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1 INTRODUCTION 

In industries such as nuclear, oil and gas, automotive 
and chemical, unforeseen equipment failures are ex-
tremely costly in terms of repair costs and lost reve-
nues (Baraldi et al. 2015). To anticipate failures, 
predictive maintenance approaches are being devel-
oped, based on the assessment of the actual equip-
ment degradation condition and on the prediction of 
its evolution for setting the optimal time for mainte-
nance (McCall 1965; Wei et al. 2013; Zhao et al. 
2010). The underlying concept is that of failure 
prognostics, that consists in predicting the Remain-
ing Useful Life (RUL) of the equipment undergoing 
degradation, i.e., the amount of time the equipment 
can continue performing its functions under its de-
sign specifications (Zio 2012; Tobon-Mejia et al. 
2011; Jardine et al. 2006). 

In practice, efficient failure prognostics avoids 
the system unscheduled shutdowns, defines efficient 
maintenance strategies, exploits the full RUL for op-
eration and, hence, increases the system availability 
and safety while reducing maintenance costs (To-
bon-Mejia et al. 2011; Al-Dahidi et al. 2015). 

Approaches for RUL estimation can be generally 
categorized into model-based and data-driven (To-
bon-Mejia et al. 2011; Sankavaram et al. 2009; 
Chiang et al. 2001). Model-based approaches use 
physics models to describe the degradation behav-
iour of the equipment (Chiang et al. 2001; Heng et 
al. 2009). Despite the fact that these approaches lead 

to accurate prognostics results, uncertainty arising 
due to the assumptions and simplifications of the 
adopted models may pose limitations on their practi-
cal deployment (Chiang et al. 2001; Di Maio et al. 
2013). On the other side, data-driven prognostics 
approaches do not use any explicit physical model, 
but rely exclusively on the availability of process da-
ta related to equipment health to build (black-box) 
models that capture the degradation and failure 
modes of the equipment (Heng et al. 2009; Van 
Tung & Yang 2009). 

In fact, the availability of condition monitoring 
data from similar equipment, forming what in the 
industrial context is called a fleet (Medina-Oliva et 
al. 2014), motivates the development of data-driven 
prognostics approaches that capitalize on the infor-
mation contained in such data to estimate the 
equipment RUL. In practice, a fleet of 𝑃 pieces of 
equipment, which have different and/or similar tech-
nical features, can undergo different usage with dif-
ferent operating conditions, e.g., a fleet of highly 
standardized steam turbines of pressurized water re-
actors nuclear power plants (Al-Dahidi et al. 2016a), 
and can provide a wide knowledge concerning the 
equipment behaviour and, thus, improve the effi-
ciency of the fault prognostics task (Medina-Oliva et 
al. 2014). However, a main difficulty is that the 
equipment typically experiences different operating 
conditions, which influence both the condition moni-
toring data and the degradation processes that physi-
cally determine the RUL (Al-Dahidi et al. 2016b). 
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Therefore, individual data-driven prognostics mod-
els might not provide satisfactory predictions of the 
RUL in terms of accuracy: each model can provide 
accurate RUL predictions under some operating 
conditions but less accurate in others (Hu et al. 
2010). 

To overcome this, ensemble approaches, based on 
the aggregation of multiple model outcomes, have 
been introduced due to the superior robustness and 
accuracy with respect to single models (Polikar 
2006) and the possibility of estimating the uncertain-
ty of the predictions (Baraldi et al. 2013). In this 
context, the objective of the present work is to de-
velop an ensemble approach composed by different 
data-driven prognostics models for aggregating their 
RUL predictions, to guarantee the best performance 
throughout the equipment degradation progression. 

Two data-driven prognostics approaches are con-
sidered: 1) an Homogeneous Discrete-Time Finite-
State Semi-Markov Model (HDTFSSMM) (Al-
Dahidi et al. 2015; Al-Dahidi et al. 2016b) and 2) a 
Fuzzy Similarity-Based (FSB) model (Di Maio et al. 
2013). The former approach entails building a deg-
radation model, estimating its parameters and using 
the model within a direct Monte Carlo (MC) simula-
tion scheme to estimate the RUL of an equipment 
(Cadini et al. 2009), whereas the latter model evalu-
ates the similarity between the test degradation tra-
jectory and the available fleet run-to-failure training 
trajectories, and to use the RULs of these latter to es-
timate the RUL of the former, considering how simi-
lar they are (Di Maio et al. 2013). 

