5 research outputs found

    Dynamic Quality-of-Service Management Under Software-Defined Networking Architectures

    Get PDF
    The Internet is facing new challenges emerging from new trends in Information and Communication Technologies (ICT) for example, cloud services, Big Data, increased mobile usage etc. Traditional IP networks rely in two design principles that, despite serving as an effective solution in the last decades, have become deprecated and not well fit for the new challenges. First, the control and data plane are tightly embedded in the networking devices and second, the structure is highly decentralized with no centralized point of management. This static and rigid architecture leaves no space for innovation with a consequence lack of scalability. Also, it leads to high management and operation costs. The SDN paradigm provides a more dynamic, manageable, cost-effective and adaptable architecture that is ready for the dynamic nature of today's applications. The goal of this thesis is a novel SDN-enabled solution that provides dynamic Quality of Service management for real-time and multimedia applications. This solution will be tested and implemented over a real, not-simulated testbed, composed by OpenFlow-enabled devices, the ONOS SDN controller and client terminals that produced/consume data streams. Furthermore, it is also expected to characterize and evaluate the benefits of the SDN-based solution against a traditional usage of the network (non-SDN)

    Virtualization of multicast services in WiMAX networks

    Get PDF
    Multicast service is one of the methods used to efficiently manage bandwidth when sending multimedia content. To improve bandwidth utilisation, virtualization is often invoked because of its additional features such as bandwidth sharing and support of services that require high volumes of transactional data. Currently, network providers are concerned with the bandwidth amount for efficient use of the limited wireless network capabilities and the provision of a better quality of service. The virtualization design of a multicast service framework should satisfy several objectives. For example, it should enable the interchange of service delivery between multiple networks with one shareable network infrastructure. Also, it should ensure efficient use of network resources and guarantee users' demands of Quality of Service (QoS). Thus, the design of virtualization of multicast service framework is a complex research study. Due to the bandwidth-related arguments, a strong focus has been put on technical issues that facilitate virtualization in wireless networks. A well-designed virtualized network guarantees users with the required quality service. Similarly, virtualization of multicast service is invoked to improve efficient utilisation of bandwidth in wireless networks. As wireless links prove to be unstable, packet loss is unavoidable when multicast service-oriented virtual artefacts are incorporated in wireless networks. In this thesis, a virtualized multicast framework was modelled by using Generalized Assignment Problem (GAP) methodology. Mixed Integer Linear Programing (MILP) was implemented in MATLAB to solve the GAP model. This was to optimise the allocation of multicast traffic to the appropriate virtual networks. Thus, the developed model allows users to have interchangeable services offered by multiple networks. Furthermore, Network Simulator version 3 (NS-3) was used to evaluate the performance of the virtualized multicast framework. Three applications, namely, voice over IP (VoIP), video streaming, and file download have been used to evaluate the performance of a multicast service virtualization framework in Worldwide Interoperability for Microwave Access (WiMAX) networks using NS-3. The performance evaluation was based on whether MILP is used or not used. The results of experimentation have revealed that there is good performance of virtual networks when multicast traffic is sent over one single virtual network instead of sending it over multiple virtual networks. Similarly, the results show that the bandwidth is efficiently used because the multicast traffic is not delivered through multiple virtual networks. Overall, the concepts, the investigations and the model presented in this thesis can enable mobile network providers to achieve efficient use of bandwidth and provide the necessary means to support services for QoS differentiations and guarantees. Also, the multicast service virtualization framework provides an excellent tool that can enable network providers to interchange services. The developed model can serve as a basis for further extension. Specifically, the extension of the model can boost load balancing in the flow allocation problem and activate a virtual network to deliver traffic. This may rely on the QoS policy between network providers. Therefore, the model should consider the number of users in order to guarantee improved QoS

