
These first implementations required a multi-pass rendering procedure, due to the
lack of support for branching and looping in fragment shaders. A first example
of a single-pass GPU-based ray-marching algorithm was included in the samples
of the NVIDIA SDK in 2004 [161], while another was described one year later by
Stegmaier et al. [162]. In the following a simple single-pass ray-marching algorithm,
based on the work of Stegmaier et al. [162], will be briefly described.

As in the case of ray-casting of implicit surfaces, a proxy geometry must be con-
structed and fed into the rendering pipeline, so to generate the fragments upon
which the ray-marching algorithm will be performed. In this case, the proxy ge-
ometry is composed by a bounding box (12 triangles) for the volume, to be draw
with “back-face culling” enabled. The fragments resulting from the rasterization of
its “front” faces will be then processed by the fragment shader implementing the
ray-marching algorithm. First of all, the shader computes the direction of the ray
(given by the normalized difference between the positions of the fragment and of
the virtual camera) and its starting point (given by the intersection between the
bounding box and the ray). Then a loop is executed (“marching procedure”) in
which, at each iteration, the following operation are performed:

• The value of the volume data is sampled for the current position along the
ray.

• The transfer function is evaluated for the retrieved value, returning a color
and an opacity value.

• The new color is combined with the color accumulated so far according to
the equation 2.1.

• If the accumulated opacity exceeds a predefined threshold close to 1, then
the contribution of the remaining part of the volume along the ray will be
almost invisible in the final image, so the loop can terminate (“early ray
termination”).

60

2.2 Representation of molecular systems and state of the art rendering algorithms

• The coordinates of the sampling point for the next iteration is computed by
advancing of a predefined distance along the ray.

• If the new point lies outside the bounding box, the loop terminates.

The color accumulated during the marching procedure is finally written in the color
buffer at the location associated to the considered fragment.

The ray-marching algorithm can also be used for the visualizing isosurfaces without
the need to construct a polygonal representation for them (“non-polygonal isosur-
faces”). In fact, the presence of the isosurface can be detected by looking for a
sign change between the difference of the isovalue with the current sampled value
and the difference of the isovalue with the previous sampled value [162]. The po-
sition of the isosurface within the detected interval can then be computed by a
linear interpolation or using an iterative bisection procedure [163]. The normal
to the isosurface at the considered point can be computed on the fly during frag-
ment processing by calculating the gradient vector using central differences method.
The normal vector can then be used to color the surface according to the common
Blinn-Phong shading model [164] (or a more sophisticated one), in order to visually
enhance its shape. A state-of-the-art method for the visualization of isosurfaces via
ray-marching, featuring several optimizations and advanced shading, is described
in [163].

Noteworthy is also the work by Scharsach et al. [165], presenting a virtual en-
doscopy systems based on ray-marching DVR. In the paper, the authors propose
a visualization combining a semi-transparent shaded isosurface (representing the
external skin) with an unshaded direct volume rendering of the tissues behind it.
The aim is to highlight the external shape of the volume by means of the shaded
isosurface, while providing additional visual information about the internal tissues.
The work also describe how to combine in the same image DVR with rendering of
traditional polygonal geometry (e.g. to visualize parts of the endoscopic device or
pointers) as well as to support clipping planes for the volume (including the near
plane, so to virtually fly through it) 5.

Direct Volume Rendering in Molecular Graphics The use of DVR is quite un-
common in Molecular Graphics. Among the research works that exploit DVR to
gain insight on data sets resulting from numerical simulations, worth mentioning

5The previously described ray-marching algorithm must be properly modified in order to produce
correct results in these situations

61

Chapter 2 Molecular Graphics

the paper by Mehta et al. [166], in which authors describes the use of isosurfaces
and DVR to detect defects in silicon lattices resulting from Molecular Dynamics
simulations. Mehta et al. described a method to automatically detect salient iso-
values and to derive meaningful transfer functions from them. Qiao et al. [167]
described the realization of “VolQD”, a system for the interactive DVR of multi-
variate wave functions in semiconducting quantum dot simulations. Noteworthy
is the work by Jang and Varetto [168], who designed a DVR system for the visu-
alization of atomic and molecular orbitals. One of the peculiarity of their system
is that it does not simply render a precomputed volumetric dataset. Instead, a
per-fragment evaluation of the functional representation of atomic and molecular
orbitals is performed on the fly on the GPU. Two types of basis functions are
available for this purpose: pure Gaussian and Gaussian Type Orbital. The coeffi-
cients of the functional representation of the orbital are read from the output of
quantum chemistry packages such as Gaussian and GAMESS. Volume rendering is
performed by means of a variant of the texture-based method: a stack of polygonal
slices intersecting the bounding box is generated in the vertex shader, then, for each
fragment resulting from their rasterization, the value of the atomic or molecular or-
bital is evaluated on the base of the chosen basis function and of the pre-computed
orbital coefficients. The transfer function is then evaluated on the resulting value,
so to obtain a color and an opacity factor for the fragment. Slices are drawn in
front-to-back order and “alpha-blended” in the color buffer, as in the traditional
texture-based volume rendering. The authors have also experimented with several
transfer functions, including an illustrative rendering technique that produce very
clear images of multiple nested isovalue structures. DVR has also been employed to
visualize probability density functions representing positional uncertainty of atoms
[169] or meta-stable molecular conformations [170]. Finally, Knoll et al. employed
DVR to graphically represent uncertain molecular interfaces defined on the base of
the electron density distribution of the molecule [171].

2.2.5 Enhancing depth perception of molecular structures

Human visual system exploits multiple cues to perceive the three-dimensionality
of space, giving us the ability to estimate sizes and distances of objects of the real
world. When exploitation of stereopsis (i.e. the ability to infer depth information
from two slightly different images perceived by the eyes) is not possible, human
brain tries to deduce information about sizes and distances by focusing on the so
called “monocular depth clues”, such as those deriving from the way in which light

62

2.2 Representation of molecular systems and state of the art rendering algorithms

is reflected or occluded by objects. In absence of stereoscopic displays, is therefore
important to reproduce those cues in order to allow the user to better understand
the three-dimensional structure of complex molecules.

The illumination models usually employed in interactive computer graphics (such
as the standard “Blinn-Phong” model [164]) are said “local” illumination models,
because the color of a surface is computed by keeping into account only the prop-
erties of the considered surface and of the light sources, without considering the
other objects of the three-dimensional scene. Although reflections of directly inci-
dent light are properly simulated, shadows are not produced and indirect lighting
is approximated only by means of a constant value, called “ambient lightning” (to
be summed to the color resulting from reflection calculations). In the years, many
techniques have been developed in order to simulate a more realistic illumination
exploiting the standard hardware-accelerated rendering pipeline designed for local
illumination. The following discussion will focus on the techniques to simulate
shadows, since they are one of the main depth cues. As we will see, most of the
research works to simulate shadows in molecular graphics focus on atomistic rep-
resentations of large molecular assemblies. In fact, with these representations, the
resulting image consist in a large cluster of small spheres, whose structure is hard
to deduce (in absence of stereoscopy and shadows) due to the high variability of
surface normals between neighboring pixels (see Figure 2.16 left). In order to ob-
tain a more consistent shading, Grottel et al. described a method to compute a
smoothed surface normal by using the coordinates of nine neighboring fragments
as control points of a quadratic Bézier patch [109].

Traditionally, molecular viewers employs “cast shadows” and the “fog” effect (often
referred as “depth cueing”) to enhance depth perception of molecular structures.
Cast shadows simulate the shadows produced by an object when blocking direct
light. One popular method to implement cast shadows is the “shadow mapping”
technique, first introduced by Lance Williams in 1978 [174]. As regard to the “fog”
effect, it has the purpose of simulating real fog and atmospheric perspective, in
which contrast and saturation of the color of an object decrease as a function of
the distance between the object and the camera, up to blend with the background
color. The “fog” effect was natively supported by OpenGL since its first version,
and can be easily reproduced in modern shader-based OpenGL.The combined effect
of cast shadows and fog is shown in Figure 2.16 center.

In the last ten years, an alternate shadowing method known as “Ambient Occlu-
sion” (AO in the following) imposed itself as preferred method to enhance depth

63

Chapter 2 Molecular Graphics

Figure 2.16: Asymmetric chaperonin complex GROEL/GROES/(ADP)7 (PDB ID: 1AON,
[172]). Comparison between different rendering techniques in enhancing the per-
ception of the three-dimensional structure of the molecule. Images generated with
Qutemol [173]

perception of molecular structures, thanks to visual quality of the resulting images
(see Figure Figure 2.16 right). AO was first introduced by Zhukov et al. in 1998
[175]. While cast shadows simulate the occlusion of the light emitted directly from
light sources, AO simulate the occlusion of “ambient” (indirect) light. The many
AO techniques proposed in literature differ in the way they compute the ambient
occlusion factor, which provides an estimation of how much the considered point is
exposed to the ambient light due to the presence of occluding objects in its neigh-
borhood. In shading computations, AO factor is multiplied to the ambient light in
order to darken occluded surfaces.

AO techniques can be classified in two families, called “Object-space Ambient Oc-
clusion” and “Screen-space Ambient Occlusion”. In object-space AO, the AO
factors are computed on the base of the information about the elements of the
scene. A popular object-space AO method designed for atomistic representations
of molecules is the one presented by Tarini et al. and implemented in the Qute-
mol molecular viewer [173]. Although accurate, the estimation of AO factors in
“object-space” is usually computationally expensive, making these methods usu-
ally unsuitable for the visualization of large time-varying data sets. To solve this
problem, Grottel et al. proposed a fast object-space method specifically designed
for the visualization of large time-varying set of spheres [176]. AO factors are
evaluated by sampling a coarse-grained density volume obtained by aggregating
the spheres. The density volume can be computed on the fly for each frame of
the dynamics without major impact on the performance, while the estimation of

64

2.2 Representation of molecular systems and state of the art rendering algorithms

the AO factor requires a single sampling of the density volume for each fragment.
The tests conducted by the authors shows that their method allows to obtain full
interactive frame-rates (~60fps) in the visualization of dynamic systems composed
by two million spheres. The quality the produced images is good in the general
case, although some artifacts or inaccuracies may occur. The main drawbacks of
this method are that it exploits approximations valid only for spheres (although
the authors say that adaptations are possible to handle other types of visual ele-
ments) and that the produced results greatly depend on the resolution of the grid
(that should be calibrated according to the characteristics of the data set). Re-
cently, Staib et al. presented a technique for combining AO and transparency in
the rendering of large assemblies of sphere, by means of an hybrid approach mixing
traditional local surface illumination with the emission-absorption model of vol-
ume rendering. However, their method requires the spheres to be sorted according
to their distance from the camera, a requirement that produce a major impact on
performance when dealing with large data sets. Furthermore, visual artifacts occur
in the case of intersecting spheres, thus preventing its use in CPK representations.

Screen-space Ambient Occlusion (SSAO) techniques acts as post-processing effects,
computing an approximated AO factor only on the base of information about the
fragments survived at the depth test at the end of the rendering, such as their depth
and normal vector. Being a sort of post-processing procedure, screen-space AO is
performed in on the fly on each newly generated frame and it is independent both
from the number and the type of objects composing the 3D scene. On the other
hand, due to limited knowledge about the scene, the images produced by screen-
space techniques are usually noticeably less accurate than the ones obtained with
object-space algorithms. With regard to Molecular Graphics, Wahle and Wriggers
integrated a SSAO algorithm in the open source modeling software Sculptor [177],
while Eichelbaum et al. designed an improved SSAO technique for particle-based
data visualized as arbitrary glyphs.

A noteworthy application for the AO information obtained with object-space meth-
ods have been presented by Borland [178]. Driven by the aim of producing more
informative visualizations of the active sites of enzymes, Borland observed that
since AO factors measure how much a surface is shielded from the environment
light by surrounding objects, it implicitly provides an estimate of the “hiddenness”
of an object. Starting from this consideration, Borland invented a new visualization
technique to highlight internal cavities of molecular surfaces. The technique, called
“Ambient Occlusion Opacity Mapping” (AOOM), modulates the opacity and the

65

Chapter 2 Molecular Graphics

color of the molecular surface as a function of the AO factor: areas with an high
AO factor are rendered more opaque and with a different color with respect to
those with a low AO factor.

Advanced illumination effects like real-time shadowing are not only important in
the visualization of molecular structures, but also in the study of volumetric data.
Interested readers can refer to [179] for a recent survey on the subject.

As said, interactive computer graphics usually employs local illumination models,
eventually enriched with additional techniques to simulate shadow, mirror-like re-
flections and semi-transparent materials. A radically different approach is to make
use of rendering systems implementing a global illumination model, such as “ray-
tracing” systems. Until some years ago, ray-tracing was considered an “offline”
rendering method, since it took from several seconds to minutes (or even hours!)
to output the final image, thus preventing its use in real-time graphics. However,
thanks to the fact that the algorithm is inherently parallelizable, to the diffusion
of multi-core CPUs, to the support offered by modern GPUs to general-purpose
computations, and to the development of many algorithms and data structure to
accelerate the process, real-time ray-tracing is becoming possible. In particular,
BallView and VMD have integrated a real-time ray tracer system that can be
activated on demand as alternative to the default OpenGL rendering [180–182].
However, the frame rate obtainable with these techniques with today’s commodity
hardware is significantly lower than the one achievable with traditional graphics
API’s such as OpenGL or DirectX. This fact makes them probably suitable for
desktop uses, but not for VR applications where the scene must be continuously
rendered in stereoscopy and at high frequency (due to the movements of the user’s
head).

66

3 Virtual Reality in Molecular
Sciences

3.1 A brief introduction to Virtual Reality

Numerous definitions have been coined for to synthetically explain the meaning of
the term Virtual Reality (VR), some of which are reported below.

In their famous book on VR, “Understanding Virtual Reality” [183], William Sher-
man and Alan Craig define VR as:

“A medium composed of interactive computer simulations that sense the
participant’s position and actions and replace or augment the feedback
to one or more senses, giving the feeling of being mentally immersed or
present in the simulation (a virtual world).”

Richard Blade and Mary Padgett elaborated the following definition of VR for the
“Handbook of Virtual Environments” [184] :

“Model of reality with which a human can interact, getting informa-
tion from the model by ordinary human senses such as sight, sound,
and touch and/or controlling the model using ordinary human actions
such as position and/or motion of body parts and voice.”

Grigore Burdea and Philippe Coiffet, in their book “Virtual Reality Technology”
[185], provides the following definition of VR:

“Virtual Reality is an high-end user-computer interface that involves
real-time simulation and interactions through multiple sensorial chan-
nels.”

Finally, in a famous article titled “Virtual reality in scientific visualization” [186],
Steve Bryson defines VR as:

67

Chapter 3 Virtual Reality in Molecular Sciences

“Virtual reality is the use of computers and human-computer inter-
faces to create the effect of a three-dimensional world containing inter-
active objects with a strong sense of three-dimensional presence.”

From the above definitions it is possible to infer the key elements that characterize
VR:

• It is a computer-generated simulation of a synthetic (virtual) 3D world.

• It is interactive, i.e. the simulation must respond to user actions.

• It provides an advanced sensory feedback: the simulation produces artificial
stimuli directed to one or more sensory organs, sophisticated enough to be
perceived by the human brain as “authentic”.

• It induces the user in a mental state of immersion: the ability of the computer-
generated simulation of being interactive and to produce sophisticated artifi-
cial stimuli, fools the human brain, giving the user the mental feeling of being
“immersed” in the virtual world.

Sometimes the term “virtual environment” is used as a synonym for virtual reality
or virtual word [183].

Computer-based systems capable to satisfy these characteristics are said “Immer-
sive Virtual Reality” (IVR) systems. The adjective “immersive”, often implied,
distinguishes these systems from the so-called “Desktop VR” or “non-immersive
VR”. Like immersive systems, Desktop VR exploit computer graphics and digital
audio to simulate a 3D environment that can be navigated and manipulated by the
user. However, in standard desktop systems, the user usually observe the virtual
world through a monitor and interact with it by means of common input devices
such as mouse, keyboard, joystick etc. [187]. Common examples of Desktop VR
are video-games and visualization software for science and engineering.

Immersive systems, on the other hand, provide realistic stimuli for one or more
sensory channels in order to induce the user in a deep mental state of immersion in
the virtual world. Given the current technology, the sensory channels that usually
involved in a VR simulation are: visual, acoustic, haptic and vestibular channels.
"Visual channel is most important sensory channel for the human brain in the real
and, hence, in the virtual world. Other channels may be stimulated, according to
the type of simulation and to the available hardware. Of course, the greater is the
number of sensory channels involved, the greater will be the mental immersion of
the user. Tracking system are often employed to detect the position and orientation

68

3.2 Creating artificial sensory perceptions

of parts of the user’s body within the VR installation (at least his head and often
also his hands or hand-held devices), in order to produce a coherent and realistic
sensory feedback.

Until around fifteen years ago, there was a clear distinction between desktop and
immersive VR systems: these devices was very costly, that only specialized research
centers could afford them. Furthermore, their performance (in terms of latencies,
precision, image resolution etc.), was barely sufficient to provide an immersive
experience. Thanks to technological evolution, mainly driven by the demand of re-
alistic contents for entertainment, a sequence of increasingly sophisticated low-cost
devices have been developed to provide an immersive experience to games enthu-
siasts: from stereoscopic display technologies such as “3D Vision” from NVIDIA
[188], to multi-channel audio systems to better simulate the placement of audio
sources in the 3D space, up to desktop haptic devices for gaming (such as the “Fal-
con” from Novint [189]). However, these gaming stations still lacked of a tracking
system and the visual immersion was limited by the size of the monitor. Today, a
new generation of low-cost VR devices designed for gaming have just been (or will
be soon) released on the market. These includes, just to cite a few, Head Mounted
Displays (HMD) such as the “Oculus Rift” [190] and the “HTC Vive” [191], head-
phones with motion tracking to simulate spatial sound, such as the “3D Sound
One” from 3D Sound Labs [192], and the “Avatar VR” gloves by NeuroDigital
Technologies [193] (in pre-order at the time of writing), which promise to provide
haptic feedback and relative positional tracking of the fingers1. Despite their lim-
ited cost, these devices are more performant, accurate, lightweight and ergonomic
then their costly ancestors of a decade ago, and have the potential to finally bring
IVR technologies in homes, schools and small research centers.

3.2 Creating artificial sensory perceptions

This section briefly discuss the devices used in IVR to mislead the human brain,
inducing it to interpret computer-generated stimuli as “authentic”.

3.2.1 Visual feedback

As said, the visual system is the main sensory channel by means of which humans
perceive the external world. The main “depth cue” that the brain exploit to perceive

1Absolute positional tracking is possible in conjunction with the HMD’s own tracking system.

69

Chapter 3 Virtual Reality in Molecular Sciences

distances and sizes is the so called “binocular disparity”, that is the fact that the
two eyes provides a slightly different view of a same observed object. The ability of
the human brain to reconstruct a three-dimensionality mental model by analyzing
the differences between these two images is called “stereopsis”. IVR systems employ
stereoscopic displays in order to provide different images to the two eyes. If these
images are properly generated by taking into account the position of the user’s eyes
(see section 6.4 for details), the human visual system can be easily mislead, inducing
the user to see a three-dimensional object that does not exists. The stereoscopic
displays mainly used in IVR are:

• HMD displays, where a one or two small high-resolution screens are integrated
within the HMD helmet and placed in front of the user’s eyes.

• Active stereo projectors / monitors: they alternate the display of the images
directed to the two eyes at high frequency (usually at 120Hz). The user wear
a special pair of glasses that alternatively, and in sync with the display, make
each of the two lenses opaque (black) or transparent, so that the each eye
can see only the related image.

• Passive stereo projectors: they exploit light polarization to filter the images
for the two eyes. In particular, left and right images are emitted with a
different polarization of the light (commonly from two distinct projectors).
The user wear a special pair of glasses, having polarized lenses to filter the
images directed to the other eye. Requires a projected surface that preserve
the polarization of the light. Recently, passive polarized LCD monitors was
became available.

It is important to note that the effectiveness of binocular disparity in providing
depth perception decrease with the distance from the observed object. For distant
objects, or when a single monocular image is available, the human brain is still able
to infer depth information by focusing on the so called “monocular depth clues”.
Notable examples of monocular depth clues are: the shadow cast by an object
when occluding a light source; the visual occlusion of an object caused by another
object lying in front of it; the decrease of the apparent size of an object when
its distance from the observer increases, known as perspective; the atmospheric
perspective, that is the effect according to which the saturation of the colors of
objects slowly decrease with the distance from the observer, and their contours
become increasingly blurred, up to blend with the color of the atmosphere on the
horizon; the motion parallax, that is the differences in the apparent movement of
objects lying at different distances when the observer changes his point of view;

70

3.2 Creating artificial sensory perceptions

etc. Simulating these cues in computer-generated images is important both to
improve the realism and the meaningfulness of the rendered images (as discussed
in section 2.2.5), especially in absence of stereoscopic displays.

3.2.2 Acoustic feedback

Besides visual rendering, simulating audio sources for the virtual world can further
improve the realism of the simulation. Since VR reality deals with 3D worlds, the
positioning of a sound source in space should be simulated. The ability of the
human brain to determine the direction and distance of a sound source is known as
“localization” [183]. As in the case of the visual system, the brain tries to infer the
direction and the distance of a sound source on the base of a set of clues. As an
example, a sound source lying on the right of the listener will be perceived by the
right ear earlier and louder with respect to what perceived by the left ear. These
and other principles can be used to derive a transfer function that, if applied to
an unlocalized sound, produces a modified sound that will appear to the user as
coming from a specific location in space. This process is called “spatialization”
[183]. In order for a sound source to appear fixed within the virtual world, the
position and the orientation of the listener’s head must be one of the parameters
of the transfer function. In simple cases, such as video-games, it is sufficient to
use the position and the orientation of the character within the virtual world. In
IVR systems such as the CAVE or HMD, where the user can physically turn his
head and move within the virtual world, the position and the orientation of his
own head (detected by a tracking system) should be used as parameter of sounds
spatialization.

If the virtual environment is a model of a real or realistic location (such as a theater
or a canyon), emitted sounds can also be manipulated according to a realistic model
of propagation of the sound waves, by taking into account how the elements of the
virtual scene reflect or absorb sounds.

Finally, sounds can be employed as a as a medium to convey quantitative infor-
mation, both as alternative to or a complement of visual representation of data:
the use of non-speech audio to represent and convey information is called “soni-
fication” [194]. Some examples of virtual environments exploiting sonification to
provide information about chemical data will be discussed in section section 3.7.

71

Chapter 3 Virtual Reality in Molecular Sciences

3.2.3 Haptic feedback

The Oxford Dictionary of English2 defines the term “haptic” as:

“Relating to the sense of touch, in particular relating to the perception
and manipulation of objects using the senses of touch and propriocep-
tion”

Note that, in this context, “proprioception” is used as synonym of “kinesthesia”,
defined in [183] as “the perception of movement or strain from within the muscles,
tendons, and joints of the body”.

Haptic devices employed in VR allows the user to perceive the shape, the weight,
the roughness etc. of a virtual object. Usually, they acts as both input and output
devices, by tracking the position of a part of the body (e.g. the fingers or the
whole arm) or of an object manipulated by the user, and providing touch or force
feedback in output. Actually, the term “haptic devices” is a generalization for two
different types of devices, called “tactile displays” and “kinesthetics displays”.

Tactile displays stimulate the nerve sensors under the skin, so to simulate the
perception of surface features like temperature, texture and roughness, but does
not provide force feedback [183, 195]. Common examples of tactile displays are
sort of gloves equipped with actuators under the fingertips, such as the “Avatar
VR” gloves by NeuroDigital Technologies [193].

Kinesthetic displays, instead, are electromechanical devices in contact with the
hands of the user (because directly connected or because provide some sort of
object that can be manipulated) that produce forces in response to the user’s
actions [183, 195]. These devices can be used to simulate the mass of a virtual
object manipulated by the user, the resistance of an object to being penetrated,
the effects of force field etc. An example of a popular kinesthetic display is the the
Geomagic Touch [196] (formerly Sensable Phantom Omni).

3.2.4 Vestibular feedback

The vestibular system helps humans to maintain equilibrium, coordinate move-
ments, and perceive accelerations. Common vestibular “displays” are moving plat-
forms equipped with seats, usually employed in vehicle simulators or theme parks
[183, 195].

2https://en.oxforddictionaries.com

72

3.3 Coherency of the sensory feedback and VR sickness

3.3 Coherency of the sensory feedback and VR
sickness

One of the major challenges when developing a VR application is producing a
coherent output for the different sensory channels, both from a spatial and temporal
point of view. In particular, each generated sensory output must ensure a spatial
coherence with the other types of sensory stimuli, with the position of the user and
with the position of real-world objects (such as input devices) located within the
tracking area. To this end, it is good practice to model the virtual world using a
real-world unit of measure for sizes and distances, and to define a common reference
frame for both virtual and real worlds. In other words, virtual objects and physical
entities (such as the user, input devices and displays) should logically coexist.
This usually involves the use of several changes of reference frame transformations,
since input and output devices may use a specific local coordinate system, while the
application logic should work in the global reference frame. Temporal coherency
is another critical factor: latencies introduced by input and output devices and by
the program should be short enough to not be noticed by the user. The perception
of conflicting stimuli among the sensory channels (and in particular between the
visual and vestibular systems) seriously compromise the sense of immersion in the
virtual world and, even worse, may cause dizziness, headache or nausea. This latest
phenomenon is known as “VR sickness”, “simulator sickness” or “cybersickness”
[183, 197].

3.4 IVR systems

The most diffused types of IVR systems are the “Powerwall”, the “CAVE” and
the “Head Mounted Displays”.

The Powerwall is a large rear-projection stereoscopic display. Usually the user’s
head is tracked, thus allowing the application to generate correct stereoscopic im-
ages by adjusting view and projection parameters in real-time (see section 6.4 for
details). User interaction is made possible by the use of hand-held pointing de-
vices called “wands” (allowing a complete mobility), haptic interfaces (providing
touch/force feedback at the cost of reduced freedom of movement) or mobile devices
equipped with a touch screen (e.g. tablets).

The CAVE (recursive acronym for “CAVE Automatic Virtual Environment”) is a

73

Chapter 3 Virtual Reality in Molecular Sciences

room-like installation whose walls (and sometimes the floor and the ceiling) are
large stereoscopic displays (see Figure 3.1). The first CAVE system was designed
and built at the Electronic Visualization Lab (EVL) at University of Illinois Chicago
in early 1990s [198, 199]. The number of projected surfaces can vary, but common
installations have from 3 to 6 screens. A CAVE-like system with 9 screens (eight
walls forming an octagon, plus the floor), called the “Octave”, has been built at
the University of Salford (UK)3. Recently, the CAVE2 was inaugurated at the EVL
[200]. It is composed of 72 polarized LCD monitors arranged cylindrically, forming
a large panoramic stereoscopic display. A cluster of 36 workstation is used to render
images on the 72 monitors.

Figure 3.1: CAVE theater at Scuola Normale Superiore.

With respect to the Powerwall, the CAVE provides a more immersive experience,
since the user fells surrounded by the virtual world. Special synchronization of
video signals (known as “Gen-lock”) is required in order to ensure that the images
directed to the right and a left eyes are displayed in synchrony across the multiple
displays (and with the shutter glasses, if used). Until some years ago, CAVE
systems was driven by a specialized workstation equipped with multiple graphics
cards or by a cluster of personal computers, since a massive graphics computing
power is required to render stereoscopic images for multiple displays at a proper
frame rate. Thus special software had to be developed for these systems. Thanks
to technological evolution, is now possible to drive a CAVE with 4 screens with
a single workstation equipped with high-end commodity hardware, as in the case
of the CAVE theater at SNS, allowing to accelerate the development of dedicated
applications (as discussed in chapter 4). Finally, as in the case of Powerwalls, the

3http://www.salford.ac.uk/octave

74

3.4 IVR systems

user is susually tracked, and can interact with the system by means of wands,
haptic interfaces or mobile devices.

Head-Mounted Displays (HMD) are helmets equipped with one or two small dis-
plays placed in front of the user’s eyes. They provide full visual immersion, since
the user is not able to see the outside world. The helmet is tracked, so to ad-
justs the visible region of the virtual world according to the orientation (and in
some cases also the position) of the user’s head. Previous generations of HMD was
characterized by a limited resolution and field of view. Furthermore, technology
was not mature enough to provide low-latency tracking and high refresh rates of
the images (at least 90Hz) leading to dizziness and nausea. Current generation
of high-end HDM, such as the “Oculus Rift” [190] and the “Vive” from HTC and
Valve [191] (Figure 3.2), solved almost completely these problems. Furthermore,
they are commercialized at an affordable price (less then 1000$) and are gaining
dedicated support by many graphics and game engines, facts that may allow them
to gain a leading position in IVR in the near future. User can interact with a large
range of devices, such as gamepads, dedicated wands, fingers-tracking devices (e.g.
“Leap Motion” [201]), desktop haptic devices (e.g. “Geomagic Touch” [196]) and
even gloves with haptic feedback (e.g. “Avatar VR” [193]).

Figure 3.2: User wearing the HTC Vive head-mounted display.

Other types of IVR installations includes “Dome” theaters, equipped with an hemi-
spherical display (such as “iDome” [202]), and the “Workbench” (such as the “Re-
sponsive Workbench” [203] or the “ImmersaDesk” [204]), in which the stereoscopic

75

Chapter 3 Virtual Reality in Molecular Sciences

screen is placed in horizontal or oblique position, so to be used as an interactive
desk or workbench.

An interesting IVR installation, built at the EVL of the University of Illinois at the
end of the 1990s and designed mainly for chemical applications, was the Protein
Interactive Theater (PIT) [205]. The PIT was a VR system for two users, equipped
with two stereo displays oriented at 90° to each other and mounted on top of a
common desk. The two users sat at the table, in front of each screen, and wore
a pair of shutter glasses whose location was monitored by a tracking system. The
system was designed so that the visualized 3D objects would appear co-located to
the two users. In other worlds, both users saw the same 3D objects as lying at
the same position on top of the desk, thus allowing to co-operate on a same task.
Each of the two users could interact with the system by means of an hand-held
pointing device (wand), and by means of a traditional LCD monitor with mouse
and keyboard. The first presented application for the PIT was a crystallography
application named CORWIN (for “coupled reciprocal windows”), which allowed to
manipulate molecules to perform protein-fitting tasks [205].

3.5 Augmented Reality

While the aim of Virtual Reality is to replace the perception of the user of the
real world with that of a virtual world, Augmented Reality (AR) tries to enrich the
real world with additional computer-generated content. In AR systems, the user
usually wear a HMD which allows him to see, at the same time, the real world
and computer-generated objects. AR generated contents should help the user in
performing complex tasks, such as to assemble or repair a complex machinery, or
perform a surgical procedure. Although AR is considered a sub-field of VR, it has
a different objective (as explained before) and different challenges: AR systems
need to acquire images of the physical world, precisely detect the position of both
the user and relevant objects in it, and generate images of synthetic elements to be
“placed” in the world, with a precise position and alignment. A discussion of AR
technologies and applications is beyond the aims of this thesis. Interested readers
can refer to the surveys on the subject by Billinghurst et al. [206] and Costanza et
al. [207].

76

3.6 How Scientific Visualization can benefit from IVR

3.6 How Scientific Visualization can benefit from IVR

As already discussed, scientific experiments and numerical simulations produce
a large amount of data, often in the form of three-dimensional structures and
volumetric dataset. Due to their three-dimensional nature, stereoscopic displays
can definitely have a positive impact on the understanding of these data, as well
as on the visual identification of relations, patterns and anomalies in them. Not
surprisingly, almost every computer program for scientific visualization developed
so far had/have the ability to produce stereoscopic images. However, as explained
in section 3.2, binocular vision is not the only means exploited by our brain to
construct a three-dimensionality mental model of the world surrounding us and
to provide understanding about phenomena happening in it. Important is also
the ability to physically explore the world with the movements of our our body,
in order to both observe the objects from different perspectives and to encourage
spatial judgments (of sizes, distances and angles) based on proprioception4. In VR,
this physically exploration is simulated by tracking the position of the user’s head.
With the same aims, the ability of our brain to process sounds can be exploited
through data sonification, while the stimulation of our kinesthetic sensory system
by means of haptic interfaces can be a good means for gaining a deep understanding
of the forces occurring in the system under study.

Of course, the reasons discussed so far are only expectations on the actual benefits
that can be gained through the employment of IVR technologies in scientific visu-
alization. However, several specific studies have been conducted in order to find
evidences in support of this hypothesis. An example, is the work of Laha et al.
[209] on the effects induced by visual immersion on the visual analysis of volume
data. In the study, the candidates had to perform a set of tasks related to the
visual analysis of two different datasets visualized in direct volume rendering. The
experiments has been conducted in a CAVE system. In order to determine the
specific effects deriving from the use of stereoscopy, head tracking, and multiple
surrounding displays, the test has been repeated multiple times, enabling or dis-
abling in turn these three technologies. The results proved that the most positive
effects of visual immersion occurs in tasks involving complex search of features in
the dataset. Overall, all the three technologies shown to lead benefits, but the use
of multiple surrounding displays had the most positive effects on the widest range
of tasks. Later, a similar study has been conducted, having the same aims and

4Defined in [208] as “the ability to sense the relative positions of parts of our bodies and the
amount of muscular effort being involved in moving them”.

77

Chapter 3 Virtual Reality in Molecular Sciences

methodology, but focussed on the isosurface representation of volume data [210].
The results showed that visual immersion lead to positive effects in 12 of the 15
proposed tasks. In particular, stereoscopy had the strongest effects on performance
among the three factors. In another study, related to the visual representation of a
class of second-order tensors volumes by means of streamtubes and streamsurfaces,
the authors performed a visualization test in a CAVE environment to verify possible
benefits for the comprehension of the data in question [211]. The representation
of a dataset extracted from a human brain was showed to doctors and medical
students. The opinions of the user gathered after that experience suggested that
visual immersion and interactivity lead to a better understanding of (the showed)
complex geometric models. Other positive feedbacks on the employment of these
technologies are reported by many of the works discussed in section 3.7.

Given similar evidences, and despite of the fact that plenty of research projects
have been developed with that aim, the penetration of VR in sciences (as well
as in other fields) is still very limited. In a famous report on IVR for scientific
visualization published in 2000, van Dam et al. [3] identify the high costs and
immaturity of both hardware and software among the main factors of the low
adoption of IVR technologies. Sixteen years after that report, the situation looks
significantly more favorable: the latest generation of IVR devices, having far lower
costs and significantly better performance of their ancestors, may be the key for a
massive adoption of IVR in sciences, both for research, education or dissemination
purposes. The only obstacle, at this point, is the avaiability of proper software
capable to fully exploit the potential of these technologies.

3.7 Research on IVR in Molecular Sciences

This section briefly discuss some noteworthy examples, as well as some recent pro-
posal, of research projects having the aim to take advantage IVR technologies in
molecular sciences. They will be presented in chronological order. Finally, a brief
overview about VR support in well-known molecular graphics system is given. Since
visual feedbacks are of primary importance for the aims of this thesis, the following
discussion will focus on those system making a appreciable use of IVR visual dis-
play technologies. However, also haptic devices are rapidly gaining in importance
in this field, as evidenced by the vast research in the field: just to cite a few, studies
have been conducted to exploit haptic devices for the interactive steering of molec-
ular mechanics simulators and molecular dynamics [212–218], docking [2, 219–221],

78

3.7 Research on IVR in Molecular Sciences

real-time Quantum Chemistry models for studying chemical reactivity [222–226],
interactive fitting of molecular structures into electron microscopy density maps
[227], etc.

Project GROPE [2] represents the first attempt to exploit IVR technologies to
solve computational chemistry problems. It started in 1967 at the University of
North Carolina at Chapel Hill, with the aim to develop a molecular docking system
exploiting stereoscopic graphics and an haptic device with 6 degrees of freedom
(dof) to provide feedback about (approximated) inter-molecular forces. Due to
the complexity of the project and the absence or immaturity of proper hardware,
the project was organized in four sequential stages spanning over 20 years, so to
gradually develop the required software and hardware technologies. The final goal
of the project, i.e. the development molecular docking system equipped with a
6-dof haptic device providing force feedback based on the evaluation of molecular
force-fields, was reached at the end of the 1980s [2]. The effectiveness of system
was evaluated by asking twelve experienced biochemists to dock four drugs into
the active site of a protein. The users had to lower the potential energy of the
system by moving and orienting the drug, as well as changing its conformation by
adjusting six twistable bonds, up to reach a range of known real energies. The
result showed that force-torque feedback only slightly improved the completion
time. However, due to the complexity of the task and the large number of degrees
of freedom (12 dof) provided to the users, about one third of the time was spent
in thinking and observing the system, in order do chose subsequent manipulations.
Excluding the time spent in this way, docking with force-torque feedback resulted
1.75 times faster. Furthermore, users reported a better understanding of the details
of the receptor site and its force fields as well as of the reasons why each candidate
drug docks well or poorly.

Short after the realization of the first CAVE at the Electronic Visualization Lab-
oratory (EVL) of the University of Illinois at Chicago [198, 199], several scientists
from various disciplines was invited to visualize their research data in the CAVE.
A report on their experience was published in 1993 in a paper entitled “Scientists
in wonderland” [228]. Among the presented case studies, two was related to the
visualization of pre-computed molecular dynamics.

In 1995, Papka et al. [229] developed a application for CAVE systems for moni-
toring a running parallel molecular dynamics with interaction decomposition [230].
In this type of molecular dynamics, job decomposition is operated on inter-atomic
interactions (forces) instead of atoms or region of space. Since this requires the

79

Chapter 3 Virtual Reality in Molecular Sciences

use of complex scheduling algorithms, visualization was proposed to monitor the
correctness of the tested scheduling algorithm and the achieved load balancing.

A year later, Akkiraju et al. presented a software to geometrically construct molec-
ular surfaces and view them inside a CAVE [231].

In the same year, Haase et al. presented VRMol [232], a molecular viewer featuring
stereoscopic rendering on a Powerwall, the use of a data glove and a 3D mouse
as input devices and state-of-the-art rendering algorithms (for the time). In the
same period, Cruz-Neira et al. developed the Virtual Biomolecular Environment
(VIBE) [233], an interactive and immersive molecular dynamics simulation. It
was constituted by an IBM SP Power Parallel computer running a MD simulator,
connected with a high-speed network to the CAVE. Multiple molecules could by
shown at the same time. The user could move and rotate them with a wand.
Those actions was notified to the MD simulator, who computed the evolution of
the system on the base of simulated inter-atomic interactions.

An interesting application called PaulingWord [234, 235], initially conceived as
an educational virtual environment where students could explore molecular struc-
tures and interact with them, was presented in 1998. Supporting different types of
VR systems, such as CAVEs and workbenches, this application allowed the user to
explore molecular structures (loaded from PDB files) according to various represen-
tations. The ability to attach a structure to the wand was also provided, allowing
basic didactic docking experiments. The main innovation brought by PaulingWord,
consists in the fact that is also was a Distributed Virtual Environment (DVE): two
or more users from different places of the real world could share the same virtual
environment and collaboratively interact with the molecule.

In the same year, Ai and Frohlich presented RealMol [236], a VR molecular dy-
namics simulation. With respect to VIBE, it supported Powerwalls and HMD in
addition to CAVE systems. It also provided some further feature, such as the
ability to compute and show hydrogen bonds.

In 1999, Prins et al. [237] modified a previously developed system for the interactive
steering of molecular dynamics, called Steered Molecular Dynamics (SMD) [238],
in order to be used in the Protein Interactive Theater (PIT) [205] (see section 3.4).
Prins et al. decided to port SMD on a VR system due to the difficulties encountered
in both understanding the three-dimensional motion of atoms when observed on
a 2D monitor and in defining three-dimensional forces with a mouse. SMD made
use of VMD [71] as molecular graphics system interfacing the PIT with the MD

80

3.7 Research on IVR in Molecular Sciences

simulator.

In the same period, a VR application for protein docking for the Immersadesk
workbench [204], called VRDD, was developed by Anderson and Weng [239]. The
user could search for a good fit by manipulating the two molecules with the wands,
as if it would handling solid models. A collision detection procedure was performed
to avoid clashes between ligand and receptor (according to the vdW radii). A
metallic sound was also emitted in the case of clashes. The receptor-ligand binding
free energy was computed in real time and showed as floating text. The program
kept track of the best ten fits (i.e. the positions and orientations of the ligand having
the lowest binding free energy) found during the manual docking. The final result
was then computed off-line, by an automatic local refinement procedure based on
the Metropolis Monte Carlo algorithm [240]. The authors tested the effectiveness of
the system on two reasonably difficult cases and a very hard one, obtaining correct
and accurate results for the first two, but failing to on the most difficult case.

An alternative to haptic devices in providing feedback when defining external forces
for an interactive MD simulation was proposed by Koutek et al. in 2002 [241].
They implemented a VR steering environment called MolDRIVE, in which a vir-
tual spring was used as visual feedback for the applied force. The virtual spring,
connecting the interaction device handheld by the user with the manipulated atom,
was drawn stretched and bent in accordance to the force applied to the atom.
MolDRIVE used the Responsive Workbench [203] as VR system and was inter-
faced with a MD simulation program running on a supercomputer.

