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REMARKS ON DRIFT ESTIMATION FOR DIFFUSION PROCESSES

YVO POKERN∗, ANDREW M. STUART† , AND ERIC VANDEN-EIJNDEN‡

Abstract. In applications such as molecular dynamics it is of interest to fit Smoluchowski
and Langevin equations to data. Practitioners often achieve this by a variety of seemingly ad hoc

procedures such as fitting to the empirical measure generated by the data, and fitting to properties of
auto-correlation functions. Statisticians, on the other hand, often use estimation procedures which fit
diffusion processes to data by applying the maximum likelihood principle to the path-space density
of the desired model equations, and through knowledge of the properties of quadratic variation. In
this note we show that these procedures used by practitioners and statisticians to fit drift functions
are, in fact, closely related and can be thought of as two alternative ways to regularize the (singular)
likelihood function for the drift. We also present the results of numerical experiments which probe
the relative efficacy of the two approaches to model identification and compare them with other
methods such as the minimum distance estimator.

Key words. parameter estimation, diffusion process, nonparametric estimation, maximum
likelihood principle, minimum distance estimator, reversible diffusion process, molecular dynamics,
Langevin equation.

AMS subject classifications. 62M05 Markov processes: estimation 65C30 Stochastic differ-
ential and integral equations

1. Introduction. In many applications (such as molecular dynamics, econo-
metrics, atmospheric sciences and signal processing) it is of interest to fit a diffusion
process to a time-series. The data may come from experiments, or from the numeri-
cal simulation of larger and more complex models, either deterministic or stochastic.
The objective of the present paper is to discuss some issues that arise when apply-
ing a maximum likelihood inference method to this problem. In so doing, we will
highlight some connections between this approach, favored by statisticians, and other
approaches used in the physics and chemistry literature.

To introduce the maximum likelihood inference framework and some of the issues
that we will discuss, it is useful to consider first the specific case when it is known
that the data is consistent with an Itô stochastic differential equation of the form:

Ẋt = −∇V0(Xt) +
√

2β−1 Ẇt (1.1)

This equation is often referred to as the Smoluchowski or overdamped Langevin equa-
tion in the chemical-physics literature. Precise statements of the observations about
this problem given here will be provided in Section 2.1. In Section 2.2 we consider gen-
eral reversible diffusions and in Section 3 the (non-reversible) second order Langevin
equation.

In equation (1.1), Wt is a standard d-dimensional Brownian motion in Rd, β > 0 is
a constant playing the role of the inverse temperature, and V0 : Rd → R is a potential
which we assume C2, bounded from below and with a growth condition at infinity to
guarantee that e−βV0 is integrable. In this case, the process defined by (1.1) is ergodic
with respect to the Boltzmann-Gibbs measure associated with V0 whose density is

ρ0(x) = Z−1e−βV0(x) where Z =

∫

Rd

e−βV0(x)dx. (1.2)
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We assume that β is known and that we wish to estimate the potential V from the
data, i.e. from a sample path {Xt}t∈[0,T ] for some T > 0. For the time being we
assume that a continuous sample of the path is available; later on in the paper, we
will also discuss the problem when Xt is sampled at discrete times. To see how the
problem of estimating V given β can be cast into a maximum likelihood inference
problem, let Zt solve (1.1) for V0 ≡ 0 so that

Żt =
√

2β−1 Ẇt, (1.3)

and let P and Q be the path-space measures generated on [0, T ] by (1.1) and (1.3)
respectively. Then these measures are absolutely continuous with Radon-Nikodym
derivative

dP

dQ
= exp(−TIT (X)) (1.4)

where

IT (X) =
β

4T

∫ T

0

(

|∇V0(Xt)|2dt + 2〈∇V0(Xt), dXt〉
)

, (1.5)

and 〈·, ·〉 denotes the Euclidean inner product on Rd and | · | the Euclidean norm,
and the integral with respect to dXt is to be understood in the Itô sense. The
functional IT (X) given by equation (1.5) is proportional to the negative logarithm of
the probability density of the path {Xt}t∈[0,T ] with respect to the measure on path-
space generated by (1.3). When a single path {Xt}t∈[0,T ] is given, if we evaluate (1.5)
with potential V rather than V0, this object becomes a functional of V . This functional
is the negative of the log likelihood function for V :

IT (V ) =
β

4T

∫ T

0

(

|∇V (Xt)|2dt + 2〈∇V (Xt), dXt〉
)

(1.6)

Thus, it is natural to try to minimize (1.6) over V to obtain the maximum likelihood
estimator (MLE) for this function. Indeed, using (1.1), (1.6) can be written as

IT (V ) =
β

4T

∫ T

0

(

|∇V (Xt)|2 − 2〈∇V (Xt),∇V0(Xt)〉
)

dt

+

√
2β

2T

∫ T

0

〈∇V (Xt), dWt〉
(1.7)

Letting T → ∞, the stochastic integral in this expression tends to 0 almost surely
(a.s.), whereas the time integral converges a.s. toward an expectation with respect
to the equilibrium measure with density (1.2). In other words, as T → ∞, IT (V )
converges a.s. to the functional I∞(V ) given by

I∞(V ) =
β

4

∫

Rd

(

|∇V (x)|2 − 2〈∇V (x),∇V0(x)〉
)

ρ0(x)dx (1.8)

This functional is quadratic and convex in ∇V and, by completing the square, it is
clearly minimized when ∇V = ∇V0, i.e. when V = V0 + C where C is an arbitrary
(and irrelevant) constant. Thus the MLE for −∇V0 given by maximizing the limiting
functional (1.8) is indeed the actual drift in (1.1).
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The problem, however, is that the the data {Xt}t∈[0,T ] is finite, T < ∞, i.e. we
are obliged to work with (1.6) and have no access to its infinite time limit (1.8). To
see what problems this creates, let us first put (1.6) in a more convenient form by
converting the Itô stochastic integral 〈∇V (Xt), dXt〉 into the Stratonovich integral
using

〈∇V (Xt), ◦dXt〉 = 〈∇V (Xt), dXt〉 + β−1∆V (Xt)dt.

Since 〈∇V (Xt), ◦dXt〉 = dV (Xt) this gives

IT (V ) =
β

2T

(

V (XT ) − V (X0)
)

+
β

4T

∫ T

0

(

|∇V (Xt)|2 − 2β−1∆V (Xt)
)

dt (1.9)

The time integral in (1.9) can be transformed into a configuration integral using the
occupation measure µT defined such that, for any Borel set B ⊂ Rd, one has

µT (B) =
1

T

∫ T

0

1B(Xt)dt (1.10)

where 1B(x) is the indicator function of the set B. The measure µT is the finite
time equivalent of the equilibrium measure ρ0(x)dx entering (1.8). Using µT , we can
write (1.9) as

IT (V ) =
β

2T

(

V (XT ) − V (X0)
)

+
β

4

∫

Rd

(

|∇V (x)|2 − 2β−1∆V (x)
)

µT (dx). (1.11)

This expression (1.11) makes it apparent why an attempt to directly minimize this
functional over V is a bad idea. When d = 1, the occupation measure µT has the
scaled local time Lx

T /T of the process {Xt}t∈[0,T ] as a density, but Lx
T is only Hölder

continuous up to C0, 1

2 (R). Indeed, Lx
T has the fine-scale properties of a diffusion

process (cf. the Ray-Knight description of Brownian local times). In the appendix,
we show that (1.11) evaluated with µT (dx) = w(x)dx where w(x) is a one dimensional
Brownian motion, is not bounded from below. When d > 1, µT is singular with respect
to the Lesbegue measure since it is supported on {Xt}t∈[0,T ]. Thus IT (V ) must be
regularized in some way to become useful. There are at least three obvious ways to
perform such a regularization.

