
Graduate School Form
30 Updated ����������

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation

Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),

this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of

Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:

Head of the Departmental Graduate Program Date

Harold Owens II

PROVISIONING END-TO-END QUALITY OF SERVICE FOR REAL-TIME INTERACTIVE VIDEO OVER
SOFTWARE-DEFINED NETWORKING

Doctor of Philosophy

Arjan Durresi

Chair

Mohammad Al Hasan

Xia N. Ning

Raje R. Rajeev

Arjan Durresi

Shiaofen Fang 11/22/2016

PROVISIONING END-TO-END QUALITY OF SERVICE FOR REAL-TIME

INTERACTIVE VIDEO OVER SOFTWARE-DEFINED NETWORKING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Harold Owens II

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

Indianapolis, Indiana

ii

To my mother (1947-2006). To my wife, daughter, and son. Thank you.

iii

ACKNOWLEDGMENTS

I want to acknowledge my mentor and advisor, Dr. Arjan Durresi for his encour-

agement and guidance during my studies. I want to acknowledge thesis committee

members Dr. Rajeev Raje, Dr. Xia Ning, and Dr. Mohammad Al Hasan for reviewing

and providing feedback on my thesis.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xii

1 INTRODUCTION . 1
1.1 Overview of Problem . 1
1.2 Motivation . 3
1.3 Proposed Solution . 6
1.4 Research Goals . 9
1.5 Assumptions and Limitations . 10
1.6 Expected Outcome . 10
1.7 Scope . 11
1.8 Dissertation Structure . 11

2 SOFTWARE-DEFINED NETWORKING SURVEY: A RESEARCH LAND-
SCAPE . 13
2.1 Abstract . 13
2.2 Introduction . 14

2.2.1 Programmable Networks: Background 16
2.3 SDN Architecture . 19

2.3.1 Communication Between Network Planes 21
2.4 SDN Research Review . 22

2.4.1 Characteristics . 23
2.4.2 Network Technology . 24
2.4.3 Layer of Control . 31
2.4.4 Application Domain . 37
2.4.5 Level of Programmability 50

2.5 SDN Research Challenges . 51
2.5.1 Scalability . 51
2.5.2 Availability . 52
2.5.3 Security . 53
2.5.4 Standardization . 53

2.6 Networking Industry . 54
2.7 Conclusions . 59

3 VIDEO OVER SOFTWARE-DEFINED NETWORKING (VSDN) 61

v

Page
3.1 Abstract . 61
3.2 Introduction . 61
3.3 Motivation: Integrated Services (IntServ) 63
3.4 Design and Implementation . 66

3.4.1 Software-Defined Networking (SDN) 67
3.4.2 VSDN Design Overview . 67
3.4.3 VSDN Protocol . 73
3.4.4 OpenFlow Changes . 76
3.4.5 Network Client API . 76
3.4.6 QoS Mapping . 77

3.5 Results . 77
3.6 Related Works . 80
3.7 Conclusions . 82

4 EXPLICIT ROUTING IN SOFTWARE-DEFINED NETWORKING (ERSDN):
ADDRESSING CONTROLLER SCALABILITY 87
4.1 Abstract . 87
4.2 Introduction . 87
4.3 Software-Defined Networking (SDN) Overview and Video Over Software-

Defined Networking (VSDN) Implementation 90
4.3.1 Software-Defined Networking (SDN) Overview 90
4.3.2 Video Over Software-Defined Networking (VSDN) Implemen-

tation . 91
4.4 Design and Implementation . 92

4.4.1 VSDN Flow Installation . 92
4.4.2 Design Choices . 93
4.4.3 VSDN Purposed Flow Installation 93
4.4.4 VSDN Switch Implementation Changes 94
4.4.5 VSDN Controller Implementation Changes 95

4.5 Results . 97
4.5.1 Experimental Setup . 97
4.5.2 Experimental Results . 98

4.6 Related Works . 102
4.7 Conclusions . 103

5 RELIABLE VIDEO OVER SOFTWARE-DEFINED NETWORKING
(RVSDN) . 104
5.1 Abstract . 104
5.2 Introduction . 104
5.3 Integrated Services (IntServ) and Video over Software-Defined Net-

working (VSDN) . 107
5.3.1 Integrated Services (IntServ) 107
5.3.2 VSDN Limitations . 109

vi

Page

5.4 Design and Implementation . 110
5.4.1 VSDN Routing Module Changes 111

5.5 Results . 114
5.5.1 Experimental Setup . 114
5.5.2 Experimental Results . 115

5.6 Related Works . 117
5.7 Conclusions . 118

6 MULTI-DOMAIN OVER SOFTWARE-DEFINED NETWORKING (MD-
VSDN) . 120
6.1 Abstract . 120
6.2 Introduction . 120
6.3 Motivation: VSDN Network . 124
6.4 Architecture and Design . 126

6.4.1 Controller . 128
6.4.2 Controller to Controller Communication 132

6.5 Simulation Results . 133
6.6 Related Works . 135
6.7 Conclusions . 137

7 CONCLUSIONS . 138
7.1 Future Work . 140

LIST OF REFERENCES . 141

APPENDICES
Appendix A Data Tables . 169
Appendix B Network Topologies . 176
Appendix C SDN Lab Experience . 178

VITA . 179

vii

LIST OF TABLES

Table Page

2.1 Classification and contribution of SDN research A-N 57

2.2 Classification and contribution of SDN research O-Z 58

3.1 The API for requesting, accepting, and responding to requests. 83

3.2 The guaranteed services (GS) flow properties. 84

3.3 The video type to service specification mapping, illustrating values for
each service specification for video type, bandwidth in Mbps, bucket size
in bytes, peak rate in Kbps, minimum policed unit in bytes, maximum
packet size in bytes, rate in Kbps, and frames per second. 85

3.4 VSDN protocol messages. 86

5.1 The QoS constraints used during experiment where bandwidth, delay, and
jitter remained constant, but reliability varied between 0.90 and 1.00. . 119

viii

LIST OF FIGURES

Figure Page

1.1 Seven-node IP network with sender and receiver. The routers in au-
tonomous systems one (AS1) are running Open Shortest Path First routing
protocol which determines shortest path between the sender and receiver.
The shortest path is R1-R5, but best path is R1-R2-R4-R5. The routers
are unable to select feasible—best path. 3

1.2 SDN network with sender and receiver. The routers in AS1 are commodity
network devices that the SDN controller programs for forwarding network
traffic. The SDN controller has the network-wide view of network resources
such as link state, congestion, bandwidth, delay, and jitter. The SDN
controller selects a feasible path—R1-R2-R4-R5 using the network-wide
view and programs network devices including the sender and receiver. . 7

2.1 SDN architecture, illustrating relationship between network planes. Each
network plane represents specific function of the SDN architecture. In
the application plane, the network applications program data plane using
northbound API. Using southbound API to send requests, the control
plane converts the application plane requests to modifications or queries
in the data plane. The data plane presents the control plane with an open
API. The management plane performs management functionalities such as
configuring network policies, monitoring network performance, and setting
up network devices in the data plane. 19

2.2 SDN application domain, illustrating how SDN applications are organized.
There are eight application research areas—network optimization, security,
quality of service, programming languages, testing and debugging, network
configuration, monitoring and measurement, and routing. The eight ap-
plication research areas have specific applications which functionalities are
researched and developed. For example, tunneling applications—tunneling
supports security, and applications that update—updates the network sup-
port network configuration. 38

3.1 A network with sender and receiver. 64

3.2 SDN network with sender and receiver. 66

ix

Figure Page

3.3 VSDN architecture, showing the relationships between the architectural
elements. There are four elements including the sender, switch, controller,
and receiver. The sender and receiver rely on the switches, R1 and R2, to
provide end-to-end QoS. The controller communicates with the switches,
sender, and receiver over secure channels using OpenFlow. The sender and
receiver request QoS from the network. The network devices R1 and R2
are edge switches which use packet shapers to shape traffic of the sender
and receiver. A number of intermediate switches may exist between R1
and R2 which network traffic passes through, but only the edge switches
shape network traffic. For simplicity, only R1 and R2 are shown. 68

3.4 VSDN controller, illustrating the architectural elements. The controller
processes the QoS request. The controller manages the network resources
such as bandwidth. The admission controller manages the network re-
sources. The routing module finds feasible end-to-end paths. 69

3.5 VSDN client, showing the relationship of the elements. The network client
has a slicing layer which is used for sharing home network. The controller
uses slicing layer to configure network client QoS. The packet classifier
identifies packets which belong to a specific flow. The packet scheduler
ensures packets are in profile before entering the network. 71

3.6 VSDN switch, showing the relationship of the elements. A packet enters
the switch through the In Port and continues through pipeline. The packet
is dropped, forwarded to controller, or forwarded out of Out Port at Exe-
cute Action. The port has a packet shaper—a queue that ensures QoS of
each flow. Only edge switch has packet shaper installed because the edge
switch shapes the network traffic. 72

3.7 Average VSDN message count when client requests increases. The six
node network message complexity is linear. 78

3.8 Average VSDN message count when client requests increases. The thirteen
node network message complexity is linear. 79

4.1 SDN network with sender and receiver. 90

4.2 The control plane accept messages generated for six-node network when
client requests increase. ERSDN generates fewer accept messages com-
pared to VSDN. 98

4.3 The control plane messages generated for six-node network when client
requests increase. ERSDN generates fewer messages compared to VSDN. 99

x

Figure Page

4.4 The control plane accept messages generated for thirteen-node network
when client requests increase. ERSDN generates fewer accept messages
compared to VSDN. 100

4.5 The control plane messages generated for thirteen-node network when
client requests increase. ERSDN generates fewer messages compared to
VSDN . 101

5.1 A network with sender and receiver where routers in autonomous systems
one (AS1) make independent decisions about path selections. Finding a
reliable path across AS1 is difficult because each router makes its own
routing decision. 107

5.2 Software-defined networking (SDN) network with sender and receiver. The
controller programs the behavior of network including sender and receiver. 108

5.3 SDN network with link constraints—bandwidth, delay, jitter, and reliabil-
ity. 110

5.4 The requests serviced by network architecture when video application re-
liability constraint increases. RVSDN services more requests than MPLS
and VSDN because RVSDN aggregates reliability of multiple paths and
dynamically discovers paths. 115

6.1 VSDN network, illustrating three independent domains connected by links
R2-R4, R4-R9, and R2-R7. The domains lack multi-domain flow manage-
ment. 123

6.2 MDVSDN network with three independent domains. Each VSDN con-
troller has a view of its own network domain, lacking multi-domain flow
management. The MDVSDN controller has the network-wide view which
enables multi-domain flow management. 127

6.3 A MDVSDN network view from the view of the MDVSDN controller.
The MDVSDN controller does not have the local detail as the seen by the
VSDN controllers. The MDVSDN controller sees an aggregated view of
the network. 128

6.4 MDVSDN controller, illustrating relationship between the elements. The
MDVSDN controller services multi-domain QoS requests from VSDN con-
trollers. The MDVSDN controller exchanges reachability information and
QoS information with peering MDVSDN controllers, providing end-to-end
multi-domain flow management and QoS. 129

6.5 VSDN publish-subscribe interaction diagram, illustrating how MDVSDN
controller subscribes to topology updates. 131

xi

Figure Page

6.6 MDVSDN controller communication, illustrating how independent MD-
VSDN controllers communicate to establish a multi-domain end-to-end
path. The VSDN controller and MDVSDN controller use the same proto-
col and messages which simplifies VSDN protocol and design. 132

6.7 Average VSDN messages generated when client requests increase. MD-
VSDN message complexity is linear. There were two independent domains,
two senders, and two receivers in simulation. 134

xii

ABSTRACT

Owens II, Harold. Ph.D., Purdue University, December 2016. Provisioning End-
To-End Quality of Service for Real-Time Interactive Video over Software-Defined
Networking. Major Professor: Arjan Durresi.

This thesis contains four interrelated research areas. Before presenting the four

research areas, this thesis presents literature review on Software-Defined Networking

(SDN), a network architecture that allows network operator to manage the network

using high level abstractions. This thesis presents taxonomy for classifying SDN

research.

In research first area, this thesis presents Video over Software-Defined Networking

(VSDN), a network architecture that selects feasible paths using the network-wide

view. This thesis describes the VSDN protocol which is used for requesting service

from the network. This thesis presents the results of implementing VSDN prototype

and evaluates behavior of VSDN. Requesting service from the network requires devel-

oper to provide three input parameters to application programmable interface. The

message complexity of VSDN is linear.

In research second area, this thesis presents Explicit Routing in Software-Defined

Networking (ERSDN), a routing scheme that selects transit routers at the edge of

network. This thesis presents the design and implementation of ERSDN. This thesis

evaluates the effect of ERSDN on the scalability of controller by measuring the control

plane network events—packets. ERSDN reduces the network events in the control

plane by 430%.

In research third area, this thesis presents Reliable Video over Software-Defined

Networking (RVSDN) which builds upon previous work of Video over Software-

Defined Networking (VSDN) to address the issue of finding most reliable path. This

xiii

thesis presents the design and implementation of RVSDN. This thesis presents the

experience of integrating RVSDN into ns-3, a network simulator which research com-

munity uses to simulate and model computer networks. This thesis presents RVSDN

results and analyzes the results. RVSDN services 31 times more requests than VSDN

and Multiprotocol Label Switching (MPLS) explicit routing when the reliability con-

straint is 0.995 or greater.

In research fourth area, this thesis presents Multi-Domain Video over Software-

Defined Networking (MDVSDN), a network architecture that selects end-to-end net-

work path or path for real-time interactive video applications across independent

network domains. This thesis describes the architectural elements of MDVSDN. This

thesis presents the results of implementing a prototype of MDVSDN and evaluates

the behavior of MDVSDN. The message complexity of MDVSDN is linear.

The contribution of this thesis lays the foundation for developing a network ar-

chitecture that improves the performance of real-time interactive video applications

by selecting feasible end-to-end multi-domain path among multiple paths using band-

width, delay, jitter, and reliability.

1

1 INTRODUCTION

”The Holy Grail of computer networking is to design a network that has the flexibility

and low cost of the Internet, yet offers the end-to-end quality-of-service guarantees of

the telephone network.” Srinivasan Keshav

1.1 Overview of Problem

Globally, the Internet Protocol (IP) video traffic such as video on demand (VOD)

and interactive video makes up 67% of IP traffic [1]. The real-time interactive video

applications require end-to-end quality of service (QoS) from the network. The real-

time interactive video applications such as videoconferencing—Google Hangouts and

Microsoft Skype and distance learning require guaranteed bandwidth, bounded de-

lay, and bounded jitter from the network. The real-time interactive video applications

such as telesurgery—remote surgery requires network reliability as well as guaranteed

bandwidth, bounded delay, and bounded jitter. The computer network QoS frame-

works are unable to meet the needs of real-time interactive video applications which

require flow-based end-to-end QoS from the network.

There are four network QoS frameworks that provide QoS for video applications.

Asynchronous Transfer Mode (ATM) provides end-to-end QoS for real-time applica-

tion such as video, but ATM for various reasons such as cost, advent of Ethernet,

complex software flow state setup process, and lack of integration standards was

not widely adopted by network community [2]. Integrated Services (IntServ), a flow-

based network architecture, provides end-to-end QoS for real-time and mission critical

applications such as video and voice, but IntServ lacks scalability because the soft

states in network devices need refreshing. IntServ uses message flooding to refresh the

2

state of network device. IntServ is unable to explore network paths that differs from

the routing protocol shortest constraint path. Differentiated Services (DiffServ) ad-

dresses IntServ scalability issue using the class based approach where IP prefixes are

aggregated into different classes, increasing network scalability while losing control

over individual network flows. Multiprotocol Label Switching (MPLS), a label switch

technique, increases packet switching speed in the core network using hashing and

provides link failover in case of network failures. MPLS requires network operator to

preconfigure links and MPLS lacks real-time path configuration. MPLS is unable to

reject flows and MPLS is unable to guarantee bandwidth and bounded delay.

The QoS frameworks are unable to meet real-time interactive video application

needs. This thesis seeks to develop network architecture that meets real-time inter-

active video application needs. This work builds on Software-Defined Networking

(SDN), a network architecture that increases network programmability. SDN pro-

vides network applications such as traffic engineering and load balancing and services

such as service chaining and wide-area network optimization with programmable net-

work abstractions, network-wide state, and network feedback that allows the network

applications and services to make routing decisions.

The network applications and services provide end-to-end QoS for real-time inter-

active video applications. The network applications and services use feedback from

the network to make decisions including selecting an end-to-end network path or path.

Selecting a path is difficult using the network QoS frameworks. The application-aware

network applications—application that keeps track of application-level characteristics

and network state and use information to provision end-to-end QoS paths are difficult

to design and develop using the network QoS frameworks.

3

1.2 Motivation

”Constraint based routing evolves from QoS Routing. Given QoS request of a flow

or an aggregation of flows, QoS Routing returns route that is most likely to be able to

meet QoS requirements. Constraint based routing extends QoS Routing by considering

other constraints of network such as policy.” Xipeng Xiao and Lionel M. Ni

Sender Receiver R1

R3

R4 R2

R5

AS1

Figure 1.1.: Seven-node IP network with sender and receiver. The routers in au-

tonomous systems one (AS1) are running Open Shortest Path First routing protocol

which determines shortest path between the sender and receiver. The shortest path is

R1-R5, but best path is R1-R2-R4-R5. The routers are unable to select feasible—best

path.

Example. The network operator uses a real-time interactive video application

with QoS constraints—bandwidth, delay, and jitter. The QoS requirements are not

conceived beforehand. The network receives QoS request and provisions network

resources—path.

4

In Figure 1.1, the best path for real-time interactive video application is R1-R2-

R4-R5. The network uses IntServ reservation protocols with Open Shortest Path First

(OSPF) routing protocol. If the sender and receiver start a video session, the network

uses shortest path selected by OSPF—R1-R5; therefore, the video packets traverse

path R1-R5 which is two hops. IntServ reservation protocol installs QoS—PATH and

RESV states in R1 and R5; however, the best path for the video application is path

R1-R2-R4-R5.

IntServ reservation protocols make it difficult to select a path that differs from

the shortest path selected by routing protocols—Routing Information Protocol (RIP),

Intermediate System to Intermediate System (IS-IS) , or OSPF because the routing

protocols select the shortest path for forwarding packets [3]. In Figure 1.1, if link

failure—R1-R5 occurs, the network finds another path. In case of a failure, OSPF

discovers next shortest path which is path R1-R3-R5, in Figure 1.1. After 30 seconds,

IntServ detects failure and provisions another path—R1-R3-R5 which PATH and

RESV states are stored at each router. The best path for video application is path

R1-R2-R4-R5. The network has failed to find a feasible path that satisfies the real-

time interactive video application constraints.