In 2005, Ghadersohi et al. presented a multi-platform networked collaborative
molecular viewer and editor, called SnB Visualizer, supporting desktop computers
with various operating systems as well as CAVE theaters [242]. The core of the
system was a database storing information about molecular structures and their
components. Remote clients running on desktop computers or CAVE systems could
load these structures from the database, so to visualize and edit them. Every change
made to a structure was notified to the database, who propagated the event to the
other connected remote clients operating on the same molecule.

Another DVE for molecular modeling was created in the same period by Chastine
et al. [243]. Called AMMP-Vis, it allowed multiple users from different physical lo-
cations to visualize and manipulate molecular structures. The proposed equipment
for each user included a HMD, a VR glove and a joystick. The joystick allowed
the user to navigate within the virtual world, while the glove was used to select
a group of atoms and bonds by drawing a three-dimensional bounding box with

81

Chapter 3 Virtual Reality in Molecular Sciences

a “pinch” gesture. Once selected, the elements cold be moved and rotated with
a “grab” gesture. AMMP-Vis made use of two servers: one was responsible to
propagate the movements and the actions of each user to the clients of the other
participants (so that all the participants could have a shared and coherent view of
the virtual environment), while the other listened for atoms movements, notified
them to a molecular dynamics simulator, and transmitted the updated state of the
simulation to the clients.

In 2009, Block et al. presented KinImmerse, a molecular viewer for VR systems.
It was able to visualize molecular structures and properties from kinemage files
(see section 2.1.3). KinImmerse was primarily developed for the Duke Immersive
Virtual Environment (DiVE)5, a 6-sided CAVE system at the Duke University
(USA). By interacting with wand, user was able to move, scale and rotate the
molecule, to switch between different conformations for the structure (if present)
and to show or hide individual elements. Furthermore, the user was able to take
annotations in the form of freehand lines in 3D. Finally, it was possible to pick a
point and translate multiple structures on it, so to co-center them. Modifications
operated on the 3D scene could then be stored in a kinemage file.

In the same year, the results of the Combination of Sensorimotor Renderings for
the Immersive Analysis of Results (CoRSAIRe) project was published [219]. Its
purpose was the development of an interactive protein-docking system exploiting
VR technologies. Rendering was performed on a CAVE system using a customized
version of PyMol [84]. A 3D mouse and an haptic device was used to manipulate
ligand and receptor. Since several types of information are involved in finding
a good docking configuration, the authors decided to implement different types
of sensory feedback (multi-sensory rendering), so to avoid a overload of visual
information. As examples, force-feedback produced by the haptic device was used
to reproduce Van der Waals and electrostatic interactions, while electrostatic and
Van der Waals energies of the complex were sonificated. An accurate series of
interviews was conducted with experts in the field, in order to determine advantages
and drawbacks of existing tools, to design a proper multi-sensory interaction, and
to set up a workflow combining the immersive docking performed by the user
with traditional automatic computational approaches. The aim was to exploit
the expertise of the user to reduce the conformational search space during the
automatic phase, thus reducing the total time required to obtain a small number
of good configuration to be experimental validated.

5http://virtualreality.duke.edu/

82

3.7 Research on IVR in Molecular Sciences

Soon after the inauguration of the CAVE2 system (see section 3.4) at the EVL of
the University of Illinois at Chicago, Reda et al. presented a dedicated molecular
viewer [244] (2013). This viewer visualized static and dynamic molecular struc-
tures with an hybrid representation, combining the traditional ball-and-stick with
the volumetric rendering of uncertain molecular interfaces proposed by Knoll et
al. [171]. In the paper, the authors also describes their distributed ray-marching
algorithm used to render both the electron density based interface of the molecule
(as a volume) and the structure in ball-and-stick representation. It was specifically
designed as a distributed algorithm, so to be executed on the cluster of workstation
driving the CAVE2.

In 2014, Glowacki et al. proposed a system where multiple users could interact
with a MD by means of body movements [245]. The system employed an array
of commodity depth sensors to track human forms. Such forms were translated
in energy landscapes to drive the simulation. A visual representation the ongoing
dynamics, including the human-shaped energy landscapes, was displayed on mul-
tiple screens. An additional acoustic feedback was provided, resulting from the
sonification of the atomic dynamics.

One year later, Marangoni and Wischgoll presented a multi-screen system designed
to compare and identify differences among multiple conformations of a same struc-
ture [246]. The system employs 27 50” stereo displays arranged in three adjacent
walls. With the default settings, a different conformation for the molecule is dis-
played on each screen. Head-tracking allows both to generate view-dependent
stereoscopic images and to select the structure to be manipulated (by simply look-
ing at it). Hand gestures, detected by means of a data glove, allow to select a
manipulation modality among panning, rotation, or scaling. Arm movements, in-
stead, are tracked to compute direction and intensity of the transformation applied
to the selected model.

Recently, Stone et al. proposed a method for the generation of near real-time high
quality omnidirectional stereoscopic images and their fruition via HMD [182]. The
proposed method has been implemented in VMD and it is conceptually organized
in three modules, running in parallel. The first is a GPU-accelerated ray-tracing
engine, having the responsibility to generate the panoramic stereoscopic images.
The second module, instead, is responsible for producing images for the HMD.
On the base of the orientation of the user’s head, it identifies the portion of the
panoramic image to be displayed, applies a proper corrective projection on it, and
transmit the result to the HMD. It also detects user inputs and translations of the

83

Chapter 3 Virtual Reality in Molecular Sciences

head, which provoke changes in the 3D scene or in the point of view. When these
events occurs, the generation of a new panoramic stereoscopic image is requested
to the 3D engine. This decoupling between rendering and HMD visualization is
necessary because HMDs needs new images at high frame rates (usually 90Hz), a
frequency that ray-tracing engines are not able to satisfy. Actually, the generation
of omnidirectional stereoscopic images is so computationally expensive that, in the
case of complex scenes, a cluster of GPUs is required. In that scenario, the local
rendering engine acts as a proxy, that dispatch the request of rendering a new image
to the remote GPU cluster, receives and decodes the result, and forward it to the
module driving the HMD. The authors point outs that, although in the paper a
HMD is used, with minor modifications the same technique could be applied to
other types of IVR systems, such as the CAVE.

Among the most popular molecular graphics systems, VMD has a relatively good
support for VR systems. Actually, as Stone et al. explains in [247], the original
name of the software was “VRChem” since it was originally designed primary for
IVR systems like the CAVE or the ImmersaDesk [204]. VMD supports those visual
rendering systems by means of one of the following libraries: CAVElib (originally
developed in early 1990s at EVL for the first CAVE [199] and still distributed by
Mechdyne [248]), FreeVR [249] and VR Juggler [250]. However, the first two solu-
tions requires specialized multi-GPU workstations in which the rendering-related
data structures are accessible both by the master application and by the render-
ing slaves via shared memory. Other solutions (such as VR Juggler) allows to use
VMD on cluster-baser IVR system (like many modern CAVEs), at the cost of a
limited possible range of interactions [247]. The reason is that the internal state of
a sophisticated application as VMD is too complex to be kept in sync in real time
on multiple processes running on multiple machines (this problem will be discussed
in depth in chapter 4). As regard to input devices, VMD supports a vast range
of 6-dof devices (such as wands and 3D mouse) and haptic devices, thanks to the
VRPN library [251]. Recent versions of VMD allows to create high quality 360°
videos that can be viewed with HMDs [181]. Finally, VMD implements a strong
support for the interactive steering of molecular dynamics simulations [212, 247].

As regard to other well-known molecular graphics systems, a commercial VR plugin
for PyMOL [84] is developed and distributed by Virtalis [252], although experimen-
tal solutions exists to run PyMOL in CAVE-like system by means of the Chromium
library [253] (as done by the Center for Information Technology of the University
of Groningen in Netherlands [254]), or to support the Oculus Rift [255]. YASARA

84

[87] has some support for VR devices in its commercial versions, while experimental
support of UnityMol [103] for modern HMDs was recently announced [256]. Also
Amira [257], a commercial 3D visualization and analysis software for Life Sciences,
has dedicated extensions for molecular visualization and CAVE-like system.

85

4 Included Paper:
“Moka: Designing a Simple Scene
Graph Library for Cluster-Based
Virtual Reality Systems”

VR systems employing multiple screens, such as CAVE-like systems [198, 199],
are among the most sophisticated IVR installations. Until a few years ago, these
system commonly employed of cluster of PCs, equipped with high-end hardware
and interconnected in a high bandwidth Local Area Network (LAN), in order to
have enough graphics computing power to render stereoscopic images for multiple
displays at a proper frame rate. Although widespread, this solution lead to an in-
crease of complexity when developing dedicated software. In fact, in these systems,
the application consists in several processes running in parallel on the nodes of the
cluster, a subset of which is responsible for performing a specific part of the entire
rendering process (e.g. for each screen, the rendering of the related stereoscopic
images is delegated to a dedicated process). In order to produce coherent images
across the screens, a strict data synchronization between the processes is required.

Since the support for CAVE-like systems, like the one installed at Scuola Normale
Superiore, was one of the main requirements for Caffeine, one of the firsts problem
to solve in its development was to find a reasonable solution to the above prob-
lem. Commercial solutions for the development of cluster-based VR application
existed at the time, such as UNIGINE [258], MiddleVR [259], TechViz XL [260] or
Vizard [261]. However, some of them were expensive solutions, while others they
was designed mainly for fields like architecture, vehicles simulation, manufacturing,
entertainment, etc., instead of scientific visualization and molecular graphics. As
regard to free or open-source alternatives, the scenario was quite discomforting,
among simplistic solutions and/or lack of a proper documentation and/or discon-

87

tinued development. As Professor LaValle1 points out in his recent book about VR
[208]:

“In a perfect world, there would be a VR engine, which serves a
purpose similar to the game engines available today for creating video
games. If the developer follows patterns that many before her have
implemented already, then many complicated details can be avoided by
simply calling functions from a well-designed software library. However,
if the developer wants to try something original, then she would have
to design the functions from scratch. Unfortunately, we are currently a
long way from having fully functional, general-purpose VR engines.”

For the above reasons, I designed and developed a distributed scene-graph library
called “Moka” on top of OpenSceneGraph [262], an open source high performance
OpenGL-based graphics engine used in a wide range of applications (from games
to scientific visualization). Moka was developed mainly as a base layer on top of
which to build Caffeine. However it was designed with generality in mind, in order
to be employed in others scientific visualization applications.

In this chapter, I included a paper which discuss the motivations that lead to the
creation of Moka, its design and its features. It was presented by Dr. Andrea
Brogni at the conference “SALENTO AVR 2014, First International Conference
on Augmented and Virtual Reality” which took place in Lecce (Italy) on 17-20
September 2014, and published in the conference proceedings by Springer [6].

Afterwards, thanks to the latest advances in video card technology, it has became
possible to drive a 4-sides CAVE system at full resolution with a single computer
equipped with multiple NVIDIA Quadro GPUs in Scalable Link Interface (SLI)
[263] configuration. With the aim to be able to spend more time on the devel-
opment of new features for Caffeine (instead of spending time on improving and
extending Moka), as well as to simplify the implementation of other VR appli-
cations in development at the SMART laboratory, it was decided to convert the
CAVE installation at SNS from a cluster-based to a single machine configuration.
As a consequence, the Moka library was discontinued: the code related to the dis-
tributed scene graph was removed from Caffeine, while the remaining components
of Moka (such as the module for the ray-casting of spheres and cylinders and the
configuration tools) are still part of the Caffeine’s code.

1Steven M. LaValle, Professor at University of Illinois and Chief Scientist of VR/AR/MR at
Huawei Technologies Co. Ltd. http://msl.cs.illinois.edu/~lavalle/

88

© Springer International Publishing Switzerland 2014
L.T. De Paolis and A. Mongelli (Eds.): AVR 2014, LNCS 8853, pp. 333–350, 2014.
DOI: 10.1007/978-3-319-13969-2_25

Moka: Designing a Simple Scene Graph Library
for Cluster-Based Virtual Reality Systems

Andrea Salvadori, Andrea Brogni(
), Giordano Mancini, and Vincenzo Barone

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
{andrea.salvadori,andrea.brogni,giordano.mancini,

vincenzo.barone}@sns.it

Abstract. Clusters of PCs are widely employed in multi-screen immersive vir-
tual reality systems. While this allows reducing the realization costs, it leds to
an increase of complexity on the software side, since they require the develop-
ment of distributed applications. Over the years, many frameworks supporting
cluster rendering have been proposed, but none has established itself as the de-
facto standard for immersive virtual reality application development. A new
trend that is taking place consists in adding cluster-rendering support to one of
the many freely available 3D engines. In this paper, we propose a convenient
method to develop a lightweight distributed scene graph on top of a generic
graphics engine. In particular, we describe the main mechanisms and design
choices behind “Moka”, a library for the development for cluster-based virtual
reality applications. We also present “Caffeine”, a virtual reality molecular vis-
ualizer based on the Moka library.

Keywords: Virtual reality · Cluster-based rendering · Molecular visualization

1 Introduction

Many immersive virtual reality systems (e.g. CAVE-like systems [1]) use multiple
screens to surround the user with graphical representations of virtual environments, in
order to increase the sense of immersion. The first systems of this kind em-
ployed expensive shared-memory graphics workstations with multiple video outputs.
Thanks to the technological advances of personal computers’ hardware, it has been
possible to replace dedicated graphics workstations with a cluster of PCs equipped
with high performance CPUs and GPUs, interconnected in a high bandwidth LAN.
While this approach allowed the realization of multi-screen virtual reality systems at a
fraction of the original cost, it led to an increase of complexity on the software side.
In fact, these systems require the development of distributed applications consisting in
at least one process for each node of the cluster, each one responsible to produce im-
ages for one of the screens of the Virtual Reality (VR) system, implying strict syn-
chronization in order to keep coherency between screens.

In the following, we use the terms “cluster rendering” (CR) or “clustering” to refer
to algorithms and applications related to the development of interactive graphical
distributed applications, capable of producing a coherent and synchronized rendering
on a cluster-based multi-display system.

334 A. Salvadori et al.

Many of the techniques described are also employed in the realization of Net-
worked Virtual Environments (NVEs) [2], although there are some important differ-
ences that must be taken into account. In particular, NVEs are designed to handle
large numbers of network users, which concurrently modify the state of the virtual
world. However, since each user has his/her own “vision of the world”, transient in-
consistencies are tolerated. In the case of applications for multi-screen virtual reality
systems, instead, the virtual world is usually observed and manipulated by one or at
most few users, but a much more strict synchronization is required to avoid inconsist-
ences between the projected images, that would compromise the sense of immersion.
Another related but distinct research field is the “parallel rendering” methods, in
which parallel computing techniques and multi-GPUs systems and/or clusters of
graphics workstations are exploited to speed up the rendering of complex datasets.
The aim of these techniques is therefore orthogonal to the “cluster rendering”, alt-
hough the two methodologies can be combined (e.g. Chromium [3]).

Over the years, many VR frameworks supporting CR have been proposed, but
none has been able to establish itself as a standard for immersive VR application de-
velopment. Thanks to the availability of many mature and freely available 3D en-
gines, a new trend is going on, adding CR support to one of them. We propose an
efficient method to develop a lightweight distributed scene graph on top of a 3D
graphics engine. In particular, we introduce “Moka”, a library to simplify the devel-
opment of applications for cluster-based immersive VR systems. Although Moka has
been thought mainly for scientific visualization (with focus on molecular sciences),
most of its mechanisms and design choices are general solutions that can be applied to
any application field.

The paper is organized as follows: section 2 provides an overview of the most dif-
fuse solutions to realize CR, while section 3 describes our motivations; in section 4,
we present the “Moka” library; finally, in section 5 we present “Caffeine”, a VR mo-
lecular visualizer based on the “Moka” library.

2 Cluster Rendering Approaches

The main drawback of cluster-based VR systems is that they require the development
of distributed applications whose output image streams must be coherent across the
screens. This requirement generally involves three different levels of synchronization
[4, 5]. First, to obtain a correct stereoscopy, the generation of right and a left eye im-
ages must be synchronized across the multiple displays. This involves the synchroni-
zation of video signals (Gen-lock), a feature automatically provided by the current
high-end GPUs. Second, each node of the cluster generates a new frame only when
the others have finished producing the previous one (Frame-lock). This mechanism is
not strictly necessary, but its lack may produce discrepancies across the generated
images. On the other hand, it introduces a synchronization barrier that may have a
negative impact on the frame rate. Finally, we have to synchronize the data used as
input of the rendering process. Obviously, it is possible to implement this functionali-
ty at the application level, like in a generic distributed application. However, this
approach significantly increases the development time, since the code dedicated to the
replication of the application model between the nodes grows with the application’s
features and, furthermore, this code is very application-specific. The development

Moka: Designing a Simple Scene Graph Library for Cluster-Based Virtual Reality Systems 335

could be simplified by using middleware that provides high-level functionalities such
as object replication and remote method invocation (RakNet [6], ReplicaNet [7], Ice
[8], Collage [9]).

A better solution consists in employing a framework specifically designed for this
type of applications, which takes into account their common peculiarities. Over the
years, several approaches have been proposed to realize generic toolkits for CR,
trying to perform the data distribution in a way as transparent as possible for the pro-
grammer, so that the development of the applications would require only minor modi-
fications with respect to a non-distributed one.

2.1 Input Event Distribution

In this approach, an identical copy of the application runs on each node of the cluster
and the synchronization is obtained by broadcasting the data received from input de-
vices (e.g. tracking systems) for all the instances. However, keeping the state of the
application instances reasonably synchronized is difficult, because some computations
(such as animations and physical simulations) are time dependent, in the sense that
their results depend on the time they start/stop and on the time intervals between the
executions of consecutives simulation steps. Since each application instance runs on a
different machine, divergences may arise. Similar problems are caused by the use of
random numbers and in general by the presence of any source of non-deterministic
behaviors. To minimize these inconsistences additional synchronization mechanisms
(such as the Frame-lock) are required. Finally note that, for similar reasons, the start
of the application’s instances should be synchronized and it is not possible to add
further instances afterwards1.

Despite its drawbacks, this approach is one of the most popular. It is employed, for
example, as main mechanism to support clustering on VR Juggler [10–13].

2.2 Graphics Command Distribution

An interesting approach consists in intercepting the calls made by the application to
the graphic API and streaming them over the network. Rendering slaves, running on
each node of the cluster, receive these messages, decoding them and calling the corre-
sponding graphic functions.

The main drawback is that, if the application performs many API calls per frame or
if these calls manage many data, the network could be saturated, with consequent
impact on the performance of all the services and applications sharing the same net-
work. Moreover, like in input event distribution, it is not possible, in general, to “hot-
plug” further rendering slaves once the application started. Finally, graphic libraries
like OpenGL expose a vast and frequently expanded API, so implementing and keep-
ing updated a corresponding proxy library requires a considerable development effort.

Examples of projects designed to exploit a similar approach are WireGL [14],
Chromium [3] and XVR [15].

1 More precisely, such a feature is possible but it should be explicitly implemented at the appli-

cation level.

336 A. Salvadori et al.

2.3 Scene Graph Distribution

Since scene graph structures are widely used in 3D graphics, another popular ap-
proach consists in replicating and keeping synchronized these structures on each node
of the cluster. By doing so there is no need to run a complete copy of the application
on each node, thus a master-slave architecture is usually employed: the “real” applica-
tion acts as the master process, implementing the business logic, handling the input,
and manipulating a proxy scene graph. The main purpose of this scene graph is not to
render the 3D scene, but to keep track of the graph state and notify each change to the
slaves. The slave processes, instead, have their own copy of the scene graph, keeping
it updated according to the received messages, and drawing it on screen.

This technique has many points in common with the graphics command distribu-
tion approach: both employ master-slave architecture in which slaves are lightweight
programs, whose only purpose is to render into the screen, and they are independent
from the specific application that controls them. On the other side, the application
(usually) does not perform rendering, so the workload is better distributed with re-
spect to those approaches in which the whole application is replicated.

In contrast to previous approaches, the run-time insertion of further rendering slaves
is quite simple to implement: when a new slave connects to the master, it is sufficient to
perform a visit in which the whole graph is serialized and sent to the new slave.

The main drawback of this solution derives from the fact that, if the scene graph
has not been designed from the beginning to be distributed, implementing such fea-
tures afterwards could be very complicated and time consuming. That would usually
consists in extending all the nodes’ classes and override all the methods that change
their internal state. However, real world’s scene graphs are very complex libraries, so
extending just a small subset of the available nodes would require a considerable ef-
fort. In some cases the problem can be circumvented by exploiting specific features of
the used library, like in the case of Distributed Open Inventor [16]. Another possibil-
ity consists in wrapping the original scene graph within a set of classes that expose a
smaller interface and implement data distribution. Although by doing so the interface
of the original library is not maintained, it simplifies the addition of clustering sup-
port. For that reasons we choose to follow this path, as already done by other libraries
like AVANGO [17]. Examples of libraries implementing a distributed scene graph are
OpenSG [18, 19] , AVANGO [17], Distributed Open Inventor [16] and Syzygy [20].

3 Motivations

One of the first problems to face when developing a new VR application is to decide
if relying on an existing framework, such as the open source projects VR Juggler [10,
13] and OpenSG [18], the free to use but proprietary XVR [15], commercial products
like Unigine [21] and MiddleVR [22] for Unity [23] or other solutions. Other options
are the development of an entire VR engine from scratch or the adoption of an inter-
mediate solution by implementing a sort of “VR layer” on top of some pre-existing
graphics engine. In particular, when choosing the right tools for the development of
medium/large sized projects, many different aspects must be considered and evaluat-
ed, including: support of critical features in the applications; maturity of the project;
documentation and maintenance; integration with other libraries.

Moka: Designing a Simple Scene Graph Library for Cluster-Based Virtual Reality Systems 337

Of course, it could be difficult to choose without making relevant compromises.
On the other hand, today there are plenty of mature, freely available 3D engines (such
as Unity [23], OpenSceneGraph [24], OGRE [25] etc.). Many of them are free to use
also in commercial projects and are accompanied by a vast community providing
support, documentation and numerous plugins that facilitate their integration with
other libraries (such as GUI toolkits, physics engine etc.) and various kinds of devices
(including the new low-cost VR-like devices such as the Oculus Rift [26]).

For these reasons, a new trend that is taking place is to add clustering support to
these engines. Beside commercial products like MiddleVR [22], a few freely available
plugins for popular engines can be found, but most of them are simplistic solutions
based on the replication of the input data and/or of the view matrix. Libraries that
implement a distributed scene graph on top of an existing engine are even less com-
mon and in most cases impose significant constraints, like requiring a static graph.

Use of an established traditional 3D engine would allow to meet all the require-
ments of our project (with the only important exception of CR), without onerous limi-
tations, finding a way to implement clustering on top of it. However, we had to find a
way to implement clustering on top of it in a limited amount of time. We introduced
an abstraction layer on top of a pre-existing graphics engine, which exposes a simpli-
fied (but not simplistic) distributed scene graph. As expected the clustering function-
alities are almost completely transparent to the developer, allowing the porting of an
application using Moka to various kind of environments (from desktop to immersive
VR systems) with only minor changes to the code. Furthermore, the structure and the
content of the distributed scene graph can be dynamically manipulated and extended.
It is important to note that we do not claim that our approach is the best possible, nor
that the mechanisms we describe are particularly original. Instead, with this work we
want to present a reasonable solution to a diffuse problem, in the hope that other peo-
ple in similar situations may find it useful.

4 The Moka Library

The approach we adopted consists in developing a high-level scene graph on top of an
existing graphics engine, providing a simpler and more concise interface and cluster-
ing support. The main characteristics and benefits of the approach we adopted are the
following:
• By wrapping an existing scene graph instead of extending its classes, it is possible

to expose a simpler interface, thus reducing the clustering related code.
• Thanks to the simplified interface, much of the complexity of the native engine can

be hidden, thus accelerating the development process and making the library usable
also by people with limited experience.

• Our approach does not rely on specific mechanisms provided by a specific engine
(as [16]), thus making it applicable to other graphics engines. The substitution of
one engine with another has a very limited impact on the applications’ code.

• There are no constraints related to the scene graph structure, like it happens in
many simplistic solutions: the structure and the content of scene graph can be dy-
namically modified, by creating and deleting nodes, removing a sub-graph from its

338 A. Salvadori et al.

current position and attaching it to another node, loading a mesh from file, creating
geometry and the related attributes procedurally, applying shaders etc.

• The mechanisms used to replicate the state of the scene graph can be exploited to
create application-specific distributed objects, thus providing further flexibility.

• Frame-lock mechanisms may not be strictly needed.

The main drawback of our solution is that, due to the way it was conceived, it is
better suited for applications that require only a subset of the functionality offered by
the original engine. However, this fact does not impose constrains or prevent in any
way to expose all the needed functionalities. In the worst case, in fact, the designer
will define a scene graph as complex as the underlying one.

Moka has been implemented using OpenSceneGraph (OSG) [24] as native
graphics engine, the Qt framework [27] as general-purpose library, Enet [28] for net-
working and GLM [29] as mathematics library. However, the concepts and mecha-
nisms at the basis of Moka do not depend on specific technologies, so they can be
easily adapted to other languages and toolkits.

4.1 The Basic Scene Graph

Each node of Moka wraps one of more OpenSceneGraph (OSG) nodes. As usual, the
internal nodes of the graph represent a transformation to be applied to their children,
while leaf nodes encapsulate the elements of the scene, such as meshes. At this stage,
four different nodes have been defined to represent transformations: in addiction to a
generic SGMatrixTransform class, specific nodes have been provided for translation,
rotation and scaling. These last three classes also provide specific methods to animate
the transformation over time (see section 4.5). As far as concerns the elements of the
scene, two types of nodes have been defined: the SGMeshFile class allows to load a
mesh from a file, while the SGGeometry class allows to define custom geometry (see
section 4.6). Specific classes have been defined to represent materials, shaders and set
of uniform variables. These kinds of objects can be dynamically attached to the
SGGeometry nodes, obtaining custom graphical representations.

These classes can be used directly to develop desktop 3D applications, like any
other scene graph. The most interesting part concerns, however, the mechanisms that
allow the replication of these objects on each node of the cluster. With the exception
of the initialization phase, these mechanisms are completely transparent to the pro-
grammer: thanks to polymorphism, the programmer can write his/her cluster-based
application in the same way he/she would write desktop ones.

4.2 Distributing the Scene Graph

Suppose to have a set of objects living on the master process and a corresponding set
of objects for each slave process. In order to keep all these instances synchronized, we
need to inform the slaves about all the changes applied to the objects owned by the
master. When a slave receives one of these messages it must be able to identify which
one, between the objects he manages, corresponds to the object modified by the

Moka: Designing a Simple Scene Graph Library for Cluster-Based Virtual Reality Systems 339

master and to update its state accordingly. In order to do so, each object must be asso-
ciated to a unique global identifier such that:

• All the objects living within a single process must have different identifiers.
• Each object managed by the master and all its replicas must share the same identifier.

A convenient way to enforce these constraints is to generate a unique identifier every
time the master creates a new instance. Then, when a message is sent to notify the
slaves about the new object, the ID is included in the payload, so that they can assign
it to the newly created object.

In Moka, the “DistributedObject” class has been defined to generate and store the-
se identifiers. As the name suggests, this is the superclass of all the objects replicated
between master and slaves (see Fig. 1). It provides two constructors:

• the first constructor does not accept any parameter; it is used only by the master
process, and is responsible for the generation of unique global identifiers. Only
positive IDs are generated in this way;

• the second constructor accepts an identifier as parameter, and it is able to create
objects with a predetermined identifier. Slave processes use it when creating repli-
cated objects but, as we will see in the following, it can also be employed on the
master side to create application-level distributed objects.

Fig. 1. Relation between the classes involved in the definition of a distributed object

340 A. Salvadori et al.

In order to distinguish among the functionalities to be used by the master program
and the ones designed for the rendering slaves, the DistributedObject class is special-
ized by the “LocalInstance” and “RemoteInstance” classes2. The purpose of these
classes is to establish the basic mechanisms by which modifications applied to a “lo-
cal” object are notified to the corresponding “remote” instances. Rather than collect-
ing the changes in a list to be periodically distributed, as suggested in [18, 19], we
preferred an approach more similar to the Remote Method Invocation (RMI). In par-
ticular, LocalInstance subclasses act as proxies, i.e. they encode each method call as a
network message and broadcast it to the slaves. On the other side RemoteInstance
subclasses act as “skeletons”, decoding the received messages and calling the corre-
sponding methods. Actually, there are some important differences between the classi-
cal RMI and the mechanism we employed:

• Unlike "stub" objects, LocalInstances maintain a complete internal state so to re-
spond to “getter” methods directly, thus avoiding any unnecessary network com-
munication and the consequent wait for a response.

• As a further consequence of the previous point, any return value can be provided
directly by the LocalInstance, thus our pseudo-RMI mechanism does not support
responses from remote objects.

• The communication is one-to-many and unidirectional, as in the publish/subscribe
model.

From what described so far it follows that, in order to obtain a distributed version
of the scene graph, a “local” and a “remote” subclass must be defined for each class
of Moka. As an example consider Fig. 1, showing the classes involved in the distrib-
uted version of the SGMeshFile node, and their relationship.

To better understand what happens when the master program invoke a method on a
“proxy” object, consider the following pseudo-code showing the definition of the
“loadMeshFromFile” method of the SGMeshFile_Local class:

if(isRMIEnabled()) {

 // Sends the RMI message

 byte[] msg = encodeLoadMeshFromFile(this.id, filename);

 NetworkManager::sendMessage(msg); // See section 4.4

 // Prevents that further messages will be generated

 enableRMI(false);

 // Loads the mesh

 SGMeshFile::loadMeshFromFile(filename);

 enableRMI(true);

} else {

 // Loads the mesh without sending any message

 SGMeshFile::loadMeshFromFile(filename);

}

2 Note that, here and in the following, we will use the term “local” class/object to refer to the

classes/objects used in the main (master) application, and the term “remote” class/object to
refer those used by the rendering slaves.

Moka: Designing a Simple Scene Graph Library for Cluster-Based Virtual Reality Systems 341

Since in general these operations may involve other (virtual) methods of
LocalInstance subclasses, we must avoid that further network messages would be
generated in the process. For this reason the LocalInstance class provides the
“enableRMI” static method that allows to temporarily disable the pseudo-RMI
mechanism.

4.3 The Distributed Objects Registry

The DistributedObjectsRegistry class, a singleton used only by the rendering slaves,
implements several of the key functionalities required by the pseudo-RMI mecha-
nism. Its main purpose is to dispatch the received messages to the corresponding re-
mote object, but it is also responsible for their lifecycle.

In order to perform message dispatching, the DistributedObjectsRegistry manages
a dictionary that associates all the distributed objects to their global identifier. When-
ever a RMI message is received, it extracts the destination ID from the message and
performs a look up on the dictionary to retrieve the corresponding remote object. The
same mechanism is exploited to allow the manipulation of a remote scene graph. The-
se operations are particularly tricky, involving the dynamic composition of remote
objects in complex data structures. A simple solution can be derived by observing that
the methods corresponding to these operations usually take one or more (distributed)
objects as arguments. Therefore it is possible to insert the IDs of these parameters into
the message corresponding to the operation. When the remote instance decodes this
message, it queries the DistributedObjectsRegistry to obtain a pointer to the remote
counterparts of the involved objects, and performs the requested operation using these
pointers as parameters.

Some details must be provided on how our library is intended to be used from the
developer’s point of view. In particular, direct instantiation of Moka’s classes is strongly
discouraged. Instead the programmer is required to use a set of predefined factory func-
tions that returns a pointer to a new heap-allocated object. These functions takes care of
instantiating the right class according to the type of application under development: as
an example, the “newSGMeshFile()” function returns an instance of the SGMeshFile
class if we are developing a desktop application, a “SGMeshFile_Local” instance when
developing the master program and a “SGMeshFile_Remote” object for slave programs.
The application type must be specified by the developer by means of an initialization
function. In the case of slave programs, this initialization function also takes care to
register the factories into the DistributedObjectsRegistry, which manage another dic-
tionary containing the associations between a string, which identifies the type of the
nodes, and the corresponding factory function. In this way, whenever a LocalInstance is
instantiated, its constructor sends a message containing the type identifier of the
new object. The DistributedObjectsRegistry can therefore retrieve the corresponding
factory and fulfill the creation request. The destruction of remote objects happens
in a similar way: whenever a LocalInstance is being destroyed on the master process,
and its destructor is invoked, a message carrying the object’s ID is sent to the
DistributedObjectsRegistry, asking for its destruction.

342 A. Salvadori et al.

Finally note that, to maintain the same format between the pseudo-RMI messages
and those directed to the DistributedObjectsRegistry, it was decided to assign to it the
global identifier “0”.

4.4 Network Communication

Most of the messages generated when modifying the scene graph must be delivered
reliably, in order to guarantee the correct synchronization of the shared graph. There
are cases, however, where unreliability should be preferred, as we will see in section
4.5. If both reliable and unreliable transport protocols are used to implement a single
specific functionality (e.g. by means of “raw” TCP and UDP sockets), the implemen-
tation should deal with messages interleaved on two distinct communication channels
and ensure that they are handled in the correct order. This way to proceed would lead
to a significant increase of the complexity of the protocol.

For the reasons just exposed, we decided to make use of Enet [28], a simple and
robust network library originally developed for the multiplayer first person shooter
Cube [30]. Enet implements a dedicated protocol on top of UDP, providing features
like reliable and ordered packet delivery, automatic fragmentation and reassembly of
packets, connection monitoring, automatic connection retry etc.

For our purposes, the most important features offered by Enet are those related to
reliability and sequencing, which can be enabled or disabled on a per-packet basis. In
this way, the messages to be transmitted reliably can be mixed with the unreliable
ones on the same logical channel, while preserving the delivery order.

To isolate the networking code from the rest of the system we wrote a small mod-
ule dedicated to network communication. This module consists in a thread that ex-
ploits Enet to send and receive messages to/from the other processes, and in a single-
ton class (the “NetworkManager”) acting as an interface between the communication
thread and the rest of the application.

4.5 Animations

The visualization of dynamic systems is one of the fundamental tasks of the computer
graphics. From a computer graphics point of view this corresponds to the generation
of an animation, intended as a progressive time-dependent variation of the state of the
graphical scene according to some mathematical model and/or to the user’s input.

In this section, we describe an effective method to implement animations in a CR
engine. This method is an adaptation of the techniques employed in NVEs [2] and
does not employ Frame-lock synchronization, so small discrepancies may occur.
However, the animations updates are frequent enough to make such discrepancies
acceptable for the user in most of the cases, especially in research fields like molecu-
lar sciences. In our case, the aim is having not only visualization of data structures but
also have continuous and effective interaction. This means that the collocation be-
tween visual graphical feedback and real position of the tracked hand will be a critical
point for making this effective and simple. Our choice to do not implement the
framelock, at this stage, comes from the priority to have fast visual responses when
the user look at a specific point and try to interact with his/her finger.

Moka: Designing a Simple Scene Graph Library for Cluster-Based Virtual Reality Systems 343

Let us call “key frame” a given configuration of the animation, constituted by the
initial state to be assigned to the node and all the information needed to compute (or
approximate) its subsequent evolution. Also let us call “in-between” a portion of an
animation between two key frames, which can be computed by applying a known
function (e.g. a linear function) to the information provided with the last key frame.
Then the master can use reliable messages to communicate only the key frames and,
during the in-betweens, send small unreliable packets carrying the essential infor-
mation to keep the computation adequately synchronized across the slaves.

In Moka, the methods that start an animation on a given node actually set a new
key frame and, in the case of “proxy” objects, they generate a reliable pseudo-RMI
message (see 4.2 and 4.3). To obtain an animation composed by multiple key frames,
it is sufficient to call these methods whenever a new key frame must be set, without
stopping the animation before each call. To ensure a correct synchronization in these
cases, the “start” messages must include the current state of the node in their payload.
For the same reason, the “stop” messages must be delivered reliably and must contain
the state of the node at the end of the animation.

The animation steps are performed by the “update” method, which updates the
state of the node as a function of the elapsed time from the last key-frame. We call
this time span the “animation time”. The “update” method is provided by any node of
the scene graph (not only on those that support animations) and it propagates the call
to each child. It is thus possible to invoke the update method on the root of the scene
graph (letting the call to traverse the entire graph), without the need to keep track of
the currently animated nodes. In order to keep the replicated scene graphs synchro-
nized the animation time is periodically sent to each slave. In particular, each time the
“update” method is executed on a currently animated local object, a message carrying
the new animation time is generated and dispatched to the corresponding remote in-
stances as usual, but with two important differences:

1. These messages are unreliable. However, their ordered delivery is ensured, even
with respect to reliable messages.

2. When these messages are handled by a remote object, a special method is called
instead of “update”. This method has the only purpose of substituting the stored an-
imation time with the received one.

From the previous discussion, it follows that the periodic update of the scene graph
can be performed independently on the master and on each slave with different fre-
quencies. In particular, on the slaves the update visit is performed once per frame,
thus ensuring a smooth animation, while the master can adopt a lower frequency (e.g.
5-10 times per second), thus reducing the workload and the generated network traffic.
From our experience, these update frequencies are sufficient to ensure a synchroniza-
tion good enough to fool the human eye.

4.6 Procedurally Generated Geometry

 Since our main research field concerns scientific visualization, with a strong focus on
molecular structures, it was fundamental to have a way to define a new geometry at
runtime (e.g. to visualize data resulting from numerical simulations or generated pro-
cedurally) and to apply to them custom graphical representations. For that reason, we

344 A. Salvadori et al.

defined the SGGeometry class, which allows defining a set of vertices and the related
vertex attributes. The geometry is defined by specifying a vertex array, an optional
array of indices and the type of geometrical primitives to be generated. Similarly,
vertex attributes are assigned by providing an array containing a value for each ver-
tex. Custom representations can be obtained by assigning a shader program to the
geometry node. For that purpose, specific classes have been defined to load and en-
capsulate a shader program and a set of uniform variables. In a similar way, material
properties are encapsulated in a dedicated object that can be attached to the geometry
node.

An important problem has to be taken into account: since the various attributes and
properties are set/added separately, the corresponding messages will be received and
handled by the slaves at different times. It follows that the geometry may be rendered
when it is still in an inconsistent state. For this reason, SGGeometry objects buffer all
the requested changes, and apply them all at once when a specific method is called.

4.7 Local Sub-graphs

The design described so far requires that the master process is the only responsible for
managing the application model and its graphical representation (in the form of a
scene graph). The scene graph is then replicated and kept synchronized on each ren-
dering slave. However, nothing prevents the slaves from extending the shared graph
with specific local additions. This approach, also proposed in other systems like [16],
may result useful in several ways, allowing to add ad-hoc functionalities to a specific
subset of slaves. Although at first this may seem unnecessary, it can actually become
an important feature in the realization of more articulated applications.

Consider, for example, an application running in a CAVE-like system [1] in which
the user can interact by means of a tablet computer. Several today’s tablets are in fact
handheld PCs equipped with a desktop-class operating system, so they are able to run
a custom client which acts both as a rendering slave (since it renders the shared scene
graph) and as an input device. In that scenario the tablet does not just render a portion
of the scene (like the other slaves does), but instead provides a different view of the
virtual world, possibly enriched with additional information.

Another important application of this technique is related to head-tracked stereos-
copy: to implement stereoscopy each slave must set the view and the projection ma-
trix appropriately, in function of the physical characteristics of the driven display and
of the current position of the user with respect to the screen [31]. It follows that it is
not possible to use a shared “camera node”, since each slave must be able to set the
virtual camera parameters according to its individual configuration. For that reason,
the “viewing branch” is not included into the shared graph, letting each slave to treat
it autonomously as an extension of its local scene graph.

This choice also influences the way the data produced by the tracker are handled,
since it would make little sense to gather that information on the master and then
propagate them to the slaves. Instead, the data generated by the tracking device are
“multicasted” to all the processes via UDP, thus minimizing both the network traffic
and the latency [16]. Note that the tracker data can also be received and handled by
the master process, since they represent an input for the application.

Moka: Designing a Simple Scene Graph Library for Cluster-Based Virtual Reality Systems 345

Our library permits to define custom sub-graphs owned by a slave. In particular,
these sub-graphs can be constructed using the native graphics engine or by instantiat-
ing directly (i.e. without using factories) the non-distributed version of the Moka
nodes. For those tasks commonly required in CAVE-like systems, like head-tracked
stereoscopy and keystone correction, the library provides specific utility classes,
which transparently manage a local “viewing sub-graph”. Tracker data are received
and handled directly by the slaves, but the master, if required by the application logic,
can also process them.

4.8 Hot-Plug Synchronization

Being able to start a new rendering slave at any time and without particular con-
straints is a desirable feature, both where the user interacts by means of a dedicated
client and when we want to improve the robustness of the system (thanks to the possi-
bility to restart a slave after a crash/fault without restarting the entire application).
Only few systems natively support such a feature. In particular, the feasibility of such
a mechanism at the framework level also depends on the chosen data distribution
model. Scene graph based approaches are naturally predisposed to support this fea-
ture, since it would just require a visit of the graph in which, for each encountered
node, a sequence of messages is generated in order to reconstruct the node’s state on
the slave’s side. In our implementation, each time a new slave is started, it sends a
message to the master asking to be synchronized. On the master, this “hot-plug” syn-
chronization consists in the following three sub-phases:

1. the graph is visited, asking to each node to prepare itself for the imminent synchro-
nization (e.g. by stopping any running animation). Then the “NetworkManager”
(i.e. the interface to the network communication module, see section 4.4) is asked
to transmit all the future messages only to the newly connected slave;

2. the main visit of the graph is performed, in which each encountered node sends all
the messages required to create a corresponding remote instance with the same in-
ternal state. Note that the generated messages are the same pseudo-RMI messages
described so far, so as to exploit all the related pre-existing mechanisms;

3. a final visit is performed, notifying each node that the synchronization is complet-
ed, so that it can resume any possibly pending task. The NetworkManager is finally
asked to broadcast all the future messages to any slave.