1. The first way, which we will not discuss in this paper, is to adopt a Bayesian
non-parametric approach in which a prior measure on V is introduced that is sup-
ported on sufficiently regular functions only. By sampling from this measure and using
the exponential of the negative of (1.6) or, equivalently, (1.11) as reweighting density,
it is possible to sample the posterior distribution of V given the data {Xt}t∈[0,T ]. This
approach is discussed in [16] and we refer the reader to that paper for details.

2. A second way to regularize (1.11) is to assume a parametric form for V , e.g.
as a linear combination of smooth basis functions fi(x),

V (x, θ) =

N
∑

j=1

θifi(x). (1.12)

where θ1, . . . , θN are weights. By substituting (1.12) into (1.6), one is left with a
quadratic function of θ = (θ1, . . . , θN ) ∈ RN

IT (θ) =
β

4T

∫ T

0

(

∣

∣

∣

N
∑

i=1

θi∇fi(Xt)
∣

∣

∣

2

dt + 2

N
∑

i=1

θi〈∇fi(Xt), dXt〉
)

. (1.13)
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For appropriate choice of fi(x), this quadratic function of θ is convex and therefore

has a unique minimum θ̂ which can be found by solving a linear algebraic system. This
approach is the one often adopted in the statistics literature to identify a parametric
approximation to the MLE of V . We will refer to it as the parametric approach.
Notice that it is crucial for this approach to work that the sum in (1.12) be finite, since
it is this which regularizes the functional (1.6); the actual (non-parametric) MLE for
V will not exist in general.

3. A third way to regularize (1.11) is to regularize the measure µT (dx) and replace
it by ρT (x)dx, where ρT (x) > 0 is a smooth probability density function. With this
substitution, (1.11) becomes

IT (V ) =
β

2T

(

V (XT ) − V (X0)
)

+ ĨT (V ) (1.14)

where

ĨT (V ) =
β

4

∫

Rd

(

|∇V (x)|2 − 2β−1∆V (x)
)

ρT (x)dx (1.15)

If T is large enough, it is reasonable to neglect the first term on the right-hand side
of (1.14), i.e. approximate IT (V ) by ĨT (V ). To identify the minimizer of ĨT (V ),
note that if ρT (x) > 0 and for potentials V such that limx→∞ ∇V (x)ρT (x) = 0, an
integration by parts yields

ĨT (V ) =
β

4

∫

Rd

(

|∇V (x)|2 + 2β−1〈∇V (x),∇ log ρT (x)〉
)

ρT (x)dx

=
β

4

∫

Rd

(

|∇V (x) + β−1∇ log ρT (x)|2 − β−2|∇ log ρT (x)|2
)

ρT (x)dx.

(1.16)

This last expression shows that the minimizer of ĨT (V ) is unique up to a constant
and given by

V̂ (x) = −β−1 log ρT (x) + C′ (1.17)

where C′ is an arbitrary constant. This expression for V is the one usually adopted
in the physics and chemistry literature and we will refer to it as the non-parametric

approach since (1.16) and, hence, (1.17) involve no direct parametrization of V . No-
tice however that this approach leaves as an auxiliary problem the issue of determining
ρT (x). Thus, rather than removing the issue of parameterisation, it merely displaces
it to ρT (x). This density can itself be obtained by minimization of some appropriate
functional (see (4.10) in the section on Numerics).

The calculations above show some of the issues that arise when a maximum likeli-
hood inference method is applied to estimate the drift (here −∇V0(Xt)) in a diffusion
(here (1.1)). They also uncover a connection between the maximum likelihood infer-
ence method often adopted by statisticians and the procedure of fitting V to some
empirical equilibrium density which is used by chemists and physicists. In the re-
mainder of this paper we will generalize this connection. Specifically:

1. In Section 2, we will clean up the calculations above and prove the facts that
we just listed. We will also outline how these calculations could be generalised to a
generic time-reversible diffusion and indicate that a connection between the maximum
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likelihood inference and the procedure of fitting the drift to some empirical equilibrium
density may exist in this case as well.

2. In section 3, we will generalize these conclusions to a specific non-reversible
diffusion of great practical importance, namely the Langevin equation, a hypo-elliptic
diffusion process found by coupling a Hamiltonian system to a heat bath via white
noise and damping.

3. In section 4, we will perform a series of numerical experiments to illustrate our
results and discuss a series of remaining issues: What is the influence of neglecting the
boundary terms in (1.14)? What happens when the data is sampled at discrete times
(in this case (1.6) and (1.9), and hence (1.6) and (1.11) are no longer equivalent)?
What are the options to estimate ρT (x) in (1.14)?

2. Drift inference for time-reversible processes.

2.1. Smoluchowski equation. In this section we make precise the results in
the Introduction.

First we analyze some properties of the log likelihood function IT (V ), written
either as in (1.6) or (1.11). We start by stating a theorem which indicates that
attempting to minimize (1.11) directly may be ill-advised. We do this in the special
case d = 1 and where the domain of integration is restricted to [0, 1] and boundary
terms are neglected, i.e. we consider the funtional:

IB(b) =

∫ 1

0

(

b2(x) − b′(x)
)

µ(dx) (2.1)

for b ∈ H1(0, 1).
Theorem 2.1. If µ(dx) in (2.1) is absolutely continuous with respect to Lebesgue

measure with density given by a realisation of the Brownian bridge, then the functional
IB(b) is almost surely not bounded below for b ∈ H1(0, 1).

Proof. See the appendix.
While singular in the sense above when T < ∞, the log likelihood function IT (V )

has a nice limit as T → ∞, as shown by the following:

Theorem 2.2. Assume that there exist C1, C2 > 0 such that for all x ∈ Rd

C1 + 〈x,∇V0(x)〉 ≥ C2|x|2

and that both V0(x) and V (x) are polynomially bounded. Then as T → ∞, the func-
tional IT (V ) in (1.6) converges a.s. to the functional I∞(V ) defined in (1.8).

This theorem is a consequence of the following lemma:

Lemma 2.3. Under the assumptions of Theorem 2.2, equation (1.1) is ergodic
with respect to the equilibrium measure with the density (1.2) and

lim sup
t→∞

√
2β

2T

∫ T

0

〈∇V (Xt), dWt〉 = 0 a.s. (2.2)

Proof. The ergodicity follows from [14]. Theorem 5.5 of Chapter 2 in [13] implies
that

lim sup
t→∞

|Xt|√
log t

≤
√

2e

C2β
a.s. (2.3)
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Let L denote the generator of the process (1.1). By the Itô formula we have

V (Xt) − V (X0) =

∫ T

0

(LV )(Xt)dt +

∫ T

0

〈∇V (Xt), dWt〉 a.s. (2.4)

Now divide (2.4) by T .

