1,866 research outputs found

    Relocation of Mobile Wireless Sensors in the Presence of Obstacles

    Get PDF
    International audienceIn many applications (e.g military, environment monitoring), wireless sensors are randomly deployed in a given area. Unfortunately, this deployment is not efficient enough to ensure area coverage and network connectivity. Algorithms based on Virtual Forces are used to improve the random initial deployment. In this paper, we want to ensure coverage and network connectivity in a given area containing obstacles. We enhance the Distributed Virtual Forces Algorithm (DVFA) to cope with obstacles. Obstacles are characterized by prohibiting both the physical presence of sensors and the wireless communication. Performance evaluation shows that DVFA provides an efficient deployment even if obstacles exist in the considered area

    Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range.

    Get PDF
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Three key factors in MWSNs, sensing quality, energy consumption, and connectivity, have attracted plenty of attention, but the interaction of these factors is not well studied. To take all the three factors into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment (or relocation) to optimize the sensing quality with a limited communication range and a specific network lifetime constraint. We derive necessary conditions for the optimal sensor deployment in both homogeneous and heterogeneous MWSNs. According to our derivation, some sensors are idle in the optimal deployment of heterogeneous MWSNs. Using these necessary conditions, we design both centralized and distributed algorithms to provide a flexible and explicit trade-off between sensing uncertainty and network lifetime. The proposed algorithms are successfully extended to more applications, such as area coverage and target coverage, via properly selected density functions. Simulation results show that our algorithms outperform the existing relocation algorithms

    Resource Optimization in Wireless Sensor Networks for an Improved Field Coverage and Cooperative Target Tracking

    Get PDF
    There are various challenges that face a wireless sensor network (WSN) that mainly originate from the limited resources a sensor node usually has. A sensor node often relies on a battery as a power supply which, due to its limited capacity, tends to shorten the life-time of the node and the network as a whole. Other challenges arise from the limited capabilities of the sensors/actuators a node is equipped with, leading to complication like a poor coverage of the event, or limited mobility in the environment. This dissertation deals with the coverage problem as well as the limited power and capabilities of a sensor node. In some environments, a controlled deployment of the WSN may not be attainable. In such case, the only viable option would be a random deployment over the region of interest (ROI), leading to a great deal of uncovered areas as well as many cutoff nodes. Three different scenarios are presented, each addressing the coverage problem for a distinct purpose. First, a multi-objective optimization is considered with the purpose of relocating the sensor nodes after the initial random deployment, through maximizing the field coverage while minimizing the cost of mobility. Simulations reveal the improvements in coverage, while maintaining the mobility cost to a minimum. In the second scenario, tracking a mobile target with a high level of accuracy is of interest. The relocation process was based on learning the spatial mobility trends of the targets. Results show the improvement in tracking accuracy in terms of mean square position error. The last scenario involves the use of inverse reinforcement learning (IRL) to predict the destination of a given target. This lay the ground for future exploration of the relocation problem to achieve improved prediction accuracy. Experiments investigated the interaction between prediction accuracy and terrain severity. The other WSN limitation is dealt with by introducing the concept of sparse sensing to schedule the measurements of sensor nodes. A hybrid WSN setup of low and high precision nodes is examined. Simulations showed that the greedy algorithm used for scheduling the nodes, realized a network that is more resilient to individual node failure. Moreover, the use of more affordable nodes stroke a better trade-off between deployment feasibility and precision

    Push & Pull: autonomous deployment of mobile sensors for a complete coverage

    Full text link
    Mobile sensor networks are important for several strategic applications devoted to monitoring critical areas. In such hostile scenarios, sensors cannot be deployed manually and are either sent from a safe location or dropped from an aircraft. Mobile devices permit a dynamic deployment reconfiguration that improves the coverage in terms of completeness and uniformity. In this paper we propose a distributed algorithm for the autonomous deployment of mobile sensors called Push&Pull. According to our proposal, movement decisions are made by each sensor on the basis of locally available information and do not require any prior knowledge of the operating conditions or any manual tuning of key parameters. We formally prove that, when a sufficient number of sensors are available, our approach guarantees a complete and uniform coverage. Furthermore, we demonstrate that the algorithm execution always terminates preventing movement oscillations. Numerous simulations show that our algorithm reaches a complete coverage within reasonable time with moderate energy consumption, even when the target area has irregular shapes. Performance comparisons between Push&Pull and one of the most acknowledged algorithms show how the former one can efficiently reach a more uniform and complete coverage under a wide range of working scenarios.Comment: Technical Report. This paper has been published on Wireless Networks, Springer. Animations and the complete code of the proposed algorithm are available for download at the address: http://www.dsi.uniroma1.it/~novella/mobile_sensors

    A Distributed Strategy to Maximize Coverage in a Heterogeneous Sensor Network in the Presence of Obstacles

    Full text link
    In this paper, an efficient deployment strategy is proposed for a network of mobile and static sensors with nonidentical sensing and communication radii. The multiplicatively weighted Voronoi (MW-Voronoi) diagram is used to partition the field and assign the underlying coverage task to each mobile sensor. A gradient-based method is applied to find the best candidate point based on the detected coverage holes and the coverage priority considering the relative distance of the mobile sensor from the static ones and the obstacles in the field. The sensors move to a new position if such a relocation increases their local coverage. The efficiency of the proposed strategy in different scenarios is demonstrated by simulations.Comment: 8 pages, 8 figures, submitted to the 62nd IEEE Conference on Decision and Contro