Except for the initial synchronization request, this entire procedure is completely
transparent to the newly connected slave.

4.9 Application Level Distributed Objects

Our library can be extended in various ways. In addition to extend existing ones or
add new classes, application-level distributed objects can be defined by using the
same mechanisms and techniques we designed for scene graph replication. Given a
regular class, the programmer can obtain a distributed version of it by implementing

346 A. Salvadori et al.

its “local” and “remote” subclasses and paying attention to assign to the local class a
fixed, negative identifier. Then a factory function must be defined, returning a pointer
to an instance the right class according to the type of application being developed
(desktop, master or slave). For slave programs only, the factory function must also be
registered to the DistributedObjectsRegistry, so that the remote instances can be au-
tomatically generated (see 4.3).

In general, the definition of application-level distributed classes is discouraged, for
the reasons explained in section 2 and because the distribution of the scene graph has
exactly the purpose to avoid this approach. There may be cases, however, in which
this additional option can result useful.

4.10 Configuration Tools

Virtual reality applications usually require an initial configuration phase in which the
employed devices are calibrated and the characteristics / settings of these devices and
of the other software components are provided to the application. Since these settings
are mostly independent from the specific application that use them, Moka provides a
set of classes that can be used to load and save to files several common types of con-
figurations, such as stereo settings, physical characteristics of the displays, network
parameters, keystone calibration, simple scene parameters, optional transformations to
be applied to the tracker data etc. We also developed some graphical programs to help
the user in configuring the VR system. The resulting configuration is saved into a set
of predefined files, which can be shared between multiple applications running on the
same system.

5 Caffeine

We designed Moka as part of the “Caffeine” project, currently under development at
the DreamsLab (Dedicated Research Environment for Advanced Modeling and Simu-
lations) at Scuola Normale Superiore in Pisa. The group merges competences on theo-
retical and computational chemistry with interactive Virtual Reality technologies,
working on the production and fruition of scientific and humanistic contents.

The aim of Caffeine project is to develop an integrated system for computational
chemistry that will take maximum advantage from VR technologies in order to visual-
ize and model complex molecular structures in a natural and effective way. Although
designed for immersive VR systems, versions of Caffeine will be available for various
environments, ranging from standard desktop systems to immersive VR environ-
ments. At the time of writing Caffeine is at an early alpha stage of development, but a
first version of the molecular visualizer is stable enough to be used in our CAVE sys-
tem (see Fig. 2a). In this scenario, the user can interact with the system by means of a
simple application for Android devices we developed.

Moka: Designing a Simple Scene Graph Library for Cluster-Based Virtual Reality Systems 347

Fig. 2. a) Interacting with a hemoglobin, using Caffeine in our CAVE system. b) Rendering of
an half of the Rat Liver Vault [32] molecule using Caffeine.

5.1 GPU-Accelerated Visualization of Molecular Structures

One of the fundamental features that Caffeine had to provide was the ability to visual-
ize “all atoms” representations3 of complex molecular structures at satisfactory frame
rates. To this end we developed a set of shaders implementing a GPU-based ray-
casting of implicit surfaces [33, 34], since this method has proven to provide very
good results (both in terms of performance and image quality) when applied to the
visualization of molecular structures [35–37]. This method consists in generating a
simple proxy geometry (e.g. a cuboid or a point sprite) in place of each primitive sur-
face to be drawn. The proxy geometry must enclose the corresponding surface in
window space. Then, when the proxy geometry is being rasterized, a fragment shader
evaluates the intersection between the surface and a ray starting at the camera position
and passing through the center of the generated fragment. The resulting (closer) inter-
section point and the related normal vector are then used to shade the fragment and
adjust its depth. If no intersection is found, the fragment is discarded.

Although a single shader could handle a full class of surfaces (as described in [33,
34, 36] for quadrics), and because we were interested in providing “all-atoms” repre-
sentations of complex molecular structures, we implemented an optimized version of
these shaders for spheres and cylinders. In particular, the proxy geometry is generated
on-the-fly by a dedicated geometry shader (similarly to what proposed in [37]) and
consists in just a quad for spheres and (at most) two quads for cylinders.

Finally note that since glyphs are common ways to represent scientific data, with
Moka we provide specific classes to define sets of spheres and cylinders, in the hope
to promote their reuse in other projects. These classes are not part of the scene graph,
so they are unknown to the slaves. Instead, they simply encapsulate a SGGeometry
node and the shaders implementing the ray-casting algorithm described before.

3 In this class of representations the atoms are represented as spheres (balls) and the bonds

connecting them are depicted as cylinders (sticks). Typical examples are “ball-and-stick”,
“space filling” and “liquorice” representations, which distinguish themselves according to the
radius assigned to the atoms and to the visibility of the bonds.

348 A. Salvadori et al.

5.2 A First Qualitative Performance Evaluation

To get a first qualitative evaluation of the performance of our system, we tried to load
in Caffeine an half Rat Liver Vault [32] (PDB IDs: 2ZUO, 2ZV4 and 2ZV5), a com-
plex molecule constituted by about 490 thousand atoms and 493 thousand bonds. The
test was performed in our CAVE system, constituted by four slave nodes each
equipped with 2 Intel Xeon E5645 processors, 24GB of RAM and a Nvidia Quadro
6000 GPU. Each slave drives a stereo projector with a resolution of 1400x1050 pixels.

The molecule was placed in a way to fill the front screen (to maximize the frag-
ment processing workload), while remaining completely visible (to avoid that part of
the geometry would be culled/clipped), as shown in figure Fig. 2b. The test was per-
formed with head-tracked stereo enabled and the user was asked to move freely with-
in the CAVE. Since, once finished loading, each slave runs independently from the
others, we only measured the frame rate on the front slave.

During the test, we switched between “ball-and-stick” and “space filling” represen-
tations: the first produces a greater fill-rate (because of the increased atom’s radius)
but does not draw the cylinders, while the second doubles the number of elements to
be drawn (because of the cylinders) but less fragments get involved. During the
“space filling” test, we got frame rates comprised in the range 30-50 fps. This sensible
variation results from the different fill-rates due to the changes of the user’s perspec-
tive. The “ball-and-stick” test, instead, provided a more stable frame rate, comprised
between 22 and 28 fps. In fact, in this representation, the variation of the fill-rate is
more contained. However, the doubled number of elements to be drawn inevitably
causes a drop in frame rate.

Although in future we plan to perform a much more accurate and targeted perfor-
mance evaluation, this first simple test showed encouraging results. In fact, the frame
rate remained at interactive levels also when almost two millions quadric surfaces4
were ray-casted at the same time. We however noted a perceptible lag in the synchro-
nization of the images across the screens when the user moved. This is due to the fact
that we decided to not employ any frame-lock mechanism, so the images produced by
different slaves may temporary diverge. However, a stringent frame-lock would have
caused an inevitable drop in frame rate. Furthermore, these divergences are noticeable
only when the system is under heavily stress, like in our test.

6 Conclusions and Future Work

In this work, we proposed a convenient method to develop a lightweight distributed
scene graph on top of a 3D graphics engine. In particular, we described “Moka”, a
library to simplify the development of distributed VR applications supporting various
types of environments: from standard desktop applications to cluster-based multi-
screen immersive VR system like the CAVE.

The library is under development and it has been used in the implementation of a mo-
lecular visualizer, specifically designed for the research field of our group, solving our

4 Ball-and-stick representation with “side-by-side” stereoscopy enabled.

Moka: Designing a Simple Scene Graph Library for Cluster-Based Virtual Reality Systems 349

needs to visualize structured scientific data in immersive technologies. In the near future,
we are planning tests in terms of generic performances, with comparative studies.

In addiction, we are working on the extension of the Moka library both by expos-
ing a much larger set of the features offered by the underlying graphics engine and by
supporting some of the newer low-cost VR devices, like the Oculus Rift [26]. We
would also like to provide a more comprehensive library for the visualization of sci-
entific data, exploiting GPU-accelerated methods like the GPU-based ray-casting.
Finally, we are improving the Caffeine project, with the aim to realize a truly innova-
tive integrated system for computational chemistry, which takes maximum advantage
from VR technologies.

References

1. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen Projection-based Virtual Re-
ality: The Design and Implementation of the CAVE. In: Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Techniques, pp. 135–142. ACM, New
York (1993)

2. Steed, A., Oliveira, M.F.: Networked Graphics: Building Networked Games and Virtual
Environments. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2009)

3. Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P.D., Klosowski,
J.T.: Chromium: A Stream-processing Framework for Interactive Rendering on Clusters.
In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 693–702. ACM, New York (2002)

4. Raffin, B., Soares, L., Ni, T., Ball, R., Schmidt, G.S., Livingston, M.A., Staadt, O.G., May,
R.: PC Clusters for Virtual Reality. In: Virtual Reality Conference, pp. 215–222 (2006)

5. Guimarães, M.P., Bressan, P.A., Zuffo, M.K.: Frame lock synchronization for
multiprojection immersive environments based on pc graphics clusters. In: Proocedings of
the 5th SBC Symposium on Virtual Reality (2002)

6. RakNet 4. http://www.jenkinssoftware.com/
7. ReplicaNet. http://www.replicanet.com/
8. Internet Communications Engine (Ice). http://www.zeroc.com/
9. Collage. http://www.libcollage.net/

10. Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., Cruz-Neira, C.: VR Juggler: a
virtual platform for virtual reality application development. In: 2001 Proceedings of the
IEEE Virtual Reality, pp. 89–96 (2001)

11. Allard, J., Gouranton, V., Lecointre, L., Melin, E., Raffin, B.: Net Juggler and
SoftGenLock: Running VR Juggler with Active Stereo and Multiple Displays on a Com-
modity Component Cluster. In: Proceeding of IEEE Virtual Reality Conference 2002, pp.
273–274 (2002)

12. Bierbaum, Aron, Hartling, Patrick, Morillo, Pedro, Cruz-Neira, Carolina: Implementing
Immersive Clustering with VR Juggler. In: Gervasi, Osvaldo, Gavrilova, Marina L.,
Kumar, Vipin, Laganá, Antonio, Lee, Heow Pueh, Mun, Youngsong, Taniar, David, Tan,
Chih Jeng Kenneth (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 1119–1128. Springer,
Heidelberg (2005)

13. VR Juggler: The Programmer’s Guide - Version 3.0. http://vrjuggler.org
14. Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M., Hanrahan, P.: WireGL: A

Scalable Graphics System for Clusters. In: Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, pp. 129–140. ACM, New York (2001)

350 A. Salvadori et al.

15. Carrozzino, M., Tecchia, F., Bacinelli, S., Cappelletti, C., Bergamasco, M.: Lowering the
Development Time of Multimodal Interactive Application: The Real-life Experience of the
XVR Project. In: Proceedings of the 2005 ACM SIGCHI International Conference on Ad-
vances in Computer Entertainment Technology, pp. 270–273. ACM, New York (2005)

16. Hesina, G., Schmalstieg, D., Furhmann, A., Purgathofer, W.: Distributed Open Inventor: A
Practical Approach to Distributed 3D Graphics. In: Proceedings of the ACM Symposium
on Virtual Reality Software and Technology. pp. 74–81. ACM, New York (1999)

17. Kuck, R., Wind, J., Riege, K., Bogen, M.: Improving the AVANGO VR/AR Framework -
Lessons Learned. Virtuelle und Erweiterte Realität, 209–220 (2008)

18. Reiners, D.: OpenSG: A scene graph system for flexible and efficient realtime rendering
for virtual and augmented reality applications (2002)

19. Roth, M., Voss, G., Reiners, D.: Multi-threading and clustering for scene graph systems.
Computers & Graphics. 28, 63–66 (2004)

20. Schaeffer, B., Goudeseune, C.: Syzygy: native PC cluster VR. In: 2003 Proceedings of the
IEEE Virtual Reality, pp. 15–22 (2003)

21. UNIGINE Corp.: Unigine Engine. http://unigine.com
22. i’m in VR: MiddleVR for Unity. http://www.imin-vr.com
23. Unity Technologies: Unity. http://unity3d.com
24. OpenSceneGraph. Version 3.1. http://www.openscenegraph.org
25. OGRE (Object-Oriented Graphics Rendering Engine). http://www.ogre3d.org
26. Oculus VR Inc.: Oculus Rift - Virtual Reality Headset for 3D Gaming. http://www.

oculusvr.com/
27. Qt Project. http://qt-project.org/
28. Salzman, L.: ENet Reliable UDP networking library
29. G-Truc Creation: OpenGL Mathematics (GLM). http://glm.g-truc.net/
30. Cube. http://cubeengine.com
31. Kooima, R.: Generalized Perspective Projection (2008). http://csc.lsu.edu/~kooima/

articles/genperspective/
32. Tanaka, H., Kato, K., Yamashita, E., Sumizawa, T., Zhou, Y., Yao, M., Iwasaki, K.,

Yoshimura, M., Tsukihara, T.: The Structure of Rat Liver Vault at 3.5 Angstrom Resolu-
tion. Science 323, 384–388 (2009)

33. Toledo, R., Levy, B.: Extending the graphic pipeline with new GPU-accelerated primi-
tives. In: 24th International gOcad Meeting, Nancy, France (2004)

34. Sigg, C., Weyrich, T., Botsch, M., Gross, M.: GPU-based ray-casting of quadratic surfac-
es. In: Proceedings of the 3rd Eurographics/IEEE VGTC Conference on Point-Based
Graphics, pp. 59–65. Eurographics Association (2006)

35. Tarini, M., Cignoni, P., Montani, C.: Ambient Occlusion and Edge Cueing for Enhancing
Real Time Molecular Visualization. IEEE Transactions on Visualization and Computer
Graphics 12, 1237–1244 (2006)

36. Chavent, M., Vanel, A., Tek, A., Levy, B., Robert, S., Raffin, B., Baaden, M.: GPU-
accelerated atom and dynamic bond visualization using hyperballs: A unified algorithm for
balls, sticks, and hyperboloids. Journal of Computational Chemistry 32, 2924–2935 (2011)

37. Bagur, P.D., Shivashankar, N., Natarajan, V.: Improved Quadric Surface Impostors for
Large Bio-molecular Visualization. In: Proceedings of the Eighth Indian Conference on
Computer Vision, Graphics and Image Processing, pp. 33:1–33:8. ACM, New York (2012)

5 The Caffeine molecular viewer

5.1 Introduction

This chapter describes the features of Caffeine from the user’s point of view.

Caffeine allows to visualize both static and dynamic (trajectories) molecular struc-
tures according to the most diffused graphical representations: “Space Filling”,
“Balls & Sticks”, “Liquorice” and “Ribbons”. Caffeine can also visualize isosur-
faces extracted from volume data sets, such as molecular orbitals and electron
densities.

Caffeine has been developed in two versions, sharing the same functionalities: one
for desktop computers (Windows and Linux operating systems) and one for CAVE-
like systems equipped with multiple stereo monitors and a tracking system. In
the following, the Desktop version is introduced first, describing in detail all the
functionalities it provides. Then the CAVE version will be presented, outlining the
differences and the additional features with respect to the desktop version.

5.2 Development tools

Caffeine has been developed using the C++ programming language; C++ is prob-
ably the most widespread programming language in the field of 3D interactive com-
puter graphics, thanks to the good performance of its compiled executable binaries.
Caffeine also makes an extensive use of the Qt framework [89] for a vast variety
of tasks, such as creating Graphical User Interfaces (GUI), concurrent program-
ming, data structures, 3D graphics-oriented mathematics and so on. Qt provides a
comprehensive and cross-platform software library that simplifies the development
of many tasks not covered by the C++ standard library, such as creating GUI,
network programming, database access, OpenGL programming etc. Thanks to its
numerous features and its affordable software licenses (it is released under both

107

Chapter 5 The Caffeine molecular viewer

commercial and open-source licenses), it is probably the most widespread frame-
work for the development of cross-platform graphical applications in C++, both on
desktop and embedded platforms. Besides the standard Qt framework, a couple of
Qt-based third-part libraries have been employed: Qt Widgets for Technical Appli-
cations (Qwt) [264] to plot 2D line chars (see section 5.3.10), and the QxtNetwork
module of the Qxt library [265] to implement the communication protocol between
the Caffeine process running in a CAVE-like installation and its remote controller
application (see section 5.4). The CAVE version of Caffeine employs the NatNet
SDK [266] to receive the data sent by the OptiTrack motion capture system [267]
of the CAVE installation at Scuola Normale Superiore. The rendering of the 3D
scene is made possible by OpenSceneGraph [262], an open source high performance
OpenGL-based graphics engine used in a wide range of applications, ranging from
games to scientific visualization. Caffeine exploits Open Babel [20] as cheminfor-
matics library, e.g. to read molecular file, detect bonds, add implicit hydrogen
atoms and so on. Finally, the icons used in Caffeine belongs to the Oxygen Project
[268]. Previous versions made use of the excellent OpenGL Mathematics (GLM)
library [269] for graphics-oriented mathematics. However, since latest Qt releases
already comes with a copious 3D graphics-oriented mathematics library, and in
order to minimize the dependencies of the project, the dependency from GLM has
been removed in the latest version of the project.

5.3 Caffeine “desktop” version

5.3.1 Graphical interface overview

Figure 5.1 shows the main window of Caffeine. The rendering of the molecular
systems and their associated properties is displayed in the central area while, on
the right side, three panels give access to most of the available features. These
panels can be rearranged as desired, e.g by snapping them to the other sides of the
window, detaching them from the main window or closed. Panel (b) in Figure 5.1
lists the loaded molecular systems. A tree structure allows to inspect the atoms,
residues and fragments composing each molecular system. If one or more volume
data set are associated to a molecular system, these are listed at the end of the
description of the molecule, reporting the name of the data set, the size of the
three-dimensional grid and the minimum and maximum values contained in the
grid. The buttons on the lower-right corner of the panel allow to load a molecule

108

5.3 Caffeine “desktop” version

from file or to delete a previously loaded one. On the top-left corner, two buttons
are provided respectively to manage the “key-frames” defined for a trajectory and
to manage additional scalar data sets associated to the molecular systems. These
features will be described in detail in the following sections. Panel (c) shows the list
of the generated “diagrams”. The term “diagram” refers to the graphical depiction
of a molecular system, a subset of it, or an associated data set, according to a
specified representation (e.g. “Ball & Stick”, “Ribbons”, “Isosurface” and so on).
Of course it is possible to generate new diagrams, delete existing ones, as well as
hide diagrams without deleting them. For each diagram it is also possible to set
various settings, e.g. selecting a subset of fragments to be visualized or specifying
various graphical options. Finally, from panel (d) it is possible to control the
playback of a trajectory and to visualize line charts representing real functions of
a real variable associated to the visualized molecular systems.

Figure 5.1: Main window of the desktop version of Caffeine showing a molecular orbital of a
caffeine molecule. (a) Rendering area. (b) List of the loaded molecular systems. (c)
List of the generated “diagrams”. (d) Trajectories control panel.

109

Chapter 5 The Caffeine molecular viewer

5.3.2 Loading a molecular system from file

It is possible to load a molecular file by clicking on the “open” button placed at the
bottom-right corner of the (b) panel of Figure 5.1. Alternatively, select the menu
item File → Open or type the associated keystroke Ctrl+O. A dialog will show up
allowing to select a molecular file and (Figure 5.2).Once loaded, the new molecule
will be displayed in “Space filling” representation (i.e. a “Space filling” diagram is
automatically generated for the molecule).

Open Babel [20] is used to parse the molecular files, detect bonds and to insert
the missing hydrogens. Secondary structures of polypeptides are computed by
means of Stride [270] (invoked by Caffeine as an external program). The following
molecular file formats are supported: Protein Data Bank (PDB) [19], XMol XYZ
[271] and Gaussian Cube [272]. It is important to note that the availability of some
features depends on the file format from which the molecular system is loaded.
In particular, the PDB is the only file format (among those supported) providing
topological information, therefore ribbon representations will be available only for
this type of files. On the other way, the Gaussian Cube is the only one (among
those supported) designed to store volume data. Concerning trajectories, although
they could be stored both on PDB or XYZ files, Caffeine can import them only
from PDB files at the moment. Actually, neither PDB or XYZ file formats are
suited to store large amounts of data; support of compressed file formats will be
considered in future.

Figure 5.2: Open molecular file dialog.

When loading a molecule from file, some options are provided about how to in-
terpret some class of information or about possible modifications to be applied to
the molecular system. First of all, if the file does not contains hydrogen atoms,
these can be added to the structure by means of a dedicated algorithm provided by
OpenBabel. Furthermore, in the case of molecular files containing multiple struc-

110

5.3 Caffeine “desktop” version

tures, it is possible to specify if these must be considered multiple conformations of
a same structure (i.e. frames of a trajectory) or separate systems. Finally, in the
case of PDB files, CONECT records can be interpreted as user-defined inter-atomic
interactions (instead of covalent bonds). These “generic bonds” will be visualized
in ball-and-stick representation as dashed lines. This feature can be used, for ex-
ample, to visualize pre-computed (outside Caffeine) hydrogen bonds, as shown in
Figure 5.3.

Figure 5.3: Hydrogen bonds between a nucleotide and two water molecules. An intra-molecular
hydrogen bond within the nucleotide can also be noted. All the hydrogen bonds are
provided as input to Caffeine by means of user-defined CONECT records.

5.3.3 Managing diagrams

Figure 5.4 shows a detailed view the panel for the management of diagrams. This
panel is organized as a table, with rows representing the created diagrams. The
columns have the following purposes:

Name of the diagram By default a diagram is named as the molecular system it
represents. However, by double-clicking on this field, it is possible to assign
a custom (and more informative) name to the diagram.

Representation Combo-box by means of which it is possible to select the represen-
tation of the diagram. Available representations are: “Space Filling”, “Balls
& Sticks”, “Liquorice”, “Ribbons” and “Isosurface”. Note that some represen-
tations may result in an empty diagram (nothing is shown) if the molecular
system does not contains the data required by the selected representation
(e.g. “Ribbons” only applies to polypeptides and polynucleotides, while the
“Isosurface” requires one or more volume data sets).

Visibility By acting on this check-box it is possible to temporarily hide the content
of a diagram.

111

Chapter 5 The Caffeine molecular viewer

Options By clicking on this buttons a configuration window appears, by means of
which the user can set various options related to the diagram. These options
will be discussed in detail in the following sub-sections.

Figure 5.4: Diagrams management panel.

To delete a diagram it is sufficient to select it and click on the “-” button. The “+”
button allows instead to create a new diagram. A small dialog appears by means
of which the user can specify the molecular system to be depicted and the initial
representation. The user can also asks to configure the options of the diagram
before its creation.

5.3.4 Filter visible fragments in a diagram

A first category of options concerns the selection of a subset of fragments of a
molecular system to be depicted by the diagram. The user interface by means of
which the user can filter the fragments is shown in Figure 5.5. The list of fragments
composing the molecular system is showed as a tree structure whose items can be
enabled or disabled. At present, the filtering is possible only at the fragments
level, so it is not possible to show or hide only specific residues. A more flexible
and fine-grained filtering policy has been planned in future developments.

5.3.5 Atomistic representations

In atomistic representations (“space filling”, “ball-and-stick” and “liquorice”), atoms
can be colored according to the most commonly used color schemes: “by element”,
“by residue” and “by fragment”. In addiction, is it possible to set a custom color
chosen by the user. From the options dialog is also possible to show or hide the
user-defined “generic bonds” read from the CONECT records of PDB files.

112

5.3 Caffeine “desktop” version

Figure 5.5: User interface to select a subset of fragments of the molecular system to be depicted
by the diagram. In this example, the examined molecule is a bovine despentapep-
tide insulin (PDB ID: 1PID, [273]). Note how water molecules are separated by
polypeptides: the residues which are not part of a polypeptide or a polynucleotide
are inserted in their own fragments, so to facilitate their filtering.

A peculiar feature of Caffeine, employed in balls-and-sticks and liquorice represen-
tations, consists in highlighting the bonds between different fragments by coloring
them in purple, as shown in Figure 5.6.

Figure 5.6: Two polypeptide chains of a bovine despentapeptide insulin molecule (PDB ID:
1PID, [273]) represented as balls-and-sticks and colored by chain. The covalent
bonds connecting different fragments, colored in purple, are highlighted.

Finally, it is possible to visualize additional information about a molecular systems
by means of small green spheres called “dummy atoms”. In order to draw such
spheres, the user must manually insert in the molecular file a “dummy” atom
named “X” with proper coordinates for each sphere to be drawn. Figure 5.7 shows
an example of the use of “dummy atoms”.

113

Chapter 5 The Caffeine molecular viewer

Figure 5.7: Caffeine molecule structure. Lone pair electrons on sp2 nitrogen and oxygen atoms
are visualized as “dummy atoms” (small green spheres).

5.3.6 Ribbons diagrams

Caffeine offers many customizations for drawing ribbons diagrams of polypeptides
an polynucleotides. First of all, it allows to draw ribbons representing polypeptides
according to the most used color schemes, such as by secondary structure, by
residue, by chain or using custom colors (see Figure 5.8).

Furthermore, the choice of the color scheme and of the size of the ribbon happens
on a per-chain basis, thus allowing to specify different graphical settings for each
chain. Finally, the user can highlight one or more sequences of residues within
a chain by specifying a custom color scheme and size for them. An example is
shown in Figure 5.9, depicting a modified Mechanosensitive Channel of Large Con-
ductance (MscL). MscL is a membrane protein that activates upon sudden changes
in membrane tension, creating a large transient and non selective pore to counter
osmotic downshock. Due to its ability to react to mechanical stimuli, engineered
MscL proteins responsive to pH or light have been prepared to study their pos-
sible application as controllable nanovalves. MscL is constituted by five identical
trans-membrane domains made up by helices TM1 and TM2. The starting con-
formational changes induced in MscL have been previously studied by MD [274].
In particular, the effect of creating from one to five equal charges (caused by light
activation of mutated residues) into the pore lumen was analyzed. One of the main
results of the study was the elucidation of a fast asymmetric sub-unit movement
upon single-charge incorporation into the pore, taking place in the ns timescale.
Figure 5.9 shows the structure of the MscL including a single light activated charge,
where the mutated residue is highlighted by means of an enlarged ribbon colored
in azure.

114

5.3 Caffeine “desktop” version

Figure 5.8: Structure of a human deoxy-hemoglobin (PDB ID: 2HHB, [120]). The four polypep-
tide chains are represented as ribbons, while heme groups are visualized as balls
and sticks. In the three sub-figures, ribbons are drawn according to different color
schemes: a) by secondary structure; b) by residue; c) by chain’s ID.

115

Chapter 5 The Caffeine molecular viewer

Figure 5.9: MscL structure engineered by Chandramouli et al. [274] is shown using ribbons
representation. The modified helix including the light activated charge is colored in
red and its mutated residue is highlighted by means of an enlarged ribbon colored
in azure. The graphical options used to draw the modified chain are shown on the
bottom of the figure.

116

5.3 Caffeine “desktop” version

As regard to helices, it can be noted that inner and outer sides are colored with
different colors. This feature, provided also by some other molecular visualizers
such as Chimera [72] and YASARA [87], helps the user to better understand the
spatial structure of the helix. In addiction, this feature is also exploited to visually
indicate the handedness of the helix: right-handed helices have a lighter color on
the internal side, while left-handed helices are drawn with the lighter color on the
outer side (see Figure 5.10). Even if they are uncommon, left-handed helices are
actually observed in crystallography [275], therefore detection of handedness is an
important feature. Finally note that, in order to be correctly detected, left-handed
helices must be composed by at least 4 residues.

Figure 5.10: Ribbons visualization of a prototype LNR module from human Notch1 (PDB ID:
1PB5, [276]). In the figure a left-handed 310 helix is highlighted. Note that Caffeine
draws right-handed helices with lighter color on the internal side while left-handed
helices are drawn with a lighter color on the external side.

Figure 5.11 shown an example of ribbons diagram for polynucleotides and the re-
lated available options. Many possible customizations are provided, like the ability
to assign custom color schemes (default, by base, by fragment and custom color)
and sizes to the various elements of the diagram (phosphate backbone, [deoxy]ribose
and nucleobases) and to hide the sugar in order to obtain a simplified representa-
tion. Like in the case of polypeptides, different settings applies to different chains,
and it is possible specify custom graphical properties for specific sequences of nu-
cleotides within the chain. It should be noted that the traits of the ribbon corre-
sponding to the first and the last nucleotides of each chain are, respectively, wider
and narrower than the rest of the ribbon. This feature has the purpose to highlight
the 5’ to 3’ direction of the chain and, to the best of my knowledge, it’s a unique
feature of Caffeine.

Finally, Caffeine allow to select between three different quality levels for the ribbons
geometry, allowing to obtain better performance on old hardware by setting an
inferior graphics quality. The desired quality level can be selected by the Edit →

117

Chapter 5 The Caffeine molecular viewer

Diagrams quality menu, and applies to all the ribbons diagrams.

Figure 5.11: (a) Ribbons representation of a fragment of B-form DNA with default graphical
settings. (b) Same as (a) but applying custom graphical settings to the two chains:
the backbone of chain A is colored by base and the pentagon representing the
deoxyribose has been replaced with a cylinder spanning from C3’ to the nucleobase,
thus obtaining a simpler representation. Chain B, instead, has been depicted with
default settings, apart from the nucleotides 4-8, which has been drawn enlarged
and with custom colors (two shades of light blue). A detailed view of the settings
required to obtain figure (b) is shown on the bottom half of the image.

118

5.3 Caffeine “desktop” version

5.3.7 Isosurface diagrams

Three-dimensional scalar fields related to molecular properties, such as molecular
orbitals and electron densities, can be visualized in Caffeine as isosurfaces. At
present, volume data sets can be imported only from Gaussian Cube files but,
apart from file parsing procedures, Caffeine’s code does not make assumptions
about the source or the type of these data. Once created an isosurface diagram for
a molecular system, the user can click on the “option” button shown in Figure 5.4
to chose among the available volume data sets (there can be multiple volumes
associated to the same molecular system) and to select an isovalue. The complete
list of options related to isosurface visualization is shown in Figure 5.12.

Figure 5.12: User interface to configure the visualization of an isosurface. (a) Choice of the
volume data set. (b)(c) The isovalue can be selected by directly inserting a value
in the text field or by acting on the provided buttons and slider. (d) Modality
according to which the isosurface must be drawn. (e) Color of the resulting iso-
surface. (f) Opacity of the isosurface (applies to “uniform transparency” drawing
mode only). (g) The algorithm used to generate a tessellation of the isosurface.
(h) When a “solid” drawing mode is selected, this check-box allows to invert the
“external”/“internal” sides of the surface (the two sides are drawn with different
styles). (i) List of “clipping planes” cutting the isosurface. Multiple clipping planes
can be defined for a single isosurface. (l) Distance of the clipping plane from the
center of the volume. (m) Widget to select a normal vector for the plane in a
graphical way. (n) Numerical components of the currently selected normal vector.
The user can set the normal vector by inserting its components in the spin-boxes
and by pressing the “Set” button. (o) Enables or disables the clipping plane.

Several drawing modes for isosurfaces are available, the most important of which

119

Chapter 5 The Caffeine molecular viewer

are shown in Figure 5.13. Panels (b) and (c) of Figure 5.13 point out the two
different transparency modes provided by Caffeine: “uniform transparency” and
“smart transparency”. Uniform transparency simply assign a fixed (user adjustable)
opacity to the entire surface. The so called “smart” transparency, instead, assign a
different opacity value to the fragments (proto-pixels see section 1.3) resulting from
the rasterization of the surface, according to the angle between the normal to the
surface and the view direction. It follows that the zones in which the view direction
is tangent to the surface are drawn with an higher opacity than those orthogonal
to the view direction, thus highlighting the contours of the surface while clearly
showing its inner content. The result is a sharper and more understandable image
with respect to uniform transparency. Actually this technique, often called “view-
dependent transparency” or “X-Ray effect”, is a well-known graphics programming
“trick” exploited also by other molecular viewers, such asMolekel [93] and Avogadro
[86]. A discussion about the techniques to emulate semitransparent materials in
real-time computer graphics and details about its implementation in Caffeine is
given in section 6.5.

Figure 5.13: Highest Occupied Molecular Orbital (HOMO) of caffeine molecule visualized with
different drawing modes: (a) “solid”; (b) “smart transparency”; (c) “uniform trans-
parency”. Note that, to visualize the entire orbital, two isosurface diagrams must be
created, one with a positive isovalue and the other with the corresponding negative
isovalue.

120

5.3 Caffeine “desktop” version

Caffeine provides two different algorithms to generate an isosurface for a given
volume data set:

1. The classic “Marching Cubes” [138]: The popular implementation by Paul
Bourke and Cory Gene Bloyd [277] has been used.

2. A simplified variant of the “Surface Nets” [278]: The “Naive Surface Nets” by
Mikola Lysenko [279] (originally coded in JavaScript) has been re-implemented
in C++ so to be employed in Caffeine.

Figure 5.14: Electron density of a water molecule represented by an isosurface. Comparison
between the triangulation generated by the Marching Cubes algorithm (a) and the
one generated by the Naive Surface Nets algorithm (b).

The classic Marching Cubes provides a more accurate approximation of the isosur-
face and, for that reason, it has been chosen as the default isosurface extraction
algorithm of Caffeine. The (Naive) Surface Nets (NSN), however, exhibits sev-
eral interesting properties. In particular, as shown in Figure 5.14, NSN produces
a more regular triangulation of the isosurface, as opposed to the Marching Cubes
whose generated geometry often contains many small, thin triangles. Furthermore,
according to some tests performed to compare the two algorithms included in Caf-
feine, the Naive Surface Nets is slightly faster in constructing the isosurface (see
chapter 7 for details). Note that a low construction time is crucial to give the user
the possibility to interactively change the isovalue. In conclusion, however, the
NSN did not provided enough benefits to be chosen as default extraction algorithm
in place of the Marching Cubes.

Caffeine allows to define one or more clipping planes cutting the isosurfaces. This
feature is useful to visualize multiple nested isosurfaces at the same time, in order to
simulate contour plots (see Figure 5.15). Another example is the case of symmetric
structures, where clipping planes can be placed along the axis of symmetry to
visualize isosurfaces related to different quantities in the same picture.

121

Chapter 5 The Caffeine molecular viewer

Figure 5.15: Highest Occupied Molecular Orbital (HOMO) of a caffeine molecule visualized as
nested, clipped, isosurfaces.

Each clipping plane is defined by means of a normal vector, a reference point and
the distance between the plane and the reference point. The reference point is fixed
and placed at the center of the volume. The user interface provided by Caffeine
to define clipping planes is shown in Figure 5.12(i). In order to help the user to
orientate the plane (i.e. to define a proper normal vector), a custom widget (GUI
control) has been implemented (Figure 5.12(m)). In this widget, the normal vector
is depicted as a point lying on a unit sphere. The user can vary the normal by
simply dragging the cursor over the sphere. Since the widget represents only a half
of the unit sphere, a special button (having two opposing arrows as icon) is provided
to switch between the front and back sides of the sphere. The currently selected
side is indicated by the color of the cursor: a green cursor symbolize the front side
(those having positive coordinates along the Z axis), while a red cursor symbolize
the back side. When editing the clipping planes for a given isosurface, some helpers
are drawn on the 3D scene, representing the bounding box of the volume data, the
local reference frame, and the clipping plane(s) of the isosurface being edited (see
Figure 5.16). Note that there is a limit on the number of clipping planes that can
be defined, regardless of how they are distributed across the isosurface diagrams.
This limit is imposed by OpenGL, and the actual number of available clipping
planes depends on the graphics hardware. Typical values are 6 or 8.

122

5.3 Caffeine “desktop” version

Figure 5.16: Creating a representation of the electron density of an acrolein molecule by means
of nested, clipped, isosurfaces. It can be noted that, when editing an isosurface,
some helpers are drawn on the 3D scene, such as the bounding box of the volume
data, the local reference frame, and the clipping plane(s) of the isosurface being
edited.

5.3.8 Playing trajectories

Caffeine is able to load trajectories from multi-model PDB files. In particular, when
parsing a PDB file, every time that a model (identified by a “MODEL” record in
the file) is encountered (after the first), Caffeine checks if this new molecular system
is composed by the same atoms of the previously loaded one. If so, the data of
the new model are appended to the previous molecular system, so to form a new
frame of a trajectory, otherwise it is treated as a different molecular system. In
the case of polypeptides, secondary structures are pre-detected for each frame of
the trajectory, so to visualize the formation and the decay of these structures over
time.

The playback of the loaded trajectory can be controlled by acting on the panel
showed in Figure 5.17. As usual, user can play/stop the playback, change the
speed of the playback , jump to a specific frame, repeat the reproduction in a loop,
and so on.

123

Chapter 5 The Caffeine molecular viewer

Figure 5.17: Trajectories playback panel. (a) Play/Pause. (b) Stop and rewind. (c) Skip to
previous frame. (d) Skip to next frame. (e) Current playback speed expressed in
frame per seconds. (f) Slow down the playback. (g) Speed up the playback. (h)
Play once / Repeat in a loop. (i) Number of the frame currently played / total
number of frames. (l) Timeline showing the frame currently played and allowing
to “jump” from a time point to another. (m) Display all frames or only the “key-
frames”. (n) Show / Hide data charts.

Apart from molecular dynamics, it is also possible to visualize chemical reactions,
where the connectivity of the system changes in time. In fact, as in the case of
secondary structures of polypeptides, bond connectivity is computed (by means of
OpenBabel) separately for each frame of the trajectory, so to be able to visualize
the formation and the decay of covalent bonds. An example is shown in Figure 5.18,
representing 12 states of a SN2 reaction: CH3Br+Cl− → CH3Cl+Br− (courtesy
of Dr. Marco Pagliai).

Figure 5.18: Visualization of 12 states of a SN 2 reaction: CH3Br+Cl− → CH3Cl+Br− with
Caffeine. Data courtesy of Dr. Marco Pagliai.

If more than one trajectory is loaded, they will be reproduced in parallel. If the
trajectories have a different length, the shorter ones will stop on reaching their last
frame, while the others will continue their playback. This last rule is also applied if
both static and dynamic structures are visualized together: in fact, static structures
are managed as dynamic structures composed by one frame.

124

5.3 Caffeine “desktop” version

5.3.9 Key-frames

The term “key-frames” refers to a subset of conformations within a single trajectory
which are particularly relevant for the study of the system. Caffeine allows to
“mark” specific conformations as key-frames as well as save/load them to/from
file. Key-frames represent therefore a filtering mechanism for trajectories, allowing
the user to visualize only meaningful frames instead of the entire trajectory. In
order to do so, it is sufficient to enable the check-box of Figure 5.17(m).

Figure 5.19: Key-frames editing. By selecting a molecular system and pressing the button
highlighted in (a), a new form appears (b) allowing the user to edit, save and load
the key-frames.

The set of key-frames for a specific molecular system can be defined, saved to file
and loaded from file by means of the dialog showed in Figure 5.19(b), activated
when pressing the button highlighted in Figure 5.19(a). The format of the files
storing key-frames is extremely simple: these files have “.tkf” as extension and
their content is constituted by the list of the indices of the key-frames, one index
per line. These indices must be integer numbers in the range [1,N], where N is the
total number of frames of the trajectory.

Example of key-frames file
(\n represents the "new line" character)

1\n
5\n
7\n
12\n

5.3.10 Plotting scalar data

Results of simulations of molecular systems does not consist only in a sequence of
structures describing the position of the atoms in different conformations or con-
figurations. In fact, they often produce many types of numerical data describing

125

Chapter 5 The Caffeine molecular viewer

the physicochemical properties of the simulated system. The opportunity to ob-
serve at the same time both the conformations and related numerical data, helps
the researcher to better understand the behavior of the system under investigation
and to foresee its peculiarities. To this end, Caffeine allows to associate one or
more data sets to a molecular system and to plot them in charts. At present only
two-dimensional scalar data sets are supported, which are interpreted as samples
of a real function of a real variable and that can be plotted as line charts. In future
developments, however, these functionalities will be extended and generalized, so
to support a broader typology of data sets and charts.

Figure 5.20: Visualizing the results of a simulation with Caffeine. The simulated phenomena
is the unbinding process of a doxorubicin molecule from DNA. On the right, the
distance between the centers of mass of the doxorubicin and of the binding site is
plotted as a line chart. The red marker shows the distance for the current frame
of the trajectory.

An example of this feature is illustrated in Figure 5.20, showing the results of the
unbinding process of a doxorubicin molecule (drug acting as inhibitors of Topoi-
somerase I and/or II) from DNA. The distance between the center of mass of the
doxorubicin and the center of mass of the binding site is plotted as a line chart.
Furthermore, when a linear relation exists between the conformations of the tra-
jectory and the associated numerical data, a vertical marker appears, pinpointing
the value of the scalar quantity associated to the currently visualized frame of the
trajectory. Further details on this simulation can be found in chapter 7.

Scalar data sets to be plotted can be loaded by means of the dialog showed in

126

5.3 Caffeine “desktop” version

Figure 5.21: Loading numerical data associated to a molecular system. By selecting a molec-
ular system and pressing the button highlighted in (a), a new dialog appears (b),
allowing the user to load one or more two-dimensional scalar data sets.

