7,095 research outputs found

    Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study

    Get PDF
    The short-chain fatty acids (SCFAs), acetate, propionate and butyrate, are bacterial metabolites that mediate the interaction between the diet, the microbiota and the host. In the present study, the systemic availability of SCFAs and their incorporation into biologically relevant molecules was quantified. Known amounts of 13C-labelled acetate, propionate and butyrate were introduced in the colon of 12 healthy subjects using colon delivery capsules and plasma levels of 13C-SCFAs 13C-glucose, 13C-cholesterol and 13C-fatty acids were measured. The butyrate-producing capacity of the intestinal microbiota was also quantified. Systemic availability of colonic-administered acetate, propionate and butyrate was 36%, 9% and 2%, respectively. Conversion of acetate into butyrate (24%) was the most prevalent interconversion by the colonic microbiota and was not related to the butyrate-producing capacity in the faecal samples. Less than 1% of administered acetate was incorporated into cholesterol and <15% in fatty acids. On average, 6% of colonic propionate was incorporated into glucose. The SCFAs were mainly excreted via the lungs after oxidation to 13CO2, whereas less than 0.05% of the SCFAs were excreted into urine. These results will allow future evaluation and quantification of SCFA production from 13C-labelled fibres in the human colon by measurement of 13C-labelled SCFA concentrations in blood

    A current-driven six-channel potentiostat for rapid performance characterization of microbial electrolysis cells

    Get PDF
    Knowledge of the performance of microbial electrolysis cells under a wide range of operating conditions is crucial to achieve high production efficiencies. Characterizing this performance in an experiment, however, is challenging due to either the long measurement times of steady-state procedures or the transient errors of dynamic procedures. Moreover, wide parallelization of the measurements is not feasible due to the high measurement equipment cost per channel. Hence, to speedup this characterization and to facilitate low-cost, yet widely parallel measurements, this paper presents a novel rapid polarization curve measurement procedure with a dynamic measurement resolution that runs on a custom six-channel potentiostat with a current-driven topology. As case study, the procedure is used to rapidly assess the impact of altering pH values on a microbial electrolysis cell that produces H-2. A Ă—2\times 2 - Ă—12\times 12 speedup could be obtained in comparison with the state-of-the-art, depending on the characterization resolution (16-128 levels). On top of this speedup, measurements can be parallelized up to 6Ă—6\times on the presented, affordable-42-per-channel-potentiostat

    Taking the attitude of the other: the role of study attitudes in mediating gender compositional effects on girls’ and boys' school misbehavior

    Get PDF
    Previous research on consequences of schools’ gender composition has mostly investigated students’ socio-emotional wellbeing and achievement, while students’ academic attitudes and behavioural outcomes – including school deviancy – have been less studied. Moreover, most studies compared single-sex and coeducational schools, and did not focus on the proportion of girls at school. Starting from reference group theory, we hypothesize that boys attending schools with a higher proportion of girls adopt the latter’s positive study attitudes, rendering them less susceptible to disruptive behaviour. Conversely, girls in schools with more boys are expected to adopt the latter’s negative study attitudes, consequently being more likely to misbehave. Multilevel analyses on data from the Flemish Educational Assessment (FlEA), consisting of 5961 girls and 5638 boys in 81 schools, showed that both boys and girls valued studying more and were less likely to misbehave at school when proportionally more girls attended their school. Implications are discussed

    Postnatal maturation of the glomerular filtration rate in conventional growing piglets as potential juvenile animal model for preclinical pharmaceutical research

    Get PDF
    Adequate animal models are required to study the preclinical pharmacokinetics (PK), pharmacodynamics (PD) and safety of drugs in the pediatric subpopulation. Over the years, pigs were presented as a potential animal model, since they display a high degree of anatomical and physiological similarities with humans. To assess the suitability of piglets as a preclinical animal model for children, the ontogeny and maturation processes of several organ systems have to be unraveled and compared between both species. The kidneys play a pivotal role in the PK and PD of various drugs, therefore, the glomerular filtration rate (GFR) measured as clearance of endogenous creatinine (Jaffe and enzymatic assay) and exo-iohexol was determined in conventional piglets aging 8 days (n = 16), 4 weeks (n = 8) and 7 weeks (n = 16). The GFR data were normalized to bodyweight (BW), body surface area (BSA) and kidney weight (KW). Normalization to BSA and KW showed an increase in GFR from 46.57 to 100.92 mL/min/m2 and 0.49 to 1.51 mL/min/g KW from 8 days to 7 weeks of age, respectively. Normalization to BW showed a less pronounced increase from 3.55 to 4.31 mL/min/kg. The postnatal development of the GFR was comparable with humans, rendering the piglet a convenient juvenile animal model for studying the PK, PD and safety of drugs in the pediatric subpopulation. Moreover, to facilitate the assessment of the GFR in growing piglets in subsequent studies, a formula was elaborated to estimate the GFR based on plasma creatinine and BW, namely eGFR =1.879 Ă— BW^1.092/Pcr^0.600