Selecting a feasible path for real-time interactive video applications require the

network architecture to select a path among multiple paths to improve video ap-

plication performance [4]. The network architecture requires knowledge about the

state of network such as bandwidth, link congestion, and link and node failures. If

the network architecture has the network-wide view—complete view, the network

architecture can select a feasible end-to-end path for the real-time interactive video

application, in Figure 1.1.

There are design requirements needed for the network architecture to select a

feasible end-to-end path for real-time interactive video applications. The requirements

to select a feasible end-to-end path are.

• The network applications and services need the network-wide view—need cen-

tralized control to keep track of resources such as bandwidth.

5

• The network applications and services need the ability to program network

behavior.

• The network architecture should reject request if the network is unable to service

the request [2].

• The network architecture needs a traffic engineering (TE) service to allow net-

work applications and services to program how traffic flows through the net-

work [3].

• The network architecture needs to perform constraint based routing using band-

width, delay, jitter, and reliability.

• The rate of network traffic should be known in advance [2].

• The network architecture should consistently enforce network policies and ac-

count for other network policies and QoS requirements of video application [5–8].

• The network architecture needs to support multi-domain end-to-end path se-

lection since the Internet requires a collection of independent network domains

to work together to provide QoS for video applications.

The network QoS architecture should incorporate traffic engineering (TE) with

constraint based routing [3] and should know the traffic rate in advance [2]. Constraint

based routing is an important tool for making TE process automatic [3]. Since traffic

rate is known in advance, the output port and intermediate network devices can record

the level of guaranteed traffic and reject flows if agreed capacity is in use [2]. The

network QoS architecture should keep track of network resources including capacity

levels and reject request if the network architecture is unable to service the request [9,

10].

6

1.3 Proposed Solution

”A motivation for Internet traffic engineering is the realization that architectural

paradigms and simple capacity expansion are necessary, but not sufficient, to deliver

high quality Internet service under all circumstances.” Daniel O. Awduche

Internet service providers develop scalable network architectures, expand network

capacity and network infrastructure, and perform traffic engineering in response to

large traffic growth [11]. Traffic engineering optimizes network performance [11] and

improves network operations efficiency and reliability [12].

In this thesis, traffic engineering is an integral part of developing a network archi-

tecture that provides end-to-end QoS for real-time interactive video applications.

7

Sender Receiver R1

R3

R4 R2

R5

AS1

SDN
Controller

OpenFlow

Figure 1.2.: SDN network with sender and receiver. The routers in AS1 are com-

modity network devices that the SDN controller programs for forwarding network

traffic. The SDN controller has the network-wide view of network resources such

as link state, congestion, bandwidth, delay, and jitter. The SDN controller selects

a feasible path—R1-R2-R4-R5 using the network-wide view and programs network

devices including the sender and receiver.

8

Software-defined networking (SDN) supports the proposed network architecture

design requirements by.

• Giving network applications and services control of network behavior using high

level abstractions to hide network details and to support network programma-

bility

• Providing a centralized view of network resources

• Supporting centralized management of network resources

• Allowing network services and applications to direct and automate network

traffic using TE and constraint based routing

• Allowing network policies to be applied consistently using the network-wide

view

Although SDN allows network application and services to have the network-wide

view, SDN lacks a provisioning protocol that requests QoS from the network and net-

work service which provides QoS for real-time interactive video applications; therefore,

this thesis develops a provisioning protocol and network service that meets the needs

of real-time interactive video applications.

The provisioning protocol allows the applications to request QoS from the network.

The network service provisions network resources—end-to-end path for the video

application. The network architecture should reject requests the network is unable

to service [2]. The network architecture supports multi-domain path selection.

The SDN architecture supports one network domain; therefore, the proposed net-

work architecture supports multiple domains. At the higher-level architecture level,

new concepts and constructs are required for dealing with end-to-end flows that in-

volve multiple scarce resources [13]. This thesis presents the proposed network ar-

chitecture key concepts and constructs and the results of implementing the proposed

network architecture prototype.

9

1.4 Research Goals

”In order to adopt TE solutions, it is necessary to create an intelligent control

plane which is able to adequately handle network resources.” Roberto Sabella and

Paola Iovanna

The research goal of this thesis is to develop a network architecture that meets

the needs of real-time interactive video applications —automating TE process. This

thesis proposes a network architecture that uses SDN as its core. The proposed

network architecture takes advantage of the logically centralized control plane and

network resource monitoring ability of SDN.

The primary research question of this thesis can be summarized as:

What is the network architecture needed to support real-time interactive

video applications?

As this thesis explored the primary research question other fundamental questions

that relates to the primary research question were produced.

• What protocol is required to allow video applications to request QoS from the

network?

– Can the protocol accept minimal information from developer and meet

video application requirements?

– How difficult is it for video application developer to request QoS from the

network using the application program interface (API)–API usability?

• How does the network architecture control state distribution and reduce burden

on the logically centralized controller?

• Can the network architecture support real-time interactive video applications

such as telesurgery that require reliability from the network?

10

• Can the network architecture support multi-domain end-to-end path selection?

• What is the message complexity of network architecture which supports feasible

path selection for real-time interactive video applications?

These fundamental questions help guide the development of network architec-

ture that meets the needs of real-time interactive video applications such as

videoconferencing and distance learning.

1.5 Assumptions and Limitations

This experimental thesis research uses a network simulator to evaluate the pro-

pose network architecture. The network architecture is a stable version of the network

simulator. Regression testing and code reuse [14,15] allow the effect of bugs in simu-

lation to be minimized. This thesis work does not include deployment of the network

architecture into production environment—testbed; therefore, a certain level of trust

is needed when working with simulations [14, 15].

1.6 Expected Outcome

This thesis involves developing a network architecture that selects a feasible QoS

path among multiple paths for real-time interactive video applications. This thesis

expects to develop a prototype that illustrates and captures the architectural elements

and behavior of the proposed network architecture. This thesis expects to focus on

the message complexity of network architecture and how state distribution affects

scalability of the network architecture. This thesis focuses on API usability—design

API to accept minimal input from application developer. This thesis research blends

software engineering, distributed systems, and computer networks to developed a

network architecture that provides QoS for real-time interactive video applications.

11

1.7 Scope

This thesis focuses on developing a network architecture that supports selecting

a feasible end-to-end QoS path among multiple paths for real-time interactive video

applications. This thesis identifies the architectural elements and determines the

message complexity of the proposed network architecture. Although dummy packets

were transmitted through network, this thesis is not concern with content of the

packets or how video encoders and hardware plays video content. The proposed

network architecture is agnostic to network vendors. Justifying the proposed network

architecture cost benefits is outside the scope of this thesis.

1.8 Dissertation Structure

• Chapter 2 Software-Defined Networking Survey: A Research Landscape surveys

state-of-the-art in SDN and presents the key SDN architecture concepts. Chap-

ter 2 presents a taxonomy for classifying related works and illustrating where

this thesis fits into SDN research.

• Chapter 3 Video over Software-Defined Networking (VSDN) presents network

architecture that selects a feasible path using the network-wide view. Chapter 3

describes how video application developers use protocol for requesting network

service. Chapter 3 presents the results of implementing VSDN prototype and

evaluates performance of VSDN.

• Chapter 4 Explicit Routing in Software-Defined Networking (ERSDN): Address-

ing Controller Scalability presents routing scheme that selects transit routers

at the network edge. Chapter 4 presents the design and implementation of

ERSDN. Chapter 4 evaluates the effect of ERSDN on the scalability of SDN

controller.

• Chapter 5 Reliable Video over Software-Defined Networking (RVSDN) builds on

Chapter 3 and addresses the issue of finding the most reliable path. Chapter 5

12

presents the design and implementation of RVSDN. Chapter 5 presents the

results of implementing the RVSDN prototype and evaluates the behavior of

RVSDN.

• Chapter 6 Multi-Domain over Software-Defined Networking (MDVSDN) presents

network architecture that selects end-to-end QoS path for real-time video appli-

cations across independent domains. Chapter 6 describes the architectural ele-

ments of MDVSDN. Chapter 6 presents the results of implementing MDVSDN

prototype and evaluates the behavior of MDVSDN.

• Chapter 7 Conclusions summarize thesis research, highlight thesis contributions,

and suggest where thesis results can lead in the future.

13

2 SOFTWARE-DEFINED NETWORKING SURVEY: A RESEARCH

LANDSCAPE

2.1 Abstract

Virtualization of compute and storage resources creates a more flexible and man-

ageable infrastructure. The computer network is unable to meet the demands of

infrastructure that supports network services such as compute, storage, and security

and network applications such as quality of service, traffic engineering, and load bal-

ancing. The infrastructure demands require the computer network to install network

flows and inform network services and applications about network state changes, al-

lowing the services and applications to behave intelligently—react and respond to the

network state changes. Traditional networks are too complex for supporting services

and applications in a seamless, efficient, and cost effective way. Software-defined net-

working has been adopted as the future network architecture for addressing the need

for rapid, deployable, and dynamic network services while giving network applications

and services control over the behavior of network.

This chapter surveys the state-of-the-art in software-defined networking and presents

the key concepts of software-defined networking architecture. This chapter reviews

past programmable networking research that ideas impacted the development of

software-defined networking. This chapter summarizes a landscape of software-defined

networking research and identifies the key software-defined networking contributions

of research. This chapter identifies common set of characteristics among research

and creates taxonomy for better understanding of field. This chapter highlights and

discusses future software-defined networking challenges. This chapter discusses the

network industry software-defined networking state. This chapter identifies the key in-

14

novations pushing the software-defined networking paradigm shift and draws together

the contents of chapter.

2.2 Introduction

The Internet Protocol (IP) network architecture is unable to satisfy the demands

of network applications which impair network innovation. The network equipment

vendors, developing hardware and software, release cycles are long, slowing innovation

of network applications and services. Researchers believe developing network hard-

ware and software separately speeds up innovation of the network applications [16],

reshaping relationship between the network and applications.

The computer network is made up of three planes—the data plane, control plane,

and management plane. The data or forwarding plane is responsible for forwarding a

packet out network port. The control or decision plane is responsible for computing

route of a packet. The management plane provides an interface to the computer net-

work, allowing network operator to configure and manage network resources. The con-

trol plane and data plane of network devices are tightly coupled, making the network

devices ill-suited for meeting requirements of enterprise and carrier networks [16].

Software-defined networking (SDN) [17–20] proposes decoupling of the data plane

and control plane to enhance application innovation [16]. In SDN, the control plane

is logically centralized in a server—SDN controller or controller. The data plane is

implemented in commodity network equipment—switch. The data plane forwarding

tables or flow tables are controlled by the SDN controller which hosts external control

processes—network applications and network services.

The network applications such as traffic engineering and load balancing program

the flow table of switch, giving network operator control of the network —behavior.

The network services program the flow table of switch, creating innovative services

such as compute, storage, and security.

15

The controller communicates with switch over an open interface using Open-

Flow [21]. OpenFlow is a standard protocol that remotely controls the data-path

of a switch. OpenFlow enables the flow table of a switch to be programmed by net-

work applications and network services running on the controller. Programming of

flow table constitutes forwarding actions that cause a packet to be dropped, forwarded

to a port, or forwarded to the controller.

SDN promotes rapid development and rapid deployment of network applications

and network services [22]. SDN enables network policy driven end-to-end quality

of service (QoS). SDN allows network resources to be optimized and automated,

resulting in cost saving [16, 23]. The benefits of SDN have been realized in campus

networks, wireless networks, and data center networks.

HP [24], NEC [25], and Big Switch [26] are developing OpenFlow enabled switches.

Network equipment vendors such as Arista [27], Ericsson [28,29], HP [24], Juniper [30],

NEC [25], and IBM [31] are developing SDN controllers. The absence of SDN con-

troller Application Programming Interface (API) standard has caused network ven-

dors such as Extreme Networks [32] and IBM [31] to developed the complete SDN

stack—OpenFlow switch and SDN controller, avoiding interoperability issues.

The research community sees SDN as a critical part of designing a more flexible

and optimizable, cost effective [23], and scalable computer network [16]. The research

community believes SDN rapidly enhances application innovation. There are open

issues, challenges, and obstacles for the research community to explore and overcome

before the impact and value of SDN are understood.

This chapter surveys the state-of-the-art in Software-Defined Networking (SDN),

discusses past programmable networks research, gives an overview of SDN architec-

ture, reviews SDN research, presents a taxonomy for understanding of SDN research,

discusses SDN in networking industry, and identifies future research challenges. This

chapter identifies the key innovations that are pushing SDN.

The remainder of this chapter is organized as. Section 2.2.1 discusses programmable

networks background. Section 2.3 gives an overview of SDN architecture. Section 2.4

16

discusses the key contribution of SDN research using a set of common characteristics.

Section 2.5 discusses research challenges. Section 2.6 discusses the state of SDN in

networking industry. Section 2.7 summarizes the key innovations that are pushing

SDN and draws together the chapter contents.

2.2.1 Programmable Networks: Background

In the past, the network software and hardware have been tightly coupled, making

it difficult to rapidly deploy network services. Past programmable network research

efforts have increased the ability to deploy network services, evolving over time. SDN

is an evolution of programmable network research ideas [33] which aims were to in-

crease programmability of the network and allow rapid deployment of network services

and applications.

This section discusses past programmable network research that ideas have led to

evolution of the network—SDN.

Tutorial on Intelligent Networks [34] builds an intelligent network (IN) that allows

flexible routing and metering, advanced user interaction, and advanced user control.

IN allows rapid deployment of standard vendor agnostic network services by sepa-

rating network services from the network. The network services runs within service

control point (SCP) that are responsible for querying service data point (SDP), a

database that stores user data. The calling card service and universal access number

service are services deployed using IN.

Active Networks [35] (AN) are programmable networks that respond to mobile

code and mobile data encapsulated in packets. There are two approaches for pro-

gramming AN. The first approach is discrete approach used by programmable switch,

acting on packets that contained small programs where the packet header determines

program execution. The second approach is an integrated approach where messages

are used for encapsulating small programs—capsules. The switch receives capsule

and acts on the capsule and sends the capsule to destination. AN allows the mobility

17

of programs between switches. AN allows protocols to be deployed easier, enhanc-

ing application innovation. Network applications such as firewall and web proxy are

deployed using AN.

Cabletron’s SecureFast VLAN Operational Model [36] implements distributed

connection-oriented switching protocol that provides layer-2 forwarding. The connec-

tions are programmed into switch. The connection mappings between input port and

output port allow programmatic control over packet routes. A switch queries another

switch connection mapping, allowing the switch to make intelligent decisions.

General Switch Management Protocol (GSMP) [37] performs efficient and cost

effective handover in Multiprotocol Label Switching (MPLS) networks. GSMP have

slave switches and a master controller that establishes and releases network connec-

tions. GSMP introduces the idea of having programmable switches programmed by

a centralized network controller.

IP Multimedia System (IMS) as Next Generation Network (NGN) Service Delivery

Platform [38] allows decoupling of call control from network applications, supporting

rapid deployment of multimedia services. IMS combines voice service and packet

service into single service. IMS allows service providers to distinguish themselves from

their competition by rapidly deploying network services such as Voice Call Continuity.

Routing Control Platform (RCP), a logically centralized platform, addresses scal-

ability issues of full mesh network topologies [39]. RCP communicates routes between

routers and mitigates route reflection issues such as protocol oscillations and persis-

tent loops. RCP collects information about external network destinations and internal

network topology, using the information for selecting routes between routers. RCP

performs routing decisions in large networks.

4D increases the manageability of network and allows network changes to be made

without breaking functionality [40]. 4D investigates relationships between configura-

tion errors of network, size of router configuration file, and routers that are manually

configured by the network operator. To reduce complexity of control and manage-

ment planes, 4D purposes refactoring the network using three principles—expressible

18

network-level objectives, global network view decisions, and network behavior which

is directly controlled by the network operator [40]. The three principles of 4D imply

a clean slate for designing the network architecture [40], a precursor to SDN.

SANE [41] addresses the network security issues caused by complexity of applying

routing policies and bridging policies with other mechanisms such as access control

lists (ACL) and middleboxes. SANE uses centralized controller for issuing capabilities

which are encrypted network client source routes. The capabilities are verified at

each router in path. SANE achieves better protection for enterprise networks using

a centralized controller for managing network security [41].

Ethane [42] addresses complex management and configuration of the network.

Ethane builds on the research of 4D architecture [40]. Ethane uses centralized con-

troller to perform network configuration of single flow-based Ethernet switch [2]. The

network client requests are sent to the controller where network policies are applied

consistently. Ethane was first applied to campus networks [42].

SEATTLE [43] reduces network complexity of large enterprise networks. SEAT-

TLE, layer-2 architecture, addresses the scalability limitation of Ethernet—poor scal-

ing caused by broadcasting and inefficient path selection of the spanning tree protocol.

SEATTLE uses centralized controller to locate network client and prevents broadcast-

ing to find client when the client location is unknown. SEATTLE uses switch level

link-state discovery protocol to compute shortest path. SEATTLE routing proto-

col is a self-configuring protocol, avoiding manual configuration of addressing and

subnetting configurations [43].

SDN builds on the previous programmable network efforts for creating a flexible,

loosely coupled, and manageable network architecture. The question asked is—why

SDN now? The timing for new ideas is paramount [44]. There were no video, cloud

computing, virtual machines, virtual machine migration, smart mobile devices, and

large scale data centers during the earlier research; these technologies have placed

great demands on the network [45,46], requiring the network to be built to match the

needs of network applications and services [47].

19

2.3 SDN Architecture

SDN
Controller

R1

R2

R3

R4

Control Plane
• Application APIs
• SDN Controller

Data Plane
• Switches
• Routers
• Links
• Middleboxes

Southbound API

Application Plane
• Applications
• Services

QoS Routing Traffic
Engineering

Network
Virtualization

Other
Applications

APIs

APIs

Northbound API

Management Plane
• Policy Configuration
• Service Level

Agreements
• Credentials
• Performance

Monitoring
• Data Plane Setup

APIs

Figure 2.1.: SDN architecture, illustrating relationship between network planes. Each

network plane represents specific function of the SDN architecture. In the application

plane, the network applications program data plane using northbound API. Using

southbound API to send requests, the control plane converts the application plane

requests to modifications or queries in the data plane. The data plane presents

the control plane with an open API. The management plane performs management

functionalities such as configuring network policies, monitoring network performance,

and setting up network devices in the data plane.