1

T
(V (Xt) − V (X0)) =

1

T

∫ T

0

(LV )(Xt)dt +
1

T

∫ T

0

〈∇V (Xt), dWt〉.

The bound (2.3) shows that the term 1
T (V (Xt) − V (X0)) tends to zero. Also, by

ergodicity

1

T

∫ T

0

(LV ) (Xt)dt →
∫

Rd

LV (x)ρ0(x)dx = 0

since L∗ρ0 = 0. Thus, (2.2) follows.

Next we analyze the parametric log likelihood function (1.13) used in the para-

metric approach. We have

Theorem 2.4. Let F = {fij} be the matrix with entries

fij =
1

T

∫ T

0

〈∇fi(Xt),∇fj(Xt)〉dt, i, j = 1, . . . , N (2.5)

and assume that F is positive definite. Then (1.13) has a unique minimizer. In
addition, this minimizer is then given by

θ̂ = F−1h (2.6)

where h is the vector with components

hi = − 1

T

∫ T

0

〈∇fi(Xt), dXt〉dt, i = 1, . . . , N. (2.7)

Furthermore, if the ∇fi are polynomially bounded then limT→∞ F exists and is almost
surely invertible.

Proof. Immediate.

Finally, we analyze the properties of the approximate log likelihood function
ĨT (V ) in (1.14) used in the non-parametric approach. An immediate consequence
of (2.3) is that the boundary term in (1.14) is negligible.

Theorem 2.5. Under the assumptions of Theorem 2.2, we have, for any ε > 0,
that

lim sup
t→∞

V (Xt)

tε
= 0 a.s. (2.8)

The next theorem shows that the minimization problem associated with (1.15)
has a unique solution as long as the density ρT in this functional satisfies some re-
quirements. To be able to state it more neatly, we introduce the space V as follows.
For any open and bounded subset U ⊂ Rd define

V(U) =

{

V ∈ H1(U) :

∫

U

V (x)dx = 0

}
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Theorem 2.6. Let ρT : Rd → R be smooth, ρT ∈ C∞(Rd). Furthermore, let U
be a bounded open subset of Rd and let ρT be bounded below on U : ∃ε > 0, ∀x ∈ U :
ρT (x) > ε. Then the minimizer of

inf
V ∈V(U)

β

4

∫

U

(

|∇V (x)|2 − 2β−1∆V (x)
)

ρT (x)dx (2.9)

is unique and given by

V̂ (x) = −β−1 log ρT (x) + C where C = β−1

∫

U

ρ(x)dx (2.10)

The theorem can be proved using results from [4] but the proof can also be carried
out by directly completing the square. The basic idea was given in the developments
made in (1.16).

2.2. The generic time-reversible diffusion process. In this section, we as-
sume that the data {Xt}t∈[0,T ] has been generated by the following Itô stochastic
differential equation:

Ẋt = b0(Xt) + σ0(Xt)dWt (2.11)

where b0 : Rd → Rd is the drift coefficient, σ0 : Rd × Rd → Rd is the diffusion
coefficient, and Wt is a standard d-dimensional Brownian motion. We assume that
the diffusion coefficient σ0(x) is known and satisfies

∃C > 0 : 〈η, σ0σ
T
0 (x)η〉 ≥ C|η|2 ∀x, η ∈ Rd (2.12)

and that we wish to estimate the drift b0(x). We also assume that the process gener-
ated by (2.11) is ergodic with respect to the equilibrium measure with density ρ0(x)
(which we do not know a priori) and that this process is time-reversible. This last
assumption means that

{Xt−T/2}t∈[−T/2,T/2] and {XT/2−t}t∈[−T/2,T/2] are equivalent in law

in the limit as T → ∞.
(2.13)

The time-reversibility also implies that b0(x), a0(x) = σ0σ
T
0 (x) and ρ0(x) are related

as

0 = b0ρ0 − 1
2div(a0ρ0) (2.14)

which expresses that a time-reversible process has no probability current at equilib-
rium. Note that since ρ0 is unknown to us (only σ0 and hence a0 = σ0σ

T
0 are assumed

to be available), (2.14) cannot be used a priori to determine b0. Nevertheless, the
non-parametric approach would be to simply approximate ρ0 in (2.14) by some
empirical density ρT and thereby obtain an estimate for b. Next we show that this
approach is closely related to the parametric approach in that both approaches
correspond to minimizing a different regularization of the likelihood functional for b0.

Proceeding as in the Introduction, we can derive the negative of the log likelihood
functional for the unknown drift b given the data {Xt}t∈[0.t]. Up to an irrelevant
constant, this functional is

IT (b) =
1

T

∫ T

0

(

|b(Xt)|2a0(Xt)
dt − 2〈b(Xt), dXt〉a0(Xt)

)

(2.15)
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where we introduced the following inner product and norm on the tangent space at
x ∈ Rd:

〈η, ξ〉a0(x) = 〈η, a0
−1(x)ξ〉 ∀η, ξ ∈ Rd,

|η|2a0(x) = 〈η, η〉a0(x) ∀η ∈ Rd.
(2.16)

This inner product and the norm are well defined since a0(x) is invertible at every
x ∈ Rd by assumption (2.12).

As in (1.6), the log likelihood function (2.15) for b is unbounded below in general
if the data is finite, T < ∞. We can however proceed as for the Smoluchowski
equation (1.1) along the following lines:

1. If we let T → ∞, (2.15) tends to a functional whose unique minimizer is b0.

2. If we parametrize b by the following form suggested by (2.14)

b(x) = 1
2div a0(x) − 1

2a0(x)∇V (x, θ) (2.17)

with V (x, θ) as in (1.12) (thus V (x, θ) is approximating − log ρ0), (2.15) becomes a
quadratic and convex function for θ = (θ1, . . . , θN ) whose unique minimizer can be
determined by solving a linear algebraic problem. This is the parametric approach.

3. There is an alternative way to regularize (2.15) which involves transform-
ing the time integral in (2.15) into an expectation with respect to the occupation
measure (1.10), and approximating µT (dx) by ρT (x)dx where ρT (x) is some smooth
density. Then the minimizer of this regularized log likelihood function is unique and
related to ρT in the same way as b0 is related to ρ0 in (2.14). This is the non-

parametric approach.

