2,476 research outputs found

    Remaining useful life estimation in heterogeneous fleets working under variable operating conditions

    Get PDF
    The availability of condition monitoring data for large fleets of similar equipment motivates the development of data-driven prognostic approaches that capitalize on the information contained in such data to estimate equipment Remaining Useful Life (RUL). A main difficulty is that the fleet of equipment typically experiences different operating conditions, which influence both the condition monitoring data and the degradation processes that physically determine the RUL. We propose an approach for RUL estimation from heterogeneous fleet data based on three phases: firstly, the degradation levels (states) of an homogeneous discrete-time finite-state semi-markov model are identified by resorting to an unsupervised ensemble clustering approach. Then, the parameters of the discrete Weibull distributions describing the transitions among the states and their uncertainties are inferred by resorting to the Maximum Likelihood Estimation (MLE) method and to the Fisher Information Matrix (FIM), respectively. Finally, the inferred degradation model is used to estimate the RUL of fleet equipment by direct Monte Carlo (MC) simulation. The proposed approach is applied to two case studies regarding heterogeneous fleets of aluminium electrolytic capacitors and turbofan engines. Results show the effectiveness of the proposed approach in predicting the RUL and its superiority compared to a fuzzy similarity-based approach of literature

    Federal grant policies and public sector scrappage decisions

    Get PDF
    An examination of capital policies in the public and private sector through analysis of the scrappage decisions of local mass-transit providers, showing that the structure of federal grants has a direct impact on scrappage rates that leads to shorter equipment life in the local public sector.Infrastructure (Economics) ; Municipal finance

    A locally adaptive ensemble approach for data-driven prognostics of heterogeneous fleets

    Get PDF
    In this work, we consider the problem of predicting the remaining useful life of a piece of equipment, based on data collected from a heterogeneous fleet working under different operating conditions. When the equipment experiences variable operating conditions, individual data-driven prognostic models are not able to accurately predict the remaining useful life during the entire equipment life. The objective of this work is to develop an ensemble approach of different prognostic models for aggregating their remaining useful life predictions in an adaptive way, for good performance throughout the degradation progression. Two data-driven prognostic models are considered, a homogeneous discrete-time finite-state semi-Markov model and a fuzzy similarity-based model. The ensemble approach is based on a locally weighted strategy that aggregates the outcomes of the two prognostic models of the ensemble by assigning to each model a weight and a bias related to its local performance, that is, the accuracy in predicting the remaining useful life of patterns of a validation set similar to the one under study. The proposed approach is applied to a case study regarding a heterogeneous fleet of aluminum electrolytic capacitors used in electric vehicle powertrains. The results have shown that the proposed ensemble approach is able to provide more accurate remaining useful life predictions throughout the entire life of the equipment compared to an alternative ensemble approach and to each individual homogeneous discrete-time finite-state semi-Markov model and fuzzy similarity-based models

    Migrating towards Using Electric Vehicles in Fleets – Proposed Methods for Demand Estimation and Fleet Design

    Get PDF
    Carsharing and electric vehicles have emerged as sustainable transportation alternatives to mitigate transportation, environmental, and social issues in cities. This dissertation combines three correlated topics: carsharing feasibility, electric vehicle carsharing fleet optimization, and efficient fleet management. First, the potential demand for electric vehicle carsharing in Beijing is estimated using data from a survey conducted the summer of 2013 in Beijing. This utilizes statistical analysis method, binary logit regression. Secondly, a model was developed to estimate carsharing mode split by the function of utilization and appropriate carsharing fleet size was simulated under three different fleet types: an EV fleet with level 2 chargers, an EV fleet with level 3 chargers, and a gasoline vehicle fleet. This study also performs an economic analysis to determine the payback period for recovering the initial EV charging infrastructure costs. Finally, this study develops a fleet size and composition optimization model with cost constraints for the University of Tennessee, Knoxville motor pool fleet. This will help the fleet manage efficiently with minimum total costs and greater demand satisfaction. This dissertation can help guide future sustainable transportation planning and policy

    A switching ensemble approach for remaining useful life estimation of electrolytic capacitors

    Get PDF
    open4In this work, we consider the problem of predicting an equipment Remaining Useful Life (RUL), based on data from a fleet of similar components working under different operating conditions (Al-Dahidi et al. 2015).Al-Dahidi, S.; Di Maio, F.; Baraldi, P.; Zio, E.AL-DAHIDI, SAMEER MAHMOUD AHMED; DI MAIO, Francesco; Baraldi, Piero; Zio, Enric

    Quantifying fisher responses to environmental and regulatory dynamics in marine systems