Figure 5.21(b), activated when pressing the button highlighted in Figure 5.21(a).

The data files supported by Caffeine must have “.d2d” as extension and a proper
format described in the following. Each file can contain one or more data sets, each
one described by an header followed by one or more data blocks. Sections (headers
or data blocks) are separated by a blank line. The header must have the following
format:

DATASET_ <Name of the data set ><newline >
DOMAIN_ <Unit of measure >_<Name of the quantity ><newline >
CODOMAIN_ <Unit of measure >_<Name of the quantity ><newline >
FRAMESDOMAINRELATION_ <Ka >_<Kb ><newline >

Where:

_ Represents one or more blank characters (space or “tab”).

<newline> Represents a line break.

<Name of the data set> Is the name of the data set. It will be used as title of
the line chart. Can include spaces.

<Name of the quantity> Name of the considered physical quantity (e.g. “Po-
tential energy”). Can include spaces. It will be used to form the label of the
axes of the chart.

<Unit of measure> Abbreviation of the considered physical quantity (e.g. “KJ/-
mol”). Can’t contains spaces. This abbreviation will be used to form the label
of the axes of the chart.

<Ka> and <Kb> In the case of dynamic systems (trajectories), if a linear rela-
tion exists between the frames of the trajectory and the domain of the data

127

Chapter 5 The Caffeine molecular viewer

set, then these two numerical constants are used as coefficients of the linear
equation that maps the values of the domain to the frames of the trajectory:
x = (Ka · Fn) +Kb

where Fn ≥ 1 is the number of a frame of the trajectory and x is the corre-
sponding value of the domain. If such relation does not exist, <Ka> and <Kb>
must be set to 0.

The header is followed by one or more data blocks, each one representing a different
data series in the chart and having the following format:

MEASUREMENT_ [Description]<newline >
<X value 1>_<Y value 1><newline >
<X value 2>_<Y value 2><newline >
...
<X value N>_<Y value N><newline >

where [Description] is an optional field containing a brief description of the data
set. If such description is provided, it will be used as label for the data series. Note
that this field can contains space characters.

Below an example of “d2d” file is provided, containing a small portion of the numer-
ical data obtained from the simulation of the unbinding process of a doxorubicin
molecule from DNA (see chapter 7 for details). The file contains two data sets:
(i) the number of hydrogen bonds between the nucleobases of the binding site or
doxorubicin with water molecules as a function of the distance between centers of
mass of the binding site and of the doxorubicin; (ii) the distance between centers of
mass of the binding site and of the doxorubicin as a function of time. Note that the
first data set contains two data series. As regard to the second data set, instead,
a linear relation exists between the value of its domain (e.g. time) and the frames
of the trajectories (as shown in Figure 5.20).

Example of a file containing 2D scalar data sets associated to a molecular
system

DATASET Distance between COMs -> Number of HB with water molecules
DOMAIN nm COMs distance
CODOMAIN - Number of hydrogen bonds
FRAMESDOMAINRELATION 0.0 0.0

MEASUREMENT Num HB formed by the binding site nucleotides
0.1043767 9.877012298770122
0.1618823 9.598240175982403
0.2236353 10.16918308169183
0.2824109 10.013298670132986

128

5.3 Caffeine “desktop” version

0.3409013 9.791720827917208

MEASUREMENT Num HB formed by the DOX
0.1043767 9.80991900809919
0.1618823 9.966203379662034
0.2236353 9.941105889411059
0.2824109 10.073292670732927
0.3409013 9.891810818918108

DATASET Distance between COMs
DOMAIN ps Time
CODOMAIN nm Distance
FRAMESDOMAINRELATION 1.0 -1.0

MEASUREMENT
0 0.2342122
1 0.1607865
2 0.1544051
3 0.1263411
4 0.1540792

5.3.11 Render to file

Caffeine allow to render an high-resolution image of the currently visualized 3D
scene and to save it to file. Images with a resolution up to 600 pixels per inch (ppi)
can be generated, so to produce images suitable for being included in scientific
papers. User can render the visualized scene by selecting the menu item File →
Save as Image. The dialog shown in Figure 5.22 will appear, by means of which
the user can select various option about the image to be generated (such as size,
resolution and background color). The size of the image can be expressed in pixels
or in centimeters. As a general rule, if the final image is intended to be visualized
mainly on a screen (e.g. the image will be included in a web page), the user
should express the size in pixels. In most of these cases the chosen resolution is not
relevant, so the user can leave the default value (72 ppi). On the other hand, if the
image is intended to be printed or included in a paper, high resolution values (such
as 300 or 600 ppi) are recommended and the size of the image should be expressed
in centimeters.

It should be noted that, since the rendering is delegated to OpenGL (instead to
be performed by an off-line renderer, like POV-Ray [280]) and using a single color
buffer for the entire scene, a limit exists on the maximum size of the final image (de-

129

Chapter 5 The Caffeine molecular viewer

Figure 5.22: Render to file form. (a) Final image size can be expressed in pixels (screen based
size) or centimeters (print based size). (b) If the image size has been expressed
in centimeters, this label shows the corresponding size in pixels. On the contrary,
if the image size has been expressed in pixels, this label shows the corresponding
size in centimeters. In both cases the result depends on the selected resolution.
(c) If this check-box is enabled, the final image will have the same aspect ratio
(width / height) of the image rendered on screen. This constrain ensures that the
scene rendered on file will look like the one shown on screen, except for a possibly
different resolution. (d) Allows to chose the resolution of the final image, expressed
in pixels per inch. (e) Allows to chose a background color for the image. (f) Path
of the image file to be rendered.

pending on the specific OpenGL implementation). Actually, this constrain could be
overcome by logically splitting the final image in multiple sections, computing the
proper projection parameters for each section, rendering each section in a separate
memory buffer with OpenGL and finally recomposing the entire image. However,
the maximum size allowed by OpenGL is, in most cases, more than sufficient to
produce images for web pages and scientific papers, so the rendering of images of
arbitrary size is remanded to future developments.

130

5.4 Caffeine “CAVE” version

5.4 Caffeine “CAVE” version

The “CAVE” version of Caffeine provides the same functionalities of the “desktop”
counterpart, but it also implements several specific features required by this type
of installations. In fact, as explained in the following, even if the main goal of this
“CAVE” version is to support the CAVE installation at Scuola Normale Superiore,
the application has been designed to work in any installation equipped with one
or more monoscopic or stereoscopic displays (driven by a single machine), with or
without a tracking system (at present only the OptiTrack [267] tracking system is
supported). This version of Caffeine has been compiled only for Windows, since
the CAVE system at Scuola Normale Superiore is based on Windows and, at the
time of writing, some dependencies (such as NatNet [266]) are available only for
this operating system.

Figure 5.23: Caffeine for CAVE-like systems. (a) Caffeine running on the CAVE installation
at Scuola Normale Superiore. (b) User studying a Cytochrome P450-2B4 wild
type structure [281] in the CAVE. Basic manipulations of the displayed data can
be performed by means of a simple button-based application for mobile devices
(e.g. tablet). Line charts of numerical data associated to the molecular system
(see section 5.3.10) are displayed in front to the user in a semi-transparent panel,
in a way similar to an augmented reality content. (c) The main control panel
of the CAVE version of Caffeine. As shown, the control panel is displayed in a
monitor outside the CAVE. (d) Example of frame rendered by Caffeine for the
CAVE system at SNS. Since this CAVE is equipped with four stereo projectors,
Caffeine generates eight different images for each frame: a right-eye and a left-eye
view of the scene for each of the four projected sides. The black padding present
in some of the views are the due to the keystone correction operated in real time
by Caffeine.

The CAVE system at Scuola Normale Superiore (Figure 5.23(a)) employs four pro-
jectors to display stereoscopic images on the three walls and on the floor. It is
also equipped with an OptiTrack [267] tracking system. Screen are configured to
constitute an extended desktop, so that the rendering can be performed on a sin-

131

Chapter 5 The Caffeine molecular viewer

gle, large, border-less window, as shown in Figure 5.23(b). Each frame rendered
by Caffeine consists in eight viewports, each one containing a different image: a
right-eye and a left-eye view of the scene for each of the four projected sides. In
order to provide to the user a convincing and immersive stereoscopic experience,
as well as drawing the 3D scene across the screens in a consistent way, proper view
and projection parameters of the eight virtual cameras must be computed each
time a new frame is rendered (about 60 times per second). By doing so, the user
will see the molecule as a real object in front of him/her, will be able to observe
it from different positions and even immerse himself/herself within the molecule
to inspect it from the inside. Details on how to compute view and projection pa-
rameters of the virtual camera for each screen are described in [282] and in section
section 6.4. Broadly speaking, these parameters depends on the size, position and
orientation of the physical monitors, and on the position and orientation of the
user’s head. The physical characteristics of the monitors are provided to Caffeine
by means of a configuration file (see section 5.4.1), while information on the user’s
head are provided in real time by the tracking system.

Caffeine also supports real-time keystone correction of the rendered images (see
Figure 5.23 (d) and Figure 5.25). In fact, since it is almost impossible to perfectly
align the projectors to the projected surfaces, the displayed images may look de-
formed and/or do not match the borders of the screen. The solution is deform the
images in order to compensate the misalignment. Note that even if this feature is
often provided by projectors, this is not the case of CAVE system at SNS. Therefore
it was necessary to implement such so deformation via software.

Within the CAVE, the user interacts with Caffeine using a simple, button-based
application for mobile devices (e.g. tablets), as shown in Figure 5.23(b). This
simple remote controller allows to move, rotate and scale the molecule, to control
the playback of a trajectory, and to shows/hide between the available line charts.
These charts are visualized in front to the user in a semi-transparent panel, in a
way similar to an augmented reality content. At present only one chart can be
displayed at time, although the user can switch between the available ones. The
remaining features of Caffeine are available by means of a dedicated control panel
placed outside the CAVE (Figure 5.23(c)). The user interface of this control panel is
almost the same of the main window of the “desktop” version of Caffeine, with the
only difference that the rendering area is here replaced by a set of controls to move,
rotate and scale the molecule and to provide information about the current position,
orientation and size of the displayed molecular system. For a better experience this

132

5.4 Caffeine “CAVE” version

control panel should be managed by a second user. One of the main goals of future
developments is to allow a complete interaction with the application within the
CAVE, both by means of hand (or wand) based interaction techniques and by
creating a new remote controller with a much richer features set.

5.4.1 CAVE configuration tool

Many information required as input by the “CAVE” version of Caffeine, and in
particular those related to the physical installation where it will be executed, are
substantially fixed, so are stored in configuration files and loaded when the program
starts. These parameters includes the list of the monitors on which the rendering
window will be displayed, the physical characteristics of these monitors, the pa-
rameters of the keystone correction for each monitor, the stereo configuration etc.
In order to simplify the creation of the configuration files, a configuration program
has been implemented.

It is important to note that the configuration mechanism here described, as well
as the software modules which implements the related functionalities (e.g. head-
tracked stereo rendering, keystone correction etc.) in Caffeine, has been designed
with the goal to be as general as possible, so to possibly be reused in other appli-
cations and to support different types of installations. In fact, these classes and
tools was part of the “Moka” library (see chapter 4).

The configuration tool organize the settable parameters in three main groups, as-
sociated to a different tab of the user interface. To fully understand these settings
it must be kept in mind that, when developing virtual reality applications, it is
common choice to model virtual world so to be co-located with the physical world.
In particular, a common reference frame (usually the one defined by the tracking
system) is used to express sizes and positions of both virtual and physical entities.
In this scenario, monitors acts as windows, through which the user can observe the
virtual world (although the objects of the virtual world can appear both in front
or behind these windows).

The first group of settings is shown in Figure 5.24 and contains several categories of
options. First of all, it is possible to choose which monitors should be dedicated to
display the 3D rendering (Figure 5.24 (a)). In fact, in a multi-screen environment,
the window in which the rendering is performed may span across multiple screens.
This window will be generated without borders and will be sized so to cover the
entire area of the monitors on which it lays. To this end, the system administrator

133

Chapter 5 The Caffeine molecular viewer

have to indicate a “starting” and “ending” screen: the starting screen is the one
whose top-left corner is used as starting point of the window, while the ending
screen is the one whose top-left corner is used as ending point of the 3D window.
It follows that, to be supported by Caffeine, all the monitors must be driven by
a single computers. Furthermore, the administrator must configure the system
so that the screens will form a linear “extended desktop” (i.e. the desktop must
span across a single row of screens). Even if the “extended desktop” configuration
is the one that provide largest compatibility (by being supported by any modern
operating system), it is not the solution that provide the best results. In fact, it is
recommended to exploit technologies like NVIDIA Mosaic [283] or AMD Eyefinity
[284] whenever possible , which abstract multiple monitors in a single large screen,
thus avoiding performance and synchronization problems. Finally note that, even
if it is required to logically organize the monitors in a single row, there is no
correlation with their physical location nor with the portion of the 3D scene they
will display. Then stereoscopic visualization parameters must be set (Figure 5.24
(b)). The administrator can enable or disable stereo rendering as well as to adjust
the distance between the left and the right virtual cameras (“eye separation”). At
present only “side-by-side” stereo is supported, in which images resulting from the
left and right cameras are drawn beside each other. Figure 5.24 (c) shows the option
related to the 3D scene. In fact, it is possible to specify the initial position of the
virtual camera and the initial position and size of the main object of the scene (e.g.
a molecular system in the case of Caffeine). Here it is also possible to enable or
disable the anti-aliasing post-processing of the rendered images. The adopted anti-
aliasing algorithm is FXAA 3.11, designed and implemented by Timothy Lottes
[285], whose source code was formerly distributed by the author on his personal
blog under an open-source license, thus making possible it’s inclusion in Caffeine.
Finally, if the application supports some kind of remote controllers (like in the
case of Caffeine), the section (d) of the “general” configuration tab allows to set
the network interface and the port number on which the application will listen for
incoming TCP connection from remote processes.

Once the configuration is complete (including the settings described in the fol-
lowing), it is possible to test the correct functioning of the system by clicking on
the “Test 3D” button (Figure 5.24 (e)). A simple 3D scene will appear consisting
in a set of colored spheres (see bottom of Figure 5.24). The red sphere represent
the “main object” of the scene and, if stereoscopy is enabled, it should appear in
the position and of the size specified in the configuration tool. The blue spheres,
instead, have a fixed radius and are placed randomly.

134

5.4 Caffeine “CAVE” version

Figure 5.24: First group of settings provided by the configuration tool for CAVE-like systems.
(a) First and last monitors upon which the rendering window must be spread. (b)
Parameters related to the stereoscopic visualization. (c) Various options related
to the 3D scene, such as the initial position of the virtual camera and the initial
position and size of the main object of the scene. Anti-aliasing of the rendered
images can also be enabled. (d) Configuration of the IP address and port number
on which the application will listen for connections from remote controllers. (e)
By clicking this button a simple 3D scene will be visualized, so to test the correct
functioning of the system with the given configuration.

Figure 5.25 shows the user interface to configure the settings related to the physical
monitors. The position and the orientation of each monitor must be specified by
providing the position of three of its four corners. Since we assume that physical
and virtual world are co-located, these information together with the position of
the user’s eyes will determine the portion of 3D scene visible through each monitor.

135

Chapter 5 The Caffeine molecular viewer

For each monitor it is also possible to enable and configure the keystone correction.
The deformation of the rendered images is operated by an ad-hoc fragment shader
by exploiting the equation of the biquadratic Bézier patch. The control points of the
patch can be easily configured by means of an custom widget created specifically for
this purpose1. In particular, by pressing “Keystone Calibration” button, a window
will appear showing the interior of a sphere drawn in “wire-frame”. The wire-frames
acts as a grid to help the administrator to align the images on adjacent monitors.
The administrator can therefore configure the keystone correction by acting on the
interface shown in Figure 5.25: any change applied to the control points affects in
real-time the deformation of the rendered grid.

Figure 5.25: Second group of settings provided by the configuration tool for CAVE-like systems.
Here the physical location and size of each monitor must be set. For each monitor
it is also possible to enable the keystone correction: by clicking on the dedicated
button a rendering window will appear, showing a live preview of the applied
deformation.

1Note that only eight of the nine control points for the Bézier patch can be defined. In fact, the
central control point is fixed at the center of the surface.

136

5.4 Caffeine “CAVE” version

The last settings group is related to the tracking system. Note that at present
only OptiTrack [267] tracking systems are supported (configured to stream data
compatible with the NatNet library [266]), however adding support for trackers
by others manufacturers should be easy. To enable head-tracked stereoscopy, it is
sufficient to check the related checkbox showed in Figure 5.26(a) and to provide
both the IP address of the network interface from which the data are streamed and
the IP address of the network interface from which the data must be received. If
the sender process runs on the same machine of the VR application, it is sufficient
to use the “loopback address” (127.0.0.1) in both fields. Once the configuration
is complete (including the settings described previously), it is possible to test the
correct configuration of both the tracking system and the VR application by press-
ing the “Test Tracking” button (Figure 5.26(b)). A window spanning across all
the configured monitors will appear, showing the currently detected position of the
user’s eye represented as a couple of colored spheres. The eye position is computed
as a function of the eye separation (Figure 5.24(b)) and of the detected position
and orientation of the rigid body representing the user’s head.

Figure 5.26: Third group of settings provided by the configuration tool for CAVE-like systems.
(a) If the considered installation is equipped with an OptiTrack tracking system,
the IP address of the network interface from which the data are streamed and the
IP address of the network interface from which the application will receive them
must be provided. (b) To test the correct configuration of the tracking system,
the system administrator can click on this button: a simple 3D scene will appear,
showing the currently detected position of the user’s eye represented as a couple
of colored spheres.

137

Chapter 5 The Caffeine molecular viewer

5.5 VR Helmets support in Caffeine

Figure 5.27: Image reproduced from [7]. (a) User wearing the Oculus Rift DK1 helmet. (b)
DNA/doxorubicin binary complex rendered for the Oculus Rift DK1 with an pre-
vious version of Caffeine.

The support for the Oculus Rift DK1 [190, 286] was implemented in a previous
version of Caffeine still based on theMoka library (chapter 4). That version allowed
the user to examine static and dynamic structures with the VR helmet, but lacks of
the latest features, such as isosurfaces and line charts. The user could interactively
play the loaded trajectory with the keyboard or, by using an external program that
maps joystick input to keyboard events (such as JoyToKey [287]), with a gamepad.

When the Moka library was removed from the project, the code for supporting for
the Oculus Rift DK1 was not updated and thus temporary disabled, both because
in the meantime the Oculus Software Development Kit [286] experienced relevant
changes and because VR helmets produced by other manufactures appeared on the
scene (such as the “Vive” by HTC and Valve [191]). For these reasons, VR helmets
support in Caffeine was postponed until the release of the commercial version of
these devices. At the time of writing, a wrapper integrating the OpenVR library
[288] in Caffeine is in development, and should support both the Oculus Rift and
the HTC Vive.

138

6 Caffeine: Implementation details

6.1 GPU-based ray casting of spheres and cylinders

In section 2.2 a rendering technique known as “GPU-based ray casting of implicit
surfaces” was discussed, which allows to draw implicit surfaces (and in particular
quadric surfaces) with high visual quality and rendering performance. This section
provides a high-level description of the the algorithmic aspects of this technique,
with particular reference to its implementation in Caffeine. Note that, at the
time of writing, Caffeine implements the ray-casting only of spheres and cylinders.
Support for additional types of surfaces is planned in future developments.

The idea at the base of this technique is the following: for each pixel of the final
image, a ray is cast starting from the camera and passing through the considered
pixel. Then, the intersection point between the ray and the surface nearest to the
camera is analytically computed, together with the related normal vector. Finally
the color of the pixel is computed, as a function of the material properties of the
surface, the normal vector, the information about the light sources present in the
scene and the chosen shading model (e.g. the Blinn-Phong model [164]). However,
this procedure is unsuitable to be executed on graphics hardware (section 1.3).
Therefore the algorithm must be re-designed as follows (see Figure 6.1): a proxy
geometry is submitted to the rendering pipeline in place of each implicit surface
to be drawn. The only requirement for the proxy geometry is to enclose the area
occupied by the implicit surface in window space (i.e. when projected on the
image plane). Therefore, it is convenient to compose the proxy geometry with a
small number of geometric primitives but, at the same time, the proxy geometry
should enclose the surface as tightly as possible (in window space), so to minimize
the number of superfluous fragments to be processed. Common choices are point
sprites, quads composed by two triangles or a parallelepipeds composed by twelve
triangles. Optionally, the proxy geometry can also be generated on the fly by a
dedicated geometry shader (as also proposed in [117, 135]), so to further reduce

139

Chapter 6 Caffeine: Implementation details

the geometry to be sent to the GPU and to be stored in graphics memory. By
using this optimization, Caffeine is able to represent a sphere with a single vertex
described by seven floating point numbers (three for the position, three for the
color, and one for the radius), and a cylinder/capsule with two vertices described
by ten floats (six for the position of the vertices, three for the color, and one for the
radius). The actual proxy geometry, consisting in one or two quads, is generated
on the fly by the geometry shader. A dedicated fragment shader is the executed for
each fragment resulting from the rasterization of the proxy geometry. Its purpose
is to determine the parameters of the ray starting from the camera and passing
through the fragment and then to analytically compute the intersection between the
ray and the considered implicit surface. If the ray miss the surface the fragment
is discarded, otherwise the intersection point and the related normal vector are
computed. These data are then used to compute a color for the fragment and to
adjust its depth. Setting a proper depth for the fragment is crucial, since it allows
to exploit the standard “Z-buffer” algorithm to resolve the visibility problem and
to mix ray-casted surfaces with regularly rendered polygons in the same 3D scene.

Figure 6.1: GPU-based ray casting of spheres in Caffeine. (a) A single vertex (along with its
parameters) is submitted to the rendering pipeline for each sphere to be drawn. (b)
A dedicated geometry shader transform the vertex in a quad enclosing the sphere in
windows space. (c) A dedicated fragment shader is executed for each fragment re-
sulting from the rasterization of the proxy geometry. The fragment shader computes
the intersection point between the sphere and a ray starting from the camera and
passing through the fragment, and the related normal vector. (d) The coordinates
of the intersection point are used to adjust the depth of the fragment, while the
normal vector is used in shading computations.

The main benefits of GPU-based ray casting are:

• High visual quality: since the surface is not tessellated, its curvature is pre-
served.

• Reduced CPU–GPU bus bandwidth consumption and memory usage, thanks to
the fact that proxy geometries are usually much simpler (in terms of polygon-
count) then tessellated surfaces. This property is important when the set of
surfaces to be drawn changes frequently over time, such as in the case of
time-varying molecular surfaces.

140

6.1 GPU-based ray casting of spheres and cylinders

• Sort of Level Of Detail (LOD) strategy built-in into the algorithm: if the
rasterization of the surface produce a small number of fragments, e.g. when
the surface is distant from the camera, the rendering cost will be low.

However, this technique also has the following drawbacks:

• The standard Multisample Anti-Aliasing (MSAA) algorithm does not produce
effects on ray-casted surfaces. For this reason, Caffeine uses a screen-space
anti-aliasing algorithm: the “FXAA 3.11” designed and implemented by Tim-
othy Lottes [285] (the source code was formerly distributed by the author on
his personal blog under an open-source license).

• Fast degradation of the rendering performance when the surfaces covers an
high number of fragments. To reduce this problem, occlusion culling strategies
should be employed, like the one proposed by Grottel et al. [109].

141

Chapter 6 Caffeine: Implementation details

6.2 “Tubes” modelling

Ribbons diagrams in Caffeine are made possible by an in-house developed soft-
ware module capable of generating three-dimensional “tubes”. Even if at present
this module is exploited only to produce ribbons diagrams for polypeptides and
polynucleotides, it has been designed to provide a good level of flexibility and, in
a future, could be exploited to represent other types of information, such as vector
fields.

The path of a tube is defined by a sequence of traits. Each trait, in turn, is defined
by two endpoints, a normal vector, the shape of the cross section of the trait and
at least two set of attributes determining the size and the color of the trait at each
endpoint. In fact, both the size and the colors may differ between the stating and
the ending point of a trait: in that case they will be linearly interpolated along the
extent of the trait, as showed in Figure 6.2. Furthermore different colors can be
chosen for the “top” and “bottom” half of the trait. This feature has the purpose
to visualize the orientation of the trait along its main axis, defined by the normal
vector. Three different shapes are available for the cross section of the trait (see
Figure 6.3): rectangular with rounded corners, elliptical and (as a spacial case of
this one) circular.

Figure 6.2: Example of a trait with a cir-
cular cross section. Different
sizes and colors have been as-
signed to the starting and end-
ing points of this trait. Fur-
thermore, the top and bottom
half of the trait have been col-
ored differently, so to give a
clue about the orientation of
the trait.

Figure 6.3: The available shapes for the
cross section of the trait. From
top to bottom: rectangular
with rounded corners, ellipti-
cal and circular. The semi-
spherical caps delimit the be-
gin and the end of the tube.

As said a tube is defined by a sequence of consecutive traits. However, the actual
path swept by the tube in the three-dimensional space depends on another factor:
its smoothness. In fact, when creating the tube, it is possible to specify if each trait
must be treated as a rectilinear segment (as shown in Figure 6.4(a)) or if the actual

142

6.2 “Tubes” modelling

path must follow a cubic B-spline curve, whose control points are the endpoints of
the traits (as shown in Figure 6.4(b)).

Figure 6.4: Comparison between “rectilinear” tubes (a) and “smooth” tubes.

The choice of the cubic B-spline to approximate the path of the traits is motivated
by the fact that these curves play a major role within the field of molecular graph-
ics, since they are widely employed to approximate the path of the backbone of
polypeptides and polynucleotides in ribbons diagrams (as discussed in section 6.3).
Like any “spline”, cubic B-splines are piecewise-defined curves, where each trait
is a polynomial function having a certain degree of continuity with the function
of the following trait. In particular, cubic B-splines have a C2 continuity at join
points, which provide them a considerable smoothness. Each trait of the curve is
defined by four control points, according to the following equation:

p(t) = 1
6 ·
[
t3 t2 t 1

]
·


−1 3 −3 1

3 −6 3 0
−3 0 3 0

1 4 1 0

 ·

P0

P1

P3

P4

 (6.1)

where tε [0, 1] and P0 =
[
x0 y0 z0 1

]
, P1 =

[
x1 y1 z1 1

]
, P2 =

[
x2 y2 z2 1

]
,

P3 =
[
x3 y3 z3 1

]
are the control points for the considered trait.

Once the first trait of the curve is defined, following traits can be appended by
just adding a control point for each new trait, since the remaining three control
points are shared with the trait preceding them. It should be noted, however, that
the resulting curve will approximate (but not interpolate) the path outlined by the
control points. This is, in fact, the main drawback of this class of curves. In order
to set a precise starting and ending points, two “dummy” points must be inserted
respectively as first and last control points. In particular, and with reference to
Figure 6.5, the “dummy” control points are P−1 and P5, and they can be computed
as follow:

143

Chapter 6 Caffeine: Implementation details

Figure 6.5: B-spline curve defined by six control points and composed by four traits. Each trait
of the curve is defined by four control points. As example, the first trait is defined
by the points numbered from -1 to 2, the second by the points from 0 to 3, and so
on.

P−1 = P0 + (P0 − P1) = 2 · P0 − P1

P5 = P4 + (P4 − P3) = 2 · P4 − P3

With regard to the generation of the graphical geometry for the tubes, this involves
the following steps:

1. For each trait, an orthonormal basis is computed. Let be −→Ti ,
−→
Ni and

−→
Bi the

versors forming that basis for the i-th trait of the tube.−→N i is the “normal”
versor, which defines the “top” and “bottom” sides of the trait; −→Ti represent
the direction of the trait, i.e. the versor directed from the starting to the
ending point of the trait: −→Ti = (Pi+1 − Pi)/ ‖Pi+1 − Pi‖;

−→
Bi is a versor

orthogonal both to −→Ti and −→Ni:
−→
Bi = −→Ni ×

−→
Ti . It is called “binormal” and

defines the direction along which the tube extends laterally. Note that, in
order to simplify the use of this software module, the provided −→Ni need not
necessarily be orthogonal to −→Ti . In other words, the provided −→Ni is a sort
of “first guess” about the normal of the trait. As a consecuence, a correct
−→
Ni orthogonal both to −→Ti and −→Bi is automatically re-computed as follow:
−→
Ni = −→Ti ×

−→
Bi.

2. For each trait, the path spanned by the trait is defined by a configurable
number of equally spaced points lying on it.

a) In the case of “rectilinear” tubes, only two “path-points” are generated,
coinciding with the starting and ending points of the trait.

b) For “smooth” tubes, instead, the “path-points” are computed by sampling
the B-spline function for the given trait at regular intervals. The number
of samples for each section of B-spline is configurable, thus allowing to
construct tubes with different quality levels.

144

6.2 “Tubes” modelling

3. For each path-point “j” of the i-th trait, an orthonormal basis is computed,
formed by the tangent

−→
T ji , normal

−→
N j
i and binormal

−→
Bji versors.

−→
T ji approxi-

mates the tangent to the path in the considered path-point and is computed
as the direction from the considered path-point to the following one of the
trait.

−→
N j
i and

−→
Bji have the same meaning of the corresponding versors of the

trait, but referred to the considered path-point.

a) In the case of “rectilinear” tubes, a simple solution would be using, for
both path-points, the normal of the trait −→Ni as

−→
N j
i , the direction of the

trait −→Ti as
−→
T ji and

−→
Bji =

−→
N j
i ×
−→
T ji . However, to avoid discontinuities

between adjacent traits, the tangent vector of the previous and next
traits must be taken into account:

i. For the first path-point,
−−−→
T starti is given by the normalized sum of the

direction of the considered trait with the direction of the previous
trait:

−−−→
T starti =

(−→
Ti +−−→Ti−1

)
/
∥∥∥−→Ti +−−→Ti−1

∥∥∥
ii. For the last path-points,

−−→
T endi is given by normalizing the sum be-

tween the direction of the considered trait and the direction of the
next trait:

−−→
T endi =

(−→
Ti +−−→Ti+1

)
/
∥∥∥−→Ti +−−→Ti+1

∥∥∥
iii. In both cases,

−→
Bji results from the cross-product between the normal

associated to the trait and the computed
−→
T ji , while

−→
N j
i =
−→
T ji ×

−→
Bji :

−−−−→
Bstarti = −→Ni ×

−−−→
T starti ;

−−−−→
Nstart
i =

−−−→
T starti ×

−−−−→
Bstarti

−−−→
Bendi = −→Ni ×

−−→
T endi ;

−−−→
Nend
i =

−−→
T endi ×

−−−→
Bendi

b) For “smooth” tubes, cubic B-splines are exploited to interpolate normal
vectors between two traits, similarly to what done by Krone et al. [118]
in their GPU-accelerated algorithm for the construction of ribbons dia-
grams. In this way it is possible to obtain a smother transition between
different orientations with respect to a linear interpolation. To explain

145

Chapter 6 Caffeine: Implementation details

in detail how
−→
N j
i is computed for each path-point of a given trait, con-

sider Figure 6.6(a). Suppose we want to interpolate the normal vectors
along the trait Si (colored in red in Figure 6.6(a)). −→Ni is the normal
vector associated to Si and it is considered to be placed at the cen-
ter of the trait. If we sum independently each of the normal vectors
Ni−2, . . . , Ni, . . . , Ni+2 to the origin of a Cartesian coordinate systems,
we obtain five points, named PNi−2 , . . . , PNi , . . . , PNi+2 in Figure 6.6(b).
These points can then be used as control points of two consecutive cu-
bic B-spline sections (colored in orange and green in the figure), whose
equations can be evaluated to compute a normal vector for each path-
point of Si. It is important to note that the first B-spline section (having
PNi−2 , . . . , PNi+1 as control points) must be considered when comput-
ing the normal vector for the path-points lying on the first half of Si,
while the second B-spline section (having PNi−1 , . . . , PNi+2 as control
points) must be considered when computing the normal vector for the
path-points of the second half of Si (Figure 6.6(c)). The computation of
an appropriate value of the t parameter (for the function 6.1) for each
path-point must keep into account this fact. As always,

−→
Bji =

−→
N j
i ×
−→
T ji .

Finally, in order to ensure that
−→
N j
i is orthogonal to

−→
T ji , it is recomputed

as follow:
−→
N j
i =
−→
T ji ×

−→
Bji .

Figure 6.6: Procedure for the interpolation of normal vectors in a “smooth” tube. (a) Five traits
of a tube are shown. We want to interpolate the normal vector along the trait Si,
colored in red. (b) Five points are computed by summing independently each of the
normal vectors to the origin of the reference frame. These points are then employed
as control points of two consecutive cubic B-spline sections (colored in orange and
green). (c) The normal vector to be assigned to a given path-point of Si is computed
by evaluating the function 6.1 with a proper parameter t corresponding to the path-
point. Note that a different set of control points and a different value for t must be
used depending on whether the path-point belongs to the first or second half of Si.

4. Sizes and colors are computed for each path-point, by linearly interpolating
those defined for the endpoints of the trait.

5. A set of vertices is generated for each path-point. These vertices will form

146

6.2 “Tubes” modelling

the cross-section of the tube at the considered path-point. Their position and
color are computed as a function of the shape of the trait and of the attributes
associated to the considered path-point (sizes, colors and the orthonormal
basis described before). The number of vertices for each cross-section of the
tube is configurable, thus allowing to construct tubes with different quality
levels.

6. The vertices generated for two consecutive path-points are finally used to
define the triangles representing the external surface of the tube. When doing
this, precautions have been taken in order to avoid “twists” along the tube
(when two consecutive traits have a significantly different orientation).

From the procedure described before, it follows that “rectilinear” tubes preserve the
orientation of the traits, therefore the orientation varies at discrete steps along the
tube, as shown in Figure 6.7(a). “Smooth” tubes, instead, produce a more continuous
variation of the orientation along the tube, as shown in Figure 6.7(b).

Figure 6.7: Comparison between two types of tubes composed by five traits, each with a different
orientation. (a) “Rectilinear” tubes preserve the orientation for along each trait. (b)
“Smooth” tubes smoothly interpolate the orientation of the traits along their extent.

As said before and as showed in Figure 6.2 and Figure 6.8(a), it is possible to
obtain smooth transitions in the size and/or in the color of the tube by assigning
different sizes and/or colors to the two endpoints of a trait, and by taking care
of assigning a corresponding set of attributes to the starting/ending point of the
subsequent/previous trait. However, its is also possible to produce sharp changes
between consecutive traits, as showed in Figure 6.8(b). To do so, it is sufficient to
assign different colors, sizes or shape between the ending point of a trait and the
starting point of the following one.

There is another way to obtain a similar effect. In fact, it is possible to specify
additional sets of attributes within a same trait. More formally, let consider a
parameter t ranging along the trait in [0,1]. Each trait can contain two or more
sets of attributes describing how the size and the color changes along the trait.
Each set of attributes is associated to a value of t, defining the point of the trait to
which those attributes apply. As minimum, each trait must have a set of attributes

147

Chapter 6 Caffeine: Implementation details

Figure 6.8: (a) Smooth transitions in the size and/or in the color of the tube. (b) Sharp variations
of the size and/or color of the tube. These effects can be obtained by appending
traits with different attributes or by using “middle-point attributes” within a single
trait. The semi-spherical caps delimit the begin and the end of the tube.

for t = 0 (starting point) and t = 1 (ending point), but additional attributes can
be assigned for tε(0, 1) (internal points of the trait). As an example, the same
result of Figure 6.8(a) can be obtained with a single trait, but specifying a larger
size and a green color for t = 0.5. Furthermore, multiple (usually one or two) sets
of attributes can be defined for a same value of t, thus allowing to obtain sharp
changes such as those depicted in Figure 6.8(b).

So, what’s the difference between using “middle-point attributes” and defining
multiple traits with different attributes? For “rectilinear” tubes there is no differ-
ence. However, in the case of “smooth” tubes, using multiple traits to obtain visual
changes in the tube would introduce additional control points that would affect the
path of the tube! An example of the use of “middle-point attributes” in Caffeine is
to create the arrow of the beta-strands in ribbons diagrams, without affecting the
path of the backbone.

This additional feature affects the algorithm for generating the graphical geometry
of tubes in the following ways:

• A path-point (and consequently a set of vertices) must be generated for each
value of t assigned to a set of attributes.

• For a same point along the path, multiple path-point can exists, having dif-
ferent associated sizes and/or colors.

• When computing the attributes for a path-point (point 3 of the previous
procedure), “middle-point attributes” must be taken into account.

148

6.3 Ribbon diagrams

6.3 Ribbon diagrams

This section describes the salient aspects of the algorithms implemented in Caffeine
for the construction of ribbon diagrams for polypeptides and polynucleotides. Since
the actual generation of the triangle meshes representing the ribbons are delegated
to the software module for constructing “3D tubes” (described in the previous
section), the discussion will focus on how the traits of each tube are defined in
order to obtain meaningful and visually pleasant ribbon diagrams.

6.3.1 Polypeptides

The procedure for the construction of ribbon diagrams of polypeptides is based on
the popular algorithm presented by Carson at the end of the 1980s [74, 75, 77].
Carson proposed to graphically represent the backbone of a polypeptide by a ribbon
whose path is defined by a cubic B-spline having the position of the Cα atoms as
control points. Each section of the ribbon spans over the peptide plane formed
by two consecutive residues of the chain and must have the same orientation of
that plane. For illustration purposes, a schematic representation of a section of
polypeptide is shown in Figure 6.9.

Figure 6.9: Schematic representation of a section of polypeptide.

Formally, let Ciα and Ci+1
α be the position of Cα of two consecutive residues in the

chain and let Oi be the position of the oxygen atom of the carboxyl group of the
first of these two residues. The following vectors can be defined:

−→
Ti = Ci+1

α − Ciα∥∥Ci+1
α − Ciα

∥∥ −→
Ni = (Ci+1

α − Ciα)× (Oi − Ciα)∥∥(Ci+1
α − Ciα)× (Oi − Ciα)

∥∥ −→
Bi = −→Ni ×

−→
Ti

149

Chapter 6 Caffeine: Implementation details

−→
Ti represent a sort of direction of the backbone in the considered section, −→Ni is
the normal vector of the considered peptide plane, while −→Bi is a vector orthogonal
both to −→Ti and

−→
Ni. Let’s call −→Bi the binormal of the peptide plane. For each pair

of consecutive residues, the related section of ribbon must be oriented according
to −→Bi (i.e. the ribbon must extend laterally along ±−→Bi) and must follow the path
defined by a section of cubic B-spline (equation 6.1) having (Ci−1

α , Ciα, C
i+1
α , Ci+2

α)
as control points. As noticed by Carson, a complication arise from the fact that the
orientation of consecutive peptide planes may flip (as in the case of beta-strands),
thus resulting in twisted ribbons. This problem can be detected and solved by
comparing the binormal vector −→Bi of the considered peptide plane with the one
of the previous peptide plane in the chain (−−−→Bi−1). If the angle between −→Bi and−−−→
Bi−1 is greater than 90° (i.e. if the scalar product between −→Bi and

−−−→
Bi−1 is less

than 0), then the vectors −→Bi and −→Ni must be inverted. As regard to the shape
of the ribbon, it varies among the implementations. Caffeine employs the most
widespread representation, in which random coils are shaped as tubes, helices as
spirals of ribbon and beta-strands as ribbons terminated by an arrow pointing in
direction of the carboxyl group. The detections of the secondary structure of the
polypeptide chains is delegated to Stride [270], invoked by Caffeine as an external
program.

As said, Caffeine makes use of the software module for constructing “3D tubes”
(described in section 6.2) in order to generate a triangle mesh for the ribbon. For
each residue of the chain apart from the last one, a new trait is constructed and
appended to the 3D tube. The starting and ending point of the trait are Ciα
and Ci+1

α respectively, while its orientation is defined by the normal vector of the
peptide plane −→Ni, by means of which a proper binormal vector is computed. The
algorithm verifies the presence of flips between the orientations of the new and
previous trait and, in this case, inverts the normal and binormal vectors of the new
trait (to avoid twists in the ribbon). Sizes, colors and shape of each trait depend
on the type of secondary structures formed by the two involved residues. As regard
to the shape, the cross section of the tube will be a circle if both the residues form
a random coil, and a rounded rectangle otherwise. Sizes and colors are specified by
defying two or more sets of “attributes” for the trait. As explained in section 6.2, it
is mandatory to define at least one set of attributes for both the ends of the trait.
Let the two involved residues be respectively be the i-th and the (i+1)-th of the
chain. Then, the attributes for the staring point of the trait will depend on the
secondary structure and on the user-defined settings of the i-th residue, while the
attributes for the ending point will depend on the secondary structure and on the

150

6.3 Ribbon diagrams

user-defined settings of the (i+1)-th residue. In particular:

• If the considered residue forms a random coil, then the diameter of the circular
tube is given by the minimum between the width and the height chosen by
the user for the ribbon, while the color depends on the color scheme (e.g.
“color by residue”, “color by secondary structure”, etc.) chosen by the user
(see section 5.3.6).

• If the considered residue forms a beta strand, in the general case both the
color and the size will be assigned according to the user-defined settings.
However, if the considered residue is the last of the strand, then its Cαlies
the middle of the arrow, therefore the width of the start of the trait must be
enlarged accordingly. Finally, if the considered residue is both the last of the
strand and the last of the chain, then its Cα constitutes the end of the arrow,
so the width of the end of the trait is set to be equal to its height (in order
to look circular).