The management plane is an interface to the data plane, allowing network opera-

tor to setup of network devices. The management plane interfaces with control plane

and allows the control plane to perform performance monitoring of the network such

as multi-tenant networks [48]. The management plane provides an interface to the

application plane and allows network applications to verify service level agreement

(SLA)—network policy. The management plane configures network policies and man-

ages cache performance such as miss rates and object sizes, allowing network operator

to adjust protocol-specific parameters to optimize the network [49].

20

The application plane includes network applications such as performance monitor-

ing, traffic engineering (TE), and QoS and network services such as routing, service

chaining, and wide area network (WAN) optimization. The network applications op-

timize business processes and work-flows, automating creation of the network. For

example, finding the Constrained Shortest Path First (CSPF) can be performed be-

cause the TE application has a global network view—a view of the complete network

topology.

The control plane contains the SDN controller or controller. The controller

presents an abstract view or graph of the state of data plane to network applica-

tions. SDN applications can operate on the abstract view of the state of network [50].

The controller runs a network operating system which uses virtualization to hide

and decouple the application plane from data plane. The control plane enforces

network policies which are set by the network operator. The network policies are

applied consistently by the control plane which has the global view of network. The

control plane includes a special controller such as FlowVisor [51] which orchestrates

interactions among controllers and switches.

The data plane is composed of routers, switches, links, and middleboxes. The

data plane includes flow table, Ternary Content-Addressable Memory (TCAM), and

network device counters [52]. The data plane allows programmatic access to the flow

tables of network resource using an application programming interface (API) such as

Representational State Transfer (REST), vendor specific, or OpenFlow [21]. The data

plane performs statistics gathering which is used by the control plane and application

plane when making decisions.

SDN is a network architecture that separates the data plane and control plane.

As shown in Figure 2.1, the SDN architecture has four network planes or functional

planes. The control plane is logically centralized in the SDN controller [53]. The

SDN layered architecture allows network services and applications to be separated

from the data plane, improving ability to debug and troubleshoot the network [54].

In Figure 2.1, the application plane—network applications runs on network operat-

21

ing system [55] residing on the controller. The network applications are deployed

independently of the devices in data plane. The management plane performs con-

figuration and management functionalities such as setting up network devices in the

data plane [53]. The network applications, such as TE and routing, have control over

how network traffic flows through network. The SDN architecture increases appli-

cation awareness [56–59] by allowing network applications to decide when and how

to act upon network related events. For example, the routing application can pro-

gram the data plane and send network traffic through path R1-R3-R4 after a link

failure—link-R1-R2, in Figure 2.1.

2.3.1 Communication Between Network Planes

In SDN, communication between network planes is performed over an open in-

terface—API. The APIs that communicate between planes are organized by their

functionality. In Figure 2.1, there are three APIs—the northbound, southbound, and

east-westbound [60,61] which is not shown.

The application plane and control plane use the northbound API to communicate

with each other. The control plane and data plane use the southbound API for

communicating with each other. A federation of controllers uses the east-westbound

API [60,61] to communicate with one another.

The network applications or services make configuration changes to the data plane

using northbound API. The network applications send high-level modifications or

query requests to the controller.

For example, in Figure 2.1, the network application can be a web browser that

the network operator uses to configure data plane. In the web browser, the network

operator is presented with single node graph with outgoing links. The network op-

erator configures the QoS such as bandwidth, delay, and jitter of outgoing links. To

configure QoS between two outgoing links—ingress and egress, the network operator

connects the two links and sets the QoS values. After the network operator saves con-

22

figuration changes, the changes are sent to the control plane or controller over a secure

connection such as HTTP over SSL where high-level requests from the application

plane configures data plane—physical links.

The graph that is presented to network operator hides the details of data plane

—R1, R2, R3, and R4, in Figure 2.1. The network operator connects link-A that

represents R1 and link-B that represents R4 to each other and configures the QoS

values between R1 and R4, in Figure 2.1. The network operator sets the QoS values

on single logical link—link-A-B which in the data plane is represented by two physical

links—R1-R2 and R2-R4. The control plane maps the single logical link—link-A-B

in the application plane to two physical links in data plane.

The control plane determines the single logical link A-B maps to physical links

R1-R2 and R2-R4—path R1-R2-R4. Using the southbound API, the control plane

sends a port modification requests to R1, R2, and R4, creating path R1-R2-R4. The

switches send status messages to the control plane using southbound API.

The controller uses the northbound API for sending configuration response from

data plane to application plane. The response is presented to network operator as

successful configuration—link-A-B is shown with QoS values set as specified.

The high-level configuration and modification requests from the application plane

travels downward through the SDN planes and are converted to particular config-

urations and modifications in the data plane. The data plane state changes travel

upward through the SDN planes to control plane. The state changes are forwarded

from the control plane to application plane—network applications and services.

2.4 SDN Research Review

This section reviews SDN research and identify the key contributions of research.

The SDN research are organized and classified using common set of characteristics

that were discovered while reviewing the research.

23

The SDN research identified during the synthesis of our research are summarized

in Table 2.1 and Table 2.2.

2.4.1 Characteristics

This chapter uses four common characteristics for better understanding SDN and

how SDN research are related.

• Network technology determines programmability of SDN. The network tech-

nology such as data center networks, wireless networks, and home networks

determines amount of programmability. For example, the wireless networks

programmability is decreased because network resources such as CPU, memory,

and bandwidth are limited. Data center networks have a plethora of network

resources which need complex management schemes and policies.

• Layer of control refers to network plane which network operator is able to

control the behavior of the network. For example, the network operator is able

to control the behavior of data plane using REST API which provides advanced

switch configuration options.

• Application domain indicates the functionality of SDN applications such as

routing, load balancing, or network management [62]. The design choice that

delivers the SDN application is constrained by the application domain. For

example, a traffic engineering application requires the network-wide or global

view. Partitioning the network over multiple controllers affects the design of

traffic engineering application [63,64].

• Level of programmability indicates network plane which network service is intro-

duced. Level of programmability is coupled to the API exposed by each network

plane. Introducing service at the management plane requires communication

with the network using command-line interface (CLI) [65]. Introducing service

24

in the control plane requires communication with an open programmable inter-

face. Introducing service in data plane requires communication with the network

using OpenFlow [21] or General Switch Management Protocol (GMSP) [66] such

as Forwarding and Control Element Separation (ForCES) [67].

2.4.2 Network Technology

This section discusses and organizes SDN research using the network technology

characteristic such as the Internet and wireless networks.

Internet

Software-Defined Internet Architecture (SDIA) [68] decouples Internet Protocol

(IP) of the Internet from infrastructure, routers, switches, and links, changing how

the Internet is built. The IP is embedded in applications and routing protocols of

the Internet, making changes for the Internet difficult [68]. OpenFlow based solution

for the Internet are too specific [68, 69]. SDIA [68] provides a generalized solution,

whereas OpenFlow networks [70] solution is specific. A more general solution allows

packets to be routed between autonomous systems (ASes) using standard technologies

such as middleboxes, Multiprotocol Label Switching (MPLS), SDN, and software-

based forwarding [68]. SDIA services are built into software on the edge of network

above layer-2 and the network core performs layer-2 services only, allowing services

to be attached to the network without major changes.

The solution presented in [71] improves inter-domain routing of the Internet by

developing a backwards compatible routing model which uses outsourcing [72]. The

solution [71] addresses deficiencies such as scalability, security, and complexity of the

Internet routing protocol—Border Gateway Protocol (BGP). Enterprise businesses

increase routing efficiency and prevent policy conflicts by outsourcing their routing

decision to service providers. Outsourcing routing simplifies enterprise networks by

25

removing routing protocols and allowing experts to optimize routing which improves

network performance and increases network security.

Cloud and Data Center Networks

SEATTLE [73] reduces packet flooding and broadcasting of Ethernet—Address

Resolution Protocol (ARP) and Dynamic Host Configuration Protocol (DHCP). SEAT-

TLE captures broadcast packets and converts the broadcast packets into unicast

transmission that is delivered directly to destination. SEATTLE uses a centralized

consistent hash lookup table to locate the destination. The lookup table resolves

the Media Access Control (MAC) address of destination to IP addresses and phys-

ical location (Top of Rack (TOR) and End of Row (EOR)) of the destination to

MAC address. SEATTLE supports virtual machine (VM) migration using a caching

scheme.

Portland [74] makes layer-2 (L2) switching more efficient [75,76] by using location

discovery protocol (LDP) which allows switch to determine its location in the network.

LDP communicates the switch location in network to another switch. Portland uses

pseudo MAC address (PMAC) that encodes the location of network client or client in

the network—multi-rooted tree instead of using the MAC address of client, allowing

packet forwarding using the PMAC prefixes instead of the MAC address. Portland

uses centralized fabric manager for resolving ARP queries, simplifying multi-cast, and

enhancing fault tolerance. Portland separates the client identity from client location,

enabling unmodified client to freely move around and be located in data center.

Virtual Layer 2 (VL2) [77] provides a virtual service which creates the illusion of

having a single switch for entire network. VL2 removes network bottleneck for client-

to-client communication—uniform communication. VL2 allows services to run in

isolation without affecting the quality of one another. VL2 addresses client mobility

by modifying the client and remaining backwards compatible with legacy network

technologies such as Equal-Cost Multi-Path (ECMP) routing, Label Switching Router

26

(LSR), and Internet Protocol (IP) multi-cast. In VL2, a network service has an

application specific IP address (AA) and its own virtual subnet. VL2 maps AA(s)

to location specific addresses (LAs) that describes the location of service in CLOS

network. The centralized lookup service runs on the client instead of in the network.

Two data center design objectives are to increase scalability and flexibility of net-

work by performing network optimization such as eliminating layer-2 broadcast and

exposing the possible network paths. Wide-area Layer-2 (WL2) [78] achieves scalabil-

ity similar to SEATTLE by rerouting control plane traffic to the controller, aggregat-

ing layer-2 routing, and creating fast flow setup overlay. WL2 [79] and Hierarchical

SDN (HSDN) [80] expose the possible paths in the network, increasing scalability

and flexibility of the network. WL2 [79] uses source routing while HSDN [80] uses

hierarchical underlay partitioning, taking full advantage of physical topology of data

center to improve routing scheme.

M2cloud [81] framework provides scalable network control for multi-site data cen-

ters. M2cloud [81] provides inter data center traffic optimization and cross-site perfor-

mance isolation for tenants. M2cloud uses two level [82] controller architecture where

the local controller performs flow table configuration and global controller performs

inter data center traffic engineering and global workload balancing [81]. Data centers

are connected by programmable border gateways that are controlled by the global

controller, allowing load balancing to be performed among data centers. M2cloud

improves inter data center bandwidth utilization [83] 24% using the optimal path to

send the traffic of tenants between data centers.

SWAN [83] improves inter data center bandwidth utilization by controlling how

much traffic a network service sends and re-configuring inter data center traffic paths

to match demands of the network. SWAN performs link re-configuration in a conges-

tion free manner by leveraging small amount of link scratch capacity and forwarding

table memory. SWAN minimizes forwarding rules by dynamically changing with the

traffic demands or available paths in the network. SWAN carries 60% more inter data

center traffic than MPLS-TE.

27

Wireless Networks

The authors [84] propose to use controller applications to simplify the design and

management of cellular networks. The solution [84] uses SDN to express high level

policies on subscriber basis and apply real-time control to the network traffic using

switch agents. The solution [84] uses SDN for performing deep packet inspection

(DPI) [85, 86] and header compression on packets and for managing the resources of

base-station remotely.

Odin [87] allows enterprise Wireless Local Area Networks (WLAN) to be pro-

grammed by network operator. Odin simplifies client management through use of

virtual Access Point (AP). The virtual AP allows each client to be isolated from one

another. Odin performs client hand-off between AP in software, using agents running

on the AP to communicate with the Odin service running on Odin controller. Appli-

cations such as seamless mobility, smooth hand-offs, load balancing, and mitigating

hidden node problem are built on top of Odin [88]. OpenSDWN [89] extends Odin and

introduces service differentiation using per-flow WiFi datapath transmission rules.

OpenRadio [90] is a wireless programmable data plane which provides modular

and declarative programming interface across the wireless protocol stack. OpenRadio

separates the wireless protocol into processing plane and decision plane, enabling

network operator and network provider to remotely program base-station. OpenRadio

reduces the manual upgrading time of base station and allows programming of the

network infrastructure to be performed in software—network optimization.

SoftRAN [91] is a software-defined centralized control plane for radio access net-

works which reduces complexity of wireless networks. SoftRAN abstracts the control

plane from each local geographical area into virtual big base station. The virtual big

base station is comprised of the central Radio Access Network (RAN) controller that

makes decision regarding hand-overs and interference management and an individual

physical base station which contains minimal control logic. A single SoftRAN [91]

controller manages base stations in a geographical location.

28

OpenRAN [92] is architecture for software-defined RAN. Similar to SoftRAN [91],

OpenRAN [92] addresses heterogeneous interconnected characteristics of wireless net-

works. OpenRAN [92] achieves complete virtualization and programmability, making

RAN open, controllable, flexible, and evolvable. OpenRAN [92] abstracts and com-

bines control functions of RAN [88] and places them in the controller. The Open-

RAN [92] controller creates and optimizes virtual access elements spectrum allocation

and compute and storage resources.

ProCel [93] is a cellular network architecture that eliminates unnecessary process-

ing of flows in the Long-Term Evolution (LTE) core network. ProCel architecture

has two classes of services—non-real-time and real-time. The non-real-time traffic is

routed directly to the fixed IP network instead of LTE core. The real-time traffic

that requires strict QoS is routed through the cellular network [93]. ProCel reduces

data traffic and control traffic at the mobile core network, reduces network latency,

enhances application innovation at the edge of network, and enables service providers

to support large class of applications without deploying complex backhaul and core

networks [93].

Carrier Networks

The Information and Communication Technology (ICT) project Split Architec-

ture (SPARC) is a network architecture developed for integrating SDN into carrier

networks [94]. SPARC [94] is driven by the growth and influence of the Internet that

lacks security, scalability, and mobility. The carrier networks are complex and diverse

with multiple technologies and protocols that were developed for addressing specific

network problems. The carrier networks are using proprietary software and hard-

ware, causing solutions to vary between vendors. SPARC outlines required design

changes to integrate SDN into the Internet. SPARC uses a hierarchical controller in

the control plane and splits forwarding and decision elements in the data plane.

29

The authors of [95] investigate the ability of SDN to provide carrier grade func-

tionalities in areas of reliability and energy efficiency [96] and summarize requirements

for carrier grade resiliency in the data and control planes. The authors [95] reduce

network power consumption to improve network scalability and reduce the carbon

footprint. The solution [95] uses multilayer traffic engineering to conserve energy and

reduce the carbon footprint of network. The OpenFlow switch requires modifications

to support power management because power management was excluded from the

original switch design [95]. The forwarding engine and power supply are the greatest

energy consumption components [97] of the switch.

Home Networks

The solution [98] reduces the complexity of managing and configuring home net-

works. The solution [98] gives the users visibility into their home network—network

performance and network policies that are applied to their network. The solution [98]

improves the user experience by changing the way home network users interact with

their networks.

The home network users want an intentional user interface that directly maps

user intentions to the configured network policies [98]. The solution [98] creates

an outsourcing business model [72, 89] home network configuration tasks to service

providers. Outsourcing home network configuration relieves user of complex task of

configuring and managing the home network [72,98].

The solution presented in [99] reduces cost and increases manageability of the

home network. The solution [99] uses slicing [100], a concept of having two or more

virtual networks share the same physical infrastructure to increase manageability of

home networks.

Slicing allows multiple service providers such as Internet, cable TV, and electri-

cal power to share the home network without interfering with one another. Slicing

30

allows network providers to share cost, reducing the overall cost of operating home

network [99].

There are multiple standards used for configuring home network devices which

increases network manageability. The solution [101] uses cloud SDN and OpenFlow

for auto-configuring home networks. The solution [101] allows home network auto-

configuration and management without requiring specific standards equipment or

middleware. The solution [101] uses a home database that stores the MAC address

of network device. The MAC address identities the manufacturer of the device [101]

which allows the network devices to be automatically detected when connected to the

network.

Enterprise Networks

Floodlight [102], formally Beacon [103], is an OpenFlow controller developed by

Big Switch Networks [26]. Floodlight is an enterprise class controller with a collec-

tion of built-in network applications—circuit pusher, OpenStack Quantum Plugin,

packet forwarding application, and firewall application. The Floodlight controller

implements common OpenFlow network functionalities, such as link discovery, flow

cache [104], tracing, and monitoring [105, 106]. Floodlight network applications in-

crease controllability and manageability of enterprise networks. The Floodlight con-

troller supports three APIs—REST, module, and OpenStack. Floodlight dynamically

establishes a sequence of virtual middlebox functions that supports adaptive network

service chaining [107].

RouteFlow Control Platform (RFCP) [108] builds on idea of Routing Control Plat-

form [39]. RFCP [108] uses centralized controller hybrid networking model to provide

a global network Border Gateway Protocol (BGP) routing service. RFCP hybrid

model supports integration of traditional and OpenFlow network devices [109]. RFCP

addresses network deficiencies such as routing loops, protocol oscillations, and unop-

timized path selection that are caused by the complexity of control and management

31

planes. RFCP provides fine grain control over network resources, and more flexi-

ble and intelligent based routing. RFCP addresses four network issues—centralized

BGP [110], OpenFlow data path performance, need for high availability [111–113],

and switch flow table limitation.

Configuring RFCP is a manual process that takes days for network operator to

complete; therefore, the authors [114] developed a framework that discovers the net-

work configuration and automatically configures RouteFlow using configuration mes-

sages [114].

Campus Networks

Stanford University partnered with 7 other universities to start the Clean Slate

Program [115, 116] in 2009. The Clean Slate Program (CSP) supports GENI [100]

which is a virtual laboratory for exploring scalable Internet innovations. CSP re-

searchers believe the collaboration of campuses increases innovation for researchers

and network administrators.

There are multiple active campuses collaborating on CSP [115, 116] and sharing

challenges and successes in deploying SDN. The CSP strategy for expansion of cam-

pus deployments is to encourage SDN in marketplace, train engineers in SDN using

classes and workshops, provide continuous support to trained engineers, and help

with research funding [115,116].

