16,548 research outputs found

    Remarks on drift estimation for diffusion processes

    Get PDF
    In applications such as molecular dynamics it is of interest to fit Smoluchowski and Langevin equations to data. Practitioners often achieve this by a variety of seemingly ad hoc procedures such as fitting to the empirical measure generated by the data, and fitting to properties of auto-correlation functions. Statisticians, on the other hand, often use estimation procedures which fit diffusion processes to data by applying the maximum likelihood principle to the path-space density of the desired model equations, and through knowledge of the properties of quadratic variation. In this note we show that these procedures used by practitioners and statisticians to fit drift functions are, in fact, closely related and can be thought of as two alternative ways to regularize the (singular) likelihood function for the drift. We also present the results of numerical experiments which probe the relative efficacy of the two approaches to model identification and compare them with other methods such as the minimum distance estimator

    Nonparametric Bayesian methods for one-dimensional diffusion models

    Full text link
    In this paper we review recently developed methods for nonparametric Bayesian inference for one-dimensional diffusion models. We discuss different possible prior distributions, computational issues, and asymptotic results

    The Langevin Approach: An R Package for Modeling Markov Processes

    Full text link
    We describe an R package developed by the research group Turbulence, Wind energy and Stochastics (TWiSt) at the Carl von Ossietzky University of Oldenburg, which extracts the (stochastic) evolution equation underlying a set of data or measurements. The method can be directly applied to data sets with one or two stochastic variables. Examples for the one-dimensional and two-dimensional cases are provided. This framework is valid under a small set of conditions which are explicitly presented and which imply simple preliminary test procedures to the data. For Markovian processes involving Gaussian white noise, a stochastic differential equation is derived straightforwardly from the time series and captures the full dynamical properties of the underlying process. Still, even in the case such conditions are not fulfilled, there are alternative versions of this method which we discuss briefly and provide the user with the necessary bibliography

    Asymptotic equivalence of nonparametric diffusion and Euler scheme experiments

    Get PDF
    We prove a global asymptotic equivalence of experiments in the sense of Le Cam's theory. The experiments are a continuously observed diffusion with nonparametric drift and its Euler scheme. We focus on diffusions with nonconstant-known diffusion coefficient. The asymptotic equivalence is proved by constructing explicit equivalence mappings based on random time changes. The equivalence of the discretized observation of the diffusion and the corresponding Euler scheme experiment is then derived. The impact of these equivalence results is that it justifies the use of the Euler scheme instead of the discretized diffusion process for inference purposes.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1216 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A copula-based method to build diffusion models with prescribed marginal and serial dependence

    Full text link
    This paper investigates the probabilistic properties that determine the existence of space-time transformations between diffusion processes. We prove that two diffusions are related by a monotone space-time transformation if and only if they share the same serial dependence. The serial dependence of a diffusion process is studied by means of its copula density and the effect of monotone and non-monotone space-time transformations on the copula density is discussed. This provides us a methodology to build diffusion models by freely combining prescribed marginal behaviors and temporal dependence structures. Explicit expressions of copula densities are provided for tractable models. A possible application in neuroscience is sketched as a proof of concept

    Posterior Consistency via Precision Operators for Bayesian Nonparametric Drift Estimation in SDEs

    Get PDF
    We study a Bayesian approach to nonparametric estimation of the periodic drift function of a one-dimensional diffusion from continuous-time data. Rewriting the likelihood in terms of local time of the process, and specifying a Gaussian prior with precision operator of differential form, we show that the posterior is also Gaussian with precision operator also of differential form. The resulting expressions are explicit and lead to algorithms which are readily implementable. Using new functional limit theorems for the local time of diffusions on the circle, we bound the rate at which the posterior contracts around the true drift function
    • …
    corecore