Let us analyze in more detail the statements made in these three points. The
statement made in point 1 is a simple consequence of using (2.11) to re-write (2.15)
as

IT (b) =
1

T

∫ T

0

(

|b(Xt)|2a0(Xt)
− 2〈b(Xt), b0(Xt)〉a0(Xt)

)

dt

− 2

T

∫ T

0

〈b(Xt), σ0(Xt)dWt〉a0(Xt)

(2.18)

In the limit as T → ∞, we would expect, by exploiting time-reversibility, that the
stochastic integral converges a.s. to zero; this is exactly what happens for the Smolu-
chowski equation (see Lemma 2.3). By ergodicity, the first integral converges a.s.
towards an expectation with respect to the equilibrium distribution with density ρ0.
Thus, IT (b) is expected to converge almost surely towards the functional I∞(b) given
by

I∞(b) =

∫

Rd

(

|b(x)|2a0(x) − 2〈b(x), b0(x)〉a0(x)

)

ρ0(x)dx (2.19)

If ρ0(x) > 0, completing the square shows that the minimizer of this functional is
unique and given by b(x) = b0(x), as needed. Of course, (2.19) is unavailable in
practice since the data is finite.

Consider now the statement made in point 2. If we insert (2.17) into (2.15) and
neglect all the irrelevant terms independent of θ, as well as an overall multiplicative
constant, we arrive at

IT (θ) = θT F̄ θ − 2θT h̄ (2.20)
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where F̄ = {f̄ij} is the matrix with entries

f̄ij =
1

T

∫ T

0

〈∇fi(Xt), a0(Xt)∇fj(Xt)〉dt, i, j = 1, . . . , N (2.21)

and h̄ is the vector with components

h̄i =
1

T

∫ T

0

(〈∇fi(Xt), div a0(Xt)〉dt − 2〈∇fi(Xt), dXt〉) , i = 1, . . . , N (2.22)

This is a quadratic function in θ which is strictly convex iff the matrix F is positive
definite. If this is the case, (2.20) has a unique minimizer given by

θ = F̄−1h̄ (2.23)

These results are the equivalent for (2.11) of Theorem 2.4 for the Smoluchowski equa-
tion (1.1). Note that these results remain true even if the process defined by (2.11)
is not time-reversible, since (2.20) remains the parametric approximation via (2.17)
of the negative log likelihood function for b irrespective of whether the process is
time-reversible or not.

To establish the statements made in point 3 above, we will use the following
relation between the Itô integral in (2.15) and the corresponding Stratonovich integral

∫ T

0

〈b(Xt), dXt〉a0(Xt) =

∫ T

0

〈b(Xt), ◦dXt〉a0(Xt)

+
1

2

∫ T

0

(

〈b(Xt), div a0(Xt)〉a0(Xt) − div b(Xt)
)

dt

(2.24)

Using this relation as well as the occupation measure µT of the process {Xt}t∈[0,T ],
(2.15) can be written at

IT (b) =

∫

Rd

(

|b(x)|2a0(x) + div b(x) − 〈b(x), div a0(x)〉a0(x)

)

µT (dx)

− 2

T

∫ T

0

〈b(Xt), ◦dXt〉a0(Xt)

(2.25)

The stochastic integral in this expression is a correction term which we expect to
vanish in the limit as T → ∞, i.e. we would expect We have

lim sup
T→∞

1

T

∫ T

0

〈b(Xt), ◦dXt〉a0(Xt) = 0 a.s. (2.26)

Thus, if we assume that T is large enough so that we can neglect the stochastic
integral term in (2.25) and we approximate the occupation measure µT (x) by ρT (x)dx
where ρT (x) is a smooth density with bounded support, we can approximate the log
likelihood function (2.25) by

ĨT (b) =

∫

Rd

(

|b(x)|2a0(x) + div b(x) − 〈b(x), div a0(x)〉a0(x)

)

ρT (x)dx (2.27)
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This functional is the equivalent for (2.11) of the expression (1.15) for the Smolu-
chowski equation (1.1). Given the smoothness of the density we can perform the
following partial integration:

ĨT (b) =

∫

Rd

(

|b(x)|2a0(x)ρT (x) − b(x) · ∇ρT (x) − 〈b(x), diva0(x)〉a0(x)ρT (x)
)

dx,

(2.28)
where the boundary terms vanish since ρT (·) has bounded support. This functional
has much nicer properties than the original IT (b) in (2.15) as shown by the following
result:

Theorem 2.7. Let U be a bounded open subset of Rd and assume that ρT ∈
C∞(U) is bounded below on U : ∃ε > 0 : ρT (x) > ε ∀x ∈ U . Furthermore, assume
that a0(·) ∈ C∞(U) is positive definite symmetric everywhere on U and its lowest
eigenvalue is bounded below: infx∈U λmin(a0(x)) > 0. Then for the functional

˜̃IT (b) =

∫

U

(

|b(x)|2a0(x)ρT (x) − b(x) · ∇ρT (x) − 〈b(x), div a0(x)〉a0(x)ρT (x)
)

dx

(2.29)
the minimizer of

inf
b∈L2(U)

˜̃IT (b)

is unique and given by

b̃ = 1
2div(a0ρT )/ρT (x ∈ U) (2.30)

Proof. Rewrite the functional ˜̃I introducing an extra factor of ρT and a0 in the
middle term to recognise it as a quadratic form in b:

˜̃I(b) =

∫

U

(

|b(x)|2a0(x) − 〈b(x), a0(x)
∇ρT (x)

ρT (x)
〉a0(x) − 〈b(x), diva0(x)〉a0(x)

)

ρT (x)dx.

Now complete the square to obtain

˜̃I(b) =

∫

U

(

∣

∣

∣

∣

b(x) − a0(x)

2

∇ρT (x)

ρT (x)
− 1

2
diva0(x)

∣

∣

∣

∣

2

a0(x)

−
∣

∣

∣

∣

a0(x)

2

∇ρT (x)

ρT (x)
− 1

2
diva0(x)

∣

∣

∣

∣

2

a0(x)

)

ρT (x)dx

Since ρT (·) is strictly positive on U , this functional is minimised when

0 = b − a0(x)

2

∇ρT

ρT
− 1

2
diva0. (x ∈ U) (2.31)

This is an algebraic equation for b whose solution is (2.30).

Relation (2.30) is the equivalent of (1.17) for a generic time-reversible process and
shows how the non-parametric approach of deducing the drift coefficient from the
equilibrium density and the diffusion coefficient can be generalized to this case.

10



An interesting consequence of the calculations above is that the time-ordering
of the data is not very relevant for time-reversible processes. This is clear for the
non-parametric approach based on (2.27) and leading to (2.30) in which only the
empirical density ρT (x) plays a role. Similarly, we expect that time-ordering plays
only a small role in the parametric approach based on regularizing the maximum
likelihood function leading to (2.20) via parametrization of the drift b. This conjecture
will be verified in the numerical experiments of section 4.