The ensemble procedure is based on a switching 
strategy that selects the most accurate model at each 
stage of the equipment life. More specifically, the 
approach entails: an offline selection of the optimal 
switching time 𝑡𝑜𝑝𝑡 that corresponds to the time of 
which the average value the Accuracy Index (AI) on 
a validation set is minimized (i.e., small AI values 
indicate more accurate predictions) (Saxena et al. 
2010); then switching time is used for predicting 
online the RUL of a new equipment of the fleet. 

The proposed approach is applied to a real case 
study regarding a fleet of aluminum electrolytic ca-
pacitors used in electric vehicles powertrains. In this 
specific case, the HDTFSSMM is selected to be the 
most suitable model for RUL prediction at the early 
stage of the equipment degradation, whereas the 
FSB model when the equipment approached the end-
of-life. The performance of the proposed approach is 
compared with the performance of each individual 
HDTFSSMM and FSB models showing that the pro-
posed ensemble approach is able to provide more 
accurate RUL predictions throughout the entire life 
of the equipment. 

The remaining of this paper is organized as fol-
lows. In Section 2, the two prognostics models are 
briefly recalled. In Section 3, the proposed ensemble 
approach is illustrated. In Section 4, the real case 

study is described together with the results obtained. 
Finally, some conclusions are drawn in Section 5. 

2 DATA-DRIVEN PROGNOSTICS MODELS 

This Section illustrates the basics of the two prog-
nostics models used in this work for the prediction 
of the RUL. In particular, we consider the Homoge-
neous Discrete-Time Finite-State Semi-Markov 
Model (HDTFSSMM) proposed by some of the au-
thors in (Al-Dahidi et al. 2015; Al-Dahidi et al. 
2016b) (Subsection 2.1) and the Fuzzy Similarity-
Based (FSB) model of literature proposed in (Di Ma-
io et al. 2013) (Subsection 2.2). 

Let us assume the availability of multi-
dimensional 𝑃 degradation trajectories regarding a 
fleet of 𝑃 pieces of equipment working under 
different operating conditions. Each 𝑝-th trajectory is 
a 𝑧-dimensional trajectory of 𝑍 signals representa-
tive of the equipment behaviour and of the operating 
conditions the equipment is subjected to. The avail-
able data are divided into 𝑃𝑡𝑟𝑎𝑖𝑛 training, 𝑃𝑣𝑎𝑙𝑖𝑑  vali-
dation and 𝑃𝑡𝑒𝑠𝑡  testing sets for the purpose of build-
ing the individual models, developing the proposed 
ensemble approach and verifying its performance 
with respect to each individual model. 

Among the training trajectories, 𝑃𝑡𝑟𝑎𝑖𝑛
𝑐  are as-

sumed to be complete run-to-failure trajectories (i.e., 
trajectories that last all the way to the instance when 
the degradation state reaches the threshold value be-
yond which the equipment loses its functionality) 
and 𝑃𝑡𝑟𝑎𝑖𝑛

𝑖𝑐 = 𝑃𝑡𝑟𝑎𝑖𝑛 − 𝑃𝑡𝑟𝑎𝑖𝑛
𝑐  are incomplete run-to-

failure trajectories (i.e., trajectories that do not reach 
the failure threshold). 

 

2.1 The Homogeneous Discrete-Time Finite-State 
Semi-Markov Model (HDTFSSMM) 

The Homogeneous Discrete-Time Finite-State Semi-
Markov Model (HDTFSSMM) entails three phases: 
1) an offline identification of the degradation levels 
(health states) of an HDTFSSMM that are explained 
by the different operating conditions experienced by 
the equipment during its life); 2) the estimation of 
the model parameters; 3) the use of the inferred deg-
radation model in a direct Monte Carlo (MC) simu-
lation to estimate the RUL of a new equipment of the 
fleet (Cadini et al. 2009). For more details on the 
HDTFSSMM model, the interested reader may refer 
to (Al-Dahidi et al. 2016b). 

