1,430 research outputs found

    Tomographic Study of Internal Erosion of Particle Flows in Porous Media

    Full text link
    In particle-laden flows through porous media, porosity and permeability are significantly affected by the deposition and erosion of particles. Experiments show that the permeability evolution of a porous medium with respect to a particle suspension is not smooth, but rather exhibits significant jumps followed by longer periods of continuous permeability decrease. Their origin seems to be related to internal flow path reorganization by avalanches of deposited material due to erosion inside the porous medium. We apply neutron tomography to resolve the spatio-temporal evolution of the pore space during clogging and unclogging to prove the hypothesis of flow path reorganization behind the permeability jumps. This mechanistic understanding of clogging phenomena is relevant for a number of applications from oil production to filters or suffosion as the mechanisms behind sinkhole formation.Comment: 18 pages, 9 figure

    Comparison of ring artifact removal methods using flat panel detector based CT images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform.</p> <p>Method</p> <p>In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity test and then corrects the CT images by subtracting the artifact template vector from the uncorrected images. The second post-processing based correction technique performs median and mean filtering on the reconstructed images to produce the corrected images.</p> <p>Results</p> <p>The performances of the comparing algorithms have been tested by using both quantitative and perceptual measures. For quantitative analysis, two different numerical performance indices are chosen. On the other hand, different types of artifact patterns, e.g., single/band ring, artifacts from defective and mis-calibrated detector elements, rings in highly structural object and also in hard object, rings from different flat-panel detectors are analyzed to perceptually investigate the strength and weakness of the five methods. An investigation has been also carried out to compare the efficacy of these algorithms in correcting the volume images from a cone beam CT with the parameters determined from one particular slice. Finally, the capability of each correction technique in retaining the image information (e.g., small object at the iso-center) accurately in the corrected CT image has been also tested.</p> <p>Conclusions</p> <p>The results show that the performances of the algorithms are limited and none is fully suitable for correcting different types of ring artifacts without introducing processing distortion to the image structure. To achieve the diagnostic quality of the corrected slices a combination of the two approaches (sinogram- and post-processing) can be used. Also the comparing methods are not suitable for correcting the volume images from a cone beam flat-panel detector based CT.</p

    Machine learning-based automated segmentation with a feedback loop for 3D synchrotron micro-CT