3. Non-reversible processes: the Langevin equation. The calculations in
section 2 rely heavily on the property that the process is time-reversible. In particular,
for a non-reversible process, we would not expect 2.26 to hold in general, hence we
will not be able to approximate the log likelihood function by (2.27) (the contribution
from the stochastic integral term in (2.25) is missing). Another way to look at the
problem is to realize that, for a non-reversible process, relation (2.14) is replaced by

j0(x) = b0ρ0 − 1
2div(a0ρ0) (3.1)

where j0(x) is a divergence-free vector field accounting for the non-zero equilibrium
probability current of the non-reversible process. Equation (3.1) implies that it is
not straightforward to generalize the non-parametric approach to non-reversible
processes since, on top of the diffusion tensor a0 and the equilibrium density ρ0 (or
some approximations thereof), we need an approximation of the current j0 to deduce
the drift b0. This approximation of j0 will not be available in general. Despite all
this, in this section we show that the non-parametric approach can be generalized
to a specific type of non-reversible processes which frequently arises in applications,
and that this approach is again closely connected to the parametric approach for
these processes. The specific type of non-reversible processes are those governed by
the Langevin equation:

Q̈t + β0D0Q̇t + ∇V0(Qt) =
√

2D0Ẇt (3.2)

where β0 is the inverse temperature, D0 is the diffusivity and Wt is a standard Brow-
nian motion. (Thus the friction coefficient γ is related to β0 and D0 via the Einstein
relation: D0 = γ/β0.) We assume that D0 is known and we wish to find the potential
V0 and the inverse temperature β0.

If we set Pt = Q̇t (Qt is referred to as position, Pt as momentum) then from (3.2)
we obtain the following system of equations:

{

Q̇t = Pt,

Ṗt = −β0D0Pt −∇V0(Qt) +
√

2D0 Ẇt.
(3.3)

Note that since the noise only enters the equation for Pt, (3.3) does not define an
elliptic diffusion; it is, however, hypo-elliptic, see [14]. If one assumes that V0 satisfies
the assumptions in Theorem 2.2, the process generated by (3.3) is ergodic with respect
to the equilibrium distribution with density

̺0(q, p) = ρ0(q)g0(p) (3.4)

where

ρ0(q) = Z−1e−β0V0(q), g0(q) = (2πβ0)
−d/2e−

1

2
β0|p|

2

(3.5)
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Note in particular that the equilibrium distribution is Gaussian in the momentum
coordinate.

The Radon-Nikodym derivative of the measure on path-space for (3.3) with re-
spect to the measure generated by

Ṗt =
√

2D0 Ẇt. (3.6)

is given by

exp
(

− T

2D0
IT (Q, P )

)

(3.7)

Here

IT (Q, P ) =
1

2T

∫ T

0

(

|β0D0Pt + ∇V0(Qt)|2dt + 2〈β0D0Pt + ∇V0(Qt), dPt〉
)

(3.8)

where it is understood that Qt and Pt are related as Q̇t = Pt as in (3.3). For fixed
data {Qt, Pt}t∈[0,T ], we may evaluate (3.8) at V and β different from V0 and β0. The
resulting functional is then the negative of the log likelihood function for V and β:

IT (V, β) =
1

2T

∫ T

0

(

|βD0Pt + ∇V (Qt)|2dt + 2〈βD0Pt + ∇V (Qt), dPt〉
)

(3.9)

As in the Smoluchowski case, the log likelihood function (3.9) must be regularized
to be useful. The simplest way is to parametrize V (q) as in (1.12), in which case (3.9)
reduces to a function of β and θ = (θ1, . . . , θN) which can then be minimized over these
parameters. This is the parametric approach. Next we investigate another type of
regularization of (3.9) leading to the equivalent of the non-parametric approach.

We begin by making a few transformations on (3.9). First, notice that an inte-
gration by parts using the Itô formula and Q̇t = Pt shows that

∫ T

0

〈∇V (Qt), dPt〉 = −
∫ T

0

〈Pt,∇∇V (Qt)Pt〉dt +
[

〈∇V (Qt), Pt〉
]T

0

∫ T

0

〈Pt, dPt〉 =
1

2

[

|Pt|2
]T

0
− dD0T.

Thus

IT (V, β) =
1

T

[

βD0|Pt|2 + 〈∇V (Qt), Pt〉
]T

0

− dD0
2β +

1

2T

∫ T

0

(

|βD0Pt + ∇V (Qt)|2 − 2〈Pt,∇∇V (q)Pt〉
)

dt

(3.10)

Under suitable conditions on the potentials V0 and V , the boundary contributions
from the two integrations by parts converge almost surely to zero as T → ∞ as made
precise in the following lemma:

Lemma 3.1. Assume that ∃Ci > 0 i = 1, . . . , 5, where C1 < 1 and m ∈ Z+ such
that:

• 1
2 〈∇V0(q), q〉 ≥ C1V0(q) + C2|q|2 − C3 ∀q ∈ Rd;

• 0 ≤ |∇V (q)| ≤ C4

[

1 + |q|2m−1
]

∀q ∈ Rd

• 0 ≤ |∇V0(q)| ≤ C5

[

1 + |q|2m−1
]

∀q ∈ Rd.
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Then there is a C > 0 such that:

lim sup
t→∞

|Pt|2 + |Qt|2
log t

≤ C a.s.

and

lim sup
t→∞

|〈∇V (Qt), Pt〉| + |Pt|2
t

= 0 a.s.

Proof. Let H(q, p) denote the following perturbed Hamiltonian:

H(q, p) =
1

2
|p|2 + V (q) + D0β0〈p, q〉 + D2

0β
2
0 |q|2 + 1.

Then

H(q, p) ≥ 1 +
1

8
|p|2 +

D2
0β

2
0

3
|q|2.

The arguments in Section 3 of [14] show that there exist ξ6, ξ7, ξ8, ξ9 > 0 such that:

LH ≤ ξ6 − ξ7H

and

∣

∣

∣

∣

〈

∇H,

(

0√
D0

)〉∣

∣

∣

∣

2

≤ ξ8 [|p| + |q|]2 ≤ ξ9H(q, p).

Thus, applying the Itô formula to eξ7tH(q(t), p(t)) and use of arguments similar to
those in Theorem 5.5 of Chapter 2 in [13], but applied to H(q, p) instead of |p|2 + |q|2,
give the first result. The second result follows since ∇V (q) is assumed polynomially
bounded.

The ergodicity of the process together with the lemma imply that as T → ∞
IT (V, β) converges a.s. to the functional I∞(V, β) given by

I∞(V, β) = −dD0
2β +

1

2

∫

Rd×Rd

(

|βD0p + ∇V (q)|2 − 2〈p,∇∇V (q)p〉
)

̺0(q, p)dqdp

(3.11)
Using the fact that ̺0(q, p) is a product of two densities, ̺0(q, p) = ρ0(q)g0(p), and
that g0(p) is Gaussian, the integral over the momentum in (3.11) can be performed
explicitly. The result can be written as

I∞(V, β) =
1

2

∫

Rd

(

|∇V (q))|2 − 2β0
−1∆V (q)

)

ρ0(q)dq + dD0
2
(

1
2β2/β0 − β

)

(3.12)

The integral on the right-hand side is, up to an irrelevant constant, the same as the
one in (1.15) and it is the only term involving V . As a result, the minimum of (3.12)
over V is reached when V = V0 + C, where C is an arbitrary constant. Similarly, the
last term in (3.12) is minimized when β = β0. Thus we conclude that, in the limit
as T → ∞, the log likelihood function for V0 and β0 has these parameters as unique
maximizers.
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When T is finite, however, we need to proceed differently. First, we can replace
the time integral in (3.10) by an expectation with respect to the occupation measure
of the process {Qt, Pt}t∈[0,T ]:

IT (V, β) =
1

T

[

βD0|Pt|2 + 〈∇V (Qt), Pt〉
]T

0

− dD0
2β +

1

2

∫

Rd×Rd

(

|βD0p + ∇V (q)|2 − 2〈p,∇∇V (q)p〉
)

µT (dq, dp)
(3.13)

Assuming that T is large enough so that we can neglect the boundary terms in (3.10)
we are left with the terms on the second line in (3.13). To regularize them, we must
regularize µT (dq, dp) by some ̺T (q, p)dqdp. Consistent with (3.4), we assume that the
empirical density ̺T (q, p) factorizes as ̺T (q, p) = ρT (q)gT (p), where ρT (q) and gT (p)
are densities which can be estimated separately by splitting the data into {Qt}t∈[0,T ]

and {Pt}t∈[0,T ]. Consistent with (3.5), we can further assume that gT (p) is a Gaussian
density of the form

gT (p) = (2πβT )−d/2e−
1

2
βT |p|2 (3.14)

where βT > 0 is a parameter which can be estimated from the data as

β−1
T =

1

dT

∫ T

0

|Pt|2dt. (3.15)

Substituting ̺T (q, p)dqdp for µT (dq, dp) in the integral term in (3.13) and using (3.14),
the integral over the momentum can be performed explicitly. This gives the following
approximation for the terms on the second line in (3.13):

1

2

∫

Rd

(

|∇V (q))|2 − 2β−1
T ∆V (q)

)

ρT (q)dq + dD0
2
(

1
2β2/βT − β

)

(3.16)

This functional is similar to (3.11), except that it involves the empirical ρT and βT

instead of the actual ρ0 and β0. The following theorem is thus analogous to Theorem
2.6.

Theorem 3.2. Let U ⊂ Rd be open and bounded. Suppose that ρT is bounded
below on U , i.e. ∃ε > 0 ∀x ∈ U : ρT (x) > ε holds. Assume furthermore that βT > 0.
Then the functional

˜̃Ih(V, β) =
1

2

∫

U

(

|∇V (q)|2 − 2β−1
T ∆V (q)

)

ρT (q)dq + dD2
o

(

1

2
β2/βT − β

)

(3.17)

has a unique minizer (V, β) in H̄1(U) × R, where the bar denotes functions of mean
zero. This minimizer is given by

V̂ = −β−1
T log ρT (x) + C, β̂ = βT , (3.18)

where the constant C is such as to ensure that V̂ has mean zero.
Proof. First establish that β̂ = βT which is straightforward as β only occurs in

the second term. The rest of the proof proceeds analogously to Theorem 2.6.
Thus, the non-parametric approach can be generalized to the Langevin equa-

tion and leads to the fitting of V to the empirical measure, similarly to what we found
in the case of the Smoluchowski equation. Furthermore, the inverse temperature β is
estimated from the variance of the momentum in the empirical measure.
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4. Numerical Experiments.

4.1. Setup. In this section we perform a series of numerical experiments on a
simple model system to illustrate the results obtained in the previous sections, in
particular the relationship between the practitioners’ and statisticians’ approach to
drift estimation. These experiments will also allow us to investigate two issues that we
have left open so far. The first is what is the impact in the parametric approach

of having a data set sampled at discrete points in time rather than continuously?
The second issue is how to obtain the approximate density ρT (x) needed in the non-

parametric approach. The model system we will investigate is the one-dimensional
diffusion

Ẋt = −X3
t +

3

2
Xt +

3

2
Ẇt, X0 = 0. (4.1)

This equation is a special case of the Smoluchowski equation (1.1) with

V0(x) =
1

4
x4 − 3

4
x2 (4.2)

and β = 8/9. To generate the data, we integrate (4.1) using the Euler-Maruyama
scheme with time-step ∆t for NT = ⌊T/∆t⌋ steps, i.e. using

X(j+1)∆t = Xj∆t − X3
j∆t∆t +

3

2
Xj∆t∆t +

3

2

√
∆t ξj , j = 0, . . . , NT − 1, (4.3)

with X0 = 0 and where {ξj}j=0,...,NT−1 are independent Gaussian variables with
mean 0 and variance 1. The value of ∆t and T will be varied to measure the impact
of these parameters. The Euler-Maruyama scheme produces a discrete time sample
{Xj∆t}j=0,...,NT

which we will use as data. For simplicity, we will denote this data
set as {Xj}j=0,...,NT

in the sequel.

In the parametric approach we use the following polynomial representation of
the force b0(x) = −V ′

0(x) = −x3 + 3
2x:

b(x, θ) =

3
∑

i=0

θix
i. (4.4)

Equivalently, this means that we parametrize the potential V0(x) as

V (x, θ) =

3
∑

i=0

θix
i+1

i + 1
. (4.5)

Based on this parametrization, and consistent with the time-discretization used in (4.3),
we adopt the following discretized version of the log likelihood function (1.13)

IT (θ) =
1

T

N
∑

j=0

(

|b(Xj , θ)|2 ∆t − 2b(Xj, θ) (Xj+1 − Xj)
)

. (4.6)

The minimization of (4.6) gives rise to a linear algebraic system for θ = (θ0, . . . , θ3)
which is easy to solve (the solution is similar to (2.23) in the continuously-sampled

case). We refer to this solution as the MLE θ̂.
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In the non-parametric approach the main issue is the evaluation of the empir-
ical density ρT (x) in (1.15) and (1.17). To obtain results that can be easily compared
with those of the parametric approach we will parametrize ρT as

ρT (x, θ) = Z−1(θ)e−βV (x,θ) where Z(θ) =

∫

R

e−βV (x,θ)dx (4.7)

and β = 8/9 is given. To then determine ρT (x, θ), we test and compare three different
methods. The first method is based on estimating a discretization of the empirical
density obtained by a standard histogram method using an even number K of bins
centered at ck = 8k/K for k = −K/2, . . . , K/2. The bins are spaced equidistantly
and the small number of samples outside [−4, 4] are discarded. Denoting by ρ̂k this
empirical density, we then obtain θ = (θ0, . . . , θ3) by minimizing

K/2
∑

k=−K/2

|log ρ̂k + βV (ck, θ)|2 (4.8)

This objective function is the discrete analog of the L2 norm of the difference between
−βV (x, θ) and the log of a (putative) continuous approximation of the empirical
density ρk. Note that this is a straightforward least squares problem of dimension
K, so this is easily solved by standard methods. We refer to optimising (4.8) as the

practitioners’ method, and call θ̂ optimising (4.8) the PME.
For the second method, note that in one-dimension, the occupation measure µT

has the scaled local time LT (x)/T as density, so one can search the minimizer of

∫

R

|ρT (x, θ) − LT (x)/T |2 dx (4.9)

which measures the L2 distance between ρT (x, θ) and the scaled local time LT (x)/T .
To adapt this to time-discrete observations, it is possible to expand the square

and then approximate the local time as

LT =
T

NT

NT
∑

j=0

δXj
.