This model has been selected because it is capa-
ble of benefiting from the availability of also incom-
plete run-to-failure degradation trajectories during 
the training phase for enhancing the RUL estimation, 
rather than relying solely on the complete run-to-
failure trajectories, compared to other data-driven 
prognostics models, e.g., Fuzzy Similarity-Based 
(FSB) model (Di Maio et al. 2013). 
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2.2 The Fuzzy Similarity-Based (FSB) model 

The idea underpinning this model is to evaluate the 
similarity between the test trajectory and the 
𝑃𝑡𝑟𝑎𝑖𝑛

𝑐  available complete run-to-failure reference 
trajectories, and to use the RULs of these latter to es-
timate the RUL of the former, considering how simi-
lar they are (Di Maio et al. 2013). The similarity is 
quantified by resorting to the definition of an “ap-
proximately zero” fuzzy set taken as a bell-shaped 
function whose parameters can be set by following a 
trial and error procedure on a validation set of com-
plete run-to-failure trajectories. For more details on 
the Fuzzy Similarity-Based (FSB) model, the inter-
ested reader may refer to (Di Maio et al. 2013). 

3 THE SWITCHING ENSEMBLE APPROACH 
FOR DATA-DRIVEN PROGNOSTICS 

The proposed approach is sketched in Figure 1 and 
entails, first an offline selection of the optimal 
switching time 𝑡𝑜𝑝𝑡 among all the possible switching 
times 𝑡𝑠𝑤 = [𝑡𝑠𝑤

𝑚𝑖𝑛 , 𝑡𝑠𝑤
𝑚𝑎𝑥], where 𝑡𝑠𝑤

𝑚𝑖𝑛 is the first 
available measurement time and 𝑡𝑠𝑤

𝑚𝑎𝑥 is the longest 
end-of-life among the fleet, that minimizes the Ac-
curacy Index (AI) over the 𝑃𝑣𝑎𝑙𝑖𝑑 validation trajecto-
ries, i.e., the relative error of the RUL prediction 
(Saxena et al. 2010). The AI evaluation metric can 
be expressed as (Saxena et al. 2010): 

 
           (1) 
 

 
where 
 

 
  (2) 

 
and 𝑇𝑝𝑣𝑎𝑙𝑖𝑑 is the failure time of each 𝑝𝑣𝑎𝑙𝑖𝑑-th 
equipment. 

 

 
 

 

Then, an online usage for predicting the RUL of 
𝑃𝑡𝑒𝑠𝑡 pieces of equipment. In other words, the opti-
mal switching time 𝑡𝑜𝑝𝑡 represents the time up to 
which Model 1 is used for providing the RUL esti-
mates at the early stage of the equipment life and 
beyond which Model 2 is used when the equipment 
approaches the end-of-life. 
 
4 CASE STUDY 

In this Section, the potentiality of the proposed en-
semble approach is demonstrated on a real case 
study regarding a fleet of 𝑃 = 150 aluminum elec-
trolytic capacitors used in electric vehicles power-
train, adapted from (Al-Dahidi et al. 2016b; Riga-
monti et al. 2016). 
 

4.1 Description of dataset 

The main degradation mechanism of electrolytic ca-

pacitors is the vaporization of the electrolyte, whose 

degradation speed is largely influenced by the com-

ponent working temperature (Kulkarni et al. 2010). 
According to (Rigamonti et al. 2016), the Nor-

malized Equivalent Series Resistance (𝐸𝑆𝑅𝑛𝑜𝑟𝑚) is 
considered as a degradation indicator and its evolu-
tion has been simulated for a fleet of capacitors us-
ing a physics-based model (Rigamonti et al. 2016). 
The simulated degradation trajectories begin with an 
initial 𝐸𝑆𝑅𝑛𝑜𝑟𝑚 value equal to 100% and continue 
until when the 𝐸𝑆𝑅𝑛𝑜𝑟𝑚 exceeds the failure thresh-
old of 200% (Venet et al. 1993). During the capaci-
tor life, the following 𝑍=2 signals are measured: 
1. 𝐸𝑆𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, the direct measurements of the 

degradation indicator, i.e., the measurements of 
the Normalized Equivalent Series Resistance 
(𝐸𝑆𝑅𝑛𝑜𝑟𝑚); 

2. the temperature experienced by the capacitor (𝑇), 
which represents the operating condition most 
influencing the degradation process of the capac-
itor.   

