4,931 research outputs found

    Remote Sensing Image Representation based on Hierarchical Histogram Propagation

    Get PDF
    International audienceMany methods have been recently proposed to deal with the large amount of data provided by high- resolution remote sensing technologies. Several of these methods rely on the use of image segmentation algorithms for delineating target objects. However, a common issue in geographic object-based applications is the definition of the appropriate data representation scale, a problem that can be addressed by exploiting multiscale segmentation. The use of multiple scales, however, raises new challenges related to the definition of effective and efficient mechanisms for extracting features. In this paper, we address the problem of extracting histogram-based features from a hierarchy of regions for multiscale classification. The strategy, called H-Propagation, exploits the existing relation- ships among regions in a hierarchy to iteratively prop- agate features along multiple scales. The proposed method speeds up the feature extraction process and yields good results when compared with global low- level extraction approaches

    Context guided belief propagation for remote sensing image classification.

    Get PDF
    We propose a context guided belief propagation (BP) algorithm to perform high spatial resolution multispectral imagery (HSRMI) classification efficiently utilizing superpixel representation. One important characteristic of HSRMI is that different land cover objects possess a similar spectral property. This property is exploited to speed up the standard BP (SBP) in the classification process. Specifically, we leverage this property of HSRMI as context information to guide messages passing in SBP. Furthermore, the spectral and structural features extracted at the superpixel level are fed into a Markov random field framework to address the challenge of low interclass variation in HSRMI classification by minimizing the discrete energy through context guided BP (CBP). Experiments show that the proposed CBP is significantly faster than the SBP while retaining similar performance as compared with SBP. Compared to the baseline methods, higher classification accuracy is achieved by the proposed CBP when the context information is used with both spectral and structural features

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition and Remote Sensing Scene Classification

    Full text link
    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The d facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Binary Patterns encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Our final combination outperforms the state-of-the-art without employing fine-tuning or ensemble of RGB network architectures.Comment: To appear in ISPRS Journal of Photogrammetry and Remote Sensin

    Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution

    Full text link
    In many computer vision applications, obtaining images of high resolution in both the spatial and spectral domains are equally important. However, due to hardware limitations, one can only expect to acquire images of high resolution in either the spatial or spectral domains. This paper focuses on hyperspectral image super-resolution (HSI-SR), where a hyperspectral image (HSI) with low spatial resolution (LR) but high spectral resolution is fused with a multispectral image (MSI) with high spatial resolution (HR) but low spectral resolution to obtain HR HSI. Existing deep learning-based solutions are all supervised that would need a large training set and the availability of HR HSI, which is unrealistic. Here, we make the first attempt to solving the HSI-SR problem using an unsupervised encoder-decoder architecture that carries the following uniquenesses. First, it is composed of two encoder-decoder networks, coupled through a shared decoder, in order to preserve the rich spectral information from the HSI network. Second, the network encourages the representations from both modalities to follow a sparse Dirichlet distribution which naturally incorporates the two physical constraints of HSI and MSI. Third, the angular difference between representations are minimized in order to reduce the spectral distortion. We refer to the proposed architecture as unsupervised Sparse Dirichlet-Net, or uSDN. Extensive experimental results demonstrate the superior performance of uSDN as compared to the state-of-the-art.Comment: Accepted by The IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018, Spotlight
    corecore