    A framework for economic analysis of network architectures

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)This thesis firstly surveys and summarizes the state-of-the-art studies from two research areas in Software De fined Networking (SDN) architecture: (i) control plane scalability and (ii) Quality of Service (QoS)-related problems. It also outlines the potential challenges and open problems that need to be addressed further for more scalable SDN control planes and better and complete QoS abilities in SDN networks. The thesis secondly presents a hierarchical SDN design along with an inter-AS QoS-guaranteed routing approach. This design addresses the scalability problems of control plane and privacy concerns of inter-AS QoS routing philosophies in SDN. After exploring the roots of control plane scalability problems in SDN, the thesis then proposes a metric to quantitatively evaluate the control plane scalability in SDN. Later, the thesis presents a general framework for economic analysis of network architectures and designs. To this end, the thesis defines and utilizes two metrics, Unit Service Cost Scalability and Cost-to-Service, to evaluate how SDN architecture performs compared to MPLS architecture in terms of unit cost for a service and cost of introducing a new service along with giving mathematical models to calculate Capital Expenditures (CAPEX) and Operational Expenditures (OPEX) of a network. Moreover, the thesis studies the problem of optimal final pricing for services by proposing an optimal pricing scheme for a service request with QoS in SDN environment while aiming to maximize benefits of both service providers and customers. Finally, the thesis investigates how programmable network architectures, i.e. SDN, affect the network economics compared to traditional network architectures, i.e. MPLS, in case of failures along with exploring the economic impact of failures in different SDN control plane models

    Reliable video over software-defined networking (RVSDN)

    No full text
    Ensuring end-to-end quality of service for video applications requires the network to choose the most feasible path in terms of bandwidth, delay and jitter. Quality of service can only be ensured if the paths are reliable - perform to specification per request. This paper makes four contributions to research. First, it presents Reliable Video over Software-Defined Networking (RVSDN) which builds upon previous work of Video over Software-Defined Networking (VSDN) to address the issue of finding the most reliable path(s) through the network for video applications. Second, it presents the design and implementation of RVSDN. Third, it presents the experience of integrating RVSDN into ns-3 which is a network simulator used by the research community to simulate and model computer networks. Finally, it presents the results of RVSDN in terms of the number of requests serviced by the network architecture. RVSDN is able to service 31 times more requests than VSDN and MPLS explicit routing when the reliability constraint is 0.995 or greater using aggregation of reliability across network paths

    Provisioning end-to-end quality of service for real-time interactive video over software-defined networking

    Get PDF
    This thesis contains four interrelated research areas. Before presenting the four research areas, this thesis presents literature review on Software-Defined Networking (SDN), a network architecture that allows network operator to manage the network using high level abstractions. This thesis presents taxonomy for classifying SDN research. In research first area, this thesis presents Video over Software-Defined Networking (VSDN), a network architecture that selects feasible paths using the network-wide view. This thesis describes the VSDN protocol which is used for requesting service from the network. This thesis presents the results of implementing VSDN prototype and evaluates behavior of VSDN. Requesting service from the network requires developer to provide three input parameters to application programmable interface. The message complexity of VSDN is linear. In research second area, this thesis presents Explicit Routing in Software-Defined Networking (ERSDN), a routing scheme that selects transit routers at the edge of network. This thesis presents the design and implementation of ERSDN. This thesis evaluates the effect of ERSDN on the scalability of controller by measuring the control plane network events-packets. ERSDN reduces the network events in the control plane by 430%. In research third area, this thesis presents Reliable Video over Software-Defined Networking (RVSDN) which builds upon previous work of Video over Software-Defined Networking (VSDN) to address the issue of finding most reliable path. This thesis presents the design and implementation of RVSDN. This thesis presents the experience of integrating RVSDN into ns-3, a network simulator which research community uses to simulate and model computer networks. This thesis presents RVSDN results and analyzes the results. RVSDN services 31 times more requests than VSDN and Multiprotocol Label Switching (MPLS) explicit routing when the reliability constraint is 0.995 or greater. In research fourth area, this thesis presents Multi-Domain Video over Software-Defined Networking (MDVSDN), a network architecture that selects end-to-end network path or path for real-time interactive video applications across independent network domains. This thesis describes the architectural elements of MDVSDN. This thesis presents the results of implementing a prototype of MDVSDN and evaluates the behavior of MDVSDN. The message complexity of MDVSDN is linear. The contribution of this thesis lays the foundation for developing a network architecture that improves the performance of real-time interactive video applications by selecting feasible end-to-end multi-domain path among multiple paths using bandwidth, delay, jitter, and reliability
    corecore