• If the considered residue forms a helix, then the width and height of the
corresponding starting/ending point of the trait will be the ones chosen by
the user. As regard to the color, instead, some additional consideration is
necessary. In fact, as explained in section 5.3.6, Caffeine uses different colors
to draw the outer and the inner sides of the helix (with the exception of the
coloring by residue, where both sides have the same color). The outer color
is retrieved by the user-defined settings, while the inner color is computed
by decreasing the saturation of the outer color. As explained in section 6.2,
it is perfectly valid to assign different colors for the “top” and “bottom”
half of the trait. However, it is not said that the “top” side of the trait
corresponds to the outer side of the helix! In order to determine how the
normal vector −→Ni of the considered trait is oriented with respect to the helix,
the following heuristic is employed: consider the vector −→Hi = (Ci+1

α − Ci−1
α)

providing a rough approximation of the direction of the spiral in proximity
of the i-th residue. If the angle between −→Hi and

−→
Ni is greater than 90° (i.e. if

−→
Hi ·
−→
Ni < 0) then the normal is directed inside the spiral, otherwise is directed

outside the spiral. The effectiveness of this heuristic have been confirmed by
numerous tests on real-world molecular structures obtained from the Protein
Data Bank. According to the result of this test, outer/inner colors are then
assigned as top/bottom colors for the trait. Finally, there is one last special
case to consider: when the helix is left-handed. In that case, inner and other
color are swapped, so to use the more saturated color for the inner side of

151

Chapter 6 Caffeine: Implementation details

the helix (as showed in Figure 5.10). The handedness of the helix is detected
according to the following algorithm:

– Let Cfirstα and Clastα be the position of the Cα atoms of the first and
last residue of the helix. The axis of the spiral can be approximated by
the versor: −→A = (Clastα − Cfirstα)/

∥∥Clastα − Cfirstα

∥∥.
– For each section of the helix constituted by three consecutive residues,

consider the position of their Cα atoms:Cjα, Cj+1
α and Cj+2

α . They form
a turn constituted by two consecutive traits having the following direc-
tions: −→Tj = (Cj+1

α −Cjα)/
∥∥Cj+1

α − Cjα
∥∥, −−→Tj+1 = (Cj+2

α −Cj+1
α)/

∥∥Cj+2
α − Cj+1

α

∥∥.
– The considered turn is right-handed if

((−→
Tj ×

−−→
Tj+1

)
·
−→
A
)
> 0, left-

handed otherwise.

– Although in theory it should be sufficient to compute the handedness of a
single turn (triple of consecutive residues) to determine the handedness
of the entire helix, the algorithm computes the handedness of all the
turns of the helix, and then assign an handedness to the helix by majority
rule. This choice is motivated to compensate structural irregularities
that may occur at the begin or at the end of a helix.

– Finally note that the handedness of the helices is pre-computed after
loading of the protein and detecting of its secondary structure, in order
to avoid any impact on the performance of the algorithm for the con-
struction of the ribbon diagram. This is important in the visualization
of dynamic systems, when the graphical geometry for each frame of the
trajectory is constructed on-the-fly.

Apart from the sets of attributes for the starting and ending points of the trait,
additional attributes may be generated for its middle point. They are necessary
only in particular conditions, e.g. in the case of sharp changes in the graphical
properties of consecutive residues. In fact, the middle of the trait approximate
the position of the peptide bond, that is the “boundary” between adjacent amino
acid residues. The following list describe in detail the cases in which “middle-point
attributes” are generated and the desired effect:

• Coloring by residue: each residues must be colored with a solid color without
transitions (gradients) between adjacent residues.

• Adjacent residues having different graphical settings: a sharp variation of size
or color occurs.

152

6.3 Ribbon diagrams

• Point in the middle of the last two residues of a beta-strand: the arrow starts
at the middle the trait, thus a sharp enlargement of the width is required.

• Middle point between the last residue of a beta-strand and another residue:
the arrow ends at the middle the trait, thus a gradual downsizing of the width
is required.

• Middle point between the last residue of a helix and the first residue of a
random coil or beta-strand: the width of the ribbon is gradually downsized
up to resemble a coil.

• Middle point between the last residue of a random coil and the first residue
of another structure: the width of the ribbon is gradually enlarged.

Note that only a single set of attributes for the middle point of the trait is generated
in the case of a gradual transitions of the graphical properties, while two different
sets of attributes are required to obtain sharp changes, as shown in Figure 6.10.

Figure 6.10: Closer look to an alpha-helix followed by a random coil. (a) By coloring the chain
by secondary structure, only one set of attributes is applied to the middle point
between the last residue of the helix and the first of the random coil, in order to
obtain a smooth transition of both size and color. (b) By coloring the chain by
residue, a sharp transition in the color happens between the two residues, requiring
the use of two set of attributes for the middle point.

6.3.2 Polynucleotides

The sugar-phosphate backbone of nucleic acids is represented by a ribbon, whose
path is defined by a cubic B-spline curve having the position of phosphorus atoms
as control points (except for specific cases, as explained in the following). The
construction of the ribbon is performed by appending a new trait to the “3D tube”
for each nucleotide of the chain.

The implemented algorithm requires that the nucleotides are iterated in 5´ to 3´
direction. A specific control has been implemented to verify this condition. In fact,
although the PDB file format imposes that nucleotides must be listed from the 5’ to

153

Chapter 6 Caffeine: Implementation details

the 3’ terminus [19], non-conforming files may happens in practice. Furthermore,
PDB files exists in which amino acid residues are correctly listed from the 5’ to the 3’
terminus, but having decreasing sequence numbers (see, as an example, the chains
’R’ and ’T’ of the PDB file ’1MSW’). Since Caffeine stores residues in an ordered
data structure (to speed up their lookup by sequence number), the direction of the
chain is inverted when the residues are listed with decreasing sequence numbers.
The actual direction of the chain is verified by checking the presence of a phosphorus
atom in the first and last residue. In fact, since in PDB files the phosphate group
included in a residue is the one bonded to C5’ (thus “preceding” the sugar according
to the 5´ to 3´ direction) and since usually PDB files does not contain the phosphate
group for the 5’-end, then the chain is considered to be in 3´ to 5´ direction if the
first residue contains a phosphorous atom and the last residue does not, and in 5´
to 3´ direction otherwise.

Phosphorus atoms are used as starting and ending point of the traits who define the
ribbon (i.e. as control points of the B-spline), with the exception of the first and last
nucleotide: the position of the C5’ atom of the 5’-end is used as staring point of the
first trait, while the position of the C3’ atom of the 3’-end is used as ending point of
the last trait. Furthermore, the first and last traits are drawn respectively slightly
larger and smaller of the rest of the ribbon, in order to visualize the orientation
of the chain (see Figure 6.11). For each nucleotide, the versor directed from the
position of C1’ to the position of C3’ (

−−−−−−−→
C3′ − C1′/ ‖C3′ − C1′‖) is used as normal

vector to define the orientation of the trait.

Figure 6.11: In ribbon diagrams of polynucleotides, the nucleotides related to the 5’ and 3’ ends
of a chain are visualized slightly larger and smaller of the rest of the ribbon, in
order to highlight the direction of the chain.

There are other particular cases that must be explicitly detected and handled in
order to provide a correct ribbon representation. First of all, it may happen that
the two chains of a DNA helix are encoded as a single chain within the PDB
file. Furthermore, during the bio-chemical processes of reading and replication of
the DNA, a break in the chain occurs, due to the lack of the phosphate group

154

6.3 Ribbon diagrams

connecting two nucleotides. Caffeine is able to detect both these special cases, as
shown in Figure 6.12. In particular, if in the middle of the chain described by the
PDB file, a nucleotide without a phosphorus atom is detected, then a break in the
chain is assumed: the nucleotide without the phosphorus is considered to be the
5’-end of a new sub-chain, while the previous nucleotide is considered to be the
3’-end of the old sub-chain. The “3D tube” is therefore interrupted, and the two
ends are visualized with a slightly smaller and larger ribbon, as explained so far.

Figure 6.12: Fragment of DNA with a break in one of the two chain of the double helix. The
related PDB file lists all the nucleotides as belonging to a single chain. Caffeine,
instead correctly detects the presence of 3 polynucleotides. In this figure, the
nucleotides related to the 5’ and 3’ ends of each chain are colored respectively in
green and red.

Sugar and nucleobases are drawn as 3D polygons connected by a “stick”. The
borders of the 3D polygons and the stick are constituted by ray-casted “capsules”
(cylinders with two semi-spheres at their ends), in order to obtain smooth borders
with a minimum required geometry, while the top and bottom faces are properly
triangulated. As explained in section section 5.3.6 and shown in Figure 5.11, the
sugar can be hidden to obtain a simpler representation. In that case, a stick is
drawn from C3’ to the nitrogen atom of the nucleobase which is nearest to the
sugar.

155

Chapter 6 Caffeine: Implementation details

6.4 Head-tracked stereoscopy

Human visual system exploits multiple cues to perceive the three-dimensionality
of space, giving us the ability to estimate sizes and distances of objects of the real
world. Among these, the predominant “depth cue” arise from the ability of the
brain to infer depth and size information by analyzing the differences between the
images perceived by the eyes. Virtual Reality (VR) systems employ stereoscopic
displays to provide a binocular vision of the projected images, thus simulating
depth perception.

In order for an application to provide stereoscopic visualization, it must render
the virtual scene twice, one for each eyes. These images will then be presented
independently to the related eye. When creating virtual reality applications it is
good practice to model the virtual world using a real-world unit of measure for sizes
and distances, and to define a common reference frame for both virtual and real
worlds. In other words, virtual objects and physical entities (such as the user or
the monitor) should logically coexist. Assuming this approach, the virtual cameras
must be placed within the 3D scene in correspondence of the position of the user’s
eyes and must be oriented according to the user’s head.

From the point of view of graphics programming, defining the parameters of the
two virtual cameras means to compute proper “view” and “projection” matrices.
The “view matrix” is related to the position and the orientation of the camera in
the virtual world. In particular, it is the change of frame matrix from the global
reference frame to the local reference frame of the camera. The so called “projec-
tion matrix”, instead, defines the shape of the “view frustum”, i.e. a truncated
rectangular pyramid bounding the region of the virtual world that can be “seen”
by the camera (Figure 6.13).

Figure 6.13: Symmetric view frustum in OpenGL.

The way these matrices are computed depends on the characteristics of the consid-
ered Virtual Reality installation. For VR systems equipped with multiple stereo-

156

6.4 Head-tracked stereoscopy

scopic displays (such as CAVE systems), the most popular method to compute
these matrices is probably the one described by Robert Kooima [282] (also em-
ployed by Caffeine), that will be summarized in the following.

To begin, consider a system equipped with a single fixed stereoscopic monitor and
a tracking system (used to detect position and orientation of the user’s head). The
first step is to define a global reference frame to be employed both for virtual
and physical entities. Let us consider a right-handed reference frame, like the one
assumed by OpenGL. Let also be O the origin of that reference frame. Given the
information provided by the tracking system (position and orientation of a tracker
bound to the user’s head) and knowing that the distance between the two eyes is
about 6 - 6.5 cm, it is possible to approximate the position of the two eyes. Let be
Cleft and Cright these positions. Finally, let SBL, SBR and STL be the position
respectively of the bottom-left, bottom-right and top-left corners of the screen.
Then, the following vectors form an orthonormal basis that, together with SBL,
defines a local reference frame for the screen:

U = (SBR − SBL)
‖SBR − SBL‖

V = (STL − SBL)
‖STL − SBL‖

W = U × V

This basis can be used to build a rotation matrix expressing the orientation of the
screen with respect to the global reference frame:

Rscreen =


Ux Vx Wx 0
Uy Vy Wy 0
Uz Vz Wz 0
0 0 0 1



To give the user the illusion to move within the virtual world, the objects of the
scene must be translated by the vector −−−−−−→O − Cleft when generating the image for
the left eye, and by the vector −−−−−−−→O − Cright when generating the image for the right
eye. The corresponding translation matrices are:

157

Chapter 6 Caffeine: Implementation details

Tleft =


1 0 0 −Cleftx

0 1 0 −Clefty

0 0 1 −Cleftz

0 0 0 1

 Tright =


1 0 0 −Crightx

0 1 0 −Crighty

0 0 1 −Crightz

0 0 0 1


For the same reason, the scene must be rotated in a way opposite to the orientation
of the camera in the virtual world. In the case of VR systems equipped with a fixed
monitor, it is common to assume that the view direction is always orthogonal to the
screen. An orthonormal basis that satisfy such constrain is {U, V,W}, (expressing
the orientation of the screen with respect to the global reference frame). Thus, the
desired rotation matrix is R−1

screen = RTscreen. It is now possible to compute the
view matrices for the left and right eyes:

Vleft = R−1
screen · Tleft Vright = R−1

screen · Tright

As regard to the view frustum of the two cameras, they must be shaped so that
their edges will converge at some point in space, as shown in Figure 6.14(a). The
four intersection points will define the “projection plane”1 within the 3D scene: the
objects lying between the cameras and the projection plane will appear to "pop out"
from the screen, while those lying behind the projection plane will appear to be
behind the screen. In order to match the virtual and real worlds, the view frustums
must be shaped so to have the projection plane coinciding with the physical screen
(Figure 6.14(a)).

The projection matrix must be computed for each eye separately as follow:

P =



2·near
right−left 0 right+left

right−left 0

0 2·near
top−bottom

top+bottom
top−bottom 0

0 0 near+far
near−far

2·near·far
near−far

0 0 −1 0


where the parameters “near” and “far” are the distance of the near plane and

1Despite of the name its a rectangle.

158

6.4 Head-tracked stereoscopy

Figure 6.14: Off-axis perspective projection. (a) Asymmetric view frustums for head-tracked
stereo rendering on a fixed monitor. Note that the view directions are kept orthog-
onal to the screen. (b) Visual representation of the parameters for the definition
of a asymmetric view frustum, top view. (c) Same as (b) in side view.

far plane from the camera (usually chosen by the developer), while “left”, “right”,
“top” and “bottom”, “near” are the distances shown in Figure 6.14 (b) and (c).
They can be easily computed (for each eye separately) by knowing the position of
the eye and the position of corners of the screen. Finally, it is important to note
that the view and projection matrices of the two eyes must be recomputed every
time the user moves or turns his/her head.

For VR systems equipped withmultiple fixed monitors (such as CAVE-like systems)
the procedure to follow is the same: one (for monoscopic displays) or two (for
stereoscopic displays) images have to be generated for each monitor, computing
the proper view and projection matrices for each image (i.e. virtual camera) as
explained so far.

In the case of Head-Mounted Displays (HMD) similar reasoning applies, but it
must be taken into account the fact that the screen is not fixed anymore: instead
it follows the movements of the user’s head. For that reason, the projection ma-
trices for the two eyes are fixed and depend on the physical characteristic of the

159

Chapter 6 Caffeine: Implementation details

display. As regard to the view matrices, they can be computed similarly to the
case of regular (non-VR) 3D applications, by knowing position and orientation of
the user’s head, but also taking into account the offset of the eyes with respect
to the tracked point associated to the user’s head. Fortunately, HMD are usually
shipped with a dedicated software library which directly provides both projection
and view matrices.

160

6.5 Real-time rendering of semi-transparent surfaces

6.5 Real-time rendering of semi-transparent surfaces

When representing molecular surfaces and isosurfaces, it is often useful to draw
them as semi-transparent objects. In interactive computer graphics, semi-transparent
objects are usually simulated using a technique known as “alpha blending”, first
introduced by Porter and Duff [289]. In this technique, the color associated to each
fragment contains an “alpha” component, representing its opacity. During the ren-
dering process, if the “blending” is active, every time the color of a fragment is
going to be stored in a location of the color buffer, it will be “blended” with the
one already present at that location (instead of replacing it). In particular, the new
color for the considered location of the color buffer is computed as a function of the
old color, the fragment’s color, and their associated alpha values. The compositing
function usually chosen to simulate semi-transparency is the following (Equation
6.2):

C ′0 = α0 · C0

C ′n = αn · Cn + (1− αn) · C ′n−1

=⇒ C ′n = αn · Cn +
n−1∑
i=0

 n∏
j=i+1

(1− αj)


︸ ︷︷ ︸

Not commutative
with respect to i !

·αi · Ci
(6.2)

where C ′n is the color to be stored in the considered location of the color buffer
(resulting from blending the color of n fragments), (C0, α0) are respectively the
color and the opacity of the background and (Cn, αn) are the color and the opacity
of the nth fragment lying at the considered location of the color buffer.

This function was named “OVER” operator by Porter and Duff [289], but is com-
monly known as “back-to-front alpha blending”. In fact, as proven in Equation
6.2, the OVER operator is not commutative, so it requires to draw fragments in
“back-to-front” order with respect to the camera. Ignoring such constrain may
result in incorrect colors and/or graphical artifacts, as shown in Figure 6.15(a).

When graphics hardware had no or limited programmability support, this problem
was usually handled according to one of the following strategies:

1. Sort transparent triangles in back-to-front order before drawing them.

2. Sort transparent triangle meshes in back-to-front order and drawing only

161

Chapter 6 Caffeine: Implementation details

those triangles that are oriented towards the camera (by keeping “backface
culling” active when drawing these meshes).

In both cases, in order to reduce the number of elements to be sorted, opaque
objects are drawn in any order in a first rendering pass, while semi-transparent
elements are sorted and drawn in a second rendering pass over the same color
buffer (with blending active). The “depth test” must be kept enabled during the
second rendering pass (since opaque surface can occlude transparent ones), but
disabling writing on the Z-buffer (since transparent surfaces must not completely
occlude other transparent surfaces). The first solution provides exact results in
most cases, but sorting all the transparent triangles of the scene at every camera
movement may be result in a major performance hit. The second solution has a
much lower impact on performance, but produces roughly approximate results (see
Figure 6.15(b)) and, depending on the scene, may still produce graphical artifacts.

Figure 6.15: Half molecular orbital of a water molecule. Comparison between three different
algorithms for simulating semi-transparent surfaces in real time. In all the three
cases the polygons are drawn without ordering. (a) Example of graphical artifacts
resulting from unordered alpha blending of front and back faces. (b) Unordered
alpha blending of front faces only. (c) Weighted Blended Order-Independent Trans-
parency [290].

After the advent of programable GPUs, many hardware-accelerated techniques
have been proposed to render transparent surfaces without the need of sorting
procedures at the application level. These techniques are usually referred as “Order-
Independent Transparency” (OIT) methods and can be classified in two families:
those producing exact alpha-blending by compositing the fragments in correct order
(such as “Depth peeling” methods [291–293]) and those employing a commutative
compositing operator in place of the OVER operator (such as [290, 292, 294]), thus
renouncing to produce exact results in order to obtain better performance with
respect to “exacts” methods. Interested readers can refer to [295] for survey on
OIT methods.

In Caffeine, we employed one approximated OIT method, the “Weighted Blended

162

6.5 Real-time rendering of semi-transparent surfaces

Order-Independent Transparency” by McGuire and Bavoil [290] (see Figure 6.15(c)),
since it provides a good balance between quality of the results, performance, and im-
plementation complexity. The compositing operator used by the “Weighted Blended
Order-Independent Transparency” is the following (Equation 6.3):

C ′n =
∑n
i=1 Ci · αi · w (zi, αi)∑n
i=1 αi · w (zi, αi)︸ ︷︷ ︸

Weighted mean of the colors

·

(
1−

n∏
i=1

(1− αi)
)

︸ ︷︷ ︸
Contribution of semi-transparent objects

+ Copaque ·

(
n∏
i=1

(1− αi)
)

︸ ︷︷ ︸
Contribution of opaque objects

and of the background

(6.3)

where C ′n is the color resulting from blending the color of n fragments, Ci and
αi are respectively the color and the opacity of the i-th fragment, Copaque is the
color (at the considered element of the color buffer) resulting from the rendering
of the opaque objects (and of the background) and w(zi, αi)ε[0, 1] is a monotone
decreasing function used to weigh the contribution of a fragment as a function of
its depth: the idea is that a fragment near the camera should have a higher weight
than a far one. Some possible weighting functions are proposed by the authors in
[290] and [296].

The diagram in Figure 6.16 summarize a possible implementation for this technique.
As shown, the algorithm consists in three rendering passes. In the first pass the
background and the opaque objects are rendered, storing the result in dedicated
color and depth buffers. In the second pass only the semi-transparent objects are
rendered. The aim of this pass is to accumulate the terms (Ci ·αi ·wi) , (αi ·wi) and
αi of eq. 6.3 in two output color buffers (called “accumulation” and “revealage”
in [290, 296]): each location of the “accumulation” buffer will contain the related∑

(Ci · αi · wi) in its RGB components and
∑

(αi · wi) in its alpha component,
while each location of the “revealage” buffer will contain the related

∑
(αi) term.

Note that the depth buffer outputted from the first pass is used to perform the
depth test in this second rendering pass (having care to disable the writing on
it). In fact, as explained before, opaque objects may occlude transparent ones.
Finally, in the third rendering pass, the content of the “opaque”, “accumulation”
and “revealage” color buffers are combined to form the final image, according to
the blending equation 6.3. Further implementation details and alternatives can be
found on the original article [290] and in the blog of one of the authors [296].

163

Chapter 6 Caffeine: Implementation details

Figure 6.16: Implementation scheme of the “Weighted Blended Order-Independent Trans-
parency” method [290]. Rendering passes are shown in red. Input and output
buffers for each rendering pass are shown in blue. Yellow boxes describes salient
settings for the OpenGL state and/or sample pseudo-code of the fragment shader.
These settings and code always refer to a rendering pass: in figure, when they are
visually associated to a color buffer, it means that the rendering procedure must
set the specified OpenGL settings and/or activate the shown shader when drawing
to that buffer.

164

6.6 Caffeine’s Frame Graph

6.6 Caffeine’s Frame Graph

Using the Qt’s [89] terminology , a “frame graph” is a Directed Acyclic Graph
(DAG) describing a rendering procedure. While the “scene graph” defines an hier-
archical structure describing the content of the three-dimensional scene (i.e. what
to render), the frame graph describes the sequence of rendering passes, the asso-
ciated OpenGL state and their input/output buffers required to produce a final
image of the 3D scene (i.e. how to render). Figure 6.16 actually shows the frame
graph of a possible implementation of the Weighted Blended OIT. The frame graph
used by Caffeine is very similar and it is shown in Figure 6.17. In particular, sup-
port for keystoning and “Fast Approximate Anti-Aliasing” (FXAA) [285] has been
integrate into the frame graph. Both keystoning and FXAA are implemented as
“post-processing” effects, that is they operate on the 2D image resulting from the
actual rendering of 3D geometries and produce a modified 2D image. It follows
that they must be inserted as final stages of the frame graph. In order to reduce
these stages (and thus optimize the rendering performance), OIT compositing and
keystoning have been integrated in the same rendering pass, i.e. they are performed
by the same fragment shader. The final image is written in the “Frame Buffer Ob-
ject” (FBO) used by the Qt OpenGL window (QOpenGLWidget instance), so to
be shown on screen.

If multiple “views” of the 3D scene are displayed, as in the case of stereoscopic
displays and/or multi-screen installations, a frame graph is instantiated for each
view. In fact, each “view” use a different virtual camera, usually positioned, ori-
ented and/or “tuned” in a different way, so the whole rendering process must be
performed separately for each view in accordance to the related viewing parame-
ters. Actually, multiple windows could be created and different views could display
different 3D scenes. Although supported by the implementation, these features are
not currently exploited in Caffeine yet.

It should be noted that when only opaque geometries are rendered, the operations
performed by the rendering pass 2 of Figure 6.17 and part of those performed by
the rendering pass 3 are useless. While this don’t usually constitute a problem in
a desktop environment, it may results in a noticeable performance hit in CAVE-
like systems driven by a single machine (like the one installed at SNS), where the
whole rendering process is performed twice for each screen. Therefore, Caffeine
periodically verifies if the scene graph contains transparent objects. If not, each
frame graph is modified at run-time in order to bypass the second rendering pass of

165

Figure 6.17 and the compositing code of the third rendering pass. If a transparent
object is later added to the scene graph, OIT related operations are restored.
In order to distinguish between opaque and transparent objects within the scene
graph, the developer is asked to “mark” the related nodes of the scene graph with
a proper bit mask. This bit mask is also checked in the first rendering pass to draw
only opaque objects and in the second pass to draw only transparent objects.

As said, the OIT compositing code of the fragment shader of the rendering pass 3
is bypassed if the scene graph does not contain transparent objects. The same hap-
pens for the shader code related to keystoning and anti-aliasing. In fact, the CAVE
version of Caffeine allows to disable these features by means of the configuration
tool presented in section 5.4.1, while keystoning is always disabled in the desktop
version. In order to alter the behavior of these shaders without writing multiple
versions of they (one for each possible configuration) and without introducing in the
code conditional branches evaluated at run-time (such as the if statement, that are
known to affect shaders performance), conditional preprocessor directives (such as
#ifdef , #else , #endif etc.) have been used, so to exclude unused code during the
compilation. However, although GLSL compilers provide a preprocessor supporting
conditional directives, there is no standard way to externally define identifiers at
compile-time (something similar to the “-D” option supported by C/C++ prepro-
cessors). Fortunately, OpenSceneGraph 3.4 [262] introduced a new feature called
“#pragma(tic) composition” of shaders, that allows (among other things) to define
preprocessor macros from C++ code and to preform an automatic re-compilation
of the shader as a consequence of such definitions.

166

Figure 6.17: Caffeine’s frame graph. Rendering passes are shown in red. Input and output
buffers for each rendering pass are shown in blue.

167

7 Included Paper:
“Immersive virtual reality in
computational chemistry:
Applications to the analysis of QM
and MM data”

In this chapter, I included the latest paper regarding Caffeine, published by the
International Journal of Quantum Chemistry in 2016 [7]. Apart from introducing
Caffeine and its main features (implemented at the time of writing), the paper
present some benchmarks conducted to test the performance obtained by Caffeine
when running on a desktop workstation and in a CAVE system, and to compare
them with the ones obtained by VMD [71] (running on a desktop workstation).
Finally, the paper discuss some case studies specifically conducted to illustrate the
usefulness and advantages that can be gained by analyzing the resulting data in a
VR environment with Caffeine.

169

SO F TWAR E N EWS & UPDA T E S

Immersive virtual reality in computational chemistry:
Applications to the analysis of QM and MM data

Andrea Salvadori | Gianluca Del Frate | Marco Pagliai | Giordano Mancini |

Vincenzo Barone

Scuola Normale Superiore, Piazza dei

Cavalieri 7, Pisa I-56126, Italy

Correspondence

Giordano Mancini, Scuola Normale

Superiore, Classe di Scienze, Piazza dei

Cavalieri 7, Pisa, Italy.

Email: giordano.mancini@sns.it

Funding Information

Support from the Italian MIUR (FIRB 2012

Project no. RBFR12ETL5) is acknowledged.

The research leading to the results has

received funding from the European

Research Council under the European

Union’s Seventh Framework Programme

(FP/2007-2013)/ERC Grant Agreement n.

[320951].

Abstract
The role of Virtual Reality (VR) tools in molecular sciences is analyzed in this contribution through

the presentation of the Caffeine software to the quantum chemistry community. Caffeine, devel-

oped at Scuola Normale Superiore, is specifically tailored for molecular representation and data

visualization with VR systems, such as VR theaters and helmets. Usefulness and advantages that

can be gained by exploiting VR are here reported, considering few examples specifically selected

to illustrate different level of theory and molecular representation.

K E YWORD S

data interaction, molecular viewers, virtual reality

1 | INTRODUCTION

A detailed, yet compact, representation of molecular structures,

together with the inclusion of related properties in formulas and

graphs, has always been at the heart of chemistry. Representation plays

a key role in the whole discovery process, conveying information to

human inspectors, relying on human pattern recognition, and suggest-

ing innovative points of investigation and new, previously unexplored

scenarios.[1] From a theoretical chemistry perspective, without molecu-

lar graphics, the sheer amount of information provided by current com-

putational power would rather hinder true knowledge acquisition.[2]

The importance of molecular graphics in chemistry is demonstrated by

its leading role in the adoption of advances in computer graphics for

scientific visualization.[3] The evolution of computer technologies for

three dimensional immersive virtual reality (IVR) allows nowadays to

achieve a further evolution in data representation and visualization.[4]

In fact, it is now possible to create 3D virtual environments that extend

users perception and increase researchers ability to quickly tackle mas-

sive amounts of data coming from multiple and different sources.

Within such systems, users can directly interact with visualized data

(by means of dedicated devices) in a more natural and friendly way

than that achievable on desktop systems with mouse and keyboard.[5,6]

IVR technologies include a large panel of devices, from cheap consumer

grade ones to very costly specialized hardware. In the first category,

we can mention interactive sensors like the Microsoft Kinect[7] and the

Leap Motion,[8] current generation immersive helmets such as the

Oculus Rift[9] and the Vive from HTC and Valve,[10] or force-feedback

devices like the Novint Falcon 3D Touch controller.[11] The second cate-

gory instead includes virtual theaters, such as the Cave Automatic Vir-

tual Environment (CAVE),[12,13] equipped with high-precision tracking

sensors and driven by one or more powerful workstations.

With the aim of enabling the employment of different platforms,

ranging from desktop computers to more expensive IVR installations,

we are developing a new molecular viewer, called Caffeine.[14] Beside

motivations of performance and the aim to exploit state of the art

technologies, one of the reasons for developing a new molecular

viewer was not to force IVR features in an application designed within

a different scope. Rather, we tried to design the software in such a

way that the transition from a familiar 2D desktop environment to an

IVR one would be as smooth and easy as possible. A specific feature to

which we payed great attention in the development is coupling the vis-

ualization of molecular structures with the plotting of numerical data,

This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in

any medium, provided the original work is properly cited and is not used for commercial purposes.
VC 2016 The Authors International Journal of Quantum Chemistry Published by Wiley Periodicals, Inc.

International Journal of Quantum Chemistry 2016; 116: 1731-1746 http://q-chem.org | 1731

Received: 18 April 2016 | Revised: 21 June 2016 | Accepted: 24 June 2016

DOI 10.1002/qua.25207

for example, those related to the analysis of quantum mechanical (QM)

calculations (e.g., the minimum energy path of chemical reactions) or

classical simulations (such as the total energy related to a molecular

dynamics [MD] trajectory).

In this article, we present the current status of Caffeine, showing its

usage through the application to several test cases, which encompass

many of the common levels of molecular representation and theory,

including both QM studies and molecular mechanics (MM) investigations

of large systems. We start from small, isolate molecules, on which high

level calculations could be performed, and proceed to intricatemacromo-

lecular entities, thus involving different level of data complexity. The arti-

cle is organized as follows: in a first part, some technical details of the

Caffeine program and its versions for desktop and IVRs are presented; in

the second part, the graphical representations of different case studies

obtained with Caffeine are reported, to demonstrate the program capa-

bilities in chemical visualization and in the analysis of results. We also

make the case for potential benefits coming from the use of IVR in set-

ting up simulations for medium size or large molecular systems through

the examination of the dissociation mechanism of the intercalating drug

doxorubicin (hereafter DOX) from a DNA fragment. General remarks

and future perspectives on the development of our molecular graphics

system are given in the conclusions of the article. Further technical

details on the methods and algorithms employed for the visualization of

molecular structures and isosurfaces are reported in the appendices.

It is important to highlight here that a rigorous user evaluation

study is not our present priority. Here, we want to show the general

opportunities offered by the adoption of IVR technologies in molecular

modeling and, at the same time, illustrate the features of Caffeine to a

wide audience.

2 | RELATED WORK

The representation of molecular structures by means of virtual reality

(VR) technologies is not a new methodology: visualizations of atomistic

simulations within immersive theaters were already reported at the

middle of the 90s (see as an illustrative example the work done by Disz

et al.[15]). Nevertheless, IVR tools did not know the diffusion that they

deserved within scientific fields for at least a decade, partly due to lim-

its of the underlying hardware and partly to the infancy of software

using such technologies.[16] The growth of computer power in the last

decade made possible to use IVR for rigorous scientific visualization.

However, the adoption of IVR tools in molecular sciences is still an

ongoing process, even if the usefulness in visualizing large systems of

chemical interest (highlighting both structural and functional properties)

within immersive environments has already been demonstrated.[17]

Recently, Reda et al.[18] developed an application for the interactive vis-

ualization of MD simulations in ultra-resolution immersive environ-

ments, exploiting an hybrid representation which combines balls-and-

sticks with volume rendering of approximate electron densities.

Among popular molecular viewers, VMD[19] supports several VR

technologies[5] such as CAVE systems and ImmersaDesk,[20] using VR

toolkits like FreeVR[21] and CAVElib.[22] Recently, Stone et al.[23] imple-

mented an experimental version of VMD combining omni-directional

stereoscopic visualization via head-mounted displays (Oculus Rift

DK2), with ray-tracing rendering computed by a remote GPU cluster.

To confirm the interest in the use of VR environments, it is worth

noticing that some commercial molecular graphics systems like

Amira[24] and YASARA[25] support VR technologies. Also PyMOL[26]

has a VR plug-in developed by Virtalis.[27]

3 | THE CAFFEINE MOLECULAR VIEWER

Caffeine is a new molecular viewer specifically designed and developed

to take advantage of modern IVR technologies. It is implemented in

C11, using the Qt framework,[28] Open Babel[29] as base cheminfor-

matics library (we are evaluating its extension or substitution to provide

a solution more suited to our needs; however Open Babel provided

sufficient flexibility for the early stages of development), OpenScene-

Graph[30] as 3D graphics engine, the OpenGL Mathematics library[31]

and the Qt Widgets for Technical Applications (Qwt) library.[32] We use

Stride[33] (as an external program invoked by our application) for

detecting the secondary structures of polypeptides.

Caffeine can visualize both static and dynamic molecular structures

(trajectories) read from PDB,[34] XYZ (xmol format),[35] and Gaussian

Cube[36] files. Like most molecular viewer, Caffeine supports the most

diffused graphical representations of molecular structures, such as “all-

atoms” visualization (balls-and-sticks, licorice, and van der Waals

spheres) and ribbon diagrams of polypeptides and polynucleotides. In

addition, volumetric datasets such as electron densities and molecular

orbitals can be imported from Gaussian Cube files and visualized as iso-

surfaces (several examples are presented in the Case Studies section).

In the case of dynamic molecular structures, the graphic geometry is

generated on the fly at each time-step, so to avoid to fill the graphic

memory in the case of long trajectories. Although this is not a com-

pletely “out-of-core” solution (since the entire trajectory is completely

loaded in main memory), it is a first step in that direction.

There are two main versions of Caffeine (sharing most of the code

base and features): one for desktop computers and one designed for

FIGURE 1 A ball-and-stick view of a macromolecular system
represented in the CAVE installation at SNS with Caffeine. On the
bottom right, the CAVE “control panel” is shown. The user inter-
face of the control panel is, in large part, the same of the “desktop
version” of Caffeine (see Figure 5)

1732 | SALVADORI ET AL.

VR systems equipped with multiple displays, such as the CAVE, a cubic

room-sized IVR system whose walls (from three to six) are projected

with stereoscopic images. Our CAVE installation has four walls/stereo

projectors and it is equipped with an OptiTrack[37] tracking system (see

Figure 1). The IVR version implements some functionalities which are

specifically tailored for CAVE-like systems, like keystone correction of

the generated images and the ability to adjust the view point and the

projection parameters of the virtual camera as a function of the posi-

tion and orientation of the user’s head (provided by the tracking sys-

tem), so to obtain a convincing and coherent stereoscopic visualization

across the screens.[38] Within the CAVE the user can control the visual-

izer by means of a simple, “button-based,” remote application for

mobile devices (e.g., tablet), which allows to rotate, translate and scale

the molecular system, and to control the playback of trajectories. The

remaining features are accessible via a separate control window, which

is displayed, in our installation, in a standard monitor placed outside

the CAVE (but driven by the same workstation), as shown in Figure 1.

Note that the “CAVE version” of Caffeine can be configured to be

used in systems having a different number, layout and kind (mono-

scopic or stereoscopic) of displays, with or without tracking systems, as

long as all the monitors are driven by a single computer. In the past,

our CAVE system was driven by a cluster of workstations (one for each

projector) connected through a local network. This configuration

required the development of distributed applications, which are notably

harder to implement, debug, and extend as compared to their nondis-

tributed counterparts. To facilitate the development of Caffeine, and to

minimize the differences in the source code between the CAVE and

the desktop version, we designed and developed a distributed scene

graph library.[14] However, thanks to the latest advances in video card

technology, we are now able to drive all the four projectors of our

CAVE with a single computer equipped with multiple NVIDIA Quadro

GPUs in scalable link interface (SLI)[39] configuration. This solution has

allowed us to remove the distributed scene graph from the project,

thus saving the time needed for its further improvements and

extensions.

While CAVE-like systems are among the most advanced IVR sys-

tems available today, they are (very) expensive fixed installations. For

that reason, they can be found only in few specialized research centers.

However, thanks to the technological evolution, several companies are

now developing VR headsets (primarily intended for the video game

market) such as the Oculus Rift[9] or the HTC/Valve “Vive.”[10] Thanks to

their relatively low cost (less than a thousand US dollars) and good

portability, these devices will probably gain a wide adoption in the next

few years, not only in the consumer market but also for educational

and research purposes. For these reasons, we are interested to support

this kind of IVR helmets in Caffeine. Currently, the Oculus Rift Develop-

ment Kit 1 VR helmet is supported by an experimental desktop version

of Caffeine (see Figure 2). This version is considered “experimental”

since it belongs to an older development branch with respect to the

current main version and it still lacks some of the latest features, such

as charts and key-frames (vide infra). We plan to officially support some

of these devices in the near future.

3.1 | Visualization of molecular structures

To obtain an interactive visualization of a large number of spheres and

cylinders, resulting from the “all atoms” representation of complex

molecular structures, we have developed a set of GPU shaders (A

“shader” is a program running on the Graphics Processing Unit (GPU),

which allows the programmer to define a specific algorithm for drawing

the objects it is applied to) implementing a technique known as “GPU-

based ray-casting of quadric surfaces.” This method has been first

introduced by Gumhold[40] to render a large number of ellipsoids repre-

senting symmetric tensor fields, and later generalized by Toledo and

L�evy[41] so to ray-cast any quadric surface on the GPU. This technique

provides very good results (both in terms of performance and image

quality) when applied to molecular visualization[42–46] and, according to

Kozlíkov�a et al.[47] in a recent survey on the subject, it still represents the

state of the art. A brief discussion on the implementation of this method,

with specific reference to Caffeine, can be found in Appendix A.

As regards to ribbon diagrams, we implemented an algorithm for

generating three-dimensional “paths,” formed by a sequence of traits.

Each trait is defined by two endpoints, an orientation (normal) vector,

the shape of its transversal profile (circular or rectangular with rounded

corners) and a set of attributes (such as sizes and colors) for each of its

two ends. The traits can be rectilinear or they can be defined by cubic

B-Splines, so to obtain a smoother path. In the latter case, also the nor-

mal vectors between consecutive traits are interpolated using the cubic

B-Spline equation, similarly to what done by Krone et al.[49] in their

algorithm for GPU-based ribbons visualization. Although our algorithm

could be used to represent various kinds of information (e.g., field

lines), it is currently used to generate ribbon diagrams of polypeptides

FIGURE 2 (a) User wearing the Oculus Rift DK1 helmet. (b) The DNA/DOX binary complex rendered for the Oculus Rift DK1 with an
experimental version of Caffeine

SALVADORI ET AL. | 1733

and polynucleotides. For polypeptides, we followed the popular proce-

dure described by Carson and Bugg[50]: the path is defined by the

sequence of alpha-carbons in the chain, while the oxygen atoms of the

backbone are used to compute the normal vectors of the peptide

planes, which define the orientation of the traits. Shape, sizes, and col-

ors of each trait are set according to the secondary structures to be

presented. Path and normal vectors are finally smoothed using the B-

Spline equation. In the case of polynucleotides, we used a similar pro-

cedure: phosphorus atoms replace the alpha-carbons in the definition

of the path (with the exception of the first and of the last nucleotides

of the chain, where the C50 and C30 atoms are used respectively as

starting and ending points of the path), while the vector (C30–C10) of

each nucleotide defines the normal vector of the corresponding trait.

3.2 | Isosurfaces extraction and visualization

Several molecular descriptors, such as electron density, electrostatic

potential and molecular orbitals are actually examples of volumetric data-

sets. A volumetric dataset can be defined as a set of pairs <Pi;Vi>,

where Pi is a point in the three-dimensional space and Vi is its associated

value (e.g., a scalar value, a vector etc.).[51] The pair <Pi;Vi> is called

“voxel” (short for “volume element”). Volumetric datasets can be obtained

by sampling the value of some function or measurable quantity at certain

locations of the three-dimensional space. Although sampling locations

could be chosen randomly, it is common to sample the data at uniformly

spaced intervals, so to obtain a regular grid of voxels. It is noteworthy

that, even if the values are sampled at discrete locations, it is still possible

to approximate the value of a generic point lying inside a cell of the grid

by interpolating the values of the eight vertices (voxels) of that cell.

At present, Caffeine visualizes scalar volumetric datasets only in

the form of isosurfaces. User can chose between two extraction algo-

ritms: the traditional Marching Cubes[52] and a simplified version of the

Surface Nets.[53] With regard to the Marching Cubes we use (a slightly

adapted version of) the popular implementation by Cory Gene Bloyd

and Paul Bourke,[54] while for the Surface Nets we re-implemented in

C11 the so-called “Naive” version by Mikola Lysenko[55] (originally

coded in JavaScript). The Surface Nets algorithm produces a more reg-

ular triangulation than the traditional Marching Cubes method, as

shown in Figure 3. Furthermore, according to some tests performed on

our implementations, Naive Surface Nets results slightly faster. A brief

description of these algorithms together with a first performance com-

parison of their implementation in Caffeine is reported in Appendix B.