Figure 1. Sketch of the proposed ensemble approach. 
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According to design experts (Lahyani et al. 1998), 
temperature variations experienced by the capacitors 
during life are mainly caused by i) the seasonality of 
the environmental external temperature and by ii) 
the aging (barely up to 10% of its initial temperature 
value). Therefore, the simulated temperature profiles 
follow an arbitrary sinusoidal function that justifies 
seasonality, by adding to this a shift sigmoidal func-
tion accounting for aging. 
The heterogeneity among the capacitors that belong 
to the fleet is guaranteed by considering arbitrary pa-
rameters of the sinusoidal and the sigmoidal func-
tions.  

For clarification purposes, Figure 2 shows the 
simulated data of two capacitors (capacitor 1 and 
capacitor 2 – dark and light shade of color, respec-
tively): Figure 2 (top) shows the capacitors degrada-
tion process (𝐸𝑆𝑅𝑛𝑜𝑟𝑚), Figure 2 (left bottom) 
shows the 𝐸𝑆𝑅 measurements (𝐸𝑆𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑), 
whereas Figure 2 (right bottom) shows the tempera-
ture profiles experienced by the capacitors (𝑇).  

It is worth noticing that the higher the tempera-
ture (capacitor 2 – light shade of color), the faster 
the vaporization process due to the increase of the 
self-heating effects and, hence, the faster the failure 
process, as shown in Figure 2 (top) (Rigamonti et al. 
2016; Wolfgang 2007). 

The 𝑃=150 trajectories generated under different 
temperature conditions are divided into 𝑃𝑡𝑟𝑎𝑖𝑛 =
100 training, 𝑃𝑣𝑎𝑙𝑖𝑑 = 25 validation and 𝑃𝑡𝑒𝑠𝑡 =
25 testing subsets. Among the 𝑃𝑡𝑟𝑎𝑖𝑛 = 100 capaci-
tors, 𝑃𝑡𝑟𝑎𝑖𝑛

𝑐 = 20 are assumed to show degradation 
trajectories that last all the way to the failure thresh-
old, whereas 𝑃𝑡𝑟𝑎𝑖𝑛

𝑖𝑐 = 80 show incomplete run-to 
failure trajectories. 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

For clarification purposes, Figure 3 shows examples 
of the 𝐸𝑆𝑅𝑛𝑜𝑟𝑚signals of the complete and incom-
plete run-to-fail degradation trajectories (in dark and 
light shade of color, respectively). The objective is 
to accurately predict the RUL in the testing data set. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Examples of simulated complete and incomplete run-

to-failure degradation trajectories. 

 

4.2 Implementation of the Ensemble Approach 

To implement the ensemble approach, firstly the in-
dividual models are built by using the 𝑃𝑡𝑟𝑎𝑖𝑛 = 100 
capacitors. 

Concerning the HDTFSSMM, the whole train tra-
jectories are used to build the degradation model, es-
timate its parameters, and then, estimate the RUL of 
the 𝑃𝑡𝑒𝑠𝑡 = 25 capacitors within a direct 𝑀𝐶 simula-
tion scheme with 𝑁𝑚𝑎𝑥 = 1000 𝑀𝐶 trials (Al-
Dahidi et al. 2016b).  

Concerning the FSB model, only the 𝑃𝑡𝑟𝑎𝑖𝑛
𝑐 =

20 complete run-to-failure training trajectories can 
be used to build a reference library for estimating the 
RUL of the 𝑃𝑡𝑒𝑠𝑡 = 25 capacitors. 

