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ABSTRACT
Many methods have been recently proposed to deal
with the large amount of data provided by high-
resolution remote sensing technologies. Several of
these methods rely on the use of image segmentation
algorithms for delineating target objects. However, a
common issue in geographic object-based applications
is the definition of the appropriate data representation
scale, a problem that can be addressed by exploiting
multiscale segmentation. The use of multiple scales,
however, raises new challenges related to the definition
of effective and efficient mechanisms for extracting
features. In this paper, we address the problem of
extracting histogram-based features from a hierarchy
of regions for multiscale classification. The strategy,
called H-Propagation, exploits the existing relation-
ships among regions in a hierarchy to iteratively prop-
agate features along multiple scales. The proposed
method speeds up the feature extraction process and
yields good results when compared with global low-
level extraction approaches.

Index Terms— Histogram propagation, image rep-
resentation, multiscale analysis, GEOBIA.

1. INTRODUCTION

Remote sensing images are often used as data source
for land cover studies in many applications [1]. A com-
mon problem in these applications is the definition of
the data representation scale (the size of the segmented
regions or block of pixels) [2, 3]. To address the seg-
mentation scale problem, several approaches have been
proposed considering multiscale analysis for applica-
tions that handle remote sensing images [1, 2, 4–6]. In
these approaches, the feature extraction at various seg-
mentation scales is an essential step. However, depend-
ing on the strategy, the extraction can be a very costly
process. If we apply the same feature extraction algo-
rithm for all regions of different segmentation scales,
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for example, the pixels in the image would need to be
accessed at least once for each scale.

Aiming at addressing this issue, we have recently
proposed an strategy called BoW-Propagation [7],
which exploits the bag-of-word concept [8, 9] to iter-
atively propagate texture features along the hierarchy
from the finest regions to the coarsest ones. That strat-
egy speeds up the extraction process by avoiding the
computation of low-level features from all regions of
the hierarchy.

In this paper, we propose an approach, called H-
Propagation to extract histogram-based features from a
hierarchy of segmented regions. This approach, which
is an extension of the BoW-Propagation, relies on pro-
cessing only the image pixels in the base of the hierar-
chy (the finest region scale). The features are quickly
propagated to the upper scales by exploiting the hier-
archical association among regions at different scales.
The features are then propagated to the other scales. At
the end, all regions in the hierarchy are represented by
a histogram.

2. BOW-PROPAGATION

The BoW-Propagation [7], which is based on the bag-
of-visual-word model [10], is designed to extract fea-
tures from a hierarchy of segmented regions [11]. It
relies on processing only the image pixels in the base
of the hierarchy (the finest regions scale). It exploits
the hierarchical relationship among regions at different
scales to compute the features.

The strategy starts by creating a visual dictionary
based on low-level features extracted from the pixel
level (the base of the hierarchy), as shown in Figure 1.
The low-level feature space is quantized, creating the
visual words, and each region in the base of the hier-
archy is described according to that dictionary. The
features are then propagated to the other scales. At the
end, all regions in the hierarchy will be represented by
a bag of visual words.

Figure 2 illustrates a schema to represent a seg-
mented region by using dense sampling through a bag
of words. The low-level features extracted from the
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Fig. 1. Construction of a visual dictionary to describe a remote sensing image. The features are extracted from
groups of pixels (e.g., tiles or segmented regions), the feature space is quantized so that each cluster corresponds
to a visual word wi.
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Fig. 2. Representation of a segmented region based on a visual dictionary with dense sampling feature extraction.

internal points are assigned to visual words and com-
bined by a pooling function.

3. THE PROPOSED HISTOGRAM FEATURE
PROPAGATION

The histogram propagation (H-Propagation) consists
in estimating the feature histogram representation of
a region R, given the low-level histograms extracted
from the R subregions Γ(R). It is an extension of the
BoW-propagation in the sense it propagates any kind of
low-level features based on histograms from fine scales
to the coarsest ones.

Let Pλx
and Pλy

be partitions obtained from the
hierarchy H at the scales λx e λy , respectively. We
consider that Pλx > Pλb

, i.e, Pλx is coarser than Pλy .
Let R ∈ Pλx be a region from the partition Pλx . We
call subregion of R the region R̂ ∈ Pλy

such that R̂ ⊆
R.

The set Γ(R), which is composed of the subregions
of R in the partition Pλy , is given by Γ(R) = {∀R̂ ∈
Pλy
|p ∈ R ∩ p ∈ R̂}, where p is a pixel. The set of

subregions of R in a finer scale are all the regions R̂
that have all pixels inside R̂ and inside R.

The principle of H-propagation is to compute the
feature histogram hR, which describes region R, by
combining the histograms of subregions Γ(R):

hR = f{hR̂c
| R̂c ∈ Γ(R)} (1)

where f is a combination function.

Algorithm 1 presents the proposed H-propagation.
The first step is to extract low-level features from the
regions in the finest scale λ1 (line 1). The “propaga-
tion loop” is responsible for propagating the features
to other scales (lines 2 to 6). For all regions R from a
partition Pλx , the histogram hR is computed based on
the Γ(R) histograms, which is defined by Equation 1
(line 4).