Further details on these and other extraction algorithms can be found

in references 58 and 59.

When visualizing surfaces related to molecular properties, such as

molecular orbitals, it is important to let the user perceive the relation

between these surfaces and the molecular structure they refers to. For

this reason surfaces are often drawn as semitransparent objects. In inter-

active computer graphics, semitransparent objects are usually simulated

using a technique known as “alpha blending,” first introduced by Porter

and Duff[60] in 1984 and nowadays supported natively by the graphics

hardware. However, a simplistic use of alpha blendingmay lead to graphi-

cal artifacts, as discussed in Appendix C. Several GPU-accelerated tech-

niques has been proposed to properly simulate semitransparent surfaces

in real-time. These techniques are generally known as “order independ-

ent transparency” (OIT) methods. Interested readers can refer to refer-

ence 66 for a comprehensive survey on the subject. We employed a

method called “Weighted Blended Order-Independent Transparency” by

McGuire and Bavoil,[64,67] because it provides a good balance between

quality of the results, performance, and implementation complexity.

In Caffeine, the user can choose between two different transpar-

ency modes for isosurfaces: the traditional uniform transparency

(shown in Figure 4a), where all the fragments resulting from the raster-

ization of the iso-surface have the same opacity (chosen by the user),

or a so-called “smart transparency” (shown in Figure 4b), where the

opacity of each fragment is a function of the dot product between the

normal and the “vector to the viewer” (The vector to the viewer is

the normalized direction from the position fragment to the position of

the virtual camera. More precisely, both the normal and the vector to

the viewer are computed by the vertex shader on a per-vertex basis,

interpolated by the graphics card, and finally passed to the fragment

shader as per-fragment values), so to highlight surface edges while

clearly showing the molecular structure behind the surface. This latest

method, sometimes called “X-Ray effect,” is actually an old trick of com-

puter graphics and it is employed also by other modern molecular

viewers (such as Molekel[69] and Avogadro[70]) to represent molecular

orbitals and surfaces. From our experience, “smart”/”X-Ray” transpar-

ency produces clearer, more understandable images with respect to

FIGURE 3 Representation of scalar volumetric datasets: comparison between the triangulation of a water molecular orbital generated by
the Marching Cubes (a) and the one generated by the Surface Nets algorithm (b). Note that the traditional Marching Cubes generates many
thin triangles, while Surface Nets provides a more regular tessellation. The orbitals have been computed at HF/STO-3G level of theory with
Gaussian 09[56] suite of programs

1734 | SALVADORI ET AL.

uniform transparency (see Figure 4), especially in VR systems requiring

active shutter glasses (like our CAVE), where original colors are partially

filtered/distorted.

3.3 | Caffeine desktop version

Figure 5a shows a first screenshot of Caffeine running as a standard

desktop application, with specific hallmarks highlighted when drawing

the DOX/DNA binary complex from a PDB file. Many different visual-

ization features are available, like the possibility to modify ribbons set-

tings and color styles.

Molecular simulations produce a lot of numerical data related to the

physicochemical properties of the system taken into account. These meas-

urements, if referred to two-dimensional scalar quantities, can be passed

as input to Caffeine (using a specific file format) which plots them as line

charts (as shown in Figure 5b). Furthermore, if a linear relationship exists

between the measured quantity and the snapshots of a trajectory (i.e., if

the quantity is a function of time), this relationship can be explicated in

the dataset file. By doing so, a marker is drawn on the line chart during

the playing of the trajectory, showing the value of the measured quantity

in the currently displayed snapshot (see the top line chart shown in Figure

5b). This direct correlation between the currently represented structure

and charted data encourage the user to exploit his “chemical intuition”

and pinpoint any perceived interesting feature in the displayed system.

In addition, it is possible to “mark” a subset of the frames of the

trajectory, which are deemed to be relevant for the study of the sys-

tem. These “key-frames” may be either supplied using an additional

input file or selected within Caffeine. Then, the user can (re-)visualize

either the entire trajectory or only these selected key-frames. In both

cases, the visualization can be performed as an animation or by explic-

itly skipping from one (key-)frame to the previous/following one of the

sequence. Key-frames may represent particularly relevant conforma-

tions along a single trajectory but may also come from different data

sources by assembling in one artificial trajectory, for example, the

results of a clustering analysis over related systems. This allows for an

interactive filtering of a trajectory or of any dataset since it makes it

possible to associate different conformations to the same dataset and

test for different hypotheses. A word of caution is needed here: while

the user is free to associate key-frames to supporting data, these mod-

els must (currently) contain the same (sub-)set of atoms, and this

requires a limited manipulation of the PDB files.

3.4 | Caffeine within an IVR environment

In immersive environments a new feedback, proprioception, is added to

the perception of data. Proprioception is the capability to perceive and

recognize the position of the own body in space, even without sight:

the kinesthetic inputs from mechanoreceptors in muscles, tendons and

joints, contribute to the human perception of limb position and limb

movement in space.[72] Proprioceptive sense helps the user, without

conscious efforts, to understand and evaluate the geometric properties

of the visualized objects.

Within the CAVE, 2D data charts are drawn in the 3D scene in

front of the user, and follow the movements of the user’s head in a

way similar to an augmented reality content (see Figure 6). As shown,

only one chart is displayed, notwithstanding the ability of the user to

switch interactively between the available charts by means of the

remote application. The use of key-frames, by itself a useful feature,

becomes critically important within an IVR environment since it allows

the user to concentrate on the most important properties. As already

stated in previous sections, the user is able to interact with the pro-

jected system through a mobile device (i.e., a tablet), so to regulate the

displayed data according to the need (Figure 6b). The mobile applica-

tion currently allows the user to rotate, translate and scale the molecu-

lar system, and to control the playback of frames.

As an example of the use of Caffeine with another type of IVR sys-

tem, we can mention the screenshot of the DNA/DOX binary complex

rendered for the Oculus Rift DK1 already shown in Figure 2. In this

case the user can interactively play the trajectory with the keyboard or,

using a little trick, with a gamepad (to use the joystick an external pro-

gram that maps gamepad input to keyboard events, such as JoyTo-

Key,[73] is needed).

FIGURE 4 Highest Occupied Molecular Orbital (HOMO) of caffeine molecule represented as semitransparent isosurfaces (iso-value 60.02)
and drawn using the Weighted Blended Order-Independent Transparency method. (a) Uniform transparency: the entire surface has a constant
opacity (35%). (b)“Smart” transparency: the regions of the surface which are orthogonal to the view direction have an lower opacity (20%),
while the regions tangent to the view direction have an higher opacity (35%). (c) Same as (b) in the CAVE. Optimized molecular structure
and HOMO have been calculated with PBE0 exchange and correlation functional[68] and 6-31111G(d,p) basis set with Gaussian 09[56]

suite of programs

SALVADORI ET AL. | 1735

3.5 | Performance evaluation

To evaluate the performance of Caffeine, we performed a benchmark to

compare it with VMD.[19] The comparison is relative to the frame per sec-

onds reached by both visualizers when rendering both static and dynamic

molecular systems. It is important to note that, while obtaining a high

frame rate on desktop is not an essential feature for the user, in the case

of IVR systems this is critical to preserve the sense of immersion.

FIGURE 5 Screenshots of the current Caffeine desktop version (running in a Windows environment), used in this work for pictures
realization and data analysis. The icons used in the program belongs to the Oxygen Project.[71] DNA nucleobases are colored by type. (a)
Many interesting features are highlighted, such as the possibility to modify DNA ribbons appearance, according to the user needs. (b) The
2D scalar datasets associated to the molecular system are plotted as line charts. The bottom chart shows the same data of Figure 10d,
while the top chart shows the distance between the centers of mass of DOX and of the DNA binding site. In the latter, the possibility to
investigate the variation of the scalar quantity frame-by-frame is pointed out

1736 | SALVADORI ET AL.

Both applications have been configured so as to produce screen

images as close as possible. In particular, this includes:

� Manually setting the “display” options and the transformation matri-

ces of VMD to match the view and projection parameters chosen in

Caffeine. Where that was not possible (i.e., the camera position of

VMD is not configurable neither via GUI nor via scripting), we

changed the configuration of Caffeine instead.

� Disabling “depth cueing” and axis rendering in VMD, since these fea-

tures are not available in Caffeine.

� Setting the “render-mode” of VMD to “GLSL,” so as to enable ray-

casting of spheres and high-quality per-pixel lighting of geometry[74]

(similarly to Caffeine).

� For static molecular systems, we also enabled the so-called “cache-

mode” option of VMD, so as to use a display list caching mechanism

to accelerate rendering of static geometry[74] (although we did not

notice any variation in performance).

The computer on which the benchmark was performed is

equipped with two Intel Xeon E5462 processors with a clock fre-

quency of 2.8 GHz, 24 GB of RAM, a NVIDIA Quadro 6000 GPU, and

Windows 7 Professional as operating system. Images were rendered

full-screen, at a resolution of 1920 3 1080 pixels. Actually, VMD had

a little advantage here, since we were not able to hide the title bar of

its rendering window, so it rendered images at a slightly lower

resolution.

Table 1 summarizes the frames per seconds rendered by the desk-

top versions of the two molecular viewers in the case of static molecu-

lar structures. To perform this benchmark we chose two medium-large

assemblies from the Worldwide Protein Data Bank: (i) 1AON[75] com-

posed by 58,870 atoms (without hydrogens) and (ii) 5AOO[76] com-

posed by 356,280 atoms (without hydrogens). These two systems have

been drawn according to the “Space filling” (van der Waals spheres),

“Balls-and-Sticks” and “Ribbons” representations (and their equivalents

in VMD: “VDW,” “CPK,” and “New Cartoon”). In VMD, we used the

default quality settings for each representation, apart from the use of

ray-casted spheres in place of tessellated ones. In Caffeine it is possible

to specify quality settings only for ribbon diagrams, and we set them to

the maximum quality. As one can see from Table 1, Caffeine is signifi-

cantly faster than VMD when drawing static molecular systems.

Table 2 shows the results obtained during the visualization of a

trajectory related to the dissociation of DOX from the DNA binding

site (presented later as a case study). The system is composed by a

fragment of DNA (378 atoms), a DOX molecule (69 atoms) and 8987

molecules of water (26,961 atoms). The trajectory contains 201 frames.

For this system, we employed a mixed representation: ribbons for

DNA (“New Ribbons” in VMD), balls-and-sticks for the DOX (“CPK” in

VMD) and licorice for the water molecules. Furthermore we disabled

the “cache-mode” option of VMD, as suggested by the user’s guide[74]

when dealing with trajectories. Both viewers have been configured to

play a frame of the trajectory for each rendering frame, to reveal the

maximum frame rate for the trajectory. In this scenario, Caffeine is

slightly slower than VMD, even if the obtained frame rates have the

same same order of magnitude. However, it is clear that visualization

of dynamic structures in Caffeine, although fast enough in many cases,

needs further optimization.

Tables 3 and 4 show the performance (min/max frames rate) of

Caffeine in our CAVE system, when visualizing static and dynamic data.

Overall, performances are comparable to those obtained on the

FIGURE 6 Dissociation of DOX from the DNA binding site. (a) Simultaneous representation of charted data and molecules. The binary
complex is on the right while a graph showing the distance between COMs is visible on the left with the red marker highlighting the
current frame and distance value. For sake of clarity, the stereo mode of projectors was temporarily disabled to shoot this photo. (b) User
interacting with the DNA/DOX binary complex using a tablet, the graph is the same of the previous panel

TABLE 1 Comparison of the performance between the desktop
versions of Caffeine and VMD when visualizing static molecular
structures

Molecular system
1AON 5AOO

Number of atoms 58,870 356,280

Representation fps fps

Caffeine Space filling 87 55

Balls & Sticks 185 71

Ribbons 273 128

VMD VDW 17 3

CPK 12 2

New Cartoon 230 7

The results are expressed as frames per seconds. Different graphical rep-
resentations have been considered. In VMD we chose the representa-
tions that more closely resemble those of Caffeine.

SALVADORI ET AL. | 1737

desktop system, thus allowing a comfortable and fluid immersive expe-

rience (although presenting the limits reported above for trajectories).

The computer driving our CAVE is equipped with two Intel Xeon

E5645 processors with a clock frequency of 2.4 GHz, 24 GB of RAM,

two NVIDIA Quadro M6000 GPUs in SLI configuration, and Windows

10 Enterprise as operating system.

3.6 | Case studies

In this section, we show some useful graphic representations of simula-

tion results obtainable with Caffeine. In the first section, we include a

spin-density evaluation of 2,2,6,6-tetramethylpiperidine-1-oxyl-4-

amino-4-carboxylic acid (TOAC).[77] In the second one, we used the

results of a recent study on Cytochrome P450 2B4.[78] As a last case

study, we present the whole DNA-DOX investigation, from the simula-

tion setup performed within the CAVE to the final analysis.

3.7 | Spin density visualization

The analysis of isosurfaces, obtained by QM calculations or classical

simulations, is particularly important in molecular sciences. In fact,

the graphic representation of molecular orbitals, electron densities

or electron localization functions provides a valuable help to charac-

terize structural properties, to describe molecular interactions and

to interpret spectroscopic properties. Also in the case of classical

simulations the availability of volumetric datasets allows to visualize

a series of useful properties such as, for example, electrostatic

potential, molecular cavities (see Figure 9) or average density/occu-

pancy (e.g., when calculating spatial distribution functions) near a

selected site. As a first example of volumetric data we present the

results obtained for the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-

amino-4-carboxylic acid (TOAC) molecule, which is characterized by

the presence of a nitroxide moiety and by the possibility to be

inserted into polypeptide chains substituting a natural amino

acid.[77,79] It is a stable radical, which can be employed as probe in

electron spin resonance measurements, allowing to obtain useful

information on the conformation of the studied peptide molecule.

Density functional theory (DFT) calculations have been revealed

effective in the description of the electronic structure of

TOAC,[77,80,81] allowing to determine that the unpaired electron

occupies an anti-bonding p� molecular orbital localized on the oxy-

gen and nitrogen atoms of the nitroxide moiety (Figure 7a). The cor-

rect computation of the TOAC electronic structure is particularly

important, because the magnetic properties, which allow to employ

this molecule as spin label, are ruled by its singly occupied molecu-

lar orbital (SOMO). A similar method to visualize the unpaired elec-

tron localization is through the spin density, sketched in Figure 7b.

It is interesting to note (see Figure 7c) that the spin density is

essentially the same also introducing TOAC in a polypeptide chain,

confirming the importance of this radical in conformation studies.

3.8 | Structure and dynamics of large systems

Enzymes belonging to the Cytochrome P450 hemoproteins family are

devoted to the oxidation of a wide range of organic compounds, from

drugs to environmental pollutants. Hydrophilic channels, connecting

the active site to the protein surface allow the buried heme group to

react with the various substrates.[82] The role of the conserved Phe429

on the catalytic activity has been thus investigated through extensive

classical MD simulations and clustering analysis of the wild type (WT)

together with other four different mutants, highlighting structural and

hydrogen bonding observable differences.[78,83] The single point muta-

tion was identified to be responsible of several long-range effects,

including the topology of the functional aqueous accesses to the cata-

lytic site. To get light on this, each MD frame of each of the five

mutant MD simulations was analyzed to find possible tunnels regulat-

ing the access to the heme ion. In a second step such identified tunnels

were connected to real pathways by means of an average linkage clus-

tering technique. A total of four major channels were found. In particu-

lar, one major pathway was detected in all the five MD simulations,

featuring different average bottleneck radius values as we proceed

from the WT (lower average radius observed) to the mutants. The dif-

ferent behavior among the mutants was explained in terms of subtle

alterations in the hydrogen bond network, that propagated along the

systems and affected the whole geometries.

Since IVR environments are well suited for deep investigations on

geometries of large systems, we present feasible applications of our

immersive tool in the visualization of different cluster members,

TABLE 2 Comparison of the performance between the desktop
versions of Caffeine and VMD when visualizing a trajectory
resulting from molecular dynamics

DNA-DOX complex trajectory
Max trajectory frames per seconds

Caffeine 12

VMD 17

The tested system is the DNA-DOX complex simulation of a single
umbrella sampling window (more details in Case Studies section). The
results are expressed as the maximum trajectory frames displayed in a
second.

TABLE 3 Performance of Caffeine in visualizing large assemblies
(PDB 5AOO) in our CAVE system; minimum and maximum frame
rate for van der Waals, Balls-and-Sticks, and Ribbons
representations

5AOO
Min fps Max fps

Space filling 31 73

Balls-and-Sticks 35 62

Ribbons 51 85

TABLE 4 Performance of Caffeine in visualizing a trajectory result-
ing from molecular dynamics (DNA-DOX complex) in our CAVE
system; minimum and maximum frame rate

DNA-DOX trajectory

Min fps Max fps

10 12

1738 | SALVADORI ET AL.

pointing out the detection of cluster centroids and the structural differ-

ences between them (see Figure 8). Each MD frame, previously

included in one specific cluster, is showed together with an index,

which specifies its cluster membership. The user can switch from one

cluster to another one, and select in this really feasible and nice way

eligible key-frames to represent cluster centroids or outlying “extreme”

conformers in clusters, to describe the differences within the obtained

clusters and the relationships between the various mutations. The

detected channels can also be visualized in Caffeine thanks to the sup-

port for Gaussian Cube file format.[36] To be supported in Caffeine, the

channels identified in the previous study have been thus converted in

Guassian Cube format, thanks to an in-house script, which computes

density values using a simple Gaussian function taken from the litera-

ture.[84] As shown in Figure 9b, the difference and peculiarities among

the mutants can be highlighted by displaying simultaneously the rela-

tive structures within the CAVE. Such investigations could be easily

performed thanks to IVR technologies: on the contrary, the complex

structures of this dataset could lead to unpleasant misunderstanding

using a 2D computer desktop, mostly when the same analysis is

explained to nonexperts.

3.9 | Dissociation of DOX from the DNA binding site

Intercalating drugs act as inhibitors of Topoisomerase I or II (or both).

DOX is an antraciclynic intercalating drug whose structure can be

divided in (i) a planar hydrophobic part, constituted by an antraquinone

ring system, and (ii) a hydrophilic aminosugar moiety. Intercalating

drugs bearing fused (hydrophobic) ring systems can insert between

base pairs through the creation of favorable p-stacking with nearby

nucleobases.[85] We report in this section, a study about the unbinding

process of DOX from DNA, to show the effectiveness of IVR tools

within a computational research project. The unbinding process of

DOX from the binary complex was here investigated with umbrella

sampling,[86] using the distance between the center of mass (COM) of

FIGURE 7 (a) and (b) represent SOMO orbital and spin density of TOAC, respectively, while (c) is the spin density of the Z-TOAC-(l-Ala)2-
NHtBu. Structural and electronic properties have been computed at PBE0/6-31111G(d,p) level of theory with Gaussian 09[56] suite of

programs

FIGURE 8 (a) Cytochrome P450 2B4 WT structure shown using ribbons. The heme group and OOH2 anion are shown in balls-and-sticks.
(b) Distribution of conformations in clusters along the artificial trajectory created by sampling structures from the original WT and the four
mutants simulations. Less frames were used with Caffeine, obtained from a uniform re-sample of the original clusters. (c) Comparison of the
differences between the obtained clusters using virtual reality with Caffeine

SALVADORI ET AL. | 1739

DOX and of the binding site as the reaction coordinate. The selection

of the starting configurations for the umbrella windows was performed

with our IVR environment: the ability to view, at the same time, a

molecular conformation and the chart reporting the distance between

COMs was exploited to select sensible structures in a very accurate

way (see Figure 6).

These structures were marked as key-frames and used for the sub-

sequent umbrella simulations (details about the simulations are

FIGURE 9 Superposition of representative structures, together with relative water channels, of three different mutants of Cytochrome
P450 2B4, both on a standard desktop (a) and within the CAVE (b)

FIGURE 10 Binary complex dissociation process. Note that in panels (b-d) the position of the intermediate at 10 Å and final dissociated state
along the sampling coordinate is highlighted with a blue dashed line. (a) Binding site of the DOX compound in the initial conformation. The
position of the binding site COM (b.s., gold sphere) and of DOX (purple sphere) is shown. (b) Potential of mean force (PMF) curve associated to
the distance between centers of mass of the binding base pairs and of the DOX drug. (c) Calculated change in rise between DNA base pairs. (d)
Number of hydrogen bonds between the binding site nucleobases (black) or DOX (red) with water molecules

1740 | SALVADORI ET AL.

reported in the Supporting Information). The obtained free energy DG

is represented in Figure 10b. Interestingly, a partially stable state was

found at 10.2 Å: here the rigid body of the DOX molecule lies on the

plane defined by the two DNA backbones, while the intercalation site

is still in an opened conformation. This state may be associated to the

intermediate one (IM) already found in the case of daunomycin.[87]

Roughly, 14 kcal/mol are necessary for DOX to reach the solvent.

Since intercalation, and, subsequently, dissociation of anthracy-

clines from DNA has been demonstrated to alter the DNA structure,[88]

we selected few parameters to measure the structural modifications

that take place during the binding process, which could be used in fur-

ther analysis. Figure 10c shows the average rise distance between base

pairs in the intercalation site as a function of the reaction coordinate in

the simulated windows. High rise values (of approximately 7.5 Å) are

detected for the intercalated state: then, as DOX approaches the bulk

solvent, the distance between two consecutive bases decreases, reach-

ing a final value of about 3.5 Å in the unbound state, very close the

value of 3.4 Å featured by native B-DNA. The intermediate state

(whose structure could be considered as the mean structure of the

umbrella window starting at 10 Å of COMs distance) is showed both

on a standard desktop and using IVR in Figure 11: it is possible to

observe that such conformation seems to be still in an opened confor-

mation (assuming a rise value close to 6 Å), thus being accessible by

water molecules.

The hydration of the binary system as a function of the reaction

coordinate was taken into account (and plotted in Figure 10d): such

property was calculated as the average number of hydrogen bonds

between water molecules and either DOX or the four nucleobases that

delimit the binding site. The intercalation induces a decrease of the H-

bonds since DOX acts as a barrier for water molecules, which cannot

enter into the binding site. At the same time, DOX is less hydrated as it

approaches the DNA binding task: on average, two hydrogen bonds

that take place in the DOX unbound state are not preserved in the

intercalated one. It is interesting to observe a peak of average number

of hydrogen bonds in proximity of the intermediate state: in fact, at

this point, DOX has already left the intercalation site, so as to be con-

sidered solvent-exposed whereas the binding site is still opened.

Finally, after 10 Å of COM distance, the number of water molecules H-

bonded to the binding site bases slowly decreases. This is in agreement

with our previous considerations: in fact, after this point, as shown in

Figure 10c, the binding site reduces its size, because of the departure

of DOX, thus decreasing water accessibility to the intercalation site

nucleobases.

Suitably chosen conformations (i.e., the centroids of the single

umbrella windows) were used to reconstruct the whole unbinding pro-

cess, from the intercalated to the completely unbound state, through

the IM one, so as to build an artificial trajectory to be used in Caffeine

to follow in the meanwhile both chemical structure evolution and

related structural parameters. Moreover, considering the PMF chart in

Figure 10b, it is always possible to connect the current, visualized snap-

shot to its associated free energy value just switching from the COMs

distance chart to the PMF one, thus increasing the user’s understand-

ing of the overall free energy study. It is important to highlight here

that a quantitative evaluation of binding/unbinding of DOX was not

the ambition of the present study: here we applied a simplified (to limit

the computational cost), yet consistent, computational protocol for

illustrating the features of Caffeine to a wide audience. It is anyway

remarkable that the obtained results are in line with currently available

literature data.

4 | CONCLUSION AND OUTLOOKS

In this contribution, the technical details and main features of Caffeine,

a novel molecular viewer suited for IVR environments, are presented.

Caffeine allows a smooth transition from desktop computers, where

the most diffused molecular graphics software work, to IVR systems,

such as helmets and the CAVE theater. In our opinion, it is reasonable

to expect benefits from systematic use of IVR environments within

computational investigations. In fact, molecules can be perceived as

three-dimensional objects with a well-established position of atoms in

space, thus being characterized in a more precise and effective manner.

Moreover, some peculiar features of Caffeine, such as the augmented

reality-like visualization of 2D charted data and the interactive filtering

of trajectories with “key-frames,” envision our idea of possible,

FIGURE 11 (a) Intermediate bound state of DOX with the nearest neighbor water molecules shown as licorice. (b) Same as (a), within the
CAVE

SALVADORI ET AL. | 1741

productive and realistic employment of IVR in computational chemis-

try, which could be seen as reliable front-end tool in post-processing

analysis.

Caffeine is under active development and there are a number of

new features we would like to add in the future releases. It is worth

noticing that, although the current version of Caffeine allows to visual-

ize orbitals, spectra, and time evolution of molecular properties, which

can be useful in the interpretation of some spectroscopic observable,

further improvements are needed for obtaining a full user-friendly vir-

tual spectrometer.

Although, it is sufficiently fluid, the visualization of multiple struc-

tures (trajectories) would benefit from further optimization. Such an

optimization can be implemented, for example, using some GPU-

accelerated methods, like those proposed by Krone et al.[49] and by

Wahle and Birmanns[89] for ribbon generation.

Another line of development concerns the interaction with visual-

ized data. Right now, within the CAVE the user is able to interact

with the system by means of a simple application for tablet com-

puters. Furthermore, at present, many features of Caffeine cannot be

controlled via tablet, and require the help of a second user acting on

the external control panel. We want to better exploit our tracking sys-

tem by enabling hands tracking within the CAVE, thereby allowing the

user to manipulate the visualized system, that is, to move, scale,

rotate the system and playing back or forward across frames. As for

IVR helmets, we plan to officially support this kind of devices in the

near future.

From a general perspective, we envision Caffeine as an advanced

graphics front-end focused on visualization and interactive data han-

dling, able to communicate with other analysis environments using

flexible interchange formats. As an example, we are working on a flexi-

ble representation of hydrogen bonds from MD.[90] Other efforts are

being directed in more extended visualization of volumetric and spec-

troscopic quantities, acting as an IVR front-end for other analysis

environments.[91]

ACKNOWLEDGMENTS

The authors thank the DREAMS Lab technical staff for managing

the computing facilities at SNS and Dr. Balasubramanian Chandra-

mouli for useful discussion.

REFERENCES

[1] M. Valle, Int. J. Quantum Chem. 2013, 113, 2040.

[2] N. Luehr, A. G. B. Jin, T. J. Martínez, J. Chem. Theory Comput. 2015,

11, 4536. PMID: 26574246.

[3] C. Casher, C. Leach, C. S. Page, H. S. Rzepa, J. Mol. Struct. (Theo-

chem) 1996, 368, 49.

[4] J. D. Hirst, D. R. Glowacki, M. Baaden, Faraday Discuss. 2014, 169,

9.

[5] J. E. Stone, A. Kohlmeyer, K. L. Vandivort, K. Schulten, In Adv. Visual

Comput.: 6th International Symposium, ISVC 2010 (Eds: G. Bebis, R.

Boyle, B. Parvin, D. Koracin, R. Chung, R. Hammound, M. Hussain,

T. Kar-Han, R. Crawfis, D. Thalmann, D. Kao, L. Avila), Springer

Berlin Heidelberg, Las Vegas, NV November 29–December 1 2010,

pp. 382–393.

[6] S. Rajeev, Z. Michael, V. I. Pavlovic, T. S. Huang, Z. Lo, S. Chu, Y.

Zhao, J. C. Phillips, and K. Schulten, IEEECGA 2000, 20, 29.

[7] Microsoft, Kinect for Xbox One, http://www.xbox.com/en-US/

xbox-one/accessories/kinect-for-xbox-one, Accessed 5 July, 2016.

[8] Leap Motion Inc., Leap Motion, https://www.leapmotion.com,

Accessed 5 July, 2016.

[9] Oculus VR LLC, Oculus Rift, https://www.oculus.com/en-us/rift/,

Accessed 5 July, 2016.

[10] HTC and Valve, Vive, http://www.htcvive.com, Accessed 5 July,

2016.

[11] Novint Technologies Inc., Falcon 3D Touch controller, http://www.

novint.com/index.php/novintfalcon, Accessed 5 July, 2016.

[12] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, J. C. Hart,

Commun. ACM 1992, 35, 64.

[13] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, in Proc. 20th Annu. Conf.

Comput. Graph. Interactive Tech., SIGGRAPH ’93, ACM, New York,

NY 1993, pp. 135–142.

[14] A. Salvadori, A. Brogni, G. Mancini, V. Barone, in Augmented Virtual

Reality: First Int. Conf., AVR 2014 (Eds: T. L. De Paolis, A. Mongelli),

Springer International Publishing, Lecce, Italy September 17–20,
2014, Revised Selected Papers, pp. 333–350.

[15] Terrence, D. Michael, P. Rick, S. Michael, P. Valerie, T. Virtual, Real-

ity Visualization of Parallel Molecular Dynamics Simulation, Society for

Computer Simulation, 1995, pp. 483–487.

[16] A. van Dam, A. S. Forsberg, D. H. Laidlaw, J. J. LaViola, R. M.

Simpson, IEEE Comput. Graph. Appl. 2000, 20, 26.

[17] E. Moritz, J. Meyer, in Proc. Fourth IEEE Symp. Bioinformatics Bioeng.,

2004., pp. 503–507.

[18] K. Reda, A. Knoll, K. I. Nomura, M. E. Papka, A. E. Johnson, J. Leigh,

in IEEE Symp. Large-Scale Data Anal. Visualization (LDAV), 2013,

pp. 59–65.

[19] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.

[20] M. Czernuszenko, D. Pape, D. Sandin, T. DeFanti, G. L. Dawe, M. D.

Brown, SIGGRAPH Comput. Graph. 1997, 31, 46.

[21] W. R. Sherman, Daniel Coming, and Simon Su. Freevr: Honoring the Past,

Looking to the Future. Proc. SPIE, 8649:864906–864906–15, 2013.

[22] Mechdyne Corporation, Cavelib: The ultimate solution for 3d virtual real-

ity displays, http://www.mechdyne.com/software.aspx?name5CAVELib,

Accessed 5 July, 2016.

[23] J. E. Stone, W. R. Sherman, K. Schulten, in IEEE Int. Parallel Distrib-

uted Processing Symposium Workshop (IPDPSW), in Press. http://

www.ks.uiuc.edu/Publications/Papers/paper.cgi?tbcode=STON2016A

[24] FEI, Amira 3D Software for Life Sciences, http://www.fei.com/soft-

ware/amira-3d-for-life-sciences/, Accessed 5 July, 2016.

[25] YASARA Biosciences, YASARA—Yet Another Scientific Artificial

Reality Application, http://www.yasara.org/, Accessed 5 July, 2016.

[26] Schr€odinger, LLC, The PyMOL Molecular Graphics System, Version

1.8, http://www.pymol.org, Accessed 5 July, 2016.

[27] Virtalis Inc., VR For PyMOL, http://www.virtalis.com/vr-for-pymol/,

Accessed 5 July, 2016.

[28] The Qt Company, Qt framework, http://www.qt.io, Accessed 5

July, 2016.

[29] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vander-

meersch, G. R. Hutchison, J. Cheminform. 2011, 3, 1.

[30] OpenSceneGraph, http://www.openscenegraph.org, Accessed 5

July, 2016.

1742 | SALVADORI ET AL.

[31] G-Truc Creation, OpenGL Mathematics, http://glm.g-truc.net,

Accessed 5 July, 2016.

[32] U. Rathmann, J. Wilgen, Qwt - Qt Widgets for Technical Applica-

tions, http://qwt.sourceforge.net, Accessed 5 July, 2016.

[33] D. Frishman, P. Argos, Proteins 1995, 23, 566.

[34] Worldwide Protein Data Bank, PDB file format, http://www.

wwpdb.org/documentation/file-format, Accessed 5 July, 2016.

[35] OpenBabel, XYZ file format, http://openbabel.sourceforge.net/wiki/

XYZ, Accessed 5 July, 2016.

[36] Gaussian Inc., The cubegen utility, http://www.gaussian.com/g_

tech/g_ur/u_cubegen.htm, Accessed 5 July, 2016.

[37] NaturalPoint Inc., OptiTrack - Motion Capture Systems, https://

www.optitrack.com/, Accessed 5 July, 2016.

[38] R. Kooima, Generalized perspective projection, http://csc.lsu.edu/

~kooima/articles/genperspective/index.html, 2008, Accessed 5 July,

2016.

[39] NVIDIA Corporation, Quadro SLI Technology, http://www.nvidia.

com/object/quadro-sli-technology.html, Accessed 5 July, 2016.

[40] S. Gumhold, in Proc. Vision, Modeling, Visualization Conf. 2003 (VMV

2003) (Ed: T. Ertl), Aka GmbH, M€unchen, Germany November 19-

21, 2003, pp. 245–252.

[41] R. Toledo, B. L�evy, Extending the graphic pipeline with new gpu-

accelerated primitives. Technical report, INRIA-ALICE, 2004.

[42] G. Reina, T. Ertl, in Proc. Seventh Joint Eurographics/IEEE VGTC Conf.

Visualization, EUROVIS’05, Eurographics Association, Aire-la-Ville,

Switzerland, Switzerland 2005, pp. 177–182.

[43] S. Christian, W. Tim, B. Mario, G. Markus, G, in Proc. 3rd Eurographics/

IEEE VGTC Conf. Point-Based Graphics, SPBG’06, pages 59–65, Aire-la-
Ville, Switzerland, Switzerland, 2006. Eurographics Association.

[44] M. Tarini, P. Cignoni, C. Montani, IEEE Transactions on Visualization

and Computer Graphics 2006, 12, 1237.

[45] M. Chavent, A. Vanel, A. Tek, B. Levy, S. Robert, B. Raffin, M. Baa-

den, Journal of Computational Chemistry 2011, 32, 2924.

[46] P. D. Bagur, N. Shivashankar, V. Natarajan, Improved quadric sur-

face impostors for large bio-molecular visualization. In Proceedings

of the Eighth Indian Conference on Computer Vision, Graphics and

Image Processing, ICVGIP ’12, pages 33:1–33:8, New York, NY,

USA, 2012. ACM.

[47] K. Barbora, K. Michael, L. Norbert, F. Martin, B. Marc, B. Daniel, V.

Ivan, P. Julius, H. Hans-Christian, in Eurographics Conference on Visu-

alization (EuroVis) – STARs (Eds: R. Borgo, F. Ganovelli, I. Viola), The

Eurographics Association, 2015.

[48] J. F. Blinn, in Proc. 4th Annu. Conf. Comput. Graph. Interactive Tech.,

SIGGRAPH ’77, ACM, New York, NY 1977, pp. 192–198.

[49] K. Michael, B. Katrin, E. Thomas, in Theory and Practice of Computer

Graphics (Eds: I. S. Lim, W. Tang), The Eurographics Association, 2008.

[50] M. Carson, C. E. Bugg, J. Mol. Graph. 1986, 4, 121.

[51] A. Kaufman, K. Mueller. in Visualization Handbook (Eds: C. D. Han-

senChris, R. Johnson), Elsevier Butterworth-Heinemann, 2005, pp.

127–174.

[52] W. E. Lorensen, H. E. Cline, in Proc. 14th Annu. Conf. Comput.

Graph. Interactive Tech., SIGGRAPH ’87, ACM, New York, NY 1987,

pp. 163–169.

[53] S. F. F. Gibson, in Proc. First Int. Conf. Med. Image Comput. Comput.-

Assisted Intervention, MICCAI ’98, Springer-Verlag, London, UK

1998, pp. 888–898.

[54] P. Bourke, Polygonising a scalar field (marching cubes), http://paul-

bourke.net/geometry/polygonise/, Accessed 5 July, 2016.

[55] L. Mikola, Smooth voxel terrain (part 2), http://0fps.net/2012/07/

12/smooth-voxel-terrain-part-2/, Accessed 5 July, 2016.

[56] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.

Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A.

Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.

Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,

K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.

Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E.

Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin,

V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.

Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.

M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.

Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.

Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V.

G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dap-

prich, A. D. Daniels, €O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cio-

slowski, D. J. Fox, Gaussian �09 Revision D.01, Gaussian Inc.,

Wallingford, CT 2009.

[57] J. H. Han, 3D Graphics for Game Programming, Chapman and Hall/

CRC Press, 2011.

[58] C. D. Hansen, C. R. Johnson, in The Visualization Handbook, Elsevier

Butterworth-Heinemann, Burlington, MA, 2005.

[59] W. Rephael, Isosurfaces: Geometry, Topology, and Algorithms, CRC

Press, 2013.

[60] T. Porter, T. Duff, in Proc. 11th Annu. Conf. Comput. Graph. Interac-

tive Tech., SIGGRAPH ’84, ACM, New York, NY 1984, pp.

253–259.

[61] E. Cass, Technical Report, NVIDIA Corporation 2001, 2, 7.

[62] L. Bavoil, K. Myers, Order independent transparency with dual

depth peeling. Technical Report., NVIDIA Corporation, pp. 1–12.

[63] B. Liu, L. Y. Wei, Y. Q. Xu, E. Wu, presented at 11th IEEE Int. Conf. Com-

put. Aided Des. Comput. Graph., CAD/Graphics ’09, 2009, pp. 452–456.

[64] M. McGuire, L. Bavoil, J. Comput. Graph. Tech. 2013, 2, 122.

[65] M. Houman, Sort-independent alpha blending. Perpetual Entertain-

ment, GDC Talk, 2007.

[66] M. Maule, J. L. D. Comba, R. P. Torchelsen, R. Bastos, Comput.

Graph. 2011, 35, 1023.

[67] M. Morgan, Casual effects: Implementing weighted, blended order-

independent transparency, http://casual-effects.blogspot.it/2015/03/

implemented-weighted-blended-order.html, Accessed 5 July, 2016.

[68] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.

[69] Ugo Varetto, Molekel 5.4, http://ugovaretto.github.io/molekel/,

Accessed 5 July, 2016.

[70] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E.

Zurek, G. R. Hutchison, J. Cheminform. 2012, 4, 1.

[71] KDE, Oxygen project, https://techbase.kde.org/Projects/Oxygen,

Accessed 5 July, 2016.

[72] J. L. Taylor, in Encyclopedia of Neuroscience (Ed: Larry R. Squire),

Academic Press, 2009, pp. 1143–1149.

[73] JTKSOFT, JoyToKey, http://joytokey.net/en/, Accessed 5 July,

2016.

[74] Vmd user’s guide, version 1.9.2, http://www.ks.uiuc.edu/Research/

vmd/current/ug/, Accessed 5 July, 2016.

[75] Z. Xu, A. L. Horwich, P. B. Sigler, Nature 1997, 388, 741.

[76] C. Sabin, P. Plevka, Acta Crystallogr. Sect. F 2016, 72, 188.

[77] M. D’Amore, R. Improta, V. Barone, J. Phys. Chem. A 2003, 107,

6264.

[78] G. Mancini, C. Zazza, PLoS One 2015, 10, 1.

SALVADORI ET AL. | 1743

[79] C. Toniolo, M. Crisma, F. Formaggio, C. Peggion, Biopolymers (Pept.

Sci.) 2001, 60, 396.

[80] R. Improta, V. Barone, Chem. Rev. 2004, 104, 1231.

[81] S. Carlotto, P. Cimino, M. Zerbetto, L. Franco, C. Corvaja, M.

Crisma, F. Formaggio, C. Toniolo, A. Polimeno, V. Barone, J. Am.

Chem. Soc. 2007, 129, 11248.

[82] V. Cojocaru, P. J. Winn, R. C. Wade, Biochim. Biophys. Acta 2007,
1770, 390.

[83] D. Usharani, C. Zazza, W. Lai, M. Chourasia, L. Waskell, S. Shaik, J.

Am. Chem. Soc. 2012, 134, 4053. PMID: 22356576.

[84] R. A. Laskowski, J. Mol. Graph. 1995, 13, 323.

[85] W. A. Denny, B. C. Baguley, Curr. Top. Med. Chem. 2003, 3, 339.

[86] G. M. Torrie, J. P. Valleau, J. Comput. Phys. 1977, 23, 187.

[87] M. Wilhelm, A. Mukherjee, B. Bouvier, K. Zakrzewska, J. T.

Hynes, R. Lavery, J. Am. Chem. Soc. 2012, 134, 8588. PMID:

22548344.

[88] F. Yang, S. S. Teves, C. J. Kemp, S. Henikoff, Biochim. Biophys. Acta

2014, 1845, 84.

[89] M. Wahle, S. Birmanns, Proc. SPIE 2011, 7868, 786805.

[90] M. Pagliai, G. Cardini, R. Righini, V. Schettino, J. Chem. Phys. 2003,
119, 6655.

[91] D. Licari, A. Baiardi, M. Biczysko, F. Egidi, C. Latouche, V. Barone, J.

Comput. Chem. 2015, 36, 321.

AUTHORS' BIOGRAPHIES

ANDREA SALVADORI is a PhD student in Chemistry

at Scuola Normale Superiore (Pisa, Italy) in the

SMART@SNS Laboratory headed by Prof. Vin-

cenzo Barone. His primary research interests

are related to the application of computer

graphics and virtual reality technologies to the

field of Molecular Graphics. He received his

Master’s Degree in Computer Science (“Laurea Specialistica in Tecnolo-

gie Informatiche”) from University of Pisa (Pisa, Italy).