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Commercial fisheries are part of an inherently complicated cycle. As fishers have adopted new technologies and larger vessels to compete for resources, fisheries managers have adapted regulatory structures to sustain stocks and to mitigate unintended impacts of fishing (e.g., bycatch). Meanwhile, the ecosystems that are targeted by fishers are affected by a changing climate, which in turn forces fishers to further adapt, and subsequently, will require regulations to be updated. From the management side, one of the great limitations for understanding how changes in fishery environments or regulations impact fishers has been a lack of sufficient data for resolving their behaviors. In some fisheries, observer programs have provided sufficient data for monitoring the dynamics of fishing fleets, but these programs are expensive and often do not cover every trip or vessel. In the last two decades however, vessel monitoring systems (VMS) have begun to provide vessel location data at regular intervals such that fishing effort and behavioral decisions can be resolved across time and space for many fisheries. I demonstrate the utility of such data by examining the responses of two disparate fishing fleets to environmental and regulatory changes. This study was one of "big data" and required the development of nuanced approaches to process and model millions of records from multiple datasets. I thus present the work in three components: (1) How can we extract the information that we need? I present a detailed characterization of the types of data and an algorithm used to derive relevant behavioral aspects of fishing, like the duration and distances traveled during fishing trips; (2) How do fishers' spatial behaviors in the Bering Sea pollock fishery change in response to environmental variability; and (3) How were fisher behaviors and economic performances affected by a series of regulatory changes in the Gulf of Mexico grouper-tilefish longline fishery? I found a high degree of heterogeneity among vessel behaviors within the pollock fishery, underscoring the role that markets and processor-level decisions play in facilitating fisher responses to environmental change. In the Gulf of Mexico, my VMS-based approach estimated unobserved fishing effort with a high degree of accuracy and confirmed that the regulatory shift (e.g., the longline endorsement program and catch share program) yielded the intended impacts of reducing effort and improving both the economic performance and the overall harvest efficiency for the fleet. Overall, this work provides broadly applicable approaches for testing hypotheses regarding the dynamics of spatial behaviors in response to regulatory and environmental changes in a diversity of fisheries around the world.General introduction -- Chapter 1 Using vessel monitoring system data to identify and characterize trips made by fishing vessels in the United States North Pacific -- Chapter 2 Paths to resilience: Alaska pollock fleet uses multiple fishing strategies to buffer against environmental change in the Bering Sea -- Chapter 3 Vessel monitoring systems (VMS) reveal increased fishing efficiency following regulatory change in a bottom longline fishery -- General Conclusions

    Computational framework for real-time diagnostics and prognostics of aircraft actuation systems

    Get PDF
    Prognostics and health management (PHM) are emerging approaches to product life cycle that will maintain system safety and improve reliability, while reducing operating and maintenance costs. This is particularly relevant for aerospace systems, where high levels of integrity and high performances are required at the same time. We propose a novel strategy for the nearly real-time fault detection and identification (FDI) of a dynamical assembly, and for the estimation of remaining useful life (RUL) of the system. The availability of a timely estimate of the health status of the system will allow for an informed adaptive planning of maintenance and a dynamical reconfiguration of the mission profile, reducing operating costs and improving reliability. This work addresses the three phases of the prognostic flow – namely (1) signal acquisition, (2) fault detection and identification, and (3) remaining useful life estimation – and introduces a computationally efficient procedure suitable for real-time, on-board execution. To achieve this goal, we propose to combine information from physical models of different fidelity with machine learning techniques to obtain efficient representations (surrogate models) suitable for nearly real-time applications. Additionally, we propose an importance sampling strategy and a novel approach to model damage propagation for dynamical systems. The methodology is assessed for the FDI and RUL estimation of an aircraft electromechanical actuator (EMA) for secondary flight controls. The results show that the proposed method allows for a high precision in the evaluation of the system RUL, while outperforming common model-based techniques in terms of computational time

    Computational framework for real-time diagnostics and prognostics of aircraft actuation systems

    Get PDF
    Prognostics and Health Management (PHM) are emerging approaches to product life cycle that will maintain system safety and improve reliability, while reducing operating and maintenance costs. This is particularly relevant for aerospace systems, where high levels of integrity and high performances are required at the same time. We propose a novel strategy for the nearly real-time Fault Detection and Identification (FDI) of a dynamical assembly, and for the estimation of Remaining Useful Life (RUL) of the system. The availability of a timely estimate of the health status of the system will allow for an informed adaptive planning of maintenance and a dynamical reconfiguration of the mission profile, reducing operating costs and improving reliability. This work addresses the three phases of the prognostic flow - namely (1) signal acquisition, (2) Fault Detection and Identification, and (3) Remaining Useful Life estimation - and introduces a computationally efficient procedure suitable for real-time, on-board execution. To achieve this goal, we propose to combine information from physical models of different fidelity with machine learning techniques to obtain efficient representations (surrogate models) suitable for nearly real-time applications. Additionally, we propose an importance sampling strategy and a novel approach to model damage propagation for dynamical systems. The methodology is assessed for the FDI and RUL estimation of an aircraft electromechanical actuator (EMA) for secondary flight controls. The results show that the proposed method allows for a high precision in the evaluation of the system RUL, while outperforming common model-based techniques in terms of computational time.Comment: 57 page
    • …
    corecore