19,440 research outputs found

    3D visualization of bioerosion in archaeological bone

    Get PDF
    Palaeoradiology is increasingly being used in archaeological and forensic sciences as a minimally invasive alternative to traditional histological methods for investigating bone microanatomy and its destruction by diagenetic processes. To better understand ancient mortuary practices, taphonomic studies using microCT scanning methods are gaining an ever more important role. Recently it was demonstrated that 2D virtual sections obtained by microCT scanning of intact samples are comparable to physical sections for the rating and diagnosis of bioerosion in archaeological bone. Importantly, volume image data obtained from tomographic methods also allow the rendering and analysis of 3D models. Building on these methods we provide (1) detailed descriptions of bioerosion in 3D volume renderings, virtual sections, and traditional micrographs, and (2) accessible techniques for the visualization of bioerosion in skeletal samples. The dataset is based on twenty-eight cortical bone samples, including twenty femora (of which five are cremated), two ribs, two parietals, one mandibular ramus, one humerus, and two faunal long bones from five archaeological sites in Lower Austria dating from the Early Neolithic to the Late Iron Age. Notably, we reduce the need for time-consuming image segmentation by sequentially applying two noise-reducing, edge-preserving filters, and using an image-display transfer function that visualizes bioerosion, as well as Haversian and Volkmann canal structure and density in 3D. In doing so we are also able to visualize in 3D the invasion of canals by microbiota, which has previously only been reported in 2D sections. Unlike conventional thin sections, the 3D volume images shown here are easy to create and interpret, even for archaeologists inexperienced in histology, and readily facilitate the illustration and communication of microtaphonomic effects

    Documenting Bronze Age Akrotiri on Thera using laser scanning, image-based modelling and geophysical prospection

    Get PDF
    The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri’s architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results

    Effectiveness of Visualisations for Detection of Errors in Segmentation of Blood Vessels

    Get PDF
    Vascular disease diagnosis often requires a precise segmentation of the vessel lumen. When 3D (Magnetic Resonance Angiography, MRA, or Computed Tomography Angiography, CTA) imaging is available, this can be done automatically, but occasional errors are inevitable. So, the segmentation has to be checked by clinicians. This requires appropriate visualisation techniques. A number of visualisation techniques exist, but there has been little in the way of user studies that compare the different alternatives. In this study we examine how users interact with several basic visualisations, when performing a visual search task, checking vascular segmentation correctness of segmented MRA data. These visualisations are: direct volume rendering (DVR), isosurface rendering, and curved planar reformatting (CPR). Additionally, we examine if visual highlighting of potential errors can help the user find errors, so a fourth visualisation we examine is DVR with visual highlighting. Our main findings are that CPR performs fastest but has higher error rate, and there are no significant differences between the other three visualisations. We did find that visual highlighting actually has slower performance in early trials, suggesting that users learned to ignore them

    Preliminary Remarks on Mises in Interwar Vienna.

    Get PDF
    The professional class of which Ludwig von Mises (and to some extent also his friend Kelsen) was a member was not only fond of thinking of itself as the defender of their highly cultured environment. This large group of intellectuals, administrators, aristocrats, and politicians had also been raised to belief that they are the intellectual safeguard of a large multinational empire of well over 50 million people. The incredibly diverse ethnic composition of the Habsburg Empire gave it the appearance of an unique international and cosmopolitan order. The unexpected situation in which the fatefully reduced little Austria found itself as a result of the catastrophic war raised a new set of unprecedented problems which most scholars who had routinely come to assume that their primary tasks were attached to a huge multi-national Empire found difficult to turn their attention to. Their society had disappeared. While the final collapse of the old Habsburg Empire had become a fairly general expectation by late 1917, virtually no one had expected the state of affairs which was actually about to emerge. By 1918 the section of the Austrian population which considered itself heir to the ideals of European “liberalism” had been reduced to a position of political powerlessness. Mises found it especially difficult to turn his attention to the smaller problems and as he gradually became detached from the ethos of old Austria, his life and thought began almost reflexively to revolve around a social order which was characterized by the rule of law and peaceful cooperation, but which did not yet exist. Following old Austrian liberal tradition, von Wieser was the first to emphasize that an intimate connection existed between the conceptual foundations of legal and political theory on the one hand, and those of economic theory on the other.

    Estimating the upper limit of prehistoric peak ground acceleration using an in situ, intact and vulnerable stalagmite from Plavecka priepast cave (Detrekoi-zsomboly), Little Carpathians, Slovakia-first results

    Get PDF
    Earthquakes hit urban centres in Europe infrequently, but occasionally with disastrous effects. Obtaining an unbiased view of seismic hazard (and risk) is therefore very important. In principle, the best way to test probabilistic seismic hazard assessments (PSHAs) is to compare them with observations that are entirely independent of the procedure used to produce PSHA models. Arguably, the most valuable information in this context should be information on long-term hazard, namely maximum intensities (or magnitudes) occurring over time intervals that are at least as long as a seismic cycle. The new observations can provide information of maximum intensity (or magnitude) for long timescale as an input data for PSHA studies as well. Long-term information can be gained from intact stalagmites in natural caves. These formations survived all earthquakes that have occurred over thousands of years, depending on the age of the stalagmite. Their 'survival' requires that the horizontal ground acceleration (HGA) has never exceeded a certain critical value within that time period. Here, we present such a stalagmite-based case study from the Little Carpathians of Slovakia. A specially shaped, intact and vulnerable stalagmite in the Plavecka priepast cave was examined in 2013. This stalagmite is suitable for estimating the upper limit of horizontal peak ground acceleration generated by prehistoric earthquakes. The critical HGA values as a function of time going back into the past determined from the stalagmite that we investigated are presented. For example, at the time of Joko event (1906), the critical HGA value cannot have been higher than 1 and 1.3 m/s(2) at the time of the assumed Carnuntum event (similar to 340 AD), and 3000 years ago, it must have been lower than 1.7 m/s(2). We claimed that the effect of Joko earthquake (1906) on the location of the Plavecka priepast cave is consistent with the critical HGA value provided by the stalagmite we investigated. The approach used in this study yields significant new constraints on the seismic hazard, as tectonic structures close to Plavecka priepast cave did not generate strong earthquakes in the last few thousand years. The results of this study are highly relevant given that the two capitals, Vienna and Bratislava, are located within 40 and 70 km of the cave, respectively.Web of Science2151130111

    Frequency Estimation Of The First Pinna Notch In Head-Related Transfer Functions With A Linear Anthropometric Model

    Get PDF
    The relation between anthropometric parameters and Head-Related Transfer Function (HRTF) features, especially those due to the pinna, are not fully understood yet. In this paper we apply signal processing techniques to extract the frequencies of the main pinna notches (known as N1, N2, and N3) in the frontal part of the median plane and build a model relating them to 13 different anthropometric parameters of the pinna, some of which depend on the elevation angle of the sound source. Results show that while the considered anthropometric parameters are not able to approximate with sufficient accuracy neither the N2 nor the N3 frequency, eight of them are sufficient for modeling the frequency of N1 within a psychoacoustically acceptable margin of error. In particular, distances between the ear canal and the outer helix border are the most important parameters for predicting N1
    corecore