GIANLUCA DEL FRATE is currently a PhD student

at Scuola Normale Superiore, Pisa, in the

SMART@SNS Laboratory headed by Prof. Vin-

cenzo Barone. He received his Master Degree

in Medicinal Chemistry in 2013 from the Uni-

versity of Pisa. His research interests are

related to the computational study of biochem-

ical systems and to the development and validation of accurate force

fields for molecular simulations.

MARCO PAGLIAI obtained his PhD in Chemistry

(2004) at the University of Florence (Italy),

where he did postdoctoral research until 2015.

He then joined the group of Prof. Vincenzo

Barone at Scuola Normale Superiore in Pisa as

a research fellow. His research interests are the

application of classical and ab initio molecular

dynamics simulations to characterize structural, dynamic and spectro-

scopic properties of complex systems in condensed phases.

GIORDANO MANCINI obtained his PhD in Physi-

cal Chemistry in 2008 from the University of

Rome La Sapienza. Since 2013, he has been a

post doc researcher at Scuola Normale Superi-

ore in Pisa. He works on the development of

accurate force fields for classical molecular

dynamics and on the application of IVR tech-

nologies to molecular modeling.

VINCENZO BARONE is Full Professor in Physical

Chemistry since 1994 and has been appointed

as Director of the Scuola Normale Superiore in

2016. He is author of more than 700 papers

with more than 40,000 citations, an h-factor

of 78, and 10 papers with more than 1000

citations each. He has contributed to the

development of Density Functional Theory, solvation theory, computa-

tional spectroscopy and performed state-of-the-art applications in sev-

eral fields including cultural heritage and astrochemistry.

SUPPORTING INFORMATION

Additional Supporting Information can be found in the online version

of this article at the publisher’s website.

How to cite this article: A. Salvadori, G. Del Frate, M. Pagliai,

G. Mancini, V. Barone. Int. J. Quantum Chem. 2016, 116:

1731–1746. DOI: 10.1002/qua.25207

APPENDIX A: NOTES ON THE IMPLEMENTATION OF

GPU-BASED RAY-CASTING OF QUADRIC SURFACES IN

CAFFEINE

GPU-based ray-casting of quadric surfaces is a technique widely used in

scientific visualization which allows to visualize a large amount of

glyphs at interactive frame rates by exploiting the huge computing

power of the modern GPUs. The use of quadric surfaces as glyphs is

motivated by the fact that the intersection between a ray and a surface

of this type can be computed by solving a simple quadratic equation.

The key idea of this method is to feed the graphics pipeline with a

simple proxy geometry (e.g., a bounding box or a point sprite) in place

of the desired implicit surface. The proxy geometry must be sized so to

completely enclose the surface in window space, and a ray-casting

shader must be enabled when drawing the geometry, so to process

each fragment resulting from its rasterization. In particular, the frag-

ment shader analytically computes the intersection between the sur-

face and a ray starting from the virtual camera and passing through the

center of the fragment. If there is no intersection then the fragment is

discarded, otherwise its depth is adjusted with the one of the intersec-

tion point closest to the camera. Usually, the shader also computes the

normal vector of the surface at the intersection point, that will be used

to calculate the color of the fragment according to a certain shading

1744 | SALVADORI ET AL.

model (e.g., the Blinn–Phong[48] model). Although it is possible to write

a single shader capable of drawing any quadric surface,[41,43,45] we

chose to implement separate dedicated shaders for spheres and capsu-

les (cylinders with (or without) semispheres at their ends). Furthermore,

we wrote a geometry shader to generate the proxy geometry on the

fly, similarly to what done by Bagur et al.[46] By doing so, we are able

to represent a sphere with only seven floating point numbers (three for

the center, three for the color, and one for its radius), and a capsule

with ten floats (two vertex, color, and radius). The geometry shader will

then generate a quad for each sphere and up to two quads for each

cylinder as proxy geometries.

APPENDIX B: NOTES ON THE IMPLEMENTATION OF

THE MARCHING CUBES AND THE SURFACE NETS

ALGORITHMS IN CAFFEINE

Caffeine implements, and provides to the user, two different algorithms

for the construction of a triangle mesh approximating an isosurface of

a volumetric dataset: the traditional Marching Cubes[52] and a simplified

version of the Surface Nets.[53] With regard to the Marching Cubes we

use (a slightly adapted version of) the popular implementation by Cory

Gene Bloyd and Paul Bourke,[54] while for the Surface Nets we re-

implemented in C11 the so-called “Naive” version by Mikola Lysenko
[55] (originally coded in JavaScript).

In brief, the Marching Cubes algorithm iterates over the cells bor-

dered by the volume grid (called “cubes” even if they can be non-cubical

parallelepipeds) and, for each cell, it “marks” the voxels whose value is

lower than the isovalue. If two voxels connected by an edge have a differ-

ent marking (because one value is lower than the isovalue, while the

other is greater than or equal to it), then the isosurface crosses the edge.

In that case, and in function of which edges are crossed, one or more tri-

angles are generated by applying a predefined triangulation scheme. The

vertices of these triangles always lies on the intersected edges and their

coordinates are computed by linearly interpolating the related voxels in

function of their value and of the isovalue. At the end, the algorithm

returns the set of the triangles resulting from processing the entire grid,

which constitutes a good approximation of the isosurface. The Surface

Nets algorithm operates similarly to the Marching Cubes, by iterating

over the cells and checking which ones are crossed by the isosurface.

The differences between the two approaches resides in the fact that Sur-

faceNets generates only one vertex for each crossed cell, that this vertex

lies within the cell (instead to be constrained on an edge) and that the

resulting sets of polygons (quads, which can anyway be splitted in trian-

gles) are obtained by connecting each vertex with the vertices of the

neighbors cells (sharing a face) crossed by the same isosurface. As regard

to the position of the vertex within the cell, the original algorithm[53] ini-

tially places it at the center of the cell. Then, an iterative process is

applied, which moves the vertices so as to minimize the sum of the

squared lengths of the links connecting the vertices, with the constrain

to keep each vertex within its original cell. The simplified “Naive” version,

instead, choses as vertex of the cell the centroid of the approximated

intersection points between the isosurface and the edges of the cells (To

the best of our knowledge, Mikola Lysenko[55] was the first to propose

to place the vertex at the centroid of the intersection points) (computed

as in the Marching Cubes algorithm). By avoiding the iterative minimiza-

tion process, the “Naive” Surface Nets method is both faster and easier

to implement, although it could produce suboptimal results.

The Surface Nets algorithm produces a more regular triangulation

than the traditional Marching Cubes method, as shown in Figure 3.

Furthermore, according to some tests performed on our implementa-

tions, Naive Surface Nets results slightly faster. Let’s consider, as an

example, the isosurface representing the molecular orbital of a caffeine

molecule with isovalue 0.02, drawn in orange in Figure 4. The tradi-

tional Marching Cubes algorithm takes 66 ms to create the correspond-

ing triangle mesh composed by 13,896 triangles and 41,688 vertices,

while the Naive Surface Nets method produces a similar isosurface

composed by 13,928 triangles and 6980 vertices in 52 ms (These tests

has been performed on the same desktop computer described in sec-

tion “Performance Evaluation”). Note that, while the number of trian-

gles produced by the two algorithms is almost the same, the traditional

Marching Cubes method outputs much more vertices than its Naive

Surface Nets counterpart. This is due to the fact that the traditional

Marching Cubes algorithm does not take into account that the vertices

it generates in each cell are shared among multiple triangles, hence the

same vertex is repeated multiple times in the output list. In the case of

the Surface Nets method, instead, it is easier to obtain an indexed

triangle list, that is, the output vertex list does only contains non-

duplicated vertices and the triangles are defined by an additional index

list storing three indices for the vertex list for each triangle to be gener-

ated. Indexed triangle list allows to reduce the memory required to store

a given geometry, and also brings an increase of the rendering perform-

ance thanks to a better exploitation of the GPU cache.[57] Regarding to

generation times, the difference is due to the fact that the Marching

Cubes algorithm computes per-vertex attributes (and in particular the

normal vector) for each intersection point between the edges and the

isosurface (consequently, several times for the same geometrical vertex

within the cell), while in Surface Nets method these attributes are com-

puted one time only.

APPENDIX C: SIMULATING SEMITRANSPARENT

SURFACES IN REAL-TIME 3D COMPUTER GRAPHICS

In interactive computer graphics, semitransparent objects are usually

simulated using a technique known as “alpha blending,” first introduced

by Porter and Duff[60] in 1984 and nowadays supported natively by

the graphics hardware. In this technique, each fragment (Pixel proto-

type resulting from the rasterization of a geometrical primitive [e.g., a

triangle]) has an associated alpha value representing its opacity. To

“blend” a new fragment in the image under construction, a new color is

computed as a function of the color of the fragment and of the one

already present in the considered location of the frame buffer (Portion

of the memory of the graphics card storing the image that will be dis-

played on screen) (resulting from the processing of the previously sub-

mitted fragments). Hence, the new color will replace the old one in the

SALVADORI ET AL. | 1745

frame buffer. The function usually chosen for this task is the following

(named “OVER” operator in reference 60):

RGBnew5ðRGBfrag � AfragÞ1ðð12AfragÞ � RGBoldÞ

Where RGBnew is the color resulting from the blending operation,

RGBold is the color previously stored in the frame buffer at the consid-

ered location, RGBfrag is the color of the new fragment and Afrag 2 ½0;1
� represents the opacity of the fragment. The problem with the OVER

operator is that the final color for a given pixel depends on the order in

which the fragments laying on that pixel are blended. In other words,

the rendered image can vary depending on the position of the virtual

camera in the 3D scene, on the coordinates of the geometrical primi-

tives in the 3D scene, and on the order in which these primitives are

submitted to the rendering system. From the user’s point of view this

may result in incorrect colors and/or graphical artifacts, as shown in

Figure 12a.

One solution to this problem consists in drawing the opaque poly-

gons first (in any order), and then drawing the semitransparent poly-

gons from the farthest to the nearest to the virtual camera (with the

writing on the Z-buffer disabled). However, depending on the number

of semitransparent polygons, ordering them every frame may not be a

viable solution for a real-time interactive application. Furthermore, the

problem persists in the case of overlapping polygons. A popular

cheaper alternative consists in ordering only the semitransparent

“objects” of the 3D scene (instead of the triangles they are formed by)

and to draw only their polygonal faces that are oriented in the direction

of the camera (“backface culling”). However, this method produces

roughly approximate results (see Figure 12b), works only in the case of

non-overlapped semitransparent objects and may not remove entirely

the graphical artifacts. In conclusion, the only way to obtain an exact

alpha blending, using the “OVER” operator and in the general case, is to

blend the fragments in the correct order. Examples of GPU-accelerated

techniques which achieve this goal are the “depth peeling”

methods.[61–63] Other GPU-accelerated approaches renounce to pro-

duce exact results to obtain better performance, for example, by defin-

ing a different compositing operator which is commutative.[62,64,65]

Several other OIT methods are present in the literature and a compre-

hensive survey has been published.[66]

In Caffeine, we employed an approximated method, the “Weighted

Blended Order-Independent Transparency” by McGuire and Bavoil[64,67]

(see Figure 12c), because it provides a good balance between quality

of the results, performance, and implementation complexity.

FIGURE 12 Comparison between different rendering techniques for simulating semitransparent surfaces. An orbital of a water molecule is
shown. (a) Alpha blending of front and back faces produce graphical artifacts. (b) Alpha blending of front faces only removes (most of) the
graphical artifacts but produce inaccurate images (e.g., the oxygen atom does not appear crossed by the orbital). (c) Image obtained using
the “Weighted Blended Order-Independent Transparency” technique. Even if this is an approximate method, it produces plausible results. The
orbitals have been computed at HF/STO-3G level of theory with Gaussian 09[56] suite of programs

1746 | SALVADORI ET AL.

Future perspectives

The development of Caffeine will not end with this thesis and there are a number
of new features that I, my colleagues and my supervisors would like to implement
for future releases.

One of the main priorities is the support to the latest versions of HMDs, and in
particular to the Oculus Rift and the HTC Vive. At the time of writing, that
support is being developed by a colleague. Another aspect related to VR that need
improvements is user interaction. We would like to replace the use of the tablet with
hand-held controllers (“wands”) or by directly tracking the user’s fingers, and also
provide a larger set of commands accessible from within the virtual environment.
This could be obtained by means of a dedicated graphical user interface immersed
in the 3D scene (similarly to what done with line charts), and would have the
advantage of being a unified user interface for both CAVE and HMD systems.

The visualization of dynamic systems (trajectories) would benefit from further op-
timization. These could be obtained by parallelizing the procedures for the compu-
tation of the graphics primitives of each “diagram”, as well as by adopting further
GPU-accelerated methods, like those discussed in section 2.2. Another missing use-
ful feature is the ability to save to file (and subsequently reload) the visualization
state.

As regard to the visualization of molecular data, the main missing feature is the
computation of molecular surfaces. Again, we plan to take advantage of the latest
GPU-accelerated methods proposed in literature and discussed in section 2.2.3. It
would also be interesting to implement Direct Volume Rendering of volumetric
data, in particular for the visualization of quantum chemical data (such as electron
densities and atomic/molecular orbitals) by exploiting some of the ideas proposed
in [168]. The support for plotting supplementary numerical data in charts should
be extended, allowing to provide further types of dataset and to represent them
with appropriate charts.

187

Acknowledgments

First of all, I wish to thank Prof. Vincenzo Barone for his guidance and for giving
me the opportunity to work on this exiting project in one of the most prestigious
universities in Europe.

I am particularly grateful to Dr. Giordano Mancini for the invaluable teachings,
guidance, assistance and support he provided me with during my PhD.

I would also like to thank my co-authors, and in particular Dr. Daniele Licari,
Dr. Andrea Brogni, Dr. Marco Pagliai and Gianluca Del Frate for their help and
feedbacks, as well as for designing and conducting the case studies that has been
used to test, improve and illustrate the features of Caffeine.

Finally, I would like to extend my thanks to my colleagues and all the techni-
cal, logistic and administrative staff of Scuola Normale Superiore, for making it a
pleasing place to work.

This thesis is dedicated to my family, for their invaluable help, support and encour-
agement along all these years. Without them, this thesis would never have been
written.

189

Bibliography

[1] J. D. Hirst, D. R. Glowacki, and M. Baaden, “Molecular simulations and
visualization: introduction and overview,” Faraday Discuss., vol. 169, pp. 9–
22, oct 2014.

[2] F. P. Brooks, M. Ouh-Young, J. J. Batter, P. Jerome Kilpatrick, and P. J.
Kilpatrick, “Project GROPE Haptic displays for scientific visualization,” Pro-
ceedings of the 17th annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’90, vol. 24, no. 4, pp. 177–185, 1990.

[3] A. van Dam, A. S. Forsberg, D. H. Laidlaw, J. J. LaViola, and R. M. Simp-
son, “Immersive VR for scientific visualization: a progress report,” IEEE
Computer Graphics and Applications, vol. 20, no. 6, pp. 26–52, 2000.

[4] NormaleNews, “Marcos Valdes con il progetto VIS ottiene il "Premio per la
Comunicazione Scientifica" della Società Italiana di Fisica.” https://goo.

gl/DNkO7z, 2015.

[5] A. Salvadori, D. Licari, G. Mancini, A. Brogni, N. De Mitri, and V. Barone,
“Graphical Interfaces and Virtual Reality for Molecular Sciences,” in Ref-
erence Module in Chemistry, Molecular Sciences and Chemical Engineering,
Elsevier, 2014.

[6] A. Salvadori, A. Brogni, G. Mancini, and V. Barone, “Moka: Designing a
Simple Scene Graph Library for Cluster-Based Virtual Reality Systems,” in
Augmented and Virtual Reality: First International Conference, AVR 2014,
Lecce, Italy, September 17-20, 2014, Revised Selected Papers (L. T. De Pao-
lis and A. Mongelli, eds.), vol. 8853 of Lecture Notes in Computer Science,
pp. 333–350, Springer International Publishing, 2014.

[7] A. Salvadori, G. Del Frate, M. Pagliai, G. Mancini, and V. Barone, “Immer-
sive virtual reality in computational chemistry: Applications to the analysis
of QM and MM data,” International Journal of Quantum Chemistry, vol. 116,
pp. 1731–1746, nov 2016.

191

https://goo.gl/DNkO7z
https://goo.gl/DNkO7z

Bibliography

[8] C. Casanova and M. Ptito, “Preface,” in Vision: From Neurons to Cognition
(C. Casanova and M. Ptito, eds.), vol. 134 of Progress in Brain Research,
pp. ix – xi, Elsevier, 2001.

[9] M. Aubert, A. Brumm, M. Ramli, T. Sutikna, E. W. Saptomo, B. Hakim,
M. J. Morwood, G. D. van den Bergh, L. Kinsley, and A. Dosseto, “Pleis-
tocene cave art from Sulawesi, Indonesia,” Nature, vol. 514, pp. 223–227, oct
2014.

[10] C. Woods, “The Earliest Mesopotamian Writing,” in Visible Language: In-
ventions of Writing in the Ancient Middle East and Beyond (Oriental In-
stitute Museum Publications 32) (C. Woods, E. Teeter, and G. Emberling,
eds.), Oriental Institute of the University of Chicago, 2015.

[11] R. W. Hamming, Numerical Methods for Scientists and Engineers. Dover
Publications, 2nd revise ed., 1987.

[12] T. Rhyne, M. Tory, T. Munzner, M. Ward, C. Johnson, and D. Laidlaw, “In-
formation and scientific visualization: separate but equal or happy together
at last,” IEEE Visualization, 2003. VIS 2003., pp. 611–614, 2003.

[13] P. Dragicevic and Y. Jansen, “List of Physical Visualizations.” http://

dataphys.org/list/.

[14] B. Shneiderman, “The eyes have it: a task by data type taxonomy for infor-
mation visualizations,” Proceedings 1996 IEEE Symposium on Visual Lan-
guages, pp. 336–343, 1996.

[15] T. Munzner, Visualization Analysis and Design. A K Peters/CRC Press, 12
2014.

[16] C. Upson, T. Faulhaber Jr., D. Kamins, D. H. Laidlaw, D. Schlegel, J. Vroom,
R. Gurwitz, and A. van Dam, “The Application Visualization System: A
Computational Environment for Scientific Visualization,” IEEE Comput.
Graph. Appl., vol. 9, no. 4, pp. 30–42, 1989.

[17] R. B. Haber and D. A. McNabb, “Visualization idioms: A conceptual model
for scientific visualization systems,” in Visualization in Scientific Computing,
pp. 74–93, IEEE Computer Society Press, 1990.

[18] A. C. Telea, Data Visualization: Principles and Practice. A K Peters/CRC
Press, 2 ed., 9 2014.

[19] Worldwide Protein Data Bank, “PDB file format.” http://www.wwpdb.org/

documentation/file-format.

192

http://dataphys.org/list/
http://dataphys.org/list/
http://www.wwpdb.org/documentation/file-format
http://www.wwpdb.org/documentation/file-format

Bibliography

[20] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and
G. R. Hutchison, “Open Babel: An Open chemical toolbox,” Journal of
Cheminformatics, vol. 3, no. 10, pp. 1–14, 2011.

[21] T. B. Sousa, “Dataflow Programming: Concept, Languages and Applica-
tions,” in Doctoral Symposium on Informatics Engineering 2012 (DSIE’12)
(E. Oliveira, G. David, and A. A. Sousa, eds.), pp. 323–334, 2012.

[22] Advanced Visual Systems Inc., “AVS/Express.” http://www.avs.com/

solutions/express/.

[23] D. Foulser, “IRIS Explorer: A Framework for Investigation,” SIGGRAPH
Comput. Graph., vol. 29, no. 2, pp. 13–16, 1995.

[24] W. Schroeder, K. Martin, and B. Lorensen, Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics, 4th Edition. Kitware, 4th ed., 2006.

[25] N. Max, “Optical models for direct volume rendering,” IEEE Transactions
on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108, 1995.

[26] OpenGL.org, “Rendering Pipeline Overview.” https://www.opengl.org/

wiki/Rendering_Pipeline_Overview.

[27] E. Angel and D. Shreiner, Interactive Computer Graphics: A Top-Down Ap-
proach with Shader-Based OpenGL. Pearson, 6 ed., 2011.

[28] E. E. Catmull, A Subdivision Algorithm for Computer Display of Curved
Surfaces. PhD thesis, The University of Utah, 1974.

[29] J. F. Blinn and M. E. Newell, “Texture and Reflection in Computer Generated
Images,” Commun. ACM, vol. 19, no. 10, pp. 542–547, 1976.

[30] K. Akeley, “Reality Engine Graphics,” in Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’93, (New York, NY, USA), pp. 109–116, ACM, 1993.

[31] H. van de Waterbeemd, E. R. Carter, G. Grassy, H. Kubinyi, C. Y. Mar-
tin, S. M. Tute, and P. Willett, “Glossary of terms used in computational
drug design (IUPAC Recommendations 1997),” Pure and Applied Chemistry,
vol. 69, no. 5, p. 1137, 1997.

[32] J. A. Perkins, “A history of molecular representation part one: 1800 to the
1960s,” The Journal of Biocommunication, vol. 31, no. 1, 2005.

[33] J. A. Perkins, “A History of Molecular Representation Part 2: The 1960s -
Present,” The Journal of Biocommunication, vol. 31, no. 2, 2005.

193

http://www.avs.com/solutions/express/
http://www.avs.com/solutions/express/
https://www.opengl.org/wiki/Rendering_Pipeline_Overview
https://www.opengl.org/wiki/Rendering_Pipeline_Overview

Bibliography

[34] A. S. Couper, “On a new chemical theory,” Philosophical Magazine Series 4,
vol. 16, no. 105, pp. 104–116, 1858.

[35] A. Crum Brown, “On the Theory of Isomeric Compounds,” Transactions of
the Royal Society of Edinburgh, vol. 23, no. 3, pp. 707–719, 1864.

[36] A. Crum Brown, “On the Classification of Chemical Substances, by means of
Generic Radicals,” Transactions of the Royal Society of Edinburgh, vol. 24,
no. 2, pp. 331–339, 1866.

[37] H. S. Mason, “History of the Use of Graphic Formulas in Organic Chemistry,”
Isis, vol. 34, no. 4, pp. 346–354, 1943.

[38] E. Fischer, “Synthese des Traubenzuckers,” Berichte der deutschen chemis-
chen Gesellschaft, vol. 23, no. 1, pp. 799–805, 1890.

[39] J. Brecher, “Graphical representation of stereochemical configuration (IU-
PAC Recommendations 2006),” Pure and Applied Chemistry, vol. 78,
pp. 1897–1970, jan 2006.

[40] A. Serafini, Linus Pauling: A Man and His Science. Paragon House, 1991.

[41] L. Pauling, R. B. Corey, and H. R. Branson, “The structure of proteins:
Two hydrogen-bonded helical configurations of the polypeptide chain,” Pro-
ceedings of the National Academy of Sciences, vol. 37, no. 4, pp. 205–211,
1951.

[42] L. Pauling and R. B. Corey, “The Pleated Sheet, A New Layer Configuration
of Polypeptide Chains,” Proceedings of the National Academy of Sciences,
vol. 37, pp. 251–256, may 1951.

[43] R. B. Corey and L. Pauling, “Molecular Models of Amino Acids, Peptides,
and Proteins,” Review of Scientific Instruments, vol. 24, no. 8, 1953.

[44] W. L. Koltun, “Precision space-filling atomic models,” Biopolymers, vol. 3,
no. 6, pp. 665–679, 1965.

[45] J. D. Watson and F. H. C. Crick, “Molecular Structure of Nucleic Acids: A
Structure for Deoxyribose Nucleic Acid,” Nature, vol. 171, pp. 737–738, apr
1953.

[46] J. C. KENDREW, G. BODO, H. M. DINTZIS, R. G. PARRISH, H. WYCK-
OFF, and D. C. PHILLIPS, “A Three-Dimensional Model of the Myoglobin
Molecule Obtained by X-Ray Analysis,” Nature, vol. 181, pp. 662–666, mar
1958.

194

Bibliography

[47] J. C. Kendrew, “The Three-Dimensional Structure of a Protein Molecule,”
Scientific American, vol. 205, pp. 96–110, dec 1961.

[48] D. Voet and J. G. Voet, Biochemistry. Wiley, 2 ed., 1995.

[49] F. M. Richards, “The matching of physical models to three-dimensional
electron-density maps: A simple optical device,” Journal of Molecular Bi-
ology, vol. 37, pp. 225–230, oct 1968.

[50] D. J. Haas, “Polypeptide α-carbon models: A new concept in protein model
construction,” Biopolymers, vol. 9, pp. 1547–1552, dec 1970.

[51] B. Rubin and J. S. Richardson, “The simple construction of protein alpha-
Carbon models,” Biopolymers, vol. 11, pp. 2381–2385, nov 1972.

[52] E. Martz and E. Francoeur, “History of Visualization of Biological Macro-
molecules.” http://www.umass.edu/microbio/rasmol/history.htm.

[53] J. S. Richardson, D. C. Richardson, K. A. Thomas, E. W. Silverton, and D. R.
Davies, “Similarity of three-dimensional structure between the immunoglob-
ulin domain and the copper, zinc superoxide dismutase subunit,” Journal of
Molecular Biology, vol. 102, pp. 221–235, apr 1976.

[54] R. E. Dickerson and I. Geis, The Structure and Action of Proteins. Addison-
Wesley, 1969.

[55] J. W. Campbell, H. C. Watson, and G. I. Hodgson, “Structure of yeast phos-
phoglycerate mutase,” Nature, vol. 250, pp. 301–303, jul 1974.

[56] A. Holmgren, B. O. Söderberg, H. Eklund, and C. I. Brändén, “Three-
dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution,”
Proceedings of the National Academy of Sciences, vol. 72, no. 6, pp. 2305–
2309, 1975.

[57] J. S. Richardson, “The Anatomy and Taxonomy of Protein Structure,” vol. 34
of Advances in Protein Chemistry, pp. 167–339, Academic Press, 1981.

[58] C. Levinthal, “Molecular model-building by computer.,” Scientific American,
vol. 214, no. 6, pp. 42–52, 1966.

[59] C. Johnson, “OR TEP: A FORTRAN Thermal-Ellipsoid Plot Program
for Crystal Structure Illustrations,” Oak Ridge National Laboratory Report,
vol. 3794, 1965.

195

http://www.umass.edu/microbio/rasmol/history.htm

Bibliography

[60] B. Lee and F. M. Richards, “The interpretation of protein structures: Esti-
mation of static accessibility,” Journal of Molecular Biology, vol. 55, no. 3,
1971.

[61] J. S. Lipscomb, Three-dimensional Cues for a Molecular Computer Graphics
System. PhD thesis, 1981.

[62] D. Tsernoglou, G. A. Petsko, and A. T. Tu, “Protein sequencing by computer
graphics,” Biochimica et Biophysica Acta (BBA) - Protein Structure, vol. 491,
no. 2, pp. 605–608, 1977.

[63] J. R. Miller, S. S. Abdel-Meguid, M. G. Rossmann, and D. C. Anderson, “A
computer graphics system for the building of macromolecular models into
electron density maps,” Journal of Applied Crystallography, vol. 14, pp. 94–
100, apr 1981.

[64] T. A. Jones, “A graphics model building and refinement system for macro-
molecules,” Journal of Applied Crystallography, vol. 11, no. 4, pp. 268–272,
1978.

[65] T. K. Porter, “Spherical shading,” in Proceedings of the 5th annual conference
on Computer graphics and interactive techniques - SIGGRAPH ’78, (New
York, New York, USA), pp. 282–285, ACM Press, 1978.

[66] J. Greer and B. L. Bush, “Macromolecular shape and surface maps by solvent
exclusion.,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 75, no. 1, pp. 303–307, 1978.

[67] F. M. Richards, “Areas, Volumes, Packing, and Protein Structure,” Annual
Review of Biophysics and Bioengineering, vol. 6, no. 1, pp. 151–176, 1977.

[68] M. L. Connolly, “Analytical molecular surface calculation,” Journal of Ap-
plied Crystallography, vol. 16, no. 5, pp. 548–558, 1983.

[69] M. L. Connolly, “Molecular surface Triangulation,” Journal of Applied Crys-
tallography, vol. 18, no. 6, pp. 499–505, 1985.

[70] M. F. Sanner, A. J. Olson, J.-C. Spehner, and M. D. Sanner, “REDUCED
SURFACE: an Efficient Way to Compute Molecular Surfaces,” Biopolymers,
vol. 38, no. 383, pp. 305–320, 1996.

[71] W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynam-
ics,” Journal of molecular graphics, vol. 14, no. 1, pp. 33–38, 1996.

196

Bibliography

[72] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Green-
blatt, E. C. Meng, and T. E. Ferrin, “UCSF Chimera-A visualization system
for exploratory research and analysis,” Journal of Computational Chemistry,
vol. 25, no. 13, pp. 1605–1612, 2004.

[73] M. Totrov and R. Abagyan, “The Contour-Buildup Algorithm to Calculate
the Analytical Molecular Surface,” Journal of Structural Biology, vol. 116,
no. 1, pp. 138–143, 1996.

[74] M. Carson and C. E. Bugg, “Algorithm for ribbon models of proteins,” Jour-
nal of Molecular Graphics, vol. 4, no. 2, pp. 121–122, 1986.

[75] M. Carson, “Ribbon models of macromolecules,” Journal of Molecular Graph-
ics, vol. 5, no. 2, pp. 103–106, 1987.

[76] A. M. Lesk and K. D. Hardman, “Computer-generated schematic diagrams
of protein structures,” Science, vol. 216, no. 4545, pp. 539–540, 1982.

[77] M. Carson, “RIBBONS 2.0,” Journal of Applied Crystallography, vol. 24,
no. 5, pp. 958–961, 1991.

[78] P. J. Kraulis, “MOLSCRIPT: a program to produce both detailed and
schematic plots of protein structures,” Journal of Applied Crystallography,
vol. 24, no. 5, pp. 946–950, 1991.

[79] E. A. Merritt and M. E. P. Murphy, “Raster3D Version 2.0. A program for
photorealistic molecular graphics,” Acta Crystallographica Section D, vol. 50,
pp. 869–873, nov 1994.

[80] D. C. Richardson and J. S. Richardson, “The kinemage: A tool for scientific
communication,” Protein Science, vol. 1, no. 1, pp. 3–9, 1992.

[81] R. Sayle and A. Bissell, “RasMol: A Program for Fast Realistic Rendering of
Molecular Structures with Shadows,” in Proceedings of the 10th Eurographics
UK ’92 Conference, University of Edinburgh, Scotland, 1992.

[82] R. A. Sayle and E. Milner-White, “RASMOL: biomolecular graphics for all,”
Trends in Biochemical Sciences, vol. 20, no. 9, pp. 374–376, 1995.

[83] M. M. Teeter, “Water structure of a hydrophobic protein at atomic resolution:
Pentagon rings of water molecules in crystals of crambin,” Proceedings of the
National Academy of Sciences, vol. 81, no. 19, pp. 6014–6018, 1984.

[84] Schrödinger LLC, “The PyMOL Molecular Graphics System, Version∼1.8.”
2015.

197

Bibliography

[85] A. Herráez, “Biomolecules in the computer: Jmol to the rescue,” Biochem-
istry and Molecular Biology Education, vol. 34, no. 4, pp. 255–261, 2006.

[86] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek,
and G. R. Hutchison, “Avogadro: an advanced semantic chemical editor,
visualization, and analysis platform,” Journal of Cheminformatics, vol. 4,
no. 1, pp. 1–17, 2012.

[87] YASARA Biosciences GmbH, WHAT IF Foundation / CMBI, and Spronk
NMR Consultency, “YASARA - Yet Another Scientific Artificial Reality Ap-
plication.” www.yasara.org.

[88] S. McNicholas, E. Potterton, K. S. Wilson, and M. E. M. Noble, “Presenting
your structures: the CCP4mg molecular-graphics software,” Acta Crystallo-
graphica Section D, vol. 67, pp. 386–394, apr 2011.

[89] The Qt Company, “Qt framework.” https://www.qt.io.

[90] NANO-D - INRIA, “SAMSON - Software for Adaptive Modeling and Simu-
lation of Nanosystems.” https://www.samson-connect.net.

[91] G. Schaftenaar and J. H. Noordik, “Molden: a pre- and post-processing pro-
gram for molecular and electronic structures*,” Journal of Computer-Aided
Molecular Design, vol. 14, no. 2, pp. 123–134, 2000.

[92] Gaussian Inc., “GaussView 6.” http://gaussian.com/gv6new/.

[93] U. Varetto, “Molekel 5.4.” http://ugovaretto.github.io/molekel/.

[94] A. Kokalj, “XCrySDen - a new program for displaying crystalline structures
and electron densities,” Journal of Molecular Graphics and Modelling, vol. 17,
no. 3-4, pp. 176–179, 1999.

[95] A. L. Spek, “Structure validation in chemical crystallography,” Acta Crystal-
lographica Section D, vol. 65, pp. 148–155, feb 2009.

[96] S. Vijay-Kumar, C. E. Bugg, and W. J. Cook, “Structure of ubiquitin refined
at 1.8 Å resolution,” Journal of Molecular Biology, vol. 194, no. 3, pp. 531–
544, 1987.

[97] X. Hao, A. Varshney, and S. Sukharev, “Real-time visualization of large
time-varying molecules,” Proceedings of the High-Performance Computing
Symposium ’04, pp. 1–6, 2004.

198

www.yasara.org
https://www.qt.io
https://www.samson-connect.net
http://gaussian.com/gv6new/

Bibliography

[98] A. Sharma, R. K. Kalia, A. Nakano, and P. Vashishta, “Scalable and portable
visualization of large atomistic datasets,” Computer Physics Communica-
tions, vol. 163, pp. 53–64, oct 2004.

[99] S. Gumhold, “Splatting Illuminated Ellipsoids with Depth Correction,” in
Proceedings of the Vision, Modeling, and Visualization Conference 2003
(VMV 2003), München, Germany, November 19-21, 2003, pp. 245–252, 2003.

[100] C. Bajaj, P. Djeu, V. Siddavanahalli, and A. Thane, “TexMol: Interactive Vi-
sual Exploration of Large Flexible Multi-Component Molecular Complexes,”
in Proceedings of the Conference on Visualization ’04, VIS ’04, (Washington,
DC, USA), pp. 243–250, IEEE Computer Society, 2004.

[101] R. Toledo and B. Levy, “Extending the graphic pipeline with new GPU-
accelerated primitives,” International gOcad Meeting, Nancy, France, 2004.

[102] C. Sigg, T. Weyrich, M. Botsch, and M. Gross, “GPU-Based Ray-Casting of
Quadratic Surfaces,” Symposium on Point-Based Graphics, pp. 59–65, 2006.

[103] S. Doutreligne, T. Cragnolini, S. Pasquali, P. Derreumaux, and M. Baaden,
“UnityMol: Interactive scientific visualization for integrative biology,” in
Large Data Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium
on, pp. 109–110, nov 2014.

[104] S. Grottel, M. Krone, C. Muller, G. Reina, and T. Ertl, “MegaMol – A
Prototyping Framework for Particle-based Visualization,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 21, pp. 201–214, feb 2015.

[105] M. Chavent, A. Vanel, A. Tek, B. Levy, S. Robert, B. Raffin, and M. Baaden,
“GPU-Accelerated Atom and Dynamic Bond Visualization Using Hyperballs
: A Unified Algorithm for Balls , Sticks , and Hyperboloids,” Journal of
Computational Chemistry, vol. 32, no. 13, pp. 2924–2935, 2011.

[106] O. D. Lampe, I. Viola, N. Reuter, and H. Hauser, “Two-Level Approach to
Efficient Visualization of Protein Dynamics,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 13, pp. 1616–1623, nov 2007.

[107] A. Leach, Molecular Modelling: Principles and Applications (2nd Edition).
Pearson, 2 ed., 2001.

[108] S. Grottel, G. Reina, and T. Ertl, “Optimized data transfer for time-
dependent, GPU-based glyphs,” IEEE Pacific Visualization Symposium,
PacificVis 2009 - Proceedings, pp. 65–72, 2009.

199

Bibliography

[109] S. Grottel, G. Reina, C. Dachsbacher, and T. Ertl, “Coherent Culling and
Shading for Large Molecular Dynamics Visualization,” Computer Graphics
Forum, vol. 29, pp. 953–962, aug 2010.

[110] N. Greene, M. Kass, and G. Miller, “Hierarchical Z-buffer Visibility,” in Pro-
ceedings of the 20th Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’93, (New York, NY, USA), pp. 231–238, ACM,
1993.

[111] N. Lindow, D. Baum, and H. C. Hege, “Interactive Rendering of Materi-
als and Biological Structures on Atomic and Nanoscopic Scale,” Computer
Graphics Forum, vol. 31, no. 3pt4, pp. 1325–1334, 2012.

[112] M. Falk, M. Krone, and T. Ertl, “Atomistic Visualization of Mesoscopic
Whole-Cell Simulations Using Ray-Casted Instancing,” Computer Graphics
Forum, vol. 32, no. 8, pp. 195–206, 2013.

[113] M. Le Muzic, J. Parulek, A. K. Stavrum, and I. Viola, “Illustrative Visu-
alization of Molecular Reactions Using Omniscient Intelligence and Passive
Agents,” Computer Graphics Forum, vol. 33, no. 3, pp. 141–150, 2014.

[114] S. Steinbacher, R. Bass, P. Strop, and D. C. Rees, “Structures of the Prokary-
otic Mechanosensitive Channels MscL and MscS,” in Mechanosensitive Ion
Channels, Part A, vol. 58 of Current Topics in Membranes, pp. 1–24, Aca-
demic Press, 2007.

[115] G. Mancini, I. D’Annessa, A. Coletta, N. Sanna, G. Chillemi, and A. Desideri,
“Structural and dynamical effects induced by the anticancer drug topotecan
on the human topoisomerase i - dna complex,” PLOS ONE, vol. 5, pp. 1–10,
06 2010.

[116] G. S. Couch, D. K. Hendrix, and T. E. Ferrin, “Nucleic acid visualization
with UCSF Chimera,” Nucleic Acids Research, vol. 34, no. 4, p. e29, 2006.

[117] P. D. Bagur, N. Shivashankar, and V. Natarajan, “Improved Quadric Sur-
face Impostors for Large Bio-molecular Visualization,” in Proceedings of the
Eighth Indian Conference on Computer Vision, Graphics and Image Process-
ing, ICVGIP ’12, (New York, NY, USA), pp. 33:1—-33:8, ACM, 2012.

[118] M. Krone, K. Bidmon, and T. Ertl, “GPU-based Visualisation of Protein
Secondary Structure,” in Theory and Practice of Computer Graphics (I. S.
Lim and W. Tang, eds.), The Eurographics Association, 2008.

200

Bibliography

[119] M. Wahle and S. Birmanns, “GPU-accelerated visualization of protein dy-
namics in ribbon mode,” in Proc. SPIE, vol. 7868, jan 2011.

[120] G. Fermi, M. F. Perutz, B. Shaanan, and R. Fourme, “The crystal struc-
ture of human deoxyhaemoglobin at 1.74 Å resolution,” Journal of Molecular
Biology, vol. 175, no. 2, pp. 159–174, 1984.

[121] M. Krone, J. Stone, T. Ertl, and K. Schulten, “Fast Visualization of Gaussian
Density Surfaces for Molecular Dynamics and Particle System Trajectories,”
in EuroVis - Short Papers (M. Meyer and T. Weinkaufs, eds.), The Euro-
graphics Association, 2012.

[122] M. F. Sanner and A. J. Olson, “Real time surface reconstruction for moving
molecular fragments.,” Pacific Symposium on Biocomputing. Pacific Sympo-
sium on Biocomputing, pp. 385–396, 1997.

[123] J. Ryu, R. Park, and D.-S. Kim, “Molecular surfaces on proteins via beta
shapes,” Computer-Aided Design, vol. 39, no. 12, pp. 1042–1057, 2007.

[124] D.-S. Kim, J. Seo, D. Kim, J. Ryu, and C.-H. Cho, “Three-dimensional beta
shapes,” Computer-Aided Design, vol. 38, no. 11, pp. 1179–1191, 2006.

[125] H. Edelsbrunner and E. P. Mücke, “Three-dimensional Alpha Shapes,” ACM
Trans. Graph., vol. 13, no. 1, pp. 43–72, 1994.

[126] R. A. Laskowski, “SURFNET: A program for visualizing molecular surfaces,
cavities, and intermolecular interactions,” Journal of Molecular Graphics,
vol. 13, no. 5, pp. 323–330, 1995.

[127] J. Giard and B. Macq, “Molecular Surface Mesh Generation by Filtering Elec-
tron Density Map,” International Journal of Biomedical Imaging, vol. 2010,
pp. 1–9, 2010.

[128] J. Parulek and I. Viola, “Implicit Representation of Molecular Surfaces,” in
Proceedings of the 2012 IEEE Pacific Visualization Symposium, PACIFICVIS
’12, (Washington, DC, USA), pp. 217–224, IEEE Computer Society, 2012.

[129] J. Parulek and A. Brambilla, “Fast Blending Scheme for Molecular Surface
Representation,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 19, pp. 2653–2662, dec 2013.

