148,996 research outputs found

    Remote surface inspection system

    Get PDF
    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported

    Miniature mobile sensor platforms for condition monitoring of structures

    Get PDF
    In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability

    Toward Bio-Inspired Tactile Sensing Capsule Endoscopy for Detection of Submucosal Tumors

    Get PDF
    © 2016 IEEE. Here, we present a method for lump characterization using a bio-inspired remote tactile sensing capsule endoscopy system. While current capsule endoscopy utilizes cameras to diagnose lesions on the surface of the gastrointestinal tract lumen, this proposal uses remote palpation to stimulate a bio-inspired tactile sensing surface that deforms under the impression of both hard and soft raised objects. Current capsule endoscopy utilizes cameras to visually diagnose lesions on the surface of the gastrointestinal tract. Our approach introduces remote palpation by deploying a bio-inspired tactile sensor that deforms when pressed against soft or hard lumps. This can enhance visual inspection of lesions and provide more information about the structure of the lesions. Using classifier systems, we have shown that lumps of different sizes, shapes, and hardnesses can be distinguished in a synthetic test environment. This is a promising early start toward achieving a remote palpation system used inside the GI tract that will utilize the clinician's sense of touch

    Autonomous ultrasonic inspection using unmanned aerial vehicle

    Get PDF
    In terms of safety and convenience, an Unmanned Aerial Vehicle (UAV) offers significant benefits when conducting remote NDT evaluations by mitigating hazards and inefficiencies associated with manned access. Traditionally, UAV remote inspections rely on high-resolution cameras, providing a visual overview of surface condition. This photogrammetric inspection, however, cannot distinguish minute discontinuities or deformations beneath a surface coating. Ultrasonic inspection is a Non-Destructive Testing (NDT) method conventionally used in corrosion mapping. Surface contacting ultrasonic transducers offer the potential for internal inspection of an industrial asset, providing enhanced structural integrity information. However, manually piloting a UAV with sufficient surface proximity to perform a detailed, contact-based examination requires a highly developed skillset and intense concentration. Limitations of payload mass and electronic interference also represent significant challenges to be overcome. Addressing such issues, this paper demonstrates the implementation of an autonomous UAV system with an integrated ultrasonic contact measurement payload. The prototype is autonomously guided and undertakes the contact thickness measurement process without manual intervention

    Terrestrial LiDAR-based bridge evaluation

    Get PDF
    Considering the over half million bridges in the US state highway system, more than 70% of which were built before 1935, it is of little wonder that bridge maintenance and management is facing severe challenges and the significant funding scarcity rapidly escalates the problem. Commercial remote sensing techniques have the capability of covering large areas and are suggested to be cost effective methods for bridge inspection. This dissertation introduces several applications of the remote bridge inspection technologies using ground-based LiDAR systems. In particular, the application of terrestrial LiDAR for bridge health monitoring is studied. An automatic bridge condition evaluation system based on terrestrial LiDAR data, LiBE (LiDAR-based Bridge Evaluation), is developed. The research works completed thus far have shown that LiDAR technology has the capability for bridge surface defect detection and quantification, clearance measurement, and displacement measurement during bridge static load testing. Several bridges in Mecklenburg County, NC, and other areas have been evaluated using LiBE and quantitative bridge rating mechanisms are proposed. A cost-benefit analysis has been conducted that demonstrates the relevancy of the technique to current nation-wide bridge management problem, as well as, the potential of reducing the bridge maintenance costs to the stack holders. The results generated from these technologies are valuable for bridge maintenance decision making

    Editorial: Special issue on ground robots operating in dynamic, unstructured and large-scale outdoor environments

    Get PDF
    Real-world outdoor applications of ground robots have, to date, been limited primarily to remote inspection of suspected explosive devices and, with less success, to the broader domain of remote survey and inspection in hazardous environments. Such robots have almost exclusively been tele-operated. Also notable as examples of outdoor ground robots are the planetary rovers, currently deployed with great success on the surface of Mars. But with the rapid development of autonomous (driverless) cars, and the emergence of robotic vehicles in agriculture, it is likely that there will be significant growth in both the numbers and scope of commercial ground robots in outdoor environments in the near future.For this special issue we called for papers that present land robot systems deployed in the field in similar realistic challenges. We sought papers that focus on any aspect of robotic systems, from vehicle design to the overall system architecture and control, via terrain mapping, localization, mission planning and execution – with an emphasis on systems that fulfil a specific real world task. We specified that robot or system innovations must be supported by extensive field results. Also that field tests must be under realistic and challenging conditions with respect to the terrain type, the scenario to be achieved, and/or the conditions within which the scenarios must be achieved
    • 

    corecore