2.4.3 Layer of Control

This section discusses and organizes research that contribute to characteristic of

layer of control.

32

Data Plane

Open vSwitch [117] started from collaboration between Nicira Networks and the

University of California, Berkeley. vSwitch runs in software, but unload router pro-

cesses to hardware. vSwitch address virtualization related issues—VM mobility, net-

work scalability, VM isolation, and traffic isolation [118]. vSwitch allows VM config-

uration state, Access Control List (ACL), QoS policy, and Layer-2 (L2) soft states to

be migrated. vSwitch allows fine grain control and programmability of the forwarding

table of switch and supports tunneling, firewalling, and filtering.

Open Transport Switch (OTS) [119], a virtual OpenFlow switch architecture,

reduces the complexity of control plane in optical transport networks [120–125].

OTS [119] controls packet-optical cross-connect (XCON) and bandwidth allocation

capability of the optical switch. OTS allows QoS aware applications to request provi-

sioning of circuits cross-connects or aggregation of packet interfaces into optical trunks

with required QoS [126] metrics such as bandwidth. OTS setup time of an end-to-end

circuit is similar to setup time of distributed network algorithms, a promising discover

for service providers [119].

NetFPGA [127] is a programmable line-rate, flexible, and open source platform

that allows universities and researchers to prototype network hardware for researching

and teaching. NetFPGA removes the need to rely on network equipment vendors for

features, opening network innovation to a broader group of researchers. NetFPGA has

hardware limitations [128], but can run a complete network on 4-port NetFPGA [129].

SwitchBlade [130] is a packet processing pipeline platform that allows customized

protocols to be rapidly deployed. SwitchBlade builds on the concept of Click [131].

SwitchBlade maintains same flexibility and configuration strengths of Click and ad-

dresses performance issues of Click, providing high performance packet switching.

SwitchBlade balances programmability of software and performance of hardware, en-

abling rapid network prototyping and protocol deployment. SwitchBlade data planes

are customized and run in isolation on the same NetFPGA [128].

33

DIstributed Flow Architecture for Networked Enterprises (DIFANE) [132] is a

switch architecture that scales by efficiently keeping traffic in the data plane. DI-

FANE selects and directs packets through intermediate switches or authority switches.

DIFANE [132] addresses the scalability issue of OpenFlow that is caused by excessive

control plane events—packets. The authority switches perform similar functionality

as the controller, minimizing the packets sent to control plane and increasing network

throughput. DIFANE partitions flow rules across authority switches, avoiding having

the controller store rules [133]. Each rule is mapped to a single authority switch.

DevoFlow [134] decreases full visibility of the controller over network events—packets,

reducing the interactions between the control plane and data plane. DevoFlow re-

duces the overhead in control plane by devolving the functionality of switch that is

displaced to the controller and places the functionality in the switch. The controller

maintains control over significant flows—QoS sensitive, but normal flows are pro-

cessed in the switch using wildcard rules. The wildcard rules aggregate multiple rules

into one, reducing interactions between the controller and switches and flow rules

installed in switch. DevoFlow builds on idea of [135], performing rule based cloning

in the data plane instead of control plane.

Consolidated Middlebox (CoMb) [136] is a top-down design for a middlebox in-

frastructure that addresses difficulty of provisioning and managing [137] middlebox

technologies. CoMb consolidates middlebox network services into a centralized con-

troller where middlebox applications share the same physical infrastructure. CoMb

supports network service chaining [107] and allows middlebox functionality to be

mobile [138].

The authors [138] developed a network management system that allows dynamic

instantiation and quick movement of middleboxes. The solution [138] supports a fully

programmable network that provisions middleboxes on-the-fly—as needed [139].

The authors [140] simplify traffic steering through middleboxes. The solution [140]

allows network operators to specify a logical middlebox routing policy and auto-

34

matically translates the policy into flow rules that are optimized using the physical

topology, switch capabilities, and resource constraints of middlebox.

Application-ware data plane processing [57] in a middlebox [59] provides network

functions from layer-4 through layer-7, a requirement as SDN is deployed and inte-

grated into the traditional network infrastructure. Software-Defined Middlebox Net-

working (SDMBN) [141], a middlebox framework, simplifies management of complex

middlebox deployments by supporting dynamic middlebox control scenarios.

Research that increase programmability of network devices have emerged to over-

come the lack of programmability and performance of traditional network devices.

Reusable abstractions have been developed for supporting special processing in data

plane—switches [109, 142–144] and middleboxes [145]. Soft switches such as Edge-

Plex [146] and mSwitch [147] increase data plane flexibility, reliability, and through-

put.

Control Plane

Onix, a distributed controller, runs on multiple servers. Onix gives network opera-

tor one view of the data plane and provides a common control management platform,

increasing manageability of network [148]. Handling state distribution [149] and col-

lecting information about the control plane are functions of the Onix controller [148].

The Onix controller stores network state in the Network Information Base (NIB)

which enables network applications to register for state notifications. The network

state is partitioned and replicated among distributed controllers which provide dura-

bility and consistency [150] while improving scalability of the control plane.

HyperFlow [151] is a logically centralized and physically distributed controller.

The designers of HyperFlow [151] identify and address three scalability issues with

a single controller: the amount of control traffic generated by switch, delay be-

tween switch and controller which is caused by controller geographical displace-

ment—controller placement problem [152–156], and processing bottleneck of a single

35

controller. HyperFlow scales horizontally which gives network operator the ability to

deploy controllers as required.

Kandoo is a configurable and scalable control plane [82] that uses two layer con-

troller architecture—bottom controller and root controller. The bottom controller or

local controller maintains its local network state and controls its own switch. The

top controller or root controller maintains the global network state, giving the root

controller visibility of entire network. The local controller processes frequently occur-

ring events from switch, reducing the events processed by root controller. The root

controller runs non-local control applications and delegates flow installation to the

local controller. Kandoo is designed for applications that use the local network state

such as link layer discover protocol and local policy enforcer [82]. Applications such

as routing [110] require the global network state and are unable to be offloaded to

local processing [82].

Dynamically Reconfigurable Processor (DRP) [157] uses an on chip routing dio-

rama for improving scalability of controller. DRP performs routing processing on a

chipset before pushing modifications to the data plane. The performance of network

services such as finding Constrained Shortest Path First (CSPF) improves using DRP

network emulation in hardware. DRP uses parallel graph partitioning to speed up

finding the CSPF. DRP is used for traffic engineering and routing [157].

Maestro is a multi-threaded controller that was developed at Rice University [158].

Maestro exploits parallelism of architecture—multi-core processors of servers to im-

prove performance of the controller. Maestro addresses the scalability issues of the

NOX [55] controller which uses a single thread to process network events. Mae-

stro maintains single threaded programming model for application developer, but

internally provides parallelism to increase throughput. Maestro distributes the work

evenly among processor cores which reduces cross-core communication overhead and

minimizes per-flow memory usage.

An Open Framework for OpenFlow Switch Evaluation (OFLOPS) [159] provides

detailed performance measurement of OpenFlow switch implementations [159–161].

36

OFLOPS explored unexplored performance measurement of the OpenFlow switch.

OFLOPS tests the capabilities and bottlenecks between the application plane and

data plane. OFLOPS gathers switch data using hardware and software instrumenta-

tion. OFLOPS measures five capabilities of OpenFlow switch implementations—flow

table consistency, flow setup latency [162], flow space granularity, packet modification

capability, and traffic monitoring capability.

NOX-MT [163] is a multi-threaded controller that establishes a lower bound on

controller response time and throughput. NOX-MT uses optimization techniques such

as IO batching and threading to increase the performance of controller. NOX-MT

achieves optimized response time and throughput compared to other controllers [103,

158]. NOX-MT processes 1.6 million requests per second (rps) which is short of the

10 million rps required for data centers.

FlowVisor [51] is a special purpose OpenFlow controller —hypervisor which en-

ables network virtualization—slices [164] among controllers and OpenFlow switches.

FlowVisor shares the physical network among virtual networks and operates between

the control plane and data plane of controllers, allowing FlowVisor to monitor the

network events. The ability of FlowVisor to monitor the network events is used by

HOTSWAP for upgrading controllers in a disruptive-free and correct manner [165].

Generalized network architecture similar to FlowVisor that uses resource delegation

instead of controller coordination is developed [166]. The resource delegation frame-

work [166] explicitly exposes resource delegation abstraction—direct control over

provider equipment with verifiable constraints [166].

OpenVirteX [167] functions as an OpenFlow controller proxy between the network

of operator and network of tenant and provides an infrastructure on demand service.

OpenVirteX [167] differs from FlowVisor [51] in its ability to create multiple software-

defined networks out of a single network using network virtualization [47, 168–173],

whereas FlowVisor [51] slices flow space among tenants. OpenVirteX [167] provides

tenants with their own header space [174], allowing tenants to create virtual networks

of arbitrary topology and custom addressing. OpenVirteX [167] and FlowVisor [51]

37

focus on data plane virtualization, whereas HyperFlex [168] focuses on control plane

virtualization such as controller CPU and memory. HyperFlex [168] ensures isolation

of the control plane among virtual SDN tenants while protecting the hypervisor from

over-utilization.

Fleet [175] is a distributed controller designed for detecting malicious administra-

tor behavior or accidental misconfiguration [176] of network by administrator. Fleet

uses a controller layer collocated with switches to allow the switches to dynamically

associate with an active controller and digitally verify signatures of the controller.

Fleet [175] collocates controller intelligence in the data layer to avoid reconfiguration

of switches—connecting to a new controller after a failure. Fleet [175] maintains net-

work availability while under the attack of possible colluding malicious administrators

whose goal is to reduce the availability of network.

2.4.4 Application Domain

This section discusses SDN application domain—applications architecture.

The application domain describes the structure and behavior of applications. This

chapter organizes applications by their structure and behavior and design choices

made by the designers.

Network Optimization

The authors [177] use content-based traffic engineering to optimize the network

resources by observing and extracting content metadata at the network layer, op-

timizing delivery of content. The solution [177] adds a content management layer

to the controller layer that supports traffic engineering and firewalling. The content

management layer manages content names and caching policies, translates content

names into routable addresses, and performs traffic engineering [64, 177, 178]. The

content metadata is extracted and used to route requests to content servers. For-

warding decisions are made in the control plane using received content metadata.

38

SDN

Load Balancing

Network
Optimization

Traffic
Engineering

Energy

Security

Firewall

Quality of
Service

Programming
Language

Routing
Network

Configuration

ACLs

Network
Virtualization

Monitoring and
Measurement

Testing and
Debugging

Content-based

Network
Slicing

IDS/IPS

Tunneling

Video

Traffic
Directing

Traffic
Mining

Traffic
Classification

Controller

Network
Failures

Switch
Configuration

Prototypes
and Testbeds

Updates

Policies

Resource
Provision

Functional
Reactive

Programming

Network
Slicing

Congestion
Control

Middlebox

Switch
Performance

Application
Performance

Flow
Scheduling

VM
Migration

Service
Chaining

Link
Utilization

Policy
Enforcement Network

Synchronization

Network
Debugger

Authentication

Accounting

Authorization

Mobility

Controller
Performance

Declarative
Interface

Traffic
Matrix Source

Figure 2.2.: SDN application domain, illustrating how SDN applications are orga-

nized. There are eight application research areas—network optimization, security,

quality of service, programming languages, testing and debugging, network config-

uration, monitoring and measurement, and routing. The eight application research

areas have specific applications which functionalities are researched and developed.

For example, tunneling applications—tunneling supports security, and applications

that update—updates the network support network configuration.

The data plane content metadata allows traffic engineering decisions to be made in

the control plane.

The solution [173] supports VM migration using a network virtualization architec-

ture. VMs are load-balanced across geographical locations to increase performance

and efficiency of network applications [173]. A network application may be distributed

among a collection of VMs, requiring a collection of VMs to be migrated.

LIve Migration of Ensembles (LIME) [179] allows a collection of VMs to migrate

between networks. LIME clones the state of data plane to new set of switches and

incrementally migrates the VMs [179]. LIME runs on the controller, allowing the

required resources to be provisioned for ensemble migration.

39

Hedera is a dynamic and scalable flow scheduling system that uses a multi-stage

data center fabric to aggregate network resources [180]. Hedera uses centralized rout-

ing with flow demand estimation and scheduling heuristic to manage the bandwidth

requirements of application. Hedera increases the bisection bandwidth of network by

using the global network state to schedule flows, outperforming static state-of-the-art

hash based equal-cost multipath (ECMP) [181] load balancing.

Plug-n-Serve [182] is a load balancing OpenFlow application which performs traf-

fic engineering [123, 183, 184] using the congestion [185] of network and load on

servers [182]. Plug-n-Serve adds servers to network, detects changes to the net-

work, and makes traffic adjustments that minimize server response time using the

LOad-Balancing over UnStructured networks (LOBUS) algorithm [182].

OpenFlow-Based Server Load Balancing Gone Wild is a set of algorithms that

exploit OpenFlow wildcard rules [186] to create a scalable solution [187]. The al-

gorithms steer large aggregates of client traffic to server replicas, compute concise

wildcard rules, and adjust to change in load balancing policies—adapting to traffic

distribution [188]. OpenFlow-Based Server Load Balancing Gone Wild is as cost

effective [189] as a load balancer.

Sprite [190] uses traffic engineering to improve video traffic quality. Sprite dy-

namically adapts the network policy to achieve high level TE objectives of the video

application such as YouTube. Sprite enable video traffic to be switch between Internet

Service Providers (ISP) using source network address translation to map each out-

bound connection from edge switch to a specific inbound ISP for return traffic [190].

The Sprite controller uses agents to gather performance metrics such as throughput

and round trip delay from the switch. The metrics are aggregated and periodically

fed to the Sprite controller where decision is made to swap users from one ISP to

another [190].

40

Security

FRESCO [191] is a modular security framework that allows researchers to im-

plement, share, and compose security detection and mitigation services. FRESCO

supports chaining multiple security modules together to create a security service.

For example, an intrusion detection module can be linked with a security module,

producing the correct flow rules for switch. FRESCO allows session information to

be shared among network applications, allowing collaboration among applications.

The FRESCO framework includes interpreter, API to support security application

development, and Security Enforcement Kernel (SEK) which resolves flow rules con-

flicts [97, 191].

FortNox [192] is a software extension to NOX [55]. FortNox resolves conflicting

flow rules from network applications that share the network. FortNox intercepts and

checks flow rule conflicts in real-time, using authorization roles and digitally signed

flow rules. FortNox guarantees integrity among dynamic applications, a key aspect

of SDN security [193].

FLOWGUARD [194] is a security framework that is similar to FortNox [192].

FLOWGUARD is designed to detect and resolve firewall policy violations [195].

FLOWGUARD [194] detects violations by examining the flow path space against au-

thorization space in firewall, tracking flow paths through the network, and checking

rule dependencies in flow tables and in firewall policy. FLOWGUARD [194] detects

and resolves firewall violations dynamically when the network state or configuration

changes, an issue unaddressed by previous work [192].

Quality of Service

The solution [196] provides QoS for Scalable Video Coding (SVC) encoded video.

QoS flows are generated and translated into OpenFlow rules [196]. The solution [196]

minimizes the route length of QoS traffic and packet loss for best effort traffic. The

goal of solution [196] is to have zero packet loss for video base layer and best effort

41

QoS for video enhancement layer. The solution [196] uses policing at the edge network

to ensure clients adhere to the service-level agreement (SLA).

The solution [197] builds on the idea of [196]. The solution [197] supports lossless

reroute of the base layer for SVC encoded video. The solution [198] reduces video

freezes by using the layered characteristics of SVC and dynamic routing ability of

OpenFlow, optimizing video delivery during network congestion.

The solution [199] provides an SDN-based framework for supporting video IP mul-

ticast. The authors [199] use the global view of network to optimize construction and

maintenance of the multicast tree between source—server serving video and video

subscribers. The authors [199] consider two subscription types—standard and pre-

mium or enhanced video quality. The solution [199] provides lossless video quality

over medium loaded networks for standard and premium users.

Video over Software-Defined Networking (VSDN) [200] is a QoS architecture that

provides end-to-end quality of service for real-time interactive video applications such

as videoconferencing and distance learning. VSDN uses the global network state to

calculate video application optimal path. Video applications request network service

using an API. VSDN supports three video type specifications—Common Intermediate

Format (CIF), Enhanced-definition (ED), and High-definition (HD) [200].

The authors [201] introduce the concept of source-timed network flow changes,

a technique that improves the QoS of packetized uncompressed video. The concept

of source-timed network flow changes separates temporal inaccuracy of flow instal-

lation and precise timing of flow change using packet header changes from the flow

sources [201]. The technique [201] allows uncompressed video to be switched at pre-

cise time of next SMPTE RP 168 video switching point, achieving high temporal

accuracy of flow changes.

42

Programming Languages

Nettle [202] is a domain-specific language that builds on the principles of Func-

tional Reactive Programming (FRP) embedded in Haskell. Nettle takes a stream of

OpenFlow events and converts the events into OpenFlow messages—modifications

and queries. Frenetic [203] builds on the principles of Nettle by allowing the behavior

of network to be expressed using a high-level declarative programming language. Fre-

netic uses declarative programming language abstractions to allow the user to express

the behavior of network. Frenetic [203] provides a runtime that runs on NOX [55] or

Nettle controller.

NetCore is a high-level declarative programming language which expresses net-

work behavior such as packet forwarding policies. NetCore builds on its predeces-

sor—Frenetic [203], building on the same principles. NetCore provides an enhanced

rule generating algorithms using reactive and proactive flow rule installation to max-

imize packet processing [204] in the data plane.

Procera [62, 205] is a declarative policy language similar to Frenetic [203]. Pro-

cera allows application to react to event stream—time of day, bandwidth, and user

authentication. Procera is an expressive language, but lacks analysis. Flowlog [206]

addresses the issue with Procera—arithmetic by striking a balance between expres-

siveness and analysis while losing expressiveness. Exodus [207] builds on Flowlog [206]

by adding the ability to migrate existing network configuration to corresponding SDN

controller programs.

Splendid Isolation [164] is a programming language abstraction that allows net-

work operators to express network slices—virtual networks at a high-level. The net-

work operator writes a separate program for each slice. Splendid Isolation [164] com-

piles programs and generates a global configuration that is applied to the network or

sent to the translation validation tool for verification.