This results in estimation via minimizing the following objective function over θ:

∫

R

ρ2
T (x, θ)dx − 2

T

NT
∑

j=0

ρT (Xj , θ) (4.10)

The third method is based on a coarsened version of (4.10) in which we use ρ̂k to
replace (4.10) by

K
∑

k=−K

ρ2
T (ck, θ) − 2ρT (ck, θ)ρ̂k (4.11)

Minimizing (4.11) is slightly less accurate than minimizing (4.10), but it is computa-
tionally less expensive if the number of bins is significantly smaller than the number
of data points in the time-series, K ≪ NT . The computational cost involved in mini-
mizing (4.10) compells us to use (4.11), but we study its behaviour for several choices
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of K, the number of bins in the histogram. To optimise (4.11) we use steepest de-

scent together with a line search strategy and refer to the optimal θ̂ as the minimum
distance estimator (MDE).

More generally, using a histogram as a means of summarising the data not only
smoothes the empirical density but also makes optimisation easier. In the case of
the estimator (4.8), it is even unclear how this estimator could be used with the
unsmoothed discrete time empirical density. Various alternative ways of obtaining
a smoothed empirical density ρ̂ from the discrete time observations Xj are conceiv-
able. Established methods include kernel density estimators and even nonparametric
density estimation.

4.2. Connections via Correlation. In order to establish that the link between
the MLE (obtained from (4.6)) and the PME (obtained form (4.8) persists for dis-
cretely observed data, we wish to study the stochastic dependency between the PME
and the MLE understood as random variables.

Having verified that asymptotic unbiasedness and a suitable decay of variance are
indeed observed for our implementation of these estimators, we consider that these
results are standard at least for the MLE, so that we do not show them here in detail.

Since applied interest resides in the invariant density and the empirical measure,
it seems interesting to first compare MLE and density-based estimators at the level of
densities. To do this, we perform numerical simulations using K = 50 bins for a final
time of T = 100 (and ∆t = 0.01) and compute the invariant density ρ(θ̂, ·) induced

by MLE estimates θ̂ of {θi}3
i=0. A typical case is shown in Figure 4.1 and repeated

experiments computing the bin-wise correlation of deviations from the true invariant
density ρ (whose evaluation at ck we denote by ρk = ρ(ck)), namely

α =

∑K/2
k=−K/2 (ρ̂k − ρk) ·

(

ρ(θ̂, ck) − ρk

)

√

∑K/2
k=−K/2 (ρ̂k − ρk)

2 ·
√

∑K/2
k=−K/2

(

ρ(θ̂, ck) − ρk

)2
,

show high correlations as visible in the histogram in Figure 4.2. An MDE or PME
that now attempts to fit the empirical density ρ̂ or its logarithm using some least
squares method would hence be expected to yield drift parameter estimates θ̂ whose
deviations from θ are correlated with the MLE estimates’ deviations.

To investigate whether this is so, it is useful to note the experimental observation
that all three estimators display an approximately Gaussian distribution. We use
the final time T = 160 and the timestep ∆t = 0.002 and MDE and PME each
use K = 50 bins throughout. We evaluate N = 1000 realisations each of MDE,

MLE and PME to produce estimates of {θ(k)
3 }N

k=1 of θ3. We then standardise these
estimates subtracting the mean and dividing by the standard error. Histograms and
Quantile-Quantile-Plots of these parameter estimates are given in Figures 4.5, 4.3
and 4.4 respectively. Furthermore, we apply a Kolmogorov-Smirnov test of normality
and report the obtained p-values in these Figures. In all three cases, the observed
p-value is above p = 0.88 so that the observed evidence against normality using the
Kolmogorov-Smirnov test statistic is considered very weak. It should be pointed
out that for smaller final times, the distribution of parameter estimates does not
approximate a Gaussian as closely as this; theorems on (local) asymptotic normality
that can be found for the MLE and MDE in continuous time e.g. in [11] only suggest
normality for large final times.
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N=1000, KS test: p−value=0.9881

Fig. 4.4. Test of Normality for the PME
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N=1000, KS test: p−value=0.88232

Fig. 4.5. Test of Normality for the MDE
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Fig. 4.6. Correlations of drift parameter deviations for MDE, PME and MLE

The dotted lines indicate 33% quantile bands.

It is now appropriate to study correlations as a measure of independence, so we
consider the deviations of the three estimators of θ3 from their respective means as a
function of final time. Plotting their averaged correlations over at least Nav = 1000
realisations each as a function of final time T yields the plot in Figure 4.6. It seems
that the maximal obtainable correlation coefficient for is around 0.9 for the MLE-PM
pair. As would be expected from the analytical link of these estimators, a decline of
correlation is observed as the final time T is decreased.

Consulting Figure 4.7, it can be seen that the number of bins has only a small
influence on the observed correlation of the correlation between MLE and PME es-
timates. We view this as an indication that other smoothing methods to arrive at ρ̂
would not yield significantly lower correlations.

4.3. Influence of Boundary Conditions at Finite T . The approximation of
ignoring boundary terms in going from (1.14) to (1.15) is good in the limit of large
final times, as was shown in Theorem 2.5. In this subsection, we will briefly sketch the
influence of ignoring these boundary terms for finite, even small final times. To do this
most easily, we introduce a variant of the maximum likelihood estimator (abbreviated
to MLE2) obtained by minimizing the following objective function:

I(2)
T [θ] =

N
∑

j=0

(

|b(Xj , θ)|2 ∆t + σ2b′(Xj , θ)∆t
)

. (4.12)

Note that this is similar to a discretisation of (2.22) but after having performed
a partial integration in the spirit of (2.24) to remove the stochastic integral and
neglecting the boundary terms arising from integrating up the resulting Stratonovich
integral (whereas the MLE would have been attained by discretising straight away,
not performing any partial integrations). It should be compared with IT [θ] in (4.6).

In fact, the deviation of the correlation between MLE2 and MLE from 1 should
indicate the influence of the initial-condition (and final value) related term on the
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parameter estimates. Using a similar experimental setup (with ∆t = 0.0002 this
time), we compute the correlation of the MLE2 estimate and the MLE which results
in Figure 4.8.

The remarkably high degree of correlation indicates that the first term which is
of order O( 1

T ) is of little influence for the final times considered in this plot. It does,
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however, decline for small final times and the onset of this decline around T = 10 is
compatible with the decline of correlation observed in Figure 4.6.

5. Conclusions and Future Work. By analyzing different procedures to reg-
ularize the likelihood function for the drift of a diffusion, we have highlighted some
links between the maximum likelihood principle used widely in the statistical litera-
ture, and the practitioners’ estimator based on fitting the logarithm of the empirical
measure to the drift. These links have been further substantiated through selected
numerical examples. In the special case of gradient diffusions these estimators are
even more closely linked as their deviations from the mean value satisfy the same
statistics to leading order.

At first glance the minimum distance estimator seems to be close to the non-

parametric approach, but our analysis shows that the link between the parametric

approach and the non-parametric approach is far closer.