    Get PDF
    Die Entwicklung von Synchrotronlichtquellen der dritten Generation hat die Grundlage für die Untersuchung der 3D-Struktur opaker Proben mit einer Auflösung im Mikrometerbereich und höher geschaffen. Dies führte zur Entwicklung der Röntgen-Synchrotron-Mikro-Computertomographie, welche die Schaffung von Bildgebungseinrichtungen zur Untersuchung von Proben verschiedenster Art förderte, z.B. von Modellorganismen, um die Physiologie komplexer lebender Systeme besser zu verstehen. Die Entwicklung moderner Steuerungssysteme und Robotik ermöglichte die vollständige Automatisierung der Röntgenbildgebungsexperimente und die Kalibrierung der Parameter des Versuchsaufbaus während des Betriebs. Die Weiterentwicklung der digitalen Detektorsysteme führte zu Verbesserungen der Auflösung, des Dynamikbereichs, der Empfindlichkeit und anderer wesentlicher Eigenschaften. Diese Verbesserungen führten zu einer beträchtlichen Steigerung des Durchsatzes des Bildgebungsprozesses, aber auf der anderen Seite begannen die Experimente eine wesentlich größere Datenmenge von bis zu Dutzenden von Terabyte zu generieren, welche anschließend manuell verarbeitet wurden. Somit ebneten diese technischen Fortschritte den Weg für die Durchführung effizienterer Hochdurchsatzexperimente zur Untersuchung einer großen Anzahl von Proben, welche Datensätze von besserer Qualität produzierten. In der wissenschaftlichen Gemeinschaft besteht daher ein hoher Bedarf an einem effizienten, automatisierten Workflow für die Röntgendatenanalyse, welcher eine solche Datenlast bewältigen und wertvolle Erkenntnisse für die Fachexperten liefern kann. Die bestehenden Lösungen für einen solchen Workflow sind nicht direkt auf Hochdurchsatzexperimente anwendbar, da sie für Ad-hoc-Szenarien im Bereich der medizinischen Bildgebung entwickelt wurden. Daher sind sie nicht für Hochdurchsatzdatenströme optimiert und auch nicht in der Lage, die hierarchische Beschaffenheit von Proben zu nutzen. Die wichtigsten Beiträge der vorliegenden Arbeit sind ein neuer automatisierter Analyse-Workflow, der für die effiziente Verarbeitung heterogener Röntgendatensätze hierarchischer Natur geeignet ist. Der entwickelte Workflow basiert auf verbesserten Methoden zur Datenvorverarbeitung, Registrierung, Lokalisierung und Segmentierung. Jede Phase eines Arbeitsablaufs, die eine Trainingsphase beinhaltet, kann automatisch feinabgestimmt werden, um die besten Hyperparameter für den spezifischen Datensatz zu finden. Für die Analyse von Faserstrukturen in Proben wurde eine neue, hochgradig parallelisierbare 3D-Orientierungsanalysemethode entwickelt, die auf einem neuartigen Konzept der emittierenden Strahlen basiert und eine präzisere morphologische Analyse ermöglicht. Alle entwickelten Methoden wurden gründlich an synthetischen Datensätzen validiert, um ihre Anwendbarkeit unter verschiedenen Abbildungsbedingungen quantitativ zu bewerten. Es wurde gezeigt, dass der Workflow in der Lage ist, eine Reihe von Datensätzen ähnlicher Art zu verarbeiten. Darüber hinaus werden die effizienten CPU/GPU-Implementierungen des entwickelten Workflows und der Methoden vorgestellt und der Gemeinschaft als Module für die Sprache Python zur Verfügung gestellt. Der entwickelte automatisierte Analyse-Workflow wurde erfolgreich für Mikro-CT-Datensätze angewandt, die in Hochdurchsatzröntgenexperimenten im Bereich der Entwicklungsbiologie und Materialwissenschaft gewonnen wurden. Insbesondere wurde dieser Arbeitsablauf für die Analyse der Medaka-Fisch-Datensätze angewandt, was eine automatisierte Segmentierung und anschließende morphologische Analyse von Gehirn, Leber, Kopfnephronen und Herz ermöglichte. Darüber hinaus wurde die entwickelte Methode der 3D-Orientierungsanalyse bei der morphologischen Analyse von Polymergerüst-Datensätzen eingesetzt, um einen Herstellungsprozess in Richtung wünschenswerter Eigenschaften zu lenken

    X-ray CT on the GPU

    Get PDF
    Nondestructive testing (NDT) is a collection of analysis techniques used by scientists and technologists as a way of analyzing the interior of an object without damaging the object. Since the analysis is done without damaging the object, NDT is an extremely valuable technique used in various industries for troubleshooting and research. CNDE has a long history of working with a variety of industrial sectors which include Aerospace (commercial and military aviation) and Defense Systems (ground vehicles and personnel protection); Energy (nuclear, wind, fossil); Infrastructure and Transportation (bridges, roadways, dams, levees); and Petro-Chemical (offshore, processing, fuel transport piping) to provide cost-effective tools and solutions. X-ray tomography is the procedure of using X-rays for generating tomographic slices of the required object. The object is bombarded with X-rays and the scanned image intensity values are collected on a detector. A significant drawback in X-ray tomography is the amount of data collected. It is generally huge in the order of gigabytes and hence the processing of data presents a big challenge. One way to speed up the processing of data is to run the programs on a cluster. CNDE uses a 64 node Beowulf cluster to do the reconstruction of an image. However with the advent of the GPU (Graphic Processing Unit) we have a far more cost efficient and time efficient hardware to run the reconstruction algorithm. The GPU can be fitted into a single PC, costs 10 times less than the cluster and also has a longer life time. This thesis has two major components to it. One of it is the desvelopment of new preprocessing and post processing techniques (includes filters, hot pixel removal etc.) to improve the quality of the input data and the other is the implementation of these techniques as well as the reconstruction program on the GPU using CUDA. Speedup on the GPU is not just a matter of porting the developed algorithms in parallel onto the hardware like in a cluster. GPU architecture is extremely complex and involves the usage of many different types of memory each with its own advantages and disadvantages and also many other optimization techniques for accessing and processing the data. These new techniques as well as the introduction of GPU are a significant addition to X-ray program here at CNDE