FatTire [208] uses a high level programming language abstraction to express fault

tolerance levels and path redundancy. FatTire uses OpenFlow failover mechanism to

43

install rules that become active during a failure [174] condition. FatTire creates redun-

dant paths, similar to NetCore [209], but uses a higher level programming abstraction

than NetCore to express the paths. NetGen [210] is similar to FatTire because it al-

lows the network operator to express fault tolerance and path redundancy. Unlike

FatTire, NetGen only requires the network operator to specify a change to existing

network configuration rather than an entirely new network configuration [210].

Maple [211] takes an algorithmic approach instead of a declarative approach to

allow the network operator to express the intended behavior of network using a stan-

dard programming language to design an algorithmic policy—centralized algorithm.

The authors [211] believe taking an algorithmic approach where developer thinks with

structure reduces errors and redundancy and increases efficiency. Maple [211] includes

highly-efficient multicore scheduler and runtime optimizer for recording reusable pol-

icy decisions.

Testing and Debugging

Mininet [212, 213] allows rapid prototyping of networks using a resource con-

strained computer such as a laptop. Mininet scales to hundreds of nodes using

OS-level virtualization. The user creates and interacts with various networks us-

ing Mininet, scaling to over a thousand Open vSwitch [117]. Mininet enables rapid

prototyping of networks, quick deployment of networks, and easy sharing of network

designs among researchers.

OFRewind [74] is a testing debugging application that allows recording and replay-

ing of network events. OFRewind reduces software errors and helps network operators

find, isolate, and locate datapath limitations and configuration errors. OFRewind is

a software layer between the control plane and data plane, collecting control log mes-

sages sent from the controller. The network operator performs regression testing

of network applications by comparing previous control log messages and control log

messages [74], identifying software errors.

44

VeriFlow [214] is a layer between the control plane and data plane that checks

for global network invariants violations—checking on each forwarding rule insertion.

VeriFlow uses an incremental algorithm [215–217] to search for potential violations

of network invariants—absence of routing loops, access control policies, and virtual

network isolations. VeriFlow slices the network into a set of equivalence classes using

new rule and existing rules that overlap the new rule. VeriFlow pinpoints the set of

packets that are affected by a network invariant violation. VeriFlow verifies global

network invariants in real-time [214]. SDNRacer [218] is similar to Veriflow that

detects network violations such as loss of reachability between the controller and

switch.

No bugs In Controller Execution (NICE) [219] tests OpenFlow applications with-

out modifications. NICE [219] uses model checking and symbolic execution to explore

application state space. NICE reduces state space explored by pruning unnecessary

transitions in application state space. The network operator specifies correctness of

program and NICE verifies and explores application state space for correctness.

Ndb [220] uses breakpoints and packet backtrace primitive to identify the network

sequence of events that caused network error. The network operator uses packet

backtrace to examine and identify path [75, 221], and each switch action performed

on a packet which help identify the issue. Ndb, a software layer between the control

plane and data plane, uses a postcard or truncated packet header to collect state

information about the network. The postcards are processed in the data plane to

reduce impact of Ndb on the control plane.

Fs-sdn [222] addresses the problem with prototyping and evaluating accuracy of

network applications before deploying to production network. Fs-sdn uses flowlets—the

volume of flow emitted over a given time period instead of packets to simulate net-

work, improving scalability of network simulator tool [212]. Fs-sdn [222] complements

Mininet [212].

The authors [215] developed an assertion language to support verifying and debug-

ging dynamic changing verification properties of SDN applications. The solution [215]

45

enables verification of more expressive network properties, avoiding spurious warn-

ings. The application programmer has control over where assertions are placed in

application, allowing the programmer to describe time-varying properties. The time-

varying properties are related to dynamic state of the controller and are checked at

various granularities to avoid erroneous transient property violations [215]. The au-

thors [215] build on the ideas of VeriFlow [214] while adding an efficient incremental

data structure.

FlowTest [223] is a data plane testing framework that systematically explores

state space of data plane to verify the data plane behavior against policy goals.

FlowTest models the functions of data plane such as firewall, load balancer, Network

address translation (NAT), proxy, Intrusion Detection (IDS) System, and Intrusion

Prevention System (IPS) as state machines where each state represents a data plane

function state. FlowTest identifies the sequence of events or plan that is required

for a set of data plane functions to transition from the present state to desired goal

state [223].

CherryPick [224] is a scalable packet tracing technique that allows network oper-

ator to trace individual packet through the network. CherryPick [224] improves the

ability to debug and troubleshoot network related issues [225–227]. CherryPick is de-

sign for minimizing data plane resource usage when tracing packets through network.

CherryPick reduces flow rules of switch and packet header space required to perform

packet tracing by embedding a sequence of link identifiers in packet [224]. CherryPick

exploits the data center network physical topologies such as fat-tree topology which

enables reconstructing of end-to-end paths [224].

Network Configuration

Participatory Networking (PANE) [228] is an OpenFlow controller that imple-

ments participatory networking. PANE allows network entities—end user, network

client, and network application to participate in network management. PANE al-

46

lows network entities to contact network, request network resources, and provide

hints about future network configuration—traffic. PANE benefits applications such

as video and audio calls that benefit from future network reconfiguration.

Hierarchical Flow Tables (HFT) [229] is a hierarchical policy based framework for

applying consistent policies to the network. HFT are useful where network resources

are shared by multiple network entities. HFT are organizes as a tree where each node

in the tree makes a decision on how a packet is processed. HFT allows policy conflicts

to be resolved using the conflict resolution operator.

Software Transactional Networking (STN) [230] builds on Hierarchical Flow Tables

(HFT) [229]. STN supports distributed control plane resolution for policy conflicts

and serializing policy composition. STN [230] uses middleware to avoid policy in-

consistencies in the data plane. The middleware takes composition of policies from

multiple controllers and orders them sequentially. The network policies are committed

or aborted similar to a database transaction.

Consistent Packet Processing for OpenFlow (OF.CPP), similar to STN [230], uses

transactional semantics at the controller to achieve policy consistency in the data

plane. OF.CPP increases packet isolation processing in the controller.

The solution [231] provides two update abstractions, install—installs a configu-

ration on switch and wait—waits until change is made to the switch, simplifying

network configuration. The solution [232] is similar to solution presented in [231]

where there is a behavior when transitioning between network configurations; a large

class of network properties hold between network configurations updates [232].

The authors [233] improve on the idea presented in [231], providing stronger flow

consistency requirements and minimizing flow table entries. By sending the packets

with configuration change to the controller, the solution [233] ensures a single config-

uration entry for each flow. The solution [233] installs double configurations in the

flow table of switch, in worst case, but minimizes the network events in the control

plane.

47

The solution [234] provides consistency between virtual networks configuration

changes and supports consistent virtual machine migration from present network to

future network. A sequence of VMs is created and migrated in order after the flow

rules to install or delete [234] are determined. The network configuration solution [234]

preserves bandwidth and avoid loops during VM migration.

The authors [216] develop an algorithm that performs incremental network up-

dates in rounds. Each round inserts rules into flow table of switch until the rules

are installed. The rules that controls the largest flow count are installed first which

maximizes percentage of traffic affected by rule. More rounds result in less flow table

space used because a smaller set rules can control a large flow count [216].

FlowTags [235] extends the SDN architecture through use of middleboxes. The

middleboxes add tags to outgoing packets to allow flow based policy enforcement by

the network to be performed. FlowTags minimizes changes required for middlebox

vendors to support SDN. FlowTags [235] enforce policies through flow tracking which

is the key contribution of FlowTags.

The solution [217] is an extended policy compiler that builds rule dependency with

compilation. By using knowledge about rule dependencies, the solution [217] gener-

ates rule compact updates. The authors [217] identify two types of updates—content

updates and priority updates [217]. The priority updates often dominate the size of

total updates. The solution [217] eliminates the majority of priority updates which

reduces the size of total updates.

The solution in [236] is similar to solution in [217]. The solution [236] reduces

priority updates using an algebra that allows the hypervisor to incrementally com-

pute correct relative priorities of new rules. The solution [236] builds on the idea of

Frenetic [203] and allows the hypervisor to combine member policies in series or paral-

lel. Using an incremental algorithm to compute rule changes, the solution presented

in [236] avoids recalculating priority rules from scratch and reduces computational

overhead and the size of total updates.

48

ESPRES [237] formulates network update problem as a scheduling problem where

network updates are partitioned into a set of independent sub-updates to allow the

sub-updates to be installed in parallel. ESPRES is a runtime mechanism that limits

the rate of updates and reorders the updates to fully use the processing capacities

of switch. ESPRES avoids overloading the switch and ESPRES uses virtual switch

queues in the controller to reassess how switch commands are scheduled. ESPRES

allows network updates to become functional faster [237].

The authors [238] use time-triggered network updates to achieve network consis-

tency [227], requiring lower overhead than previous research. The solution [238] uses

accurate time to trigger consistent network updates, whereas previous research used

ordered or two-phase updates. The timed-triggered update yields shorter update du-

ration than untimed update; therefore, the timed-triggered update is more scalable.

Using time, SDN programmers tune the degree of update consistency [238] by making

tradeoff [239,240] between TCAM memory—duplicate rules and network consistency.

Monitoring and Measurement

OpenTM [241], a traffic matrix (TM) estimator, uses routing information obtained

from the controller for determining how to collect data plane statistics. OpenTM re-

duces query load in the data plane by intelligently selecting switches that are queried.

OpenTM accurately estimates TM and converges within ten queries. OpenTM is

implemented as a TM estimator on the NOX controller [55,242].

FlowSense [243] achieves traffic measurements by performing estimation on packet

and flow events, using a push-based approach. FlowSense uses control messages from

switches to estimate performance, computing utilization of links between the switches.

FlowSense [243] incurs zero measurement cost because it uses control traffic sent

to controller, avoiding switch polling overhead [241] while maintaining reasonable

accuracy.

49

OpenSafe [244] enables network operators to redirect network traffic to security

monitoring applications at line rate. OpenSafe includes a flow specification language

that simplifies the management of network appliances and OpenSafe allows network

traffic to be monitored efficiently. LiteFlow [245] is similar to OpenSafe, but route

traffic to authority switches [132] that are responsible for monitoring the flows between

the source and destination. LiteFlow distributes monitoring workload among switches

and manages the switch resources. LiteFlow reduces flow rules that are installed in

the switch [245].

The authors [246] propose two traffic matrix estimation approaches—Maximum

Load Rule First (MLRF) and Large Flow First (LFF). MLRF generates flow rules

that maximizes the traffic load in switch, using rule prioritization to move traffic

between flow rules. LFF measures large flows in the network to get an overall TM

estimation. The authors [246] use MLRF rule statistics to identify the large flows.

Feasible and accurate TM estimation are achieved with MRLF and LFF [246].

The solution [247] uses a separate controller to gather statistics and to iden-

tify large network flows. The solution [247] performs tradeoffs [239, 240] between

accuracy and statistic gathering overhead of switch. There are three measurement

primitives—memory counter, hash data structure, and measurement program on the

switch that allows statistics gathering [239].

Routing

The authors [248] use source-based routing to reduce network state required by

the controller to maintain and distribute, increasing scalability of the controller. The

solution [248] pushes the network state of the controller to edge switches. The con-

troller sends the edge switch a sequence of interfaces or path that the flow traverses.

The edge switch forwards the packet with path appended in header through the net-

work. Each switch inspects the packet header and forwards the packet out of interface.

50

The amount of controller state reduction is proportional to the links in the network

path [248].

The authors [249] measure packet forwarding delay and convergence time after

link or node failures between legacy routing protocols and SDN routing [250]. The

response time of legacy network is more than SDN network for large networks and

SDN network response time is more than legacy network for small networks [249]. The

routing convergence time of legacy network is influenced by link delay [249]. SDN

network avoids transmitting network information between switches; therefore, link

delay does not influence SDN convergence time. The switch only maintains relevant

state in SDN which avoids the need to store the complete network topology in the

switch, improving the forwarding speed of switch [249].

2.4.5 Level of Programmability

This section discusses research APIs which contribute to the characteristic of

level of programmability. The API gives the network operator ability to program and

control the behavior of network.

Simplified Wrapper and Interface Generator (SWIG) [251] is a software develop-

ment tool that enables programs written in C/C++ to connect with a variety of high-

level programming languages such as JavaScript, Python, and Ruby. SWIG creates

high-level interpreted or compiled programming environments and user interfaces.

SWIG is used for testing and prototyping C/C++ software.

OpenFlow [21, 252] is a communications protocol that gives the control plane

access to data plane. The control plane sends modification messages to the switch

over a secure channel. OpenFlow allows researchers to experiment with network

protocols without the network vendor exposing switch details, allowing the behavior

of network to be changed programmatically by the network applications and services.

OpenFlow increases complexity of the packet processing of switch [253].

51

OpenStack [254] is a free and modular open source stack for developing cloud com-

puting fabrics, cloud controllers, and cloud applications. OpenStack allows network

operators to build rich network topologies, such as layer-2(L2)-tunneling-layer-3(L3).

OpenStack enables automation and orchestration of cloud resources and cloud appli-

cations. OpenStack is a collaboration of more than one-hundred and thirty companies

from the server and application domains.

Big Switch Networks developed Floodlight Northbound API [255], a RESTful API

that lies between the northbound and southbound APIs of the controller. Floodlight

Northbound API enables maximum network utility and allows network operator to

interact with the network. Floodlight Northbound API allows network applications

and services to communicate with the control plane [255].

Virtualization APIs are available within the hypervisor on client machine. Virtu-

alization APIs are used by network operators to control and manage virtual machines

on client machine. Virtualization APIs are upper layers that communicate with the

controller and switch. Virtualization APIs allow automation and optimization of

network servers, storages, and configurations.

2.5 SDN Research Challenges

2.5.1 Scalability

In medium sized networks, a single controller processes control plane events—packets

effectively [152]. In large networks, such as carrier networks, a single controller lacks

the ability to process substantial control plane events in a timely manner. Achieving

scalability with a single controller in carrier grade networks is hard because of the

requirement to achieve link recovery in 50ms or less [95]. Distributing the control

plane events over multiple controllers ensures timely responses from the controller to

network infrastructure—switch and middlebox.

Distributed controllers [82,148,151,256–258] have been developed to increase the

scalability of control plane. Controller farms dynamically provision [258] controllers

52

on demand [259] from a cluster of controllers and load balance control plane events

across multiple controllers, reducing the burden on a single controller [260]. The SDN

architecture maximizes the network events processed in data plane [134] and mini-

mizes network traffic between distributed controllers [261], improving the scalability

of the controller.

The high cost and energy requirements make flow table expensive and limit

flow rules that can be installed. The rule installation should be performed effi-

ciently [262]. The two main approaches for managing flow table space are compression

and caching [186, 263]. Although flow rule optimization [263] and compression tech-

niques are researched [133], the switch flow rule space remains a scalability issue of

the SDN architecture. Increasing flow table size by using memory and CPU of the

switch [264] can be performed, but longer packet delays are introduced when using

the memory and CPU of switch.

2.5.2 Availability

The network operator deploys multiple distributed controllers [82,148,151,258] to

ensure high availability [265,266] of network services. The distributed controllers cre-

ate the global network state using a proof labeling scheme to increase the availability

of network in the control plane [261].

The solution [113] increases the availability of data plane by using a Chord as-

signment policy to install backup flow rules. The ability to recover during link fail-

ures [111, 112, 122, 267–272] and reliably less than 50ms directly impacts availabil-

ity [95].

For network applications, high availability [63] may mean QoS such as bandwidth,

delay, jitter, and reliability is guaranteed. There may be unacceptable delays between

the control plane and data plane [273]. Achieving high availability requires redundant

hardware in the data plane [274] and control plane and intelligent software such as

load balancers [182,187] and failover functionality [113,267].

53

2.5.3 Security

Protecting the controller allows network services to function without interruptions.

The switch communicates with the controller using southbound communication over

TLS. TLS has its own inherited security vulnerabilities such as man in the mid-

dle attack. Distributed controllers—multi-domain SDN [60, 124, 166, 273, 275–279]

communicate with one another using east/west-bound communication. Recent re-

search propose securing distributed SDN communication with multi-domain capable

Identity-Based Cryptography (IBC) protocol [280].

The orchestration layer [51] helps prevent attacks [281] from misbehaving appli-

cations. Security has a direct impact on the availability and reliability of network

services [282]. Distributed state and control enhance security by ensuring no single

controller has complete network state and control.

In SDN, a key vulnerability is installation of conflicting flow rules of switch. To

prevent routing loops [214, 283], security vulnerabilities, network outages, and en-

sure consistent processing of packets, the switch flow table should be consistent with

network policies [195], avoiding misconfiguration of switch [284]. Flow rule conflicts

among dynamic applications should be resolved to reduce security risk [192].

Security [193] is increased by using logging, recording and playing back network

events [74], and continuously monitoring [48,226] the network.

2.5.4 Standardization

SDN APIs are still essentially proprietary although there are standardization ef-

forts for the OpenFlow [21] switch. The OpenFlow Switch Consortium was established

in 2008 to maintain the OpenFlow switch specification [285]. The switch functional-

ities and performances varies among vendors [160]. There are significant differences

between OpenFlow specifications [70] which affects application performance.

The Open Networking Foundation (ONF) [16] was established in 2011 in an effort

to increase awareness about OpenFlow and to promote commercialization of SDN.

54

OpenDaylight [286] was later created by the networking industry to help standardize

the SDN platform. The interfaces of controller are still in the early stages and indepen-

dent from one another [287]. A standardize controller platform helps with adoption

of SDN. At the time of writing, there is no standardized controller platform.

2.6 Networking Industry

Network vendors are pushing SDN from a concept to implementation of a network

solution which is scalable, automatable, and optimizable in data centers. Data centers

are composed of physical and virtual networks that are difficult to manage because of

low level network details such as ports and links. Managing low level network details

is becoming less efficient with traditional approaches. The network operators will

no longer accept unwillingness of network vendors to change [30]; therefore, network

vendors are required to provide an efficient solution to manage and to optimize the

network. There is a market for providing a network solution which eases the life of

network operators—SDN [288].

IBM [31] developed a 10Gb OpenFlow switch [289] and an OpenFlow controller

which provides centralized control over flows and unlimited virtual machine mobil-

ity [290]. IBM [31] enables deployment of efficient centralized networks, increases

network controllability, and allows the network to be dynamic and flexible to meet

business needs [291].

Extreme Networks OneFabric [32] provides real-time configuration of virtualized

network resources and bridges the gap between virtual machines and network ap-

plications. OneFabric implements locationing and provisioning services in converged

networks to ease burden of network operator.