    On the Displacement for Covering a dd-dimensional Cube with Randomly Placed Sensors

    Full text link
    Consider nn sensors placed randomly and independently with the uniform distribution in a dd-dimensional unit cube (d2d\ge 2). The sensors have identical sensing range equal to rr, for some r>0r >0. We are interested in moving the sensors from their initial positions to new positions so as to ensure that the dd-dimensional unit cube is completely covered, i.e., every point in the dd-dimensional cube is within the range of a sensor. If the ii-th sensor is displaced a distance did_i, what is a displacement of minimum cost? As cost measure for the displacement of the team of sensors we consider the aa-total movement defined as the sum Ma:=i=1ndiaM_a:= \sum_{i=1}^n d_i^a, for some constant a>0a>0. We assume that rr and nn are chosen so as to allow full coverage of the dd-dimensional unit cube and a>0a > 0. The main contribution of the paper is to show the existence of a tradeoff between the dd-dimensional cube, sensing radius and aa-total movement. The main results can be summarized as follows for the case of the dd-dimensional cube. If the dd-dimensional cube sensing radius is 12n1/d\frac{1}{2n^{1/d}} and n=mdn=m^d, for some mNm\in N, then we present an algorithm that uses O(n1a2d)O\left(n^{1-\frac{a}{2d}}\right) total expected movement (see Algorithm 2 and Theorem 5). If the dd-dimensional cube sensing radius is greater than 33/d(31/d1)(31/d1)12n1/d\frac{3^{3/d}}{(3^{1/d}-1)(3^{1/d}-1)}\frac{1}{2n^{1/d}} and nn is a natural number then the total expected movement is O(n1a2d(lnnn)a2d)O\left(n^{1-\frac{a}{2d}}\left(\frac{\ln n}{n}\right)^{\frac{a}{2d}}\right) (see Algorithm 3 and Theorem 7). In addition, we simulate Algorithm 2 and discuss the results of our simulations

    Estimation and Improvements of the Fundamental QoS in Networks with Random Topologies

    Get PDF
    The computer communication paradigm is moving towards the ubiquitous computing and Internet of Things (IoT). Small autonomous wirelessly networked devices are becoming more and more present in monitoring and automation of every human interaction with the environment, as well as in collecting various other information from the physical world. Applications, such as remote health monitoring, intelligent homes, early fire, volcano, and earthquake detection, traffic congestion prevention etc., are already present and all share the similar networking philosophy. An additional challenging for the scientific and engineering world is the appropriateness of the alike networks which are to be deployed in the inaccessible regions. These scenarios are typical in environmental and habitat monitoring and in military surveillance. Due to the environmental conditions, these networks can often only be deployed in some quasi-random way. This makes the application design challenging in the sense of coverage, connectivity, network lifetime and data dissemination. For the densely deployed networks, the random geometric graphs are often used to model the networking topology. This paper surveys some of the most important approaches and possibilities in modeling and improvement of coverage and connectivity in randomly deployed networks, with an accent on using the mobility in improving the network functionality

    Estimation and Improvements of the Fundamental QoS in Networks with Random Topologies

    Get PDF
    The computer communication paradigm is moving towards the ubiquitous computing and Internet of Things (IoT). Small autonomous wirelessly networked devices are becoming more and more present in monitoring and automation of every human interaction with the environment, as well as in collecting various other information from the physical world. Applications, such as remote health monitoring, intelligent homes, early fire, volcano, and earthquake detection, traffic congestion prevention etc., are already present and all share the similar networking philosophy. An additional challenging for the scientific and engineering world is the appropriateness of the alike networks which are to be deployed in the inaccessible regions. These scenarios are typical in environmental and habitat monitoring and in military surveillance. Due to the environmental conditions, these networks can often only be deployed in some quasi-random way. This makes the application design challenging in the sense of coverage, connectivity, network lifetime and data dissemination. For the densely deployed networks, the random geometric graphs are often used to model the networking topology. This paper surveys some of the most important approaches and possibilities in modeling and improvement of co verage and connectivity in randomly deployed networks, with an accent on using the mobility in improving the network functionality

    The Deployment in the Wireless Sensor Networks: Methodologies, Recent Works and Applications

    Get PDF
    International audienceThe wireless sensor networks (WSN) is a research area in continuous evolution with a variety of application contexts. Wireless sensor networks pose many optimization problems, particularly because sensors have limited capacity in terms of energy, processing and memory. The deployment of sensor nodes is a critical phase that significantly affects the functioning and performance of the network. Often, the sensors constituting the network cannot be accurately positioned, and are scattered erratically. To compensate the randomness character of their placement, a large number of sensors is typically deployed, which also helps to increase the fault tolerance of the network. In this paper, we are interested in studying the positioning and placement of sensor nodes in a WSN. First, we introduce the problem of deployment and then we present the latest research works about the different proposed methods to solve this problem. Finally, we mention some similar issues related to the deployment and some of its interesting applications
    corecore