    Bridging Nano and Micro-scale X-ray Tomography for Battery Research by Leveraging Artificial Intelligence

    Full text link
    X-ray Computed Tomography (X-ray CT) is a well-known non-destructive imaging technique where contrast originates from the materials' absorption coefficients. Novel battery characterization studies on increasingly challenging samples have been enabled by the rapid development of both synchrotron and laboratory-scale imaging systems as well as innovative analysis techniques. Furthermore, the recent development of laboratory nano-scale CT (NanoCT) systems has pushed the limits of battery material imaging towards voxel sizes previously achievable only using synchrotron facilities. Such systems are now able to reach spatial resolutions down to 50 nm. Given the non-destructive nature of CT, in-situ and operando studies have emerged as powerful methods to quantify morphological parameters, such as tortuosity factor, porosity, surface area, and volume expansion during battery operation or cycling. Combined with powerful Artificial Intelligence (AI)/Machine Learning (ML) analysis techniques, extracted 3D tomograms and battery-specific morphological parameters enable the development of predictive physics-based models that can provide valuable insights for battery engineering. These models can predict the impact of the electrode microstructure on cell performances or analyze the influence of material heterogeneities on electrochemical responses. In this work, we review the increasing role of X-ray CT experimentation in the battery field, discuss the incorporation of AI/ML in analysis, and provide a perspective on how the combination of multi-scale CT imaging techniques can expand the development of predictive multiscale battery behavioral models.Comment: 33 pages, 5 figure

    X-ray Phase-Contrast Tomography: Underlying Physics and Developments for Breast Imaging

    Get PDF
    X-ray phase-contrast tomography is a powerful tool to dramatically increase the visibility of features exhibiting a faint attenuation contrast within bulk samples, as is generally the case of light (low-Z) materials. For this reason, the application to clinical tasks aiming at imaging soft tissues, as e.g., breast imaging, has always been a driving force in the development of this field. In this context, the SYRMA-3D project, which constitutes the framework of the present work, aims to develop and implement the first breast computed tomography system relying on the propagation-based phase-contrast technique at the Elettra synchrotron facility (Trieste, Italy). This thesis finds itself in the \u2018last mile\u2019 towards the in-vivo implementation, and the obtained results add some of the missing pieces in the realization of the project. The first part of the work introduces a homogeneous mathematical framework describing propagation-based phase contrast from the sample-induced X-ray refraction, to detection, processing and tomographic reconstruction. The original results reported in the following chapters include the implementation of a pre-processing procedure dedicated for a novel photon-counting CdTe detector; a study, supported by a rigorous theoretical model, on signal and noise dependence on physical parameters such as propagation distance and detector pixel size; hardware and software developments for improving signal-to-noise ratio and reducing the scan time; and, finally, a clinically-oriented study based on comparisons with clinical mammographic and histological images. The last part of the thesis attempts to widen the experimental horizon: first, a quantitative image comparison of the synchrotron-based setup and a clinically available breast-CT scanner is presented and then a practical laboratory implementation is detailed, introducing a monochromatic propagation-based micro-tomography setup making use on a high-power rotating anode source

    Iterative and discrete reconstruction in the evaluation of the rabbit model of osteoarthritis

    Get PDF
    Micro-computed tomography (µCT) is a standard method for bone morphometric evaluation. However, the scan time can be long and the radiation dose during the scan may have adverse effects on test subjects, therefore both of them should be minimized. This could be achieved by applying iterative reconstruction (IR) on sparse projection data, as IR is capable of producing reconstructions of sufficient image quality with less projection data than the traditional algorithm requires. In this work, the performance of three IR algorithms was assessed for quantitative bone imaging from low-resolution data in the evaluation of the rabbit model of osteoarthritis. Subchondral bone images were reconstructed with a conjugate gradient least squares algorithm, a total variation regularization scheme, and a discrete algebraic reconstruction technique to obtain quantitative bone morphometry, and the results obtained in this manner were compared with those obtained from the reference reconstruction. Our approaches were sufficient to identify changes in bone structure in early osteoarthritis, and these changes were preserved even when minimal data were provided for the reconstruction. Thus, our results suggest that IR algorithms give reliable performance with sparse projection data, thereby recommending them for use in µCT studies where time and radiation exposure are preferably minimized. © 2018, The Author(s).Peer reviewe