Oracle SDN [292] enhances application performance and management by dynam-

ically connecting servers and VMs to networks, storage devices, and other VMs. The

Virtual Network Services feature of Oracle SDN provides the ability to rapidly de-

55

ploy secure on-demand network services such as firewall, router, load balancer, Virtual

Private Network (VPN), and NAT in a single virtual appliance [292].

Big Switch [26], the leading platform-independent SDN vendor, developed Open

SDN architecture which includes the Big Network Controller and Big Virtual Switch.

The Big Network Controller includes network applications that allow the network

operator to manage, automate, and optimize data center networks.

HP FlexNetwork Architecture provides application characterization, network ab-

straction, and automated orchestration. HP developed the HP Virtual Application

Networks SDN Controller [24] which provides a network abstraction and automates

orchestration of cloud services. The HP controller enables customers to migrate to

the cloud and allows cloud providers to leverage the benefits of SDN. HP Intelligent

Management and Virtual Application Networks allow businesses to create scalable,

agile, and secure networks [24].

Cisco Open Network Environment (ONE) [293] provides an integrated solution

that makes the network open, programmable, and application-ware. ONE [293] opti-

mizes network resources, reduces network operational cost, reduces network miscon-

figuration, and accelerates network service delivery.

Pica8 [294] developed an open SDN reference architecture that addresses cloud

service providers need to reduce capital expense and control operational expense.

Pica8 developed PicOS, a white box switch operating system that is hardware ag-

nostic [294]. PicOS supports OpenFlow and OpenStack and fits [295] into existing

networks.

NEC developed Programmable Networking [25], a SDN solution for data centers.

Programmable Networking [25] creates a cloud-ready network which is fast, scalable,

and open. NEC ProgrammableFlow Networking Suite was the first commercially

available Software-Defined Network (SDN) solution to leverage the OpenFlow proto-

col, enabling full network virtualization [146,170–172] and allowing network operator

to deploy, control, monitor, and manage secure multi-tenant networks [25].

56

Metaswitch has taking an evolutionary approach to SDN [296]. Metaswitch fo-

cuses on using SDN to increase operations and capabilities of Multiprotocol La-

bel Switching (MPLS) and Generalized Multi-Protocol Label Switching (GMPLS).

Metaswitch uses Path Computation Elements (PCEs) to provide the network opera-

tor with the benefits of SDN while leaving existing network equipment to run mature

protocols and algorithms. Metaswitch removes path computation function from the

network and places the function in centralized PCE server; other existing functions

of the network devices remains on switch.

Ericsson [29] Service Provider SDN is making SDN a reality for service providers [28].

Ericsson [29] is using cloud, Network Function Virtualization (NFV), and SDN to

transform the network, making network programmable, automatable, flexible, and

application-responsive [297]. Ericsson introduced the concept of virtual Customer

Premise Equipment (CPE) [298] that allows network services to be moved from home

user router to the cloud. The ability to move network services from router to the

cloud enables dynamic service chaining with SDN [299]. Ericsson Dynamic Service

Chaining solution uses SDN technology to chain network functions where traffic from

subscriber traverses a particular set of service functions [299].

Rapid growth of the SDN market depends upon timely and broad support of a

core set of APIs across controllers of multiple vendors [300]. Evidence of the network-

ing industry strong commitment to adoption of SDN is available OpenFlow enabled

switches [287]. The ability to integrate [109,178] and control [301] legacy switches as

SDN is deployed aids in adoption of SDN.

Adoption of SDN is slowed by absence of a standard, decreasing interoperabil-

ity [302] among network vendors. Each vendor has its own API and SDN function-

ality that limits the ability to engineer and manage traffic across equipment from

multiple vendors [303]. As SDN is still nascent, standard protocols of the networking

industry are still emerging, but moving forward it is important these standards get

created [304].

57

Table 2.1: Classification and contribution of SDN research A-N

Project Application

Domain

Layer of

Control

Level of

Programma-

bility

Network

Technology

References

AutoI Network

virtualization

Data plane

and control

plane

Internet [339]

Ca-SDN Routing Application

plane, control

plane, and

data plane

OpenFlow Cloud [340]

DevoFlow Traffic

classification

Control plane OpenFlow Data center [134]

DIFANE Traffic

directing

Data plane

and control

plane

OpenFlow Enterprise [132]

DISCO Traffic

engineering

Control plane OpenFlow WAN [60]

Elastic Tree QoS energy Data plane OpenFlow Data center [341]

Fleet Security Control plane OpenFlow Enterprise [175]

Floodlight Control plane OpenStack

and OpenFlow

Enterprise [102]

FLOWGUARD

Network

policies and

security

Control plane OpenFlow Enterprise [194]

FlowSense Link

utilization

Control plane OpenFlow Internet [243]

FortNOX Network

policies and

security

Control plane SWIG Enterprise [192]

FRESCO Security IDS

and IPS

Application

plane

OpenFlow Enterprise [191]

Hedera Flow

scheduling

Control plane OpenFlow Data center [180]

HyperFlex Network

virtualization

Control plane OpenFlow Carrier [168]

HyperFlow Network syn-

chronization

Control plane OpenFlow Data center [151]

Kandoo Control plane OpenFlow Data center [82]

LIME VM migration Application

plane

OpenFlow Cloud [179]

NetCore Functional

reactive

programming

Control plane OpenFlow Enterprise and

data center

[209]

58

Table 2.2: Classification and contribution of SDN research O-Z

Project Application

Domain

Layer of

Control

Level of

Programma-

bility

Network

Technology

References

OFLOPS Application

and switch

performance

Control plane OpenFlow Carrier [159]

OFRewind Switch

configuration

Control plane OpenFlow Data center [74]

Open

Programmable

Extensible

Networks

(OPEN)

Traffic

engineering

Data plane OpenFlow and

Virtualization

API

Internet [183]

Open Router

Virtualization

Framework

Network

virtualization

Data Plane OpenFlow Internet [342]

Open

Transport

Switch (OTS)

Data Plane OpenFlow Internet [119]

OpenVirteX Network

virtualization

Control plane OpenFlow Enterprise [167]

OpenvSwitch Data plane OpenFlow [118]

OpenADN Network

Policies

Data plane OpenFlow Internet [343]

OpenFlow Data plane [252]

OpenSAFE Traffic

directing

Control Plane OpenFlow Enterprise [244]

OpenTM Traffic matrix Application

plane

OpenFlow Enterprise [241]

Procera Functional

reactive

programming

Application

plane and

control plane

Enterprise and

home

[205]

QoS-aware

Network

Operating

System

(QNOX)

Control plane OpenFlow Carrier [344]

QuagFlow Routing Application

plane and

control plane

OpenFlow [345]

RouteFlow Routing Application

plane and

control Plane

OpenFlow Internet [346]

SOFT Switch

configuration

Data plane

and control

plane

OpenFlow [161]

SoftRAN Load

balancing and

mobility

Control plane Cellular [91]

SplitArchitecture

(SPARC)

Application

plane and data

plane

Carrier [94]

VeriFlow Network

policies

Control plane Internet [214]

59

2.7 Conclusions

This chapter discussed the state-of-the-art in SDN. It reviewed past programmable

network research efforts, and discussed how they impacted SDN. This chapter re-

viewed and summarized SDN research. This chapter identified future SDN research

challenges. It discussed the state of SDN in networking industry. It discussed network

vendors and how the vendors are pushing SDN because of SDN’s ability to reduce

expenses. This chapter presented a set of characteristics and classification scheme for

better understanding about relationship between existing SDN bodies of work. The

classification scheme includes.

• The network technology—implicitly determines the level of programmabil-

ity.

• Layer of control—the network plane that the network operator controls be-

havior of network.

• The application domain—indicates functionality of application such as rout-

ing and load balancing.

• The level of programmability—indicates the network plane where network

service is exposed and API that accesses the network service.

SDN allows rapid innovation of network applications, reduces network capitol

expenses, and controls network operation expenses. This chapter identified key inno-

vations that are pushing networking paradigm shift. The innovations are leading to

a programmable, automatable, and flexible network known as SDN. The key innova-

tions pushing network paradigm shift are.

• virtualization of network and network hardware such as servers and storage,

• separation of the data plane and control plane—network hardware and net-

work software,

60

• availability of open programmable interfaces such as OpenFlow and Open-

Stack,

• rapid development and rapid deployment of network services such as fire-

wall, NAT, and DPI, and

• automation and full control of network services such as billing systems and

load balancing.

SDN is a network architecture that supports virtualization of computer network

and network hardware, separation of the control plane and data plane using an open

programmable interface, and rapid development and rapid deployment of fully auto-

mated network services.

61

3 VIDEO OVER SOFTWARE-DEFINED NETWORKING (VSDN)

3.1 Abstract

Supporting end-to-end quality of service (QoS) for video applications requires the

network to select optimum path among multiple paths to improve the performance

of video application. Multiple paths between source and destination may be avail-

able, but because of the network high coupling design identifying alternative paths

is difficult. Network architecture such as Integrated services (IntServ) installs path

from source to destination that may not be optimum—best case path for the video

application. Furthermore, it is an arduous task for video application developers to

request service from IntServ.

This chapter provides three contributions to the literature on providing end-to-

end QoS for real-time interactive video applications. This chapter presents Video over

Software-Defined Networking (VSDN), a network architecture that selects optimum

path using the network-wide view. This chapter describes how the video application

developer uses protocol for requesting service from the network. This chapter presents

the results of implementing a prototype of VSDN, evaluating behavior of VSDN.

Requesting service from VSDN requires three parameters from the video application

developer. The message complexity of VSDN is linear.

3.2 Introduction

Integrated Services (IntServ) framework, a flow based Quality of Service (QoS)

network architecture, allows network elements such as sender, receiver, and routers

to reserve network resources which guarantees end-to-end service. IntServ framework

uses two protocols—flow specification describes traffic patterns and reservation pro-

62

tocol transmits reservations among network elements and allows applications such as

video and voice to make reservations. The QoS sensitive tasks such as video compres-

sion and audio compression of the applications require guaranteed bandwidth and

bounded delay and jitter.

Supporting end-to-end QoS for real-time interactive video applications requires the

network to select optimum path among multiple paths to improve the performance of

video application. The network control protocols may not install optimum path for

the video application and is incapable of exploring alternative paths since the control

protocol relies on the routing protocol to select path. For example, if there exists two

network paths—path1 and path2; path1 that has congestion is 3 hops and path2 that

has no congestion is 5 hops. Path1 that is 3 hops is selected to install reservation if

routing protocol uses shortest path. Selecting path1 for real-time interactive video

applications negatively impacts the performance of video application because path1

is congested.

The network path selection should be adaptive to changing network conditions

such as link failures and node failures and should be context aware about state of

paths including bandwidth, jitter, and delay. For example, network path selection can

be automated based on characteristics of certain applications [305]. Although MPLS,

data-carrying mechanisms, selects multiple paths, MPLS is not dynamic and the

network operator manually configures paths at each router within the network [197].

The network control protocols are capable of adapting to network failures, but data

packets are lost or receive best-effort service between failure and next PATH refresh

messages which is 30 seconds before path is updated and resources are allocated to

network flow; therefore, this chapter presents the experience and results of identifying

a network architecture that ensures end-to-end QoS for real-time interactive video

applications.

The main contributions to research are. This chapter presents Video over Soft-

ware Defined Networks (VSDN), a network architecture and protocol for supporting

real-time interactive video applications. This chapter illustrates how the sender and

63

receiver use the application program interface (API) to request service from the net-

work. This chapter presents the results of implementing VSDN in a network simula-

tor. This chapter evaluates VSDN runtime performance using message complexity.

Chapter organization. The remainder of this chapter is organized as follows.

Section 3.3 motivates the need for Video over Software-Defined Networking (VSDN).

Section 3.4 discusses the design and implementation of VSDN. Section 3.5 presents

and interprets the simulation results. Section 3.6 compares VSDN to related works.

Section 3.7 provides concluding remarks and lessons learned.

3.3 Motivation: Integrated Services (IntServ)

Integrated Services (IntServ) network architecture uses reservation protocols to

signal end-to-end QoS over IP networks. The network resources are reserved on a hop-

by-hop basis using two messages. The sender uses the PATH message to install reverse

routing path on each router along the path and conveys to the receiver characteristics

of expected network traffic. The receiver uses the RESV message to request QoS

of packets from each router along the path. Reservation protocols use PATH and

RESV messages to install soft states in the network devices along the path selected

by routing protocol. The soft states contain descriptions of the expected network

traffic characteristics such as traffic rate, queue size, and peak traffic rate. The

reservation protocol works with different routing protocols to provide QoS for real-

time applications.

The resource reservations are made using the path that the routing protocols

such as RIP, IS-IS, or OSPF select. Reservation protocols have advantages such as

soft-state adaptive nature, the ability of receiver to initiate the reservation, and the

possibility to merge reservation requests. The reservation protocol which is used by

IntServ has its disadvantages. For example, in Figure 3.1, the best path—bandwidth,

jitter, and delay to send the video traffic is R1-R2-R4-R5. If routers in autonomous

system one (AS1) is running OSPF, the shortest path stored in each router link state

64

Sender Receiver R1

R3

R4 R2

R5

AS1

Figure 3.1.: A network with sender and receiver.

65

database is R1-R5; therefore, packets to and from the sender and receiver are sent

along path R1-R5 which is two hops.

The reservation protocols install PATH and RESV states in R1 and R5 to support

QoS for real-time interactive video applications; although the best path for the video

traffic is R1-R2-R4-R5. InServ is unable to select the best path for the video traffic.

Furthermore, if a link failure occurs between R1 and R5, a new path is found. The

network makes the following adjustments. A link failure is detect and each link state

router database is updated to reflect link R1-R5 failure. The next shortest path R1-

R3-R5 is selected after failure, but the best path for the video traffic is R1-R2-R4-R5.

The network has failed to find optimum or best path for the real-time interactive

video application.

Because relying on the network routing and reservation protocols to provide end-

to-end QoS for real-time interactive video applications may not deliver the best per-

formance, there are two issues that this chapter addresses.

Issue 1: Identify network architecture that supports optimum path

selection. As Figure 3.1 illustrates, selecting optimum or feasible path requires

network-wide view or global network state. Hop-by-hop decision making may not

deliver the best performance. A network architecture needs to be developed that

dynamically selects optimum path and provides feasible backup paths in the case of

failure—node or link.

Issue 2: Develop protocol that allows real-time interactive video appli-

cations to request end-to-end QoS from the network. A protocol needs to be

developed to allow the video application developers to request network services from

the network. The protocol needs to request and maintain state that is necessary to

ensure optimum path selection.

The rest of this chapter discusses how Issue 1 and Issue 2 are addressed. This

chapter integrates usability when designing and implementing VSDN.

66

3.4 Design and Implementation

One key design requirement for addressing—Issue 1 : Identify architecture needed

to support optimum video path selection is the need for the network-wide view [306]

to make optimum path selection; this requirement leads to the use of software-defined

networking (SDN) [16] and OpenFlow [21] to address Issue 1.

Figure 3.1 has been redesigned to use SDN and the OpenFlow protocol as illus-

trated in Figure 3.2. A SDN controller that has the network-wide view has been

added.

Sender Receiver R1

R3

R4 R2

R5

AS1

SDN
Controller

OpenFlow

Figure 3.2.: SDN network with sender and receiver.

67

3.4.1 Software-Defined Networking (SDN)

Figure 3.2 illustrates the SDN architecture. SDN separates the control plane—routing

decision from the data plane—forwarding decision. The control plane is logically cen-

tralized in the controller and runs on commodity hardware. The switches become

dumb devices, performing packet forwarding with instructions from the controller.

The OpenFlow protocol enables communication between the control plane—controller

and the data plane—switch.

3.4.2 VSDN Design Overview

VSDN is a network architecture that allows real-time interactive video applications

to request guaranteed service from the network. The design of VSDN integrates

usability.

Figure 3.3 illustrates the VSDN architecture. The architecture has four system

elements—sender, switch, controller, and receiver. The sender and receiver rely on

the network that is composed of R1 and R2 to provide end-to-end QoS.

The Policy Control (PC) is separated from physical device—router or switch and

is relocated within Video QoS Controller (VQC), providing policy consistency among

the network devices. The PC accepts commands from the network administrator

about how to process the network traffic. The network administrator uses the PC

to enforce network constraints [284]. The policy translator maps policies stored in

policy database to network configurations. The Resource Monitor (RM) monitors

the network resources. The RM periodically collects statistics from the physical

devices—switches and middleboxes. The RM stores the network state in the resource

database.

The VQC uses the Admission Control (AC) to reserve network resources when QoS

request is received. When a request is received on a router interface, admission control

is performed on the interface. If network resources are available on the receiving

network interface, the video QoS process finds an optimum or feasible path that

68

SDN Controller

OpenFlow

Sender Receiver

Switch (R1) Switch (R2)

Video
Application

Video
Application

Figure 3.3.: VSDN architecture, showing the relationships between the architectural

elements. There are four elements including the sender, switch, controller, and re-

ceiver. The sender and receiver rely on the switches, R1 and R2, to provide end-to-end

QoS. The controller communicates with the switches, sender, and receiver over secure

channels using OpenFlow. The sender and receiver request QoS from the network.

The network devices R1 and R2 are edge switches which use packet shapers to shape

traffic of the sender and receiver. A number of intermediate switches may exist be-

tween R1 and R2 which network traffic passes through, but only the edge switches

shape network traffic. For simplicity, only R1 and R2 are shown.

69

Network Resources (Links, Middleboxes, and Switches)

Control Plane

Data Plane

Network Operating System (NOS)

Video QoS Process

Routing Module Admission Control Policy Control

Topology Database Resource Database

Resource Monitor

Policy Database

Topology Monitor

VSDN QoS
Application

Figure 3.4.: VSDN controller, illustrating the architectural elements. The controller

processes the QoS request. The controller manages the network resources such as

bandwidth. The admission controller manages the network resources. The routing

module finds feasible end-to-end paths.

70

can service the request. If network resources are unavailable on the interface, the

VQC returns an error to the requester. The AC manages a pool of resources such

as interfaces, bandwidth, memory, and CPU. The network resources are subtracted

from the pool when a request is serviced and the resources are added to the pool

when request finishes.

The Routing Module (RM) calculates feasible paths from ingress router to egress

router. Constraint based routing algorithms and implementations have been studied

in detail [307]. The RM returns a list of subgraphs or paths that meet the QoS

constraints such as bandwidth, jitter, and delay. The Topology Monitor (TM) updates

the network configuration when there is a network change such as node or link failure,

deletion, or addition. The RM uses the network topology that is stored in a database

to find feasible paths.