    Subchondral bone density distribution of the talus in clinically normal Labrador Retrievers

    Get PDF
    Background: Bones continually adapt their morphology to their load bearing function. At the level of the subchondral bone, the density distribution is highly correlated with the loading distribution of the joint. Therefore, subchondral bone density distribution can be used to study joint biomechanics non-invasively. In addition physiological and pathological joint loading is an important aspect of orthopaedic disease, and research focusing on joint biomechanics will benefit veterinary orthopaedics. This study was conducted to evaluate density distribution in the subchondral bone of the canine talus, as a parameter reflecting the long-term joint loading in the tarsocrural joint. Results: Two main density maxima were found, one proximally on the medial trochlear ridge and one distally on the lateral trochlear ridge. All joints showed very similar density distribution patterns and no significant differences were found in the localisation of the density maxima between left and right limbs and between dogs. Conclusions: Based on the density distribution the lateral trochlear ridge is most likely subjected to highest loads within the tarsocrural joint. The joint loading distribution is very similar between dogs of the same breed. In addition, the joint loading distribution supports previous suggestions of the important role of biomechanics in the development of OC lesions in the tarsus. Important benefits of computed tomographic osteoabsorptiometry (CTOAM), i.e. the possibility of in vivo imaging and temporal evaluation, make this technique a valuable addition to the field of veterinary orthopaedic research

    Point Pair Feature based Object Detection for Random Bin Picking

    Full text link
    Point pair features are a popular representation for free form 3D object detection and pose estimation. In this paper, their performance in an industrial random bin picking context is investigated. A new method to generate representative synthetic datasets is proposed. This allows to investigate the influence of a high degree of clutter and the presence of self similar features, which are typical to our application. We provide an overview of solutions proposed in literature and discuss their strengths and weaknesses. A simple heuristic method to drastically reduce the computational complexity is introduced, which results in improved robustness, speed and accuracy compared to the naive approach

    A custom designed density estimation method for light transport

    No full text
    We present a new Monte Carlo method for solving the global illumination problem in environments with general geometry descriptions and light emission and scattering properties. Current Monte Carlo global illumination algorithms are based on generic density estimation techniques that do not take into account any knowledge about the nature of the data points --- light and potential particle hit points --- from which a global illumination solution is to be reconstructed. We propose a novel estimator, especially designed for solving linear integral equations such as the rendering equation. The resulting single-pass global illumination algorithm promises to combine the flexibility and robustness of bi-directional path tracing with the efficiency of algorithms such as photon mapping

    INDIVIDUAL-BASED MODELLING OF MICROBIAL COLONY DYNAMICS ON FOOD SURFACES IN A PARALLEL SIMULATOR

    No full text
    International audienceThroughout the whole food processing and distribution chain, an accurate assessment and control of microbiological food safety is indispensable to avoid large outbreaks of foodborne diseases. For this reason, mathematical models are developed in predictive microbiology to describe the growth and survival of food spoiling and pathogenic microorganisms as a function of the environmental conditions during food processing and distribution. Traditionally, these models are representative for the planktonic growth of axenic microbial cultures in perfectly mixed liquid media. However, most food products are characterised by a semi-solid structure, where the contaminating cells grow out as colonies. Diffusion limitations emerge in these colonies due to the high local cell density. Hence, it is most appropriate to simulate microbial colonies at a microscopic level, considering the cell as basic modelling unit in an individual-based modelling approach. Within this respect, the MICRODIMS model has been developed at the BioTeC+ research group. However, over the last years, it became clear that the implementation of this individual-based model in the standard Repast Simphony toolkit is rather slow for the simulation of mature colonies containing a large number of cells. For this reason, MICRODIMS has been ported to the TransProg library, which uses modern general-purpose multicore and multiprocessor computers to their fullest potential. This transfer enables the simulation of mature colony dynamics in three dimensions. In this paper, the branched morphology of colonies growing on the surface of a food substrate is investigated. It is demonstrated that the emergence of this pattern is dependent on the thickness of the food substrate and structural heterogeneities at the food surface
    • …
    corecore