    Validation of Subject Specific Computed Tomography-based Finite Element Models of the Human Proximal Tibia using Full-field Experimental Displacement Measurements from Digital Volume Correlation

    Get PDF
    Quantitative computed tomography-based finite element (QCT-FE) modeling is a computational tool for predicting bone’s response to applied load, and is used by musculoskeletal researchers to better understand bone mechanics and their role in joint health. Decisions made at the modeling stage, such as the method for assigning material properties, can dictate model accuracy. Predictions of surface strains/stiffness from QCT-FE models of the proximal tibia have been validated against experiment, yet it is unclear whether these models accurately predict internal bone mechanics (displacement). Digital volume correlation (DVC) can measure internal bone displacements and has been used to validate FE models of bone; though, its use has been limited to small specimens. The objectives of this study were to 1) establish a methodology for high-resolution peripheral QCT (HR-pQCT) scan acquisition and image processing resulting in low DVC displacement measurement error in long human bones, and 2) apply different density-modulus relationships and material models from the literature to QCT-FE models of the proximal tibia and identify those approaches which best predicted experimentally measured internal bone displacements and related external reaction forces, with highest explained variance and least error. Using a modified protocol for HR-pQCT, DVC displacement errors for large scan volumes were less than 19μm (0.5 voxels). Specific trabecular and cortical models from the literature were identified which resulted in the most accurate QCT-FE predictions of internal displacements (RMSE%=3.9%, R2>0.98) and reaction forces (RMSE%=12.2%, R2=0.78). This study is the first study to quantify experimental displacements inside a long human bone using DVC. It is also the first study to assess the accuracy of QCT-FE predicted internal displacements in the tibia. Our results indicate that QCT-FE models of the tibia offer reasonably accurate predictions of internal bone displacements and reaction forces for use in studying bone mechanics and joint health

    Impact Of Fines On Gas Relative Permeability Through Sand Using Pore Networks From 3d Synchrotron Micro-Computed Tomography

    Get PDF
    Fines migration and transport in sand systems have huge influence on vital applications, including the storage and recovery of water and energy resources from the subsurface. Multi-phase flow of gas through saturated unconsolidated media takes place between the pores of sediments, physical phenomenon at the pore-scale control the flow properties. Given a sandy sediment media, gas permeability is highly affected by fine particles due to migration, clogging and bridging reducing gas flow or causing sand particles to displace creating fractures. There is a knowledge gap of fines effects on gas production from sandy sediments, especially at the pore-scale. Therefore, there is a need to model and quantify effects of fines in multi-phase flow using pore networks to better understand gas recovery systems. Three-dimensional, synchrotron micro-computed tomography images of sand sediments were obtained at Argonne National Laboratory at a resolution of 3.89 micron per voxel. Kaolinite and Montmorillonite fine particles were added in varied concentrations in six soil specimens, each system was scanned at four stages with varied saturations of brine and CO2, resulting in 20 systems. Micro-computed tomography images were processed for 3D visualization, quantification and pore network modeling. Pore Network Models were generated, and relative permeability properties were then computed for each system. Findings revealed that fines accumulate at sand-brine and brine-gas interfaces. As fines concentration increased, gas percolation decreased. Further increase in fines concentrations resulted in blocking local gas flow causing pressure variations enough to create fractures that allows gas to escape and permeability to increase back. Pore Networks and Computer-Based Two-Phase Flow Simulations can effectively be used to characterize flow in porous media. In unconsolidated media the pore space geometry will change due to sand grains movements. At high concentrations, different fines type produces altered gas flow regimes, Kaolinite resulted in fractures while montmorillonite resulted in detached gas ganglia. Generally, increasing fines reduces gas percolation and further injection of gas reduced permeability. The finds herein are critical in understanding the impact of fines migration during gas flow in sand, they can be applied to characterizing and predicting two phase properties of unconsolidated sediments
    corecore