The main element of the architecture is the Video QoS Process (VQP), in Fig-

ure 3.4. The VQP processes the VSDN messages. The VQC processes sender, receiver,

and error messages. The VQP maintains the session states and ensures network clients

follow the VSDN protocol. If a network client fails to follow the VSDN protocol, the

VQP generates an error stating the reason request failed. A valid request from sender

generates a session in the session database. The session database contains flow in-

formation such as session identifier and destination and source addresses and ports.

After a request is received from the sender, the request is forwarded to the receiver.

If receiver accepts request or reservation, the receiver sends a request message to

the VQC. Upon receiving a valid receiver request message, the VQC performs policy

control and admission control to determine if the reservation can be made.

If the reservation is allowed, the VQP requests feasible paths from the RM. The

RM returns a subgraph that the controller uses to configure network devices. After the

network devices are configured, the receiver forwards confirmation message from VQC

to sender, reserving the path. The sender and receiver communicate over the reserved

path. The sender and receiver can issue the remove message to remove session from

the network and release network resources. The VQP manages sessions and ensures

71

the sessions are updated or timed-out and removed. Figure 3.4 illustrates VQC

running on network operating system [55] that provides a centralized programmatic

interface to the network.

Video Application

Network

Control
Plane

Data
Plane

Slicing Layer

Packet Classifier Packet Scheduler

OpenFlow

Figure 3.5.: VSDN client, showing the relationship of the elements. The network

client has a slicing layer which is used for sharing home network. The controller uses

slicing layer to configure network client QoS. The packet classifier identifies packets

which belong to a specific flow. The packet scheduler ensures packets are in profile

before entering the network.

Figure 3.5 illustrates the architecture of network clients—the sender and receiver.

The VSDN enabled sender and receiver host the video applications. The slicing

layer [99] allows multiple service providers to share common infrastructure and sup-

ports more than one policy and business model. The slicing layer allows the VSDN

service providers to control their share of the client network. The video application

communicates with the network using QoS API. The packets belonging to a flow are

identified by the packet classifier. The packets are identified using the address of

sender, address of destination, port of sender, port of destination, and protocol ID.

The packet scheduler ensures the video packets are in specification such as rate,

bandwidth, and queue size. The packet scheduler ensures packets are in specification

before the packets are transmitted to the network. The network administrator has

global policy control over the network elements—client, switch, and router.

72

Packet
Shaper

Traffic Management

VSDN Controller

Packet Buffer Flow Table Execute Action Scheduler
Out Port In Port

Packet Processing

Figure 3.6.: VSDN switch, showing the relationship of the elements. A packet enters

the switch through the In Port and continues through pipeline. The packet is dropped,

forwarded to controller, or forwarded out of Out Port at Execute Action. The port

has a packet shaper—a queue that ensures QoS of each flow. Only edge switch has

packet shaper installed because the edge switch shapes the network traffic.

73

Figure 3.6 illustrates the architecture of VSDN switch—R1 and R2. The VSDN

switch is OpenFlow enabled. The VSDN controller upon receiving and validating

QoS service request from network client issues set-queue action to each switch along

the path. The controller issues flow-add action to each switch along the path after

issuing the set-queue request. If either set-queue or flow-add request fails, the switch

returns an error message to the controller. The set-queue request causes the switch

to create a per-flow Weighted Fair Queue (WFQ) and traffic shaper using Traffic

SPECification (TSpec) [308].

In Figure 3.6, a packet enters the switch and is queued. The packet is forwarded

through flow table pipeline where the packet is sent to the controller or dropped or

continues through the flow table pipeline until there is a matching flow table entry.

The packet is eventually forwarded to the port where QoS has been configured. The

configuration of queue dictates basic QoS forwarding behavior. Full end-to-end QoS

support over SDN is unsupported in OpenFlow [21].

3.4.3 VSDN Protocol

This section discusses the action of each element of the VSDN architecture and

how the sender and receiver interact with the network.

Sender

The sender, in Figure 3.2, makes a call to QoS API using requestQoS(video ser-

vice, destination address, destination port). The video applications remove session

from the network using the Session Id returned from requestQoS. The video applica-

tion developer can request four video services—Common Interchange Format (CIF),

Enhanced Definition (ED), and High Definition (HD).

The router R1 forwards message to the VQC after receiving the message from

sender in Figure 3.2. The VQC determines if request of sender exists. If session does

exists, the VQC responds with invalid request, if the message is not from a timeout

74

request. If the session does not exist and policy allows sender to issue request, the

VQC creates the session and responds to R1 that forwards the packet to receiver

through R2. The sender waits on the confirmation from receiver. After receiving the

confirmation from receiver, the sender and receiver begins the video session.

Receiver

The receiver receives request from the sender on an application callback processRe-

quest(SessionID) and call acceptQoSRequest(SessionID). The video application stores

the SessionID that is used for accepting a request and removing a session from the

network. The receiver makes reservation with the network using traffic pattern de-

scribed by the sender. R2 receives request from the receiver and forwards the request

to the VQC that determines if the session exists. If the session does not exist, the

VQC generates an error that is sent to receiver. If session does exist, the VQC

uses the policy control, admission control, and router module to make the resource

reservation, if the receiver is authorized.

The RM returns feasible paths for the request. The VQC selects the route and

issues configuration request to the network operating system (NOS) which manages

the network devices. The receiver receives the confirmation from VQC about the

status of installed path. After receiving the confirmation from VQC, the receiver

sends the confirmation to sender. The VQC returns an error message to the receiver

if the VQC is unable to find a feasible path. The path is reserved and configured

when the sender receives the confirmation message.

Removing Reservation

The network client explicitly removes reservation from sender, receiver, and net-

work using removeQoSRequest(SessionID) or implicitly through flow timeout from

the switch or network client. The edge switch forwards the remove message from

sender or receiver to VQC where validity of message is determined. The VQC after

75

validating message removes the session from session database and flow entries from

the switches and network clients. The edge switch forwards the remove message from

the VQC to destination. The flow timeout implicitly removes the flow from network

client if the remove message is not received from the network.

Controller

The VQC or controller receives request from the receiver. After receiving request

from receiver, the controller performs admission control and policy control. Policy

control determines if the receiver can make reservation and admission control deter-

mines if network resources are available to service request. The controller finds the

path that can service request. After finding the path, the controller installs the flows

and queues in the switches and network clients. The controller forwards a confirma-

tion message to the receiver. The receiver responds to the sender with a confirmation

message.

Switch

The VSDN switch is a network device that is programmed by the controller. The

switch forwards the request message to the controller. The controller determines if a

reservation can be made by the receiver. The switch installs the flow in flow table of

switch and installs the queue on port or return an error to controller if the switch is

unable to complete flow and queue installation.

Network Client

The VSDN network client is a network device that is programmed by the con-

troller. The controller sends the client flow modification request which client uses

to configure its flow table. The client performs instructions—add flow or delete flow

and install queue on port when programmed by the controller. The client returns an

76

error to the controller if the client is unable to complete flow modification or queue

installation.

3.4.4 OpenFlow Changes

An OpenFlow switch provides limited QoS support through a simple queuing

mechanism [21]; therefore, the VSDN switch requires changes to OpenFlow queue

structures.

The queue properties are modified to support guaranteed service (GS). A new

property is added to support GS queuing. The GS queue property contains fields such

as traffic rate, bucket size, peak traffic rate, minimum packet size, maximum packet

size, maximum link capacity, and rate for token bucket traffic shaping. In Figure 3.6,

the switch creates a token bucket shaping queue for each requested flow. The queuing

process regulates traffic for each flow using the traffic specification provided by the

controller.

3.4.5 Network Client API

The network client API allows the client to request service from the network. The

interface of VSDN requires three input parameters from the developer. The details

of API are not discussed in this chapter.

The service is requested using requestQoS(v, d, p). The sender can request three

types of video services—Common Interchange Format (CIF), Enhanced Definition

(ED), or High Definition (HD).

The receiver accepts the request using acceptQoSRequest(s). The sender and

receiver can remove a session using removeQoSRequest(s). The processRequest(s, d)

notifies application about network related events.

77

3.4.6 QoS Mapping

There are two service specifications for real-time tolerant applications such as

video streaming and real-time intolerant applications such as interactive video. The

two service specifications are Controlled Load (CL) [309] and Guaranteed Service

(GS) [308]. The VSDN architecture supports GS. The VSDN protocol uses the at-

tributes in Table 3.2 to configure the token bucket processes [310] of the network

devices.

The application specifies the video type such as CIF, ED, or HD and avoids

specific flow specification attributes. The controller understands the video types and

converts from video type to TSpec and sends request to the network devices; therefore,

a mapping scheme is needed to map between video type and TSPec.

Table 3.3 describes the mapping between video type and GS specification. The

values were derived from available data from Google Hangout and Microsoft Skype

communication platforms. The frame size in kilobyte (KB) determines packets and

bucket size (b) needed to deliver a single frame.

For example, HD requires 60 KB for each frame which is 40 * 1.5 KB packets. At

30 frames per second (fps), video type HD has rate (r) of 1200 (fps * b) and bucket

size (b) of 40 which holds a single frame. The slack term (s) is dependent on the

service level agreement (SLA) between service provider and customer. The switch

does not use slack term because the switch does not manage network resources. The

slack terms enables the controller to make network resource adjustments.

3.5 Results

This section analyzes message complexity of VSDN.

Performance metrics - to assess the performance of VSDN, this chapter chooses

following performance metrics.

• Message complexity - measures message count for the client request. The types

of messages are illustrated in Table 3.4.

78

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 500 1000 1500 2000 2500 3000 3500 4000

VS
D

N
 m

es
sa

ge
s

Client requests

setqueue
unsetqueue

request
remove
accept

total # of messages

Figure 3.7.: Average VSDN message count when client requests increases. The six

node network message complexity is linear.

Figure 3.7 illustrates messages in system with six-node network. At 500 client

requests, the setqueue and unsetqueue messages are 2,000. The request messages are

2,000. The remove and accept messages are 3,000 because the remove and accept

messages traverse the control plane for resource management. At 1,000 requests, the

setqueue and unsetqueue messages are 4,000. The request messages are 4,000. The

remove and accept messages are 6,000. Each message type increases linearly from

500 client requests to 4,000 client requests. The system message count for 500 client

requests is 12,000. At 2,000 client requests, the system message count is 48,000.

At 4,000 client requests, the system message count is 96,000. From the results, the

message count is 24 times client requests. This chapter did not introduce network

errors during test runs which affects message count including error messages which

count is 0.

Figure 3.8 illustrates messages in system with thirteen-node network. At 500

client requests, the setqueue and unsetqueue messages are 2,500. The remove and

79

 0

 20000

 40000

 60000

 80000

 100000

 120000

 500 1000 1500 2000 2500 3000 3500 4000

VS
D

N
 m

es
sa

ge
s

Client requests

setqueue
unsetqueue

request
remove
accept

total

Figure 3.8.: Average VSDN message count when client requests increases. The thir-

teen node network message complexity is linear.

80

accept messages are 3,500. At 1,000 requests, the setqueue and unsetqueue are 5,000.

The remove and accept messages are 7,000. At 2,000 requests, the setqueue and

unsetqueue messages are 10,000. From results, each message type increases linearly

from 500 client requests to 4,000 client requests. At 500 client requests, the message

count is 14,500. At 1,000 client requests, the message count in system is 29,000. At

2,000 client requests, the message count in system is 58,000. At 3,000 requests, the

message count in system is 87,000. At 4,000 client requests, the message count in

system is 116,000. The message count is 29 times client requests.

Between Figure 3.7 and Figure 3.8, the message count in system is 24 and 29

times the client requests respectively. In Figure 3.8, the message count is 5 times

more than message count in Figure 3.7 because of the longer paths between the

source and destination with the thirteen-node network. Each additional node in path

is configured with VSDN messages; therefore, the node count affects the message

count of the system.

3.6 Related Works

IntServ [3] is flow based network architecture that uses reservation protocols to

signal end-to-end QoS between the sender, network, and receiver. VSDN is similar

to IntServ because end-to-end QoS path resources are reserved explicitly between

sender and receiver. Unlike IntServ, VSDN does not require refresh messages to

refresh soft-states installed in the network devices. Flooding of refresh messages is

one disadvantages of IntServ that affects scalability [311]. VSDN selects optimal path

using the requirement of the application. IntServ is unable to explore alternative

paths; therefore, IntServ selects the same path as routing protocol to install QoS

which may not deliver best performance.

Differentiated Services (DiffServ) [311] uses flow aggregation and hop-by-hop de-

cision making process to address the scalability issues of IntServ. DiffServ applies

network-wide set of traffic classes. The network operator classifies flows between the

81

sender and receiver in a predefined manner. A network device, when receiving a

packet marked with DiffServ value, applies scheduling and shaping techniques using

traffic class. The Type of Service header field in IP header allows traffic classification.

Unlike VSDN, DiffServ is unable to guarantee QoS to the application because each

network device or router is configured independently and network-wide policing is

difficult because there is no network-wide view.

Multiprotocol Label Switching (MPLS) is a layer 2.5 label switching technique

that inserts label for network prefix to allow routers to perform quick lookup of label

instead of using longest prefix matching [312]. The label technique allows MPLS to

perform faster packet classifications and forwarding. As with DiffServ, MPLS ag-

gregates or classifies flows in the path. VSDN works on a per-flow basis and could

aggregate flows from a single user to optimize network resources. Unlike VSDN,

MPLS lacks real-time path configuration during adverse network conditions such as

node failure, link failure, or network congestion [312]. VSDN makes real-time con-

figuration changes as a result of adverse network conditions without prior knowledge

about the traffic pattern of network.

82

3.7 Conclusions

This chapter presented Video over Software Defined Networking (VSDN), a net-

work architecture that selects optimum path for real-time interactive video applica-

tions—improving application performance. The developer request service from the

network using the network client API. This chapter developed a prototype to illus-

trate the functions of the network and analyzed the behavior of VSDN. The message

complexity of VSDN is linear.

After conceptualizing, designing, and implementing VSDN in a simulator, the

following lessons were learned:

• Development of a network service. Developing a network service requires

focus on usability—users and tasks.

• Using a single SDN controller. Using a single network controller for large

scale networks leads to performance issues.

• Separation of control plane and data plane. Separating the control plane

and data plane allows flexible application design choices to be considered.

83

T
ab

le
3.

1:
T

h
e

A
P

I
fo

r
re

q
u
es

ti
n
g,

ac
ce

p
ti

n
g,

an
d

re
sp

on
d
in

g
to

re
q
u
es

ts
.

N
am

e
D

es
cr

ip
ti

on

re
q
u
es

tQ
oS

(v
,

d
,

p
)

ge
n
er

at
e

a
Q

oS
re

q
u
es

t

ac
ce

p
tQ

oS
R

eq
u
es

t(
s)

ac
ce

p
t

Q
oS

re
q
u
es

t

re
m

ov
eQ

oS
R

eq
u
es

t(
s)

re
m

ov
e

Q
oS

re
q
u
es

t

p
ro

ce
ss

R
eq

u
es

t(
s,

d
)

ca
ll
b
ac

k
fo

r
ap

p
li
ca

ti
on

84

T
ab

le
3.

2:
T

h
e

gu
ar

an
te

ed
se

rv
ic

es
(G

S
)

fl
ow

p
ro

p
er

ti
es

.

N
am

e
D

es
cr

ip
ti

on

T
ok

en
R

at
e

(r
)

T
h
e

ra
te

th
at

to
ke

n
s

fi
ll

b
u
ck

et

T
ok

en
B

u
ck

et
S
iz

e
(b

)
T

h
e

b
y
te

s
th

at
to

ke
n

b
u
ck

et
ca

n
h
ol

d
b

ef
or

e
ov

er
fl
ow

o
cc

u
rs

.

P
ea

k
D

at
a

R
at

e
(p

)
T

h
e

m
ax

im
u
m

d
at

a
ra

te
in

b
y
te

s
p

er
se

co
n
d

M
in

im
u
m

P
ol

ic
ed

U
n
it

(m
)

T
h
e

m
in

im
u
m

p
ac

ke
t

si
ze

in
b
y
te

s

M
ax

im
u
m

P
ac

ke
t

S
iz

e
(M

)
T

h
e

m
ax

im
u
m

p
ac

ke
t

si
ze

in
b
y
te

s

R
at

e
(R

)
M

ax
im

u
m

li
n
k

ca
p
ac

it
y

or
p

ea
k

ra
te

S
la

ck
T

er
m

(s
)

A
d
d
it

iv
e

en
d
-t

o-
en

d
d
el

ay
th

at
th

e
se

n
d
er

ca
n

to
le

ra
te

b
et

w
ee

n

n
o
d
es

if
a

n
o
d
e

m
o
d
ifi

es
re

q
u
es

te
d

fl
ow

sp
ec

ifi
ca

ti
on

s

85

T
ab

le
3.

3:
T

h
e

v
id

eo
ty

p
e

to
se

rv
ic

e
sp

ec
ifi

ca
ti

on
m

ap
p
in

g,
il
lu

st
ra

ti
n
g

va
lu

es
fo

r
ea

ch
se

rv
ic

e
sp

ec
ifi

ca
ti

on
fo

r
v
id

eo
ty

p
e,

b
an

d
w

id
th

in
M

b
p
s,

b
u
ck

et
si

ze
in

b
y
te

s,
p

ea
k

ra
te

in
K

b
p
s,

m
in

im
u
m

p
ol

ic
ed

u
n
it

in
b
y
te

s,
m

ax
im

u
m

p
ac

ke
t

si
ze

in
b
y
te

s,

ra
te

in
K

b
p
s,

an
d

fr
am

es
p

er
se

co
n
d
.

V
id

eo
T

y
p

e
B

an
d
w

id
th

B
u
ck

et
S
iz

e
P

ea
k

R
at

e
P

ol
ic

ed
U

n
it

P
ac

ke
t

S
iz

e
R

at
e

F
ra

m
es

P
er

S
ec

on
d

C
IF

1.
0

7
16

8
74

15
22

16
8

24

E
D

1.
5

20
50

0
74

15
22

50
0

25

H
D

3.
0

40
12

00
74

15
22

12
00

30

H
D

x
6.

0
54

32
40

74
15

22
32

40
60

86

T
ab

le
3.

4:
V

S
D

N
p
ro

to
co

l
m

es
sa

ge
s.