[130] J. F. Blinn, “A Generalization of Algebraic Surface Drawing,” ACM Trans-
actions on Graphics, vol. 1, no. 3, pp. 235–256, 1982.

201

Bibliography

[131] J. A. Grant and B. T. Pickup, “A Gaussian Description of Molecular Shape,”
The Journal of Physical Chemistry, vol. 99, no. 11, pp. 3503–3510, 1995.

[132] H. Edelsbrunner, “Deformable Smooth Surface Design,” Discrete & Compu-
tational Geometry, vol. 21, no. 1, pp. 87–115, 1999.

[133] P. W. Bates, G. W. Wei, and S. Zhao, “Minimal molecular surfaces and their
applications,” Journal of Computational Chemistry, vol. 29, no. 3, pp. 380–
391, 2007.

[134] N. Lindow, D. Baum, and H. C. Hege, “Ligand Excluded Surface: A New
Type of Molecular Surface,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 20, no. 12, pp. 2486–2495, 2014.

[135] N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege, “Accelerated Visualiza-
tion of Dynamic Molecular Surfaces,” Computer Graphics Forum, vol. 29,
no. 3, pp. 943–952, 2010.

[136] J. Ryu, Y. Cho, and D.-S. Kim, “Triangulation of Molecular Surfaces,”
Computer-Aided Design, vol. 41, no. 6, pp. 463–478, 2009.

[137] J. Zhang and Z. Shi, “Triangulation of molecular surfaces based on extracting
surface atoms,” Computers & Graphics, vol. 38, pp. 291–299, 2014.

[138] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D
Surface Construction Algorithm,” in Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’87,
pp. 163–169, ACM, 1987.

[139] T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,” Com-
puters & Graphics, vol. 30, no. 5, pp. 854–879, 2006.

[140] S. L. Chan and E. O. Purisima, “Molecular surface generation using marching
tetrahedra,” Journal of Computational Chemistry, vol. 19, no. 11, pp. 1268–
1277, 1998.

[141] T. Can, C.-I. Chen, and Y.-F. Wang, “Efficient molecular surface genera-
tion using level-set methods,” Journal of Molecular Graphics and Modelling,
vol. 25, no. 4, pp. 442–454, 2006.

[142] Z. Yu, “A list-based method for fast generation of molecular surfaces,” in
2009 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, pp. 5909–5912, 2009.

202

Bibliography

[143] S. Decherchi and W. Rocchia, “A general and Robust Ray-Casting-Based
Algorithm for Triangulating Surfaces at the Nanoscale,” PLOS ONE, vol. 8,
no. 4, pp. 1–15, 2013.

[144] Y. Kanamori, Z. Szego, and T. Nishita, “GPU-based Fast Ray Casting for
a Large Number of Metaballs,” Computer Graphics Forum, vol. 27, no. 2,
pp. 351–360, 2008.

[145] L. Szécsi and D. Illés, “Real-Time Metaball Ray Casting with Fragment
Lists,” in Eurographics 2012 - Short Papers (C. Andujar and E. Puppo, eds.),
The Eurographics Association, 2012.

[146] A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen, “Fast
Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arith-
metic,” Computer Graphics Forum, vol. 28, no. 1, pp. 26–40, 2009.

[147] D. Kauker, M. Krone, A. Panagiotidis, G. Reina, and T. Ertl, “Rendering
Molecular Surfaces using Order-Independent Transparency,” in Eurographics
Symposium on Parallel Graphics and Visualization (F. Marton and K. More-
land, eds.), The Eurographics Association, 2013.

[148] M. Krone, K. Bidmon, and T. Ertl, “Interactive Visualization of Molecu-
lar Surface Dynamics,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, pp. 1391–1398, nov 2009.

[149] M. Krone, C. Dachsbacher, and T. Ertl, “Parallel Computation and Interac-
tive Visualization of Time-varying Solvent Excluded Surfaces,” in Proceedings
of the First ACM International Conference on Bioinformatics and Compu-
tational Biology, BCB ’10, (New York, NY, USA), pp. 402–405, ACM, 2010.

[150] M. Krone, S. Grottel, and T. Ertl, “Parallel Contour-Buildup algorithm for
the molecular surface,” in 2011 IEEE Symposium on Biological Data Visual-
ization (BioVis)., pp. 17–22, 2011.

[151] N. Corporation, “CUDA Parallel Computing Platform.” http://www.

nvidia.com/object/cuda_home_new.html.

[152] C. D. Hansen and C. R. Johnson, eds., The Visualization Handbook. Academic
Press, 2004.

[153] R. Wenger, Isosurfaces: Geometry, Topology, and Algorithms. A K Peter-
s/CRC Press, 1 ed., 2013.

[154] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf, Real-
Time Volume Graphics. A K Peters, 1 ed., 2006.

203

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

Bibliography

[155] F. Goetz, T. Junklewitz, and G. Domik, “Real-Time Marching Cubes on the
Vertex Shader,” in EG Short Presentations (J. Dingliana and F. Ganovelli,
eds.), The Eurographics Association, 2005.

[156] G. Johansson and H. Carr, “Accelerating Marching Cubes with Graphics
Hardware,” in Proceedings of the 2006 Conference of the Center for Advanced
Studies on Collaborative Research, CASCON ’06, IBM Corp., 2006.

[157] N. Max, “Optical models for direct volume rendering,” IEEE Transactions
on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108, 1995.

[158] T. J. Cullip and U. Neumann, “Accelerating Volume Reconstruction With
3D Texture Hardware,” tech. rep., Chapel Hill, NC, USA, 1993.

[159] J. Kruger and R. Westermann, “Acceleration techniques for GPU-based vol-
ume rendering,” in IEEE Visualization, 2003. VIS 2003., pp. 287–292, 2003.

[160] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser, “Smart
Hardware-accelerated Volume Rendering,” in Proceedings of the Symposium
on Data Visualisation 2003, VISSYM ’03, pp. 231–238, Eurographics Asso-
ciation, 2003.

[161] S. Green, “Procedural volumetric fireball effect.” NVIDIA Software Develop-
ment Kit (SDK), 2004.

[162] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, “A simple and flexible vol-
ume rendering framework for graphics-hardware-based raycasting,” in Fourth
International Workshop on Volume Graphics, 2005., pp. 187–241, 2005.

[163] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross, “Real-
Time Ray-Casting and Advanced Shading of Discrete Isosurfaces,” Computer
Graphics Forum, vol. 24, no. 3, pp. 303–312, 2005.

[164] J. F. Blinn, “Models of Light Reflection for Computer Synthesized Pictures,”
in Proceedings of the 4th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’77, (New York, NY, USA), pp. 192–198,
ACM, 1977.

[165] H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, and K. Bühler,
“Perspective Isosurface and Direct Volume Rendering for Virtual Endoscopy
Applications,” in EUROVIS - Eurographics /IEEE VGTC Symposium on
Visualization (B. S. Santos, T. Ertl, and K. Joy, eds.), The Eurographics
Association, 2006.

204

Bibliography

[166] S. Mehta, K. Hazzard, R. Machiraju, S. Parthasarathy, and J. Wilkins, “De-
tection and visualization of anomalous structures in molecular dynamics sim-
ulation data,” in IEEE Visualization 2004, pp. 465–472, 2004.

[167] W. Qiao, D. S. Ebert, A. Entezari, M. Korkusinski, and G. Klimeck, “VolQD:
direct volume rendering of multi-million atom quantum dot simulations,” in
VIS 05. IEEE Visualization, 2005., pp. 319–326, 2005.

[168] Y. Jang and U. Varetto, “Interactive Volume Rendering of Functional Repre-
sentations in Quantum Chemistry,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, pp. 1579–5186, nov 2009.

[169] P. Rheingans and S. Joshi, “Visualization of Molecules with Positional Uncer-
tainty,” in Data Visualization ’99: Proceedings of the Joint EUROGRAPH-
ICS and IEEE TCVG Symposium on Visualization in Vienna, Austria, May
26–28, 1999 (E. Gröller, H. Löffelmann, and W. Ribarsky, eds.), pp. 299–306,
Vienna: Springer Vienna, 1999.

[170] J. Schmidt-Ehrenberg, D. Baum, and H. C. Hege, “Visualizing dynamic
molecular conformations,” in IEEE Visualization, 2002. VIS 2002., pp. 235–
242, nov 2002.

[171] A. Knoll, M. K. Y. Chan, K. C. Lau, B. Liu, J. Greeley, L. Curtiss, M. Hereld,
and M. E. Papka, “UNCERTAINTY CLASSIFICATION AND VISUALIZA-
TION OF MOLECULAR INTERFACES,” International Journal for Uncer-
tainty Quantification, vol. 3, no. 2, pp. 157–169, 2013.

[172] Z. Xu, A. L. Horwich, and P. B. Sigler, “The crystal structure of the asymmet-
ric GroEL-GroES-(ADP)7 chaperonin complex,” Nature, vol. 388, pp. 741–
750, aug 1997.

[173] M. Tarini, P. Cignoni, and C. Montani, “Ambient occlusion and edge cueing
to enhance real time molecular visualization,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 12, no. 5, pp. 1237–1244, 2006.

[174] L. Williams, “Casting Curved Shadows on Curved Surfaces,” in Proceedings
of the 5th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’78, (New York, NY, USA), pp. 270–274, ACM, 1978.

[175] S. Zhukov, A. Iones, and G. Kronin, “An ambient light illumination model,”
in Rendering Techniques ’98: Proceedings of the Eurographics Workshop in
Vienna, Austria, June 29—July 1, 1998 (G. Drettakis and N. Max, eds.),
pp. 45–55, Vienna: Springer Vienna, 1998.

205

Bibliography

[176] S. Grottel, M. Krone, K. Scharnowski, and T. Ertl, “Object-space ambient
occlusion for molecular dynamics,” in Visualization Symposium (PacificVis),
2012 IEEE Pacific, pp. 209–216, IEEE, feb 2012.

[177] M. Wahle and W. Wriggers, “Multi-scale Visualization of Molecular Architec-
ture Using Real-Time Ambient Occlusion in Sculptor,” PLOS Computational
Biology, vol. 11, no. 10, pp. 1–14, 2015.

[178] D. Borland, “Ambient occlusion opacity mapping for visualization of internal
molecular structure,” Journal of WSCG, vol. 19, no. 1-3, pp. 17–24, 2011.

[179] D. Jönsson, E. Sundén, A. Ynnerman, and T. Ropinski, “A Survey of Volu-
metric Illumination Techniques for Interactive Volume Rendering,” Computer
Graphics Forum, vol. 33, no. 1, pp. 27–51, 2014.

[180] L. Marsalek, A. K. Dehof, I. Georgiev, H. P. Lenhof, P. Slusallek, and
A. Hildebrandt, “Real-Time Ray Tracing of Complex Molecular Scenes,” in
2010 14th International Conference Information Visualisation, pp. 239–245,
2010.

[181] J. E. Stone, M. Sener, K. L. Vandivort, A. Barragan, A. Singharoy, I. Teo,
J. V. Ribeiro, B. Isralewitz, B. Liu, B. C. Goh, J. C. Phillips, C. MacGregor-
Chatwin, M. P. Johnson, L. F. Kourkoutis, C. N. Hunter, and K. Schul-
ten, “Atomic detail visualization of photosynthetic membranes with GPU-
accelerated ray tracing,” Parallel Computing, vol. 55, pp. 17–27, 2016.

[182] J. E. Stone, W. R. Sherman, and K. Schulten, “Immersive Molecular Visual-
ization with Omnidirectional Stereoscopic Ray Tracing and Remote Render-
ing,” in 2016 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pp. 1048–1057, IEEE, may 2016.

[183] W. R. Sherman and A. B. Craig, Understanding Virtual Reality: Interface,
Application, and Design. Morgan Kaufmann, 1 ed., 2002.

[184] R. Blade and M. Padgett, “Virtual Environments Standards and Terminol-
ogy,” in Handbook of Virtual Environments - Design, Implementation, and
Applications (K. S. Hale and K. M. Stanney, eds.), ch. 2, pp. 23–35, CRC
Press, 2 ed., 2014.

[185] G. C. Burdea and P. Coiffet, Virtual Reality Technology. Wiley-IEEE Press,
2 ed., 2003.

[186] S. Bryson, “Virtual reality in scientific visualization,” Communications of the
ACM, vol. 39, pp. 62–71, may 1996.

206

Bibliography

[187] G. G. Robertson, S. K. Card, and J. D. Mackinlay, “Three views of virtual
reality: nonimmersive virtual reality,” Computer, vol. 26, pp. 81–83, feb 1993.

[188] NVIDIA Corporation, “3D Vision.” http://www.nvidia.com/object/

3d-vision-main.html.

[189] Wikipedia, “Novint Technologies.” https://en.wikipedia.org/wiki/

Novint_Technologies.

[190] Oculus VR LLC, “Oculus Rift.” https://www.oculus.com/rift/.

[191] HTC Corporation, “Vive.” https://www.vive.com.

[192] 3D Sound Labs, “3D Sound One Audio Headphones.” http://www.

3dsoundlabs.com/produit/3d-sound-one-headphones/.

[193] NeuroDigital Technologies, “Avatar VR.” https://www.neurodigital.es/

avatarvr/.

[194] T. Hermann, A. Hunt, and J. G. Neuhoff, eds., The Sonification Handbook.
Logos Verlag Berlin, 2011.

[195] M. Mihelj, D. Novak, and S. Begus, “Haptic Modality in Virtual Real-
ity,” in Virtual Reality Technology and Applications, pp. 161–194, Dordrecht:
Springer Netherlands, 2014.

[196] Geomagic Inc., “The Geomagic Touch Haptic Device.” http://www.

geomagic.com/en/products/phantom-omni/overview/.

[197] B. Keshavarz, H. Hecht, and B. Lawson, “Visually Induced Motion Sickness:
Causes, Characteristics, and Countermeasures,” in Handbook of Virtual En-
vironments (K. S. . Hale and K. M. . Stanney, eds.), Human Factors and
Ergonomics, ch. 26, pp. 647–698, CRC Press, 2 ed., sep 2014.

[198] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart,
“The CAVE: Audio Visual Experience Automatic Virtual Environment,”
Commun. ACM, vol. 35, no. 6, pp. 64–72, 1992.

[199] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Surround-Screen
Projection-Based Virtual Reality: The Design and Implementation of the
CAVE,” Proceedings of the 20th annual conference on Computer graphics
and interactive techniques - SIGGRAPH ’93, pp. 135–142, 1993.

[200] A. Febretti, A. Nishimoto, T. Thigpen, J. Talandis, L. Long, J. D. Pir-
tle, T. Peterka, A. Verlo, M. Brown, D. Plepys, D. Sandin, L. Renambot,

207

http://www.nvidia.com/object/3d-vision-main.html
http://www.nvidia.com/object/3d-vision-main.html
https://en.wikipedia.org/wiki/Novint_Technologies
https://en.wikipedia.org/wiki/Novint_Technologies
https://www.oculus.com/rift/
https://www.vive.com
http://www.3dsoundlabs.com/produit/3d-sound-one-headphones/
http://www.3dsoundlabs.com/produit/3d-sound-one-headphones/
https://www.neurodigital.es/avatarvr/
https://www.neurodigital.es/avatarvr/
http://www.geomagic.com/en/products/phantom-omni/overview/
http://www.geomagic.com/en/products/phantom-omni/overview/

Bibliography

A. Johnson, and J. Leigh, “CAVE2: a hybrid reality environment for immer-
sive simulation and information analysis,” in Proc. SPIE (M. Dolinsky and
I. E. McDowall, eds.), vol. 8649, p. 864903, mar 2013.

[201] Leap Motion Inc., “Leap Motion.” https://www.leapmotion.com/.

[202] P. Bourke, “Omni-directional stereoscopic fisheye images for immersive hemi-
spherical dome environments,” in Proceedings of the Computer Games & Al-
lied Technology 09 (CGAT09) (E. Prakash, ed.), (Singapore), pp. 136–143,
Research Publishing Services, 2009.

[203] W. Krueger and B. Froehlich, “Responsive Workbench,” in Virtual Reality
’94: Anwendungen & Trends (H.-J. Warnecke and H.-J. Bullinger, eds.),
pp. 73–80, Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

[204] M. Czernuszenko, D. Pape, D. Sandin, T. DeFanti, G. L. Dawe, and M. D.
Brown, “The ImmersaDesk and Infinity Wall Projection-based Virtual Real-
ity Displays,” SIGGRAPH Comput. Graph., vol. 31, no. 2, pp. 46–49, 1997.

[205] K. Arthur, T. Preston, R. M. T. Ii, F. P. Brooks, M. C. Whitton, and W. V.
Wright, “Designing and building the PIT: a head-tracked stereo workspace for
two users,” in 2nd International Immersive Projection Technology Workshop,
pp. 11–12, 1998.

[206] M. Billinghurst, A. Clark, and G. Lee, “A Survey of Augmented Reality,”
Foundations and Trends® Human-Computer Interaction, vol. 8, no. 2-3,
pp. 73–272, 2015.

[207] E. Costanza, A. Kunz, and M. Fjeld, “Mixed Reality: A Survey,” in Human
Machine Interaction: Research Results of the MMI Program (D. Lalanne and
J. Kohlas, eds.), pp. 47–68, Berlin, Heidelberg: Springer Berlin Heidelberg,
2009.

[208] S. M. LaValle, “VIRTUAL REALITY.” http://vr.cs.uiuc.edu/. Free on-
line book. According to the author, it will be published by Cambridge Uni-
versity Press in 2017.

[209] B. Laha, K. Sensharma, J. D. Schiffbauer, and D. A. Bowman, “Effects of
Immersion on Visual Analysis of Volume Data,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 18, pp. 597–606, apr 2012.

[210] B. Laha, D. A. Bowman, and J. J. Socha, “Effects of VR System Fidelity on
Analyzing Isosurface Visualization of Volume Datasets,” IEEE Transactions
on Visualization and Computer Graphics, vol. 20, pp. 513–522, apr 2014.

208

https://www.leapmotion.com/
http://vr.cs.uiuc.edu/

Bibliography

[211] Song Zhang, C. Demiralp, and D. Laidlaw, “Visualizing diffusion tensor MR
images using streamtubes and streamsurfaces,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 9, pp. 454–462, oct 2003.

[212] J. E. Stone, J. Gullingsrud, and K. Schulten, “A system for interactive molec-
ular dynamics simulation,” in Proceedings of the 2001 Symposium on Inter-
active 3D Graphics, I3D ’01, (New York, NY, USA), pp. 191–194, ACM,
2001.

[213] Y.-G. Lee and K. W. Lyons, “Smoothing haptic interaction using molecular
force calculations,” Computer-Aided Design, vol. 36, no. 1, pp. 75 – 90, 2004.

[214] A. Bolopion, B. Cagneau, S. Redon, and S. Régnier, “Haptic feedback for
molecular simulation,” in 2009 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 237–242, Oct 2009.

[215] O. Delalande, N. Férey, G. Grasseau, and M. Baaden, “Complex molecular
assemblies at hand via interactive simulations,” Journal of Computational
Chemistry, vol. 30, no. 15, pp. 2375–2387, 2009.

[216] A. Bolopion, B. Cagneau, S. Redon, and S. Régnier, “Haptic molecular simu-
lation based on force control,” in 2010 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, pp. 329–334, July 2010.

[217] M. Dreher, M. Piuzzi, A. Turki, M. Chavent, M. Baaden, N. Férey, S. Limet,
B. Raffin, and S. Robert, “Interactive Molecular Dynamics: Scaling up to
Large Systems,” Procedia Computer Science, vol. 18, pp. 20–29, 2013.

[218] N. Luehr, A. G. B. Jin, and T. J. Martínez, “Ab Initio Interactive Molecu-
lar Dynamics on Graphical Processing Units (GPUs),” Journal of Chemical
Theory and Computation, vol. 11, no. 10, pp. 4536–4544, 2015.

[219] N. Férey, J. Nelson, C. Martin, L. Picinali, G. Bouyer, A. Tek, P. Bourdot,
J. M. Burkhardt, B. F. G. Katz, M. Ammi, C. Etchebest, and L. Autin,
“Multisensory VR interaction for protein-docking in the CoRSAIRe project,”
Virtual Reality, vol. 13, pp. 273–293, dec 2009.

[220] X. Hou and O. Sourina, “Six Degree-of-Freedom Haptic Rendering for
Biomolecular Docking,” in Transactions on Computational Science XII: Spe-
cial Issue on Cyberworlds (M. L. Gavrilova, C. J. K. Tan, A. Sourin, and
O. Sourina, eds.), pp. 98–117, Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011.

209

Bibliography

[221] H. Nagata, H. Mizushima, and H. Tanaka, “Concept and prototype of
protein-ligand docking simulator with force feedback technology,” Bioinfor-
matics, vol. 18, no. 1, p. 140, 2002.

[222] K. H. Marti and M. Reiher, “Haptic quantum chemistry,” Journal of Com-
putational Chemistry, vol. 30, no. 13, pp. 2010–2020, 2009.

[223] M. P. Haag and M. Reiher, “Real-time quantum chemistry,” International
Journal of Quantum Chemistry, vol. 113, no. 1, pp. 8–20, 2013.

[224] M. P. Haag and M. Reiher, “Studying chemical reactivity in a virtual envi-
ronment,” Faraday Discuss., vol. 169, pp. 89–118, 2014.

[225] M. P. Haag, A. C. Vaucher, M. Bosson, S. Redon, and M. Reiher, “Interactive
chemical reactivity exploration,” ChemPhysChem, vol. 15, no. 15, pp. 3301–
3319, 2014.

[226] A. C. Vaucher, M. P. Haag, and M. Reiher, “Real-time feedback from itera-
tive electronic structure calculations,” Journal of Computational Chemistry,
vol. 37, no. 9, pp. 805–812, 2016.

[227] S. Birmanns and W. Wriggers, “Interactive fitting augmented by force-
feedback and virtual reality,” Journal of Structural Biology, vol. 144, no. 1-2,
pp. 123–131, 2003.

[228] C. Cruz-Neira, J. Leigh, M. Papka, C. Barnes, S. Cohen, S. Das, R. Engel-
mann, R. Hudson, T. Roy, L. Siegel, C. Vasilakis, T. DeFanti, and D. Sandin,
“Scientists in wonderland: A report on visualization applications in the
CAVE virtual reality environment,” in Proceedings of 1993 IEEE Research
Properties in Virtual Reality Symposium, pp. 59–66, IEEE Comput. Soc.
Press, 1993.

[229] M. E. Papka, T. L. Disz, R. L. Stevens, M. Pellegrino, and V. E. Taylor,
“Virtual Reality Visualization of Parallel Molecular Dynamics Simulations,”
in Society for Computer Simulation, 1995.

[230] V. E. Taylor, R. L. Stevens, and K. E. Arnold, “Parallel molecular dynamics:
communication requirements for massively parallel machines,” in Frontiers
of Massively Parallel Computation, 1995. Proceedings. Frontiers ’95., Fifth
Symposium on the, pp. 156–163, feb 1995.

[231] N. Akkiraju, H. Edelsbrunner, P. Fu, and J. Qian, “Viewing geometric protein
structures from inside a CAVE,” IEEE Computer Graphics and Applications,
vol. 16, no. 4, pp. 58–61, 1996.

210

Bibliography

[232] H. Haase, J. Strassner, and F. Dai, “VR techniques for the investigation of
molecule data,” Computers & Graphics, vol. 20, pp. 207–217, mar 1996.

[233] C. Cruz-Neira, R. Langley, and P. Bash, “VIBE: A virtual biomolecular
environment for interactive molecular modeling,” Computers & Chemistry,
vol. 20, pp. 469–477, aug 1996.

[234] R. B. Loftin, B. M. Pettitt, S. Su, C. Chuter, J. A. McCammon, C. Dede,
B. Bannon, and K. Ash, “PaulingWorld: an immersive environment for col-
laborative exploration of molecular structures and interactions,” in Proceed-
ings of the 17th Nordic Internet Conference (NORDUnet ’98), 1998.

[235] S. Su, R. Loftin, D. Chen, and Y. Fang, “Distributed collaborative virtual
environment: Paulingworld,” in Proceedings of the 10th International Con-
ference on Artificial Reality and Telexistence, pp. 112–117, 2000.

[236] Z. Ai and T. Frohlich, “Molecular Dynamics Simulation in Virtual Environ-
ments,” Computer Graphics Forum, vol. 17, pp. 267–273, aug 1998.

[237] J. F. Prins, J. Hermans, G. Mann, L. S. Nyland, and M. Simons, “A virtual
environment for steered molecular dynamics,” Future Generation Computer
Systems, vol. 15, pp. 485–495, jul 1999.

[238] J. Leech, J. F. Prins, and J. Hermans, “SMD: visual steering of molecular
dynamics for protein design,” IEEE Computational Science and Engineering,
vol. 3, no. 4, pp. 38–45, 1996.

[239] A. Anderson and Z. Weng, “VRDD: applying irtual eality visualization to
protein ocking and esign,” Journal of Molecular Graphics and Modelling,
vol. 17, pp. 180–186, jun 1999.

[240] K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical
Physics. Graduate Texts in Physics, Berlin, Heidelberg: Springer-Verlag
Berlin Heidelberg, 5 ed., 2010.

[241] M. Koutek, J. V. Hees, F. H. F. Post, and A. F. Bakker, “Virtual Spring
Manipulators for Particle Steering in Molecular Dynamics on the Respon-
sive Workbench,” in Eighth Eurographics Workshop on Virtual Environments
(S. Mueller and W. Stuerzlinger, eds.), The Eurographics Association, 2002.

[242] A. Ghadersohi, D. E. Pape, C. M. Weeks, M. L. Green, and R. Miller, “Col-
laborative Scientific Visualization and Real-time Monitoring of Protein Struc-
ture Data,” tech. rep., 2005.

211

Bibliography

[243] J. W. Chastine, J. C. Brooks, Y. Zhu, G. S. Owen, R. W. Harrison, and
I. T. Weber, “AMMP-Vis,” in Proceedings of the ACM symposium on Virtual
reality software and technology - VRST ’05, VRST ’05, (New York, New York,
USA), p. 8, ACM Press, 2005.

[244] K. Reda, A. Knoll, K.-i. Nomura, M. E. Papka, A. E. Johnson, and J. Leigh,
“Visualizing large-scale atomistic simulations in ultra-resolution immersive
environments,” in 2013 IEEE Symposium on Large-Scale Data Analysis and
Visualization (LDAV), pp. 59–65, IEEE, oct 2013.

[245] D. R. Glowacki, M. O’Connor, G. Calabro, J. Price, P. Tew, T. Mitchell,
J. Hyde, D. P. Tew, D. J. Coughtrie, and S. McIntosh-Smith, “A GPU-
accelerated immersive audio-visual framework for interaction with molecular
dynamics using consumer depth sensors,” Faraday Discuss., vol. 169, pp. 63–
87, 2014.

[246] M. Marangoni and T. Wischgoll, “Comparative visualization of protein con-
formations using large high resolution displays with gestures and body track-
ing,” vol. 9397, p. 93970E, feb 2015.

[247] J. E. Stone, A. Kohlmeyer, K. L. Vandivort, and K. Schulten, “Immersive
Molecular Visualization and Interactive Modeling with Commodity Hard-
ware,” in Advances in Visual Computing: 6th International Symposium,
ISVC 2010, Las Vegas, NV, USA, November 29 – December 1, 2010, Pro-
ceedings, Part II (G. Bebis, R. Boyle, B. Parvin, D. Koracin, R. Chung,
R. Hammound, M. Hussain, T. Kar-Han, R. Crawfis, D. Thalmann, D. Kao,
and L. Avila, eds.), pp. 382–393, Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010.

[248] Mechdyne Corporation, “CAVELib: The Ultimate Solution for 3D Vir-
tual Reality Displays.” https://www.mechdyne.com/software.aspx?name=

CAVELib.

[249] W. R. Sherman, D. Coming, and S. Su, “FreeVR: honoring the past, look-
ing to the future,” in Proc. SPIE (M. Dolinsky and I. E. McDowall, eds.),
p. 864906, mar 2013.

[250] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-Neira,
“VR Juggler: a virtual platform for virtual reality application development,”
in Proceedings IEEE Virtual Reality 2001, pp. 89–96, 2001.

[251] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and A. T.
Helser, “VRPN: A Device-independent, Network-transparent VR Peripheral

212

https://www.mechdyne.com/software.aspx?name=CAVELib
https://www.mechdyne.com/software.aspx?name=CAVELib

Bibliography

System,” in Proceedings of the ACM Symposium on Virtual Reality Software
and Technology, VRST ’01, (New York, NY, USA), pp. 55–61, ACM, 2001.

[252] Virtalis Inc., “VR For PyMOL.” http://www.virtalis.com/vr-for-pymol.

[253] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and
J. T. Klosowski, “Chromium: A Stream-processing Framework for Interac-
tive Rendering on Clusters,” in Proceedings of the 29th annual conference on
Computer graphics and interactive techniques - SIGGRAPH ’02, SIGGRAPH
’02, (New York, New York, USA), p. 693, ACM Press, 2002.

[254] Center for Information Technology - University of Gronin-
gen, “PyMol in the Reality Theatre.” http://www.rug.nl/

society-business/centre-for-information-technology/research/

hpcv/vr_visualisation/molecular_visualisation/pymol/pymol.

[255] “OcuMOL_Leap project on GitHub.” https://github.com/lqtza/OcuMOL_

Leap.

[256] “UnityMol Documentation.” http://www.baaden.ibpc.fr/umol/Doc/

manual/html/index.html.

[257] FEI, “Amira for Life Sciences.” https://www.fei.com/software/

amira-for-life-sciences/.

[258] UNIGINE Corp., “UNIGINE.” https://unigine.com/en/.

[259] MiddleVR, “MiddleVR.” http://www.middlevr.com/.

[260] TechViz, “TechViz XL.” http://www.techviz.net/techviz-xl.

[261] WorldViz, “Vizard Virtual Reality Software.” http://www.worldviz.com/

vizard-virtual-reality-software/.

[262] “OpenSceneGraph.” http://www.openscenegraph.org/.

[263] NVIDIA Corporation, “Quadro SLI Technology.” http://www.nvidia.com/

object/sli-certified-systems-and-motherboards.html.

[264] U. Rathmann and J. Wilgen, “Qwt - Qt Widgets for Technical Applications.”
http://qwt.sourceforge.net.

[265] Qxt Foundation, “Qxt library.” https://bitbucket.org/libqxt/libqxt/

wiki/Home.

[266] NaturalPoint Inc., “NatNet SDK.” http://optitrack.com/products/

natnet-sdk/.

213

http://www.virtalis.com/vr-for-pymol
http://www.rug.nl/society-business/centre-for-information-technology/research/hpcv/vr_visualisation/molecular_visualisation/pymol/pymol
http://www.rug.nl/society-business/centre-for-information-technology/research/hpcv/vr_visualisation/molecular_visualisation/pymol/pymol
http://www.rug.nl/society-business/centre-for-information-technology/research/hpcv/vr_visualisation/molecular_visualisation/pymol/pymol
https://github.com/lqtza/OcuMOL_Leap
https://github.com/lqtza/OcuMOL_Leap
http://www.baaden.ibpc.fr/umol/Doc/manual/html/index.html
http://www.baaden.ibpc.fr/umol/Doc/manual/html/index.html
https://www.fei.com/software/amira-for-life-sciences/
https://www.fei.com/software/amira-for-life-sciences/
https://unigine.com/en/
http://www.middlevr.com/
http://www.techviz.net/techviz-xl
http://www.worldviz.com/vizard-virtual-reality-software/
http://www.worldviz.com/vizard-virtual-reality-software/
http://www.openscenegraph.org/
http://www.nvidia.com/object/sli-certified-systems-and-motherboards.html
http://www.nvidia.com/object/sli-certified-systems-and-motherboards.html
http://qwt.sourceforge.net
https://bitbucket.org/libqxt/libqxt/wiki/Home
https://bitbucket.org/libqxt/libqxt/wiki/Home
http://optitrack.com/products/natnet-sdk/
http://optitrack.com/products/natnet-sdk/

Bibliography

[267] NaturalPoint Inc., “OptiTrack - Motion Capture Systems.” http://www.

optitrack.com.

[268] KDE, “Oxygen Project.” https://techbase.kde.org/Projects/Oxygen.

[269] G.-T. Creation, “OpenGL Mathematics.” http://glm.g-truc.net.

[270] D. Frishman and P. Argos, “Knowledge-based protein secondary structure
assignment.,” Proteins, vol. 23, no. 4, pp. 566–79, 1995.

[271] Open Babel, “XYZ file format.” http://openbabel.sourceforge.net/

wiki/XYZ.

[272] Gaussian Inc, “The cubegen utility.” http://www.gaussian.com/g_tech/g_

ur/u_cubegen.htm.

[273] J. Brange, G. G. Dodson, D. J. Edwards, P. H. Holden, and J. L. Whitting-
ham, “A model of insulin fibrils derived from the x-ray crystal structure of a
monomeric insulin (despentapeptide insulin),” Proteins: Structure, Function,
and Bioinformatics, vol. 27, no. 4, pp. 507–516, 1997.

[274] B. Chandramouli, D. Di Maio, G. Mancini, V. Barone, and G. Brancato,
“Breaking the Hydrophobicity of the MscL Pore: Insights into a Charge-
Induced Gating Mechanism,” PLOS ONE, vol. 10, no. 3, pp. 1–19, 2015.

[275] M. Novotny and G. J. Kleywegt, “A survey of left-handed helices in protein
structures,” Journal of Molecular Biology, vol. 347, no. 2, pp. 231–241, 2005.

[276] Didem Vardar, Christopher L. North, Cheryll Sanchez-Irizarry, Jon C. Aster,
and and Stephen C. Blacklow, “Nuclear Magnetic Resonance Structure of a
Prototype Lin12-Notch Repeat Module from Human Notch1,” Biochemistry,
vol. 42, no. 23, pp. 7061–7067, 2003.

[277] P. Bourke, “Polygonising a scalar field.” http://paulbourke.net/

geometry/polygonise/, 1994.

[278] S. Gibson, “Constrained elastic surface nets: Generating smooth surfaces
from binary segmented data,” Medical Image Computing and Computer-
Assisted Interventation-MICCAI’98, pp. 888–898, 1998.

[279] M. Lysenko, “Smooth Voxel Terrain (Part 2).” http://0fps.net/2012/07/

12/smooth-voxel-terrain-part-2/, 2012.

[280] Persistence of Vision Raytracer Pty. Ltd., “Persistence of Vision Raytracer
(POV-Ray).” http://www.povray.org/.

214

http://www.optitrack.com
http://www.optitrack.com
https://techbase.kde.org/Projects/Oxygen
http://glm.g-truc.net
http://openbabel.sourceforge.net/wiki/XYZ
http://openbabel.sourceforge.net/wiki/XYZ
http://www.gaussian.com/g_tech/g_ur/u_cubegen.htm
http://www.gaussian.com/g_tech/g_ur/u_cubegen.htm
http://paulbourke.net/geometry/polygonise/
http://paulbourke.net/geometry/polygonise/
http://0fps.net/2012/07/12/smooth-voxel-terrain-part-2/
http://0fps.net/2012/07/12/smooth-voxel-terrain-part-2/
http://www.povray.org/

Bibliography

[281] G. Mancini and C. Zazza, “F429 Regulation of Tunnels in Cytochrome P450
2B4: A Top Down Study of Multiple Molecular Dynamics Simulations,”
PLOS ONE, vol. 10, p. e0137075, sep 2015.

[282] R. Kooima, “Generalized Perspective Projection.” http://csc.lsu.edu/

~kooima/articles/genperspective/index.html, 2008.

[283] NVIDIA Corporation, “Mosaic Technology.” http://www.nvidia.com/

object/nvidia-mosaic-technology.html.

[284] Advanced Micro Devices Inc, “Multi-Monitor Eyefinity Technology.”
http://www.amd.com/en-us/innovations/software-technologies/

technologies-gaming/eyefinity.

[285] T. Lottes, “FXAA,” Technical report, NVIDIA Corporation, 2009.

[286] Oculus VR LLC, “Oculus Development Center.” https://developer.

oculus.com/.

[287] JTKSOFT, “JoyToKey.” http://joytokey.net/en/.

[288] Valve Software, “OpenVR SDK.” https://github.com/ValveSoftware/

openvr.

[289] T. Porter and T. Duff, “Compositing Digital Images,” in Proceedings of the
11th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’84, (New York, NY, USA), pp. 253–259, ACM, 1984.

[290] M. McGuire and L. Bavoil, “Weighted Blended Order-Independent Trans-
parency,” Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2,
pp. 122–141, 2013.

[291] C. Everitt, “Interactive order-independent transparency,” Technical report,
NVIDIA Corporation, vol. 2, no. 6, p. 7, 2001.

[292] L. Bavoil and K. Myers, “Order independent transparency with dual depth
peeling,” Technical report, NVIDIA Corporation, pp. 1–12, 2008.

[293] B. Liu, L. Y. Wei, Y. Q. Xu, and E. Wu, “Multi-layer depth peeling via
fragment sort,” in Computer-Aided Design and Computer Graphics, 2009.
CAD/Graphics ’09. 11th IEEE International Conference on, pp. 452–456,
2009.

[294] H. Meshkin, “Sort-independent alpha blending,” Perpetual Entertainment,
GDC Talk, 2007.

215

http://csc.lsu.edu/~kooima/articles/genperspective/index.html
http://csc.lsu.edu/~kooima/articles/genperspective/index.html
http://www.nvidia.com/object/nvidia-mosaic-technology.html
http://www.nvidia.com/object/nvidia-mosaic-technology.html
http://www.amd.com/en-us/innovations/software-technologies/technologies-gaming/eyefinity
http://www.amd.com/en-us/innovations/software-technologies/technologies-gaming/eyefinity
https://developer.oculus.com/
https://developer.oculus.com/
http://joytokey.net/en/
https://github.com/ValveSoftware/openvr
https://github.com/ValveSoftware/openvr

Bibliography

[295] M. Maule, J. L. D. Comba, R. P. Torchelsen, and R. Bastos, “A survey of
raster-based transparency techniques,” Computers & Graphics, vol. 35, no. 6,
pp. 1023–1034, 2011.

[296] M. McGuire, “Casual Effects: Implementing Weighted, Blended Order-
Independent Transparency.” http://casual-effects.blogspot.it/2015/

03/implemented-weighted-blended-order.html, 2015.

216

http://casual-effects.blogspot.it/2015/03/implemented-weighted-blended-order.html
http://casual-effects.blogspot.it/2015/03/implemented-weighted-blended-order.html

	Contents
	Introduction
	1 Basic concepts of Scientific Visualization
	1.1 Introduction to Visualization
	1.2 The Visualization pipeline
	1.2.1 Acquisition
	1.2.2 Data filtering and processing
	1.2.3 Mapping
	1.2.4 Rendering
	1.2.5 Results investigation and user interaction
	1.2.6 Implementing the visualization pipeline

	1.3 Overview of the rendering process in real-time computer graphics
	1.3.1 Vertex processing
	1.3.2 Primitive assembly and processing
	1.3.3 Clipping and face culling
	1.3.4 Rasterization and fragment processing
	1.3.5 Visibility test and blending
	1.3.6 Texture mapping

	2 Molecular Graphics
	2.1 A brief history of Molecular Graphics
	2.1.1 Structural diagrams
	2.1.2 Physical models and molecular illustrations
	2.1.3 Computer-based Molecular Graphics

	2.2 Representation of molecular systems and state of the art rendering algorithms
	2.2.1 Atomistic models
	2.2.2 Backbone models
	2.2.3 Surface models
	2.2.4 Visualization of volumetric molecular properties
	2.2.5 Enhancing depth perception of molecular structures

	3 Virtual Reality in Molecular Sciences
	3.1 A brief introduction to Virtual Reality
	3.2 Creating artificial sensory perceptions
	3.2.1 Visual feedback
	3.2.2 Acoustic feedback
	3.2.3 Haptic feedback
	3.2.4 Vestibular feedback

	3.3 Coherency of the sensory feedback and VR sickness
	3.4 IVR systems
	3.5 Augmented Reality
	3.6 How Scientific Visualization can benefit from IVR
	3.7 Research on IVR in Molecular Sciences

	4 Included Paper: ``Moka: Designing a Simple Scene Graph Library for Cluster-Based Virtual Reality Systems''
	5 The Caffeine molecular viewer
	5.1 Introduction
	5.2 Development tools
	5.3 Caffeine ``desktop'' version
	5.3.1 Graphical interface overview
	5.3.2 Loading a molecular system from file
	5.3.3 Managing diagrams
	5.3.4 Filter visible fragments in a diagram
	5.3.5 Atomistic representations
	5.3.6 Ribbons diagrams
	5.3.7 Isosurface diagrams
	5.3.8 Playing trajectories
	5.3.9 Key-frames
	5.3.10 Plotting scalar data
	5.3.11 Render to file

	5.4 Caffeine ``CAVE'' version
	5.4.1 CAVE configuration tool

	5.5 VR Helmets support in Caffeine

	6 Caffeine: Implementation details
	6.1 GPU-based ray casting of spheres and cylinders
	6.2 ``Tubes'' modelling
	6.3 Ribbon diagrams
	6.3.1 Polypeptides
	6.3.2 Polynucleotides

	6.4 Head-tracked stereoscopy
	6.5 Real-time rendering of semi-transparent surfaces
	6.6 Caffeine's Frame Graph

	7 Included Paper: ``Immersive virtual reality in computational chemistry: Applications to the analysis of QM and MM data''
	Future perspectives
	Acknowledgments
	Bibliography