Algorithm 1 H-Propagation

1 Extract low-level feature histograms from the regions
in the finest scale λ1

2 For i← 2 to n do
3 For all R ∈ Pλi

do
4 Compute the histogram hR based on the

Γ(R) histograms
5 End for
6 End for

Figure 3 illustrates an example of the use of the
combination function f to compute the histogram hr
of a region r. The region r ∈ Pλ2 is composed of the
set of subregions Γ(r) = {a, b, c} at the scale λ1. Fig-
ure 3 (a) illustrates, in gray, the region r and its subre-
gions Γ(r) in the hierarchy of regions. In Figure 3 (b),
the histogram hr is computed based on the function f :
hr = f(ha, hb, hc). Figure 4 illustrates the computa-
tion of hr by using the max operator as combination
function.

H-propagation does not quantize the low-level fea-
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Fig. 3. Computing the histogram hr of region r by combining the histrograms ha, hb, and hc from the subregions
a, b, and c.

ture space to create a visual dictionary. Another dif-
ference, when compared with the BoW-propagation, is
that H-propagation propagates histogram bins instead
of the probabilities of visual words. BoW-propagation
is suitable for propagating low-level local features. H-
propagation, in turn, is designed only for global de-
scriptors based on histogram representations.

An important issue is the definition of the propa-
gation function f in the case of low-level histograms.
Contrarily to the propagation of visual words, we use
the average function instead of the max function. It is
expected that with the average propagation, the quality
of the histograms will be the same as that performed
by the extraction directly from the pixels at all scales
of the hierarchy.
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Fig. 4. Feature propagation example using a max pool-
ing operation.

4. SIMULATIONS

We have used two different datasets in our experi-
ments. We refer to the dataset according to the target
regions: COFFEE and URBAN. We carried out ex-
periments with ten different combinations of the nine

subimages for each dataset (three for training, three for
validation, and three for testing). The COFFEE dataset
is a SPOT image with 2.3m of spatial resolution from
Monte Santo de Minas, Brazil. The URBAN dataset
is a Quickbird image with 0.6m of spatial resolution
from Campinas, Brazil. More details about the datasets
can be found in [1]. We define the scales according to
the principle of dichotomic cuts proposed in [11]. The
higher the index, the coarser is the scale. The scale λ0
is the pixel level. We used linear SVMs to obtain the
classification results. It is evaluated by computing the
overall accuracy, kappa index, and tau index for the
classified images [12].

We have tested the proposed approaches for color
feature propagation. We have selected BIC descrip-
tor [13] since it produced good results in previous
works considering multiscale classification [4, 14, 15].
We compare the propagation approaches against BIC
low-level feature extraction [13].

BIC BoW-Propagation was computed by using:
max pooling function, dictionary size of 103 words,
and soft assignment (σ = 0.1). We have extracted low-
level features from a dense sampling by overlapping
squares with 4× 4 pixels. BIC H-Propagation, in turn,
was computed by using the avg pooling function.

Table 1 presents the classification using the BIC de-
scriptor with BoW-Propagation, Histogram Propaga-
tion, and low-level extraction (Global Descriptor) for
the COFFEE dataset.

Concerning the results for the COFFEE dataset,
H-Propagation and the Global Descriptor present
the same overall accuracy (around 80%). The same
can be observed for kappa and tau indexes. BoW-
Propagation achieved results slightly worse than the
other two approaches for the three computed mea-
sures. Regarding the URBAN dataset, H-Propagation
and Global Descriptor obtained the same overall ac-
curacy, Kappa, and Tau (∼ 70%, 0.31, and 0.47,



Table 1. Classification results for the BIC descriptor using BoW-Propagation, H-Propagation, and global feature
extraction for the COFFEE and the URBAN datasets at segmentation scale λ3.

COFFEE URBAN
Method O.A. (%) Kappa (κ) Tau (τ ) O.A. (%) Kappa (κ) Tau (τ )

BoW-Propagation 73.41± 2.76 0.25± 0.03 0.36± 0.02 67.03± 2.65 0.26± 0.03 0.47 ± 0.02
H-Propagation 79.97 ± 1.76 0.46 ± 0.02 0.54 ± 0.02 69.86 ± 4.76 0.31 ± 0.05 0.47 ± 0.04

Global Descriptor 80.07 ± 1.81 0.47 ± 0.02 0.54 ± 0.02 69.63 ± 3.33 0.31 ± 0.04 0.47 ± 0.03

respectively). The BoW-Propagation approach yields
slightly worse results than the other methods concern-
ing overall accuray and Kappa index. The Tau index
was the same (0.47).

5. CONCLUSION

The proposed H-propagation approach revealed be
suitable for saving time on feature extraction from
a hierarchy of segmented regions. Regarding color
features, BOW-Propagation seems to be promising,
but it requires many setup parameters. However, H-
Propagation shows that it is possible to compute low-
level features based only on the extracted hierarchy.
Furthermore, these features can be propagated without
losses in terms of representation quality.

Future work considers the study the use of the
H-propagation method in other applications, such as
content-based image retrieval and multimedia foren-
sics.
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