 
 

Figure 2. The true degradation process (ESRnorm) (top), the ESR measurements (ESRmeasured) (left bottom) and the temperature pro-

files experienced by the capacitors (T) (right bottom). 
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4.3 Results of Ensemble Approach 

We rely on the 𝑃𝑣𝑎𝑙𝑖𝑑 = 25 trajectories to identify 
the optimum switching time 𝑡𝑜𝑝𝑡 among possible 
switching times 𝑡𝑠𝑤 = [1000,12000] hours, where 
the lower bound (1000) is the first available meas-
urement time, whereas the upper bound (12000) is 
the longest end-of-life among the 𝑃𝑣𝑎𝑙𝑖𝑑 = 25 capac-
itors. The optimum switching time is the value at 
which the AI is minimized, and is therefore, set 
equal to 𝑡𝑜𝑝𝑡 = 9000 hours (star in Figure 4). 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. AI values calculated on the Pvalid=25 validation trajec-

tories vs. switching times of the proposed ensemble approach.  

 
Table 1 reports the AI over the 𝑃𝑡𝑒𝑠𝑡 = 25 test trajec-
tories of the proposed ensemble approach, compared 
to each individual model. It can be observed that the 
ensemble approach outperforms any of the individu-
al model in terms of the AI with a 20.31% improve-
ment over the best individual member model, FSB, 
whose AI is 0.64. 
 
Table 1. AI values on the Ptest=25 test trajectories obtained by 

the proposed ensemble approach and the individual models. 

 HDTFSSMM  FSB  Switching approach 

AI 1.24 0.64 0.51 

 
The estimates of the RUL obtained by the proposed 
ensemble approach for two capacitors are plotted in 
Figure 5, in solid line, before and after the optimal 
switching time (together with those obtained by in-
dividual HDTFSSMM and FSB models in circles and 
squares markers, respectively).  
 
 
 
 
 
 
 
 
 
 
 
 
 

It can be easily noticed that the predictions provided 
by the two independent models are comparable in 
terms of overall accuracy: while the HDTFSSMM 
tends to provide more accurate RUL predictions with 
respect to the FSB model at the early stage of its life, 
the FSB model tends to provide more accurate RUL 
predictions when approaching the end-of life. This 
has been justified by the fact that the complete run-
to-failure trajectories used for training the FSB mod-
el are characterized by short lives (for the sake of 
clarity refer to Figure 3) and, thus, the FSB model 
tends, on average, to underestimate the component 
RUL at the beginning of its degradation trajectory. 
When the component is close to failure, the FSB 
model overcomes that of the HDTFSSMM since the 
incomplete run-to-failure trajectories are not in-
formative on the component behavior just before the 
failure. In particular, the FSB model becomes more 
satisfactory than that of the HDTFSSMM (Al-Dahidi 
et al. 2016b). 

Finally, it can be easily noticed that proposed en-
semble approach outperforms each individual model 
in terms of the accuracy in RUL predictions 
throughout the entire lives of the capacitors, as ex-
pected. 

5 CONCLUSIONS 

In this work, a switching ensemble approach for da-
ta-driven prognostics is proposed for accurately es-
timating the Remaining Useful Life (RUL) of an 
electrolytic capacitor based on data coming from a 
fleet of P capacitors working under different operat-
ing conditions. Two data-driven prognostics models 
are considered, an Homogeneous Discrete-Time Fi-
nite-State Semi-Markov Model (HDTFSSMM) and a 
Fuzzy Similarity-Based (FSB) model. 

The ensemble procedure is based on a switching 
strategy that selects the most accurate model at each 
stage of the equipment life. More specifically, the 
approach selects the optimal switching time 𝑡𝑜𝑝𝑡 
among possible switching times, based on the aver-
age value of the Accuracy Index (AI) that can be ob-
tained on a validation set. 

  

Figure 5. Comparison of the RUL predictions for two capacitors provided by the proposed ensemble approach and each individual 

HDTFSSMM and FSB models. 
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Once the optimal switching time is identified, the 
switching ensemble approach is used online for pre-
dicting the RUL of a new equipment of the fleet. 

The proposed approach is able to provide more 
accurate RUL predictions throughout the entire life 
of the equipment compared to each individual 
HDTFSSMM and FSB models. 
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