This paper leaves open many avenues of further enquiry:

• Our work has been exclusively concerned with reversible problems with equilib-
rium distribution e−βV (q), or non-reversible problems with the equilibrium distribu-
tion of the Boltzmann-Gibbs form e−βH(q,p), with H(q, p) = 1

2 |p|2 + V (q) (separable
and quadratic in the momenta). This is natural for examples arising in molecular
dynamics. It would also be interesting to perform estimation for processes involving
colored noise such as

Q̈t + ∇V (Qt) = BṘt

where Rt is a suitable m-dimensional Ornstein-Uhlenbeck process involving Q̇t to
satisfy fluctuation dissipation. The process (Qt, Q̇t, Rt) then has marginal measure,
after integrating out R, of Boltzmann-Gibbs form.

• For problems arising in the e.g. atmospheric sciences [12], more complex dis-
tributions will be required. A characterization of the class of stochastic processes
for which the link between the parametric approach and the non-parametric

approach can be established would be desirable.

• The option of regularising the likelihood functional (1.11) by including a higher
order differential operator to ensure coercivity has been highlighted. This will be
pursued for the 1D case in [16] in the framework of Bayesian nonparametric drift
estimation.

• Our results rely heavily on the fact that the diffusion coefficient is assumed
known. Whilst it is statistical folklore that drift estimation is considerably harder than
diffusion estimation (see e.g. [19], [11]), in that the quadratic variation in principle
reveals the diffusion coefficient, it is common practical experience with real data
that diffusion estimation is the harder problem. This is because the data is often
incompatible with a diffusion, or with the desired diffusion, at small time-scales, see
e.g. [17]. To overcome this, practitioners often use time-correlation information, or
other information concerning O(1) time-scales, to estimate the diffusion coefficient
– see [7], [15] and [22] for example. Furthermore, multiplicative noise models are
often appropriate. See [8] and [12], for example, in the context of molecular dynamics
and the atmospheric sciences respectively. A systematic nonparametric approach
to the problem of diffusion matrix estimation in multiple dimensions and for O(1)
spaced data would be very desirable. See [21] for an overview of parametric diffusion
estimation in this context.
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6. Appendix. Let us consider the random functional

IB[b] =

∫ 1

0

b2(x)w(x) + b′(x)w(x)dx. (6.1)

where b(·) ∈ H1(0, 1) and w(x) is a standard Brownian bridge. We claim that this
functional is not bounded below and state this as a theorem:

Theorem 6.1. There almost surely exists a sequence b(n)(·) ∈ H1(0, 1) such that

lim
n→∞

IB[b(n)] = −∞ a.s.

Proof. For the Brownian bridge we have the representation

w(x) =

∞
∑

i=1

sin(iπx)

i
ξi (6.2)
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where the {ξi}∞i=1 are a sequence of iid normal N (0, 1) random variables. This series
converges in L2(Ω; L2((0, 1), R)) and almost surely in C([0, 1], R), see [9].

Now consider the following sequence of functions b(n):

b(n)(x) =

n
∑

i=1

ξi

i
cos(iπx). (6.3)

We think of a fixed realisation ω ∈ Ω of (6.2) for the time being and note that
{w(x) : x ∈ [0, 1]} is almost surely bounded in L∞((0, 1), R), so if there exists a C > 0
(which may depend on {ξi}∞i=0) such that

‖b(n)‖L2 < C ∀n ∈ N (6.4)

the first integral in (6.1) will stay finite. By Parseval’s identity, it is clear that for
the sequence of functionals (6.3) this will be the case if the coefficients ξi

i are square-
summable.

Computing the second summand in (6.1) is straightforward since the series ter-
minates due to orthogonality:

∫ 1

0

(

∞
∑

i=1

sin(iπx)

i
ξi

)

·





n
∑

j=1

ξj

j
cos(jπx)





′

dx = −π

2

n
∑

j=1

ξ2
j

j
.

It can now be seen that (6.1) is unbounded from below if the following two con-
ditions are fulfilled:

lim
n→∞

n
∑

j=1

1

j
ξ2
j = ∞ (6.5)

lim
n→∞

n
∑

j=1

1

j2
ξ2
j < ∞ (6.6)

We finally allow ω to vary and seek to establish that the conditions (6.5) and
(6.6) are almost surely fulfilled. To do this, first note that the random variables
being summed are independent. Thus, by the Kolmogorov 0-1 law the probability for
convergence is either zero or one. We proceed by applying Kolmogorov’s Three-Series
Theorem (theorem 12.5 in [23]) to each of the two sequences to establish (6.5) and
(6.6).

We start by treating (6.5). Denote by Xj |K the truncation of the random variable
for some K > 0 in the sense:

Xj |K (ω) =

{

Xj(ω) if |Xj(ω)| ≤ K
0 if |Xj(ω)| > K

.

To abbreviate notation, define the following two sequences of random variables:

Xj =
1

j
ξ2
j

Yj =
1

j2
ξ2
j

Now consider the summability of expected values for the sequence Xj : since ξ2
j follows

a χ-squared distribution with one degree of freedom, its expected value is one. For
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the truncated variable Xj |K , for any K > 0, there will be some j∗ so that for all
j ≥ j∗ we have that

E(Xj |K) = E

[

1

j

(

ξ2 |jK
)

]

>
1

2j

Therefore, the expected value summation fails as follows:

∞
∑

j=1

E(Xj |K) =

∞
∑

j=1

1

j
E
(

ξ2 |jK
)

≥
∞
∑

j=j∗

1

2j
= ∞

Therefore, the series
∑∞

j=1 Xj diverges to infinity almost surely, thus (6.5) is estab-
lished.

Now let us establish (6.6) using the Three-series theorem. First check the summa-
bility of the expected values:

∞
∑

j=1

E(Yj |K) ≤
∞
∑

j=1

EYj =
∞
∑

j=1

1

j2
< ∞

Now let us establish the summability of the variances:

∞
∑

j=1

Var(Yn |K) ≤
∞
∑

j=1

VarYn

=

∞
∑

j=1

1

j4
Varξ2

j

= 2

∞
∑

j=1

1

j4
< ∞

where we used that ξ2
j follows a χ-squared distribution with one degree of freedom

and hence has variance Varξ2
j = 2. Finally, to establish the summability of the tail

probabilities we use the following argument for any K > 0:

∞
∑

j=1

P (|Yj | > K) ≤
∞
∑

j=1

1

K
E|Yj |

≤ 1

K

∞
∑

j=1

1

j2
< ∞

where we have used the Markov inequality and the previous calculation of the expected
value of Yj = |Yj |.
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To put everything together let us reconsider the functional I[b]:

I[b(n)] =

∫ 1

0

(

b(n)
)2

(x)w(x) +
(

b(n)
)′

(x)w(x)dx

≤
(

sup
x∈[0,1]

w(x)

)

∫ 1

0

(

b(n)
)2

(x)dx − π

2

n
∑

j=1

1

j
ξ2
j

≤
(

sup
x∈[0,1]

w(x)

)

1

2

n
∑

j=1

Xj −
π

2

n
∑

j=1

Yj

Now use the almost surely true convergence and divergence statements (6.5) and (6.6)
to conclude:

lim
n→∞

I[b(n)] = −∞ a.s.
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