M
es

sa
ge

ty
p

e
D

es
cr

ip
ti

on

se
tq

u
eu

e
u
se

d
b
y

th
e

co
n
tr

ol
le

r
fo

r
ad

d
in

g
fl
ow

to
n
et

w
or

k
d
ev

ic
e

u
n
se

tq
u
eu

e
u
se

d
b
y

th
e

co
n
tr

ol
le

r
fo

r
re

m
ov

in
g

fl
ow

fr
om

n
et

w
or

k
d
ev

ic
e

re
q
u
es

t
u
se

d
b
y

cl
ie

n
t

fo
r

re
q
u
es

ti
n
g

se
rv

ic
e

fr
om

th
e

n
et

w
or

k

ac
ce

p
t

u
se

d
b
y

cl
ie

n
t

fo
r

ac
ce

p
ti

n
g

re
q
u
es

t
fr

om
th

e
se

n
d
er

re
m

ov
e

u
se

d
b
y

cl
ie

n
t

fo
r

re
m

ov
in

g
se

ss
io

n
fr

om
th

e
n
et

w
or

k

87

4 EXPLICIT ROUTING IN SOFTWARE-DEFINED NETWORKING (ERSDN):

ADDRESSING CONTROLLER SCALABILITY

4.1 Abstract

Software-defined networking (SDN) promises a more flexible, automatable and

programmable computer network. SDN separates the control plane and data plane.

The control plane is placed in a logically centralized controller which hosts network

applications such as traffic engineering, QoS, and firewall. The centralized controller

creates a scalability problem when processing large control plane events—packets. Re-

ducing network events processed in the control plane and only processing required net-

work events is critical in addressing scalability concerns of the SDN architecture. This

chapter addresses the controller scalability problem by introducing Explicit Routing

in SDN (ERSDN), a routing scheme that reduces the control plane events—packets.

This chapter makes three contributions to the literature on reducing the burden

on controller. This chapter presents ERSDN, a routing scheme that selects transit

routers throughout network at edge routers. This chapter presents the design and

implementation of ERSDN. This chapter evaluates the effect of ERSDN on the scal-

ability of controller by measuring the network events processed in the control plane.

ERSDN reduces the network events processed in the control plane by 430%.

4.2 Introduction

The Software-defined networking (SDN) architecture is a network architecture

that separates the control plane and data plane [16]. The control plane of network

devices is relocated to a logically centralized controller. The control and data planes

communicate with one another over a secure channel using OpenFlow [21]. The

88

controller has a network-wide view which the controller uses to provision, configure,

and manage network resources such as CPU, memory, flow tables, and bandwidth in

the data plane—switches and middleboxes. The controller configures routes through

the network by modifying the flow table of switches. The entries in the flow table

determines the packet action such as drop, forward to controller, or forward to port.

Packets that have no matching entries in the flow table are forwarded to the controller

for processing. The controller can block packet flow or install a new flow in the

switch—ingress to egress. Once the flows are installed, subsequent packets traverse

the installed path. Once the packets have traverse network, the flow for particular

packets is removed either explicitly by the controller or implicitly by timeout built in

the network device.

In SDN, the first packet of each flow is forwarded to the controller by each transit

switch. The controller processes packet and installs flow in switch before returning

the packet to the switch to be forwarded to next transit switch in the path. The

next downstream switch receives packet and forwards the packet to controller. The

controller installs flow in switch flow table and returns packet to switch that forwards

the packet to the next hop. This hop-by-hop process continues until the packet exits

egress switch. The control plane events generated by a single packet is proportional

to the hops the packet traverses. The control plane events become significant as

packets enter and leave the network using reactive installation of flows [180]. The

network operator can proactively [180] instead of reactively install packet flows to

reduce control plane events.

Proactively installing flow entries may have great consequences. For example, the

network operator has complete knowledge about network traffic which enters network.

The network operator proactively installs packet flows in switch. Security is an issue

because the controller loses flow visibility when the flows are proactively installed.

The network applications such as billing and monitoring require the network event

generated by first packet—processed in control plane to function. If a switch or port

fails, the network and controller is not configured to make adjustment for the failure;

89

therefore, packets would be lost. The network user would experience disruption in

network service. There is a trade-off between flow table space and visibility of the

network activity when flows are installed proactively. Although proactively installing

flows reduces control plane events, proactive installation of flows is hard because the

network operator cannot possibly know all network traffic patterns.

The SDN architecture flow installation protocol does not address large network

events processed in the control plane—controller. The flow installation occurs on

a hop-by-hop basis. Each switch forwards first packet of flow to controller. The

unnecessary forwarding of the first packet increases control plane events.

Therefore, this chapter presents the experiment and results of Explicit Routing

in Software-Defined Network (ERSDN), a reactive flow installation protocol used

in Video over Software-Defined Networking (VSDN), a network architecture that

provides end-to-end QoS for real-time interactive video application [200]. The main

contributions of this chapter are. This chapter presents Explicit Routing in Software-

Defined Networking (ERSDN), a flow installation protocol that uses explicit routing

to reduce control plane events. This chapter presents the results of implementing

ERSDN in a network simulator [313]. This chapter presents an empirical study that

evaluates ERSDN runtime performance.

Chapter organization. The remainder of this chapter is organized as fol-

lows. Section 4.3 motivates need for Explicit Routing in Software-Defined Networking

(ERSDN). Section 4.4 discusses design and implementation of ERSDN. Section 4.5

presents results of simulating ERSDN in a network simulator and interprets results.

Section 4.6 compares ERSDN to related works. Section 4.7 provides concluding re-

marks.

90

4.3 Software-Defined Networking (SDN) Overview and Video Over Software-Defined

Networking (VSDN) Implementation

This section discusses SDN/Openflow architecture. It discusses VSDN imple-

mentation and limitations in reducing the network events processed in the control

plane.

4.3.1 Software-Defined Networking (SDN) Overview

Sender Receiver R1

R3

R4

AS1

R2

SDN
Controller

OpenFlow

Figure 4.1.: SDN network with sender and receiver.

Software-Defined Networking (SDN) is a new approach in designing and devel-

oping computer networks [16]. SDN, using similar concepts as seen in server virtu-

alization, allows computer networks to support rapid changing business needs. The

key SDN concepts are abstractions—network as a graph, network virtualization, au-

tomation and orchestration of network services. SDN abstractions provide relevant

information that applications use to improve their functionality and provide the means

91

for applications to specify desired behavior of network without the need to be aware

of network configuration details [50].

SDN allows network applications and services to be rapidly developed and de-

ployed. The control and data planes are decoupled and the network intelligence

and state is relocated in a logically centralized controller. The network applications

such as traffic engineering, network virtualization, and path resiliency are abstracted

from the network and relocated in logically centralized controller as illustrated in

Figure 4.1. The controller views network infrastructure including switches, routers,

links and middle-boxes as a graph; this is the core of the SDN architecture. The

SDN architecture exposes the flow tables of network infrastructure through an open

programmable interfaces such as OpenFlow [21] or ForCES [67] which program the

behavior of the network.

4.3.2 Video Over Software-Defined Networking (VSDN) Implementation

VSDN addresses rigidity of the path selection process of QoS network architec-

tures [200]. VSDN provides end-to-end QoS guarantees for real-time interactive video

applications. VSDN uses network-wide view to select optimum path for video appli-

cations using bandwidth, delay, and jitter. VSDN uses the SDN architecture and

OpenFlow protocol to separate the control and data planes. The VSDN controller

contains the routing logic and path selection application. The main element of VSDN

architecture is the routing module (RM) that performs path computation.

VSDN Path Selection and Flow Installation

In Figure 4.1, when a request for network service is received from the sender, the

switch—R1 forwards request using the default path—R1-R3-R4. Switch R4 forwards

the request message to the receiver. The receiver generates an accept message and

sends the accept message to R4. R4 forwards the accept message to controller. The

controller uses the routing module (RM) [200] to find a feasible path that meets

92

path constraints—bandwidth, delay, and jitter. The RM returns a list of feasible

paths to the controller. The admission control module processes the feasible paths

to determine if network resources are available. If network resources are available,

the controller installs the path—sends a modification message to each switch along

the path—R4-R2-R1. After the path is installed, the controllers returns the accept

message to R4 that forwards the accept message to R2. R2 forwards the accept

message to R1. R1 forwards the accept message to sender.

VSDN installs optimum path, but generates one control plane event for each switch

in the selected path. VSDN using explicit routing generates a single control plane

event for installing an optimum path. For example, if the controller uses explicit

routing the accept message is altered to include the path R4-R2-R1; the controller

generates one control plane event instead of three events. The controller sends the

accept message to R4 only.

The scalability of controller impacts deployment of SDN [82, 151, 158, 163, 260].

The scalability of the controller is improved by reducing the amount of state dis-

tributed from the control plane to data plane [149]. Explicit routing is needed to ad-

dress the controller scalability problem. The remainder of this chapter discusses how

Explicit Routing in Software-Defined Networking (ERSDN) addresses the controller

scalability problem.

4.4 Design and Implementation

This section discusses design and implementation of Explicit Routing in Software-

Defined Networking (ERSDN). This section discusses how ERSDN addresses chal-

lenge introduced in Section 4.3.2.

4.4.1 VSDN Flow Installation

Figure 4.1 represents a four-node SDN network. SDN/OpenFlow architecture,

same as VSDN, installs flows hop-by-hop. In Figure 4.1, the receiver receives request

93

and responds with an accept message. The switch R4 receives accept message from

receiver. The switch R4 checks its flow table for a matching flow. If flow does not

match R4 forwards accept message to controller. The controller checks with policy

control to ensure receiver can reserve network resources. The controller requests the

routing module (RM) to find an optimum path such as R4-R2-R1. The controller

checks with admission control to determine if network resources are available for the

request. If network resources are available the controller installs the selected path.

The controller starts with R4; then, installs flow in R2 followed by R1. In this

example, one accept message generates three control plane events. Reducing network

events such as accept messages in the control plane using explicit routing is the main

idea of this chapter.

4.4.2 Design Choices

The following design choices were made to reduce the events in control plane:

1. For each VSDN message such as accept only signal edge router—R1 or R4, in

Figure 4.1.

2. Allow core or access routers—R2 and R3 to install flow after receiving VSDN

message from another switch.

3. Append required path to accept message, enabling each switch to process accept

message and install required flow. This process is the same for other VSDN

messages such as remove [200].

4.4.3 VSDN Purposed Flow Installation

In Figure 4.1, the controller receives the accept message from R4, the controller

checks with policy control to ensure receiver can reserve network resources. The

controller uses routing module (RM) to find an optimum path which meets the path

constraints such as 3.0 Mbps, 60 ms delay, and 30 ms jitter. The path R4-R3-R1

94

meets path constraints. The controller appends the path to accept message. The

controller configures flow in R4. The controller sends altered accept message to R4.

R4 processes accept message and forwards the accept message to R3. The accept

message is forwarded to R3 that processes and forwards the accept message to R1.

R1 forwards accept message to sender, in Figure 4.1.

4.4.4 VSDN Switch Implementation Changes

Algorithm 1 Process Accept Message In Switch

procedure ProcessAcceptMessage(OFM)

OFM: OpenFlow Modification

if (FlowIsConfigured(OFM) == FALSE) then

DoOutPut(OFM.BufferId, InPort)

else

if (SwitchType() == ACCESS) then

AddV SDNShaper(OFM.OutPutPort, OFM)

end if

R = AddF low(OFM)

B = RetrieveBuffer(OFM.BufferID)

ExecuteActions(OFM.BufferID,B,OFM.Actions)

end if

end procedure

In algorithm 1, the changes to the switch are shown. In procedure ProcessAc-

ceptMessage, the switch receives an OpenFlow Modification (OFM) that determines

if flow is configured—FlowIsConfigured(OFM). If flow is configured, the switch passes

buffer—packet out port to its destination—DoOutPut.

95

The flow is added—AddFlow if the flow is not configured. If the switch is an AC-

CESS—ingress or egress, the switch installs a traffic shaper using AddVSDNShaper.

The traffic shaper ensures QoS of the flow. The buffer is retrieve using Retrieve-

Buffer. The ExecuteActions performs required actions on buffer such as output to

switch port, set MPLS label, or vendor specific action.

The major change in switch is the ability of switch to add its flow. The Pro-

cessAcceptMessage procedure can be called by the controller sending a modification

message or switch receiving an accept message on its input port.

4.4.5 VSDN Controller Implementation Changes

In algorithm 2, the changes to controller are shown. The switch forwards the ac-

cept message to the controller. The procedure ProcessAcceptMessage in algorithm 2

receives the accept message as a buffer—B from switch network device—S. The con-

troller retrieves video type using GetVideoTypeFromBuffer(B).

The GetContraintsFromVideoType retrieves video type constraints such as band-

width, delay, and jitter. The policy control checks if request is over maximum allow-

able bandwidth—MaxBandwidthAllowed. The controller retrieves the network topol-

ogy and determines ingress and egress switches—R1 and R4, in Figure 4.1. After the

controller determines a set of feasible paths using GetFeasiblePath, it checks with ad-

mission control to determine if network resources can be acquired—AcquireFlowResources.

If resources can be acquired, the path is appended to buffer—B using AppendPath-

ToBuffer. The controller, after appending path to buffer, updates ingress switch R4

and returns the buffer to R4.

The major change in the controller is the appending of path to buffer before flow is

installed in the switch. R4 forwards packet out port to next switch in path list which

is R3. R1 removes the appended path from the packet before forwarding packet to

the sender.

96

Algorithm 2 Process Accept Message in Controller

procedure ProcessAcceptMessage(S,B)

S: OpenFlowSwitchNetDevice

B: OpenFlowBuffer

V = GetV ideoTypeFromBuffer(B)

EC = GetContraintsFromV ideoType(V)

if (PolicyControl.MaxBandwidthAllowed(EC)) then

return FALSE

end if

G = TopologyMonitor.GetNetworkTopology()

R4 = GetIngressSwitch(G)

R1 = GetEgressSwitch(G)

P = GetFeasiblePath(R4, R1, EC)

R = FALSE

if (AdmissionControl.AcquireF lowResources(P, V)) then

AppendPathToBuffer(P,B)

UpdateIngressSwitch(R4, B)

R = TRUE

end if

return R

end procedure

97

4.5 Results

This section analyzes the events generated in the control plane by VSDN and

ERSDN.

4.5.1 Experimental Setup

Performance metrics - This chapter chooses following performance metric to assess

the performance of ERSDN.

• Network plane messages - measures the messages processed by the network

planes of VSDN and ERSDN.

The experiments were performed on an AMD Athlon X2 5400 system configured

with Fedora 20 and 4GB RAM.

98

4.5.2 Experimental Results

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1000 2000 3000 4000 5000 6000 7000 8000

A
cc

ep
t m

es
sa

ge
s

Client requests

ERSDN Control Plane
VSDN Control Plane

Figure 4.2.: The control plane accept messages generated for six-node network when

client requests increase. ERSDN generates fewer accept messages compared to VSDN.

The accept messages in the control plane for VSDN are 2,000 at requests 500 in

Figure 4.2. VSDN generates one accept message for each switch in the selected path

which increases the accept messages in the control plane. ERSDN accept messages in

the control plane are 500 at requests 500. ERSDN appends the path to accept message

and forwards the accept message to the access switch only. Appending the path to

accept message decreases the events in control plane in Figure 4.2. VSDN accept

messages increase to 5,000 at requests 1,000 because one accept message is generated

for each switch in the selected path. ERSDN accept messages are 1,000 at requests

1,000. ERSDN generates a single accept message which reduces the events in control

plane. VSDN accept messages increase to 10,000 at requests 2,000 because VSDN

generates an accept message for each switch along the path; each switch receives

and forwards accept message to the controller. In Figure 4.2, the accept messages

99

grow faster for VSDN. ERSDN accept messages grow slower starting at requests 2,000.

VSDN accept messages grow to 40,000 when client requests increase to 8,000. ERSDN

accept messages grow to 8,000 when client requests increase to 8,000. There is an

one-to-one ratio between control plane requests and accept messages using ERSDN.

Although VSDN and ERSDN behaviors are linear, ERSDN grows slower.

0

50000

100000

150000

200000

250000

300000

350000

0 1000 2000 3000 4000 5000 6000 7000 8000

N
N

et
w

or
k

pl
an

e
m

es
sa

ge
s

Client requests

VSDN Control Plane
VSDN Data Plane

VSDN Total
ERSDN Control Plane

ERSDN Data Plane
ERSDN Total

Figure 4.3.: The control plane messages generated for six-node network when client

requests increase. ERSDN generates fewer messages compared to VSDN.

The messages for each network plane increase linearly when client requests increase

in Figure 4.3. The messages in the control plane and data plane are similar with VSDN

and ERSDN at requests 500. The control plane messages of ERSDN increase slightly

from requests 500 to 1,000 because the accept messages increase with requests only

and not the length of selected path. The messages increase noticeably from requests

500 to requests 1,000 because the accept messages are proportional to switches along

the path using VSDN; the controller generates one network event for each switch along

the path, increasing the events in control plane. The control plane messages increase

at requests 2,000 using ERSDN. The control plane messages double using VSDN

100

because the controller generates one network event in control plane for each switch

in the selected path at requests 2,000. When requests increase to 8,000, the events

in control plane for ERSDN increase slower compared to VSDN. The control plane

messages of VSDN are over 220,000, whereas the control plane messages of ERSDN

are fewer than 50,000 at requests 8,000. ERSDN generates 260% fewer control plane

events when client requests are 8,000.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 1000 2000 3000 4000 5000 6000 7000 8000

A
cc

ep
t m

es
sa

ge
s

Client requests

ERSDN Control Plane
VSDN Control Plane

Figure 4.4.: The control plane accept messages generated for thirteen-node network

when client requests increase. ERSDN generates fewer accept messages compared to

VSDN.

The accept messages for VSDN are 3,500 at requests 500 in Figure 4.4. ERSDN

accept messages are 500 at requests 500. ERSDN appends the path to accept message

and forwards the accept message to access switch which decreases control plane events

in Figure 4.4. VSDN accept messages increase to 6,000 at requests 1,000 because

there is one accept message processed for each switch along the path. ERSDN accept

messages are 1,000 at requests 1,000. ERSDN generates a single accept message

which reduces control plane events. ERSDN accept messages are not affected by the

101

path length in Figure 4.2 and Figure 4.4. VSDN accept messages increase to 12,000

at requests 2,000 because VSDN generates an accept message for each switch along

the path. In Figure 4.4, the accept messages increase using VSDN. ERSDN accept

messages grow slower starting at requests 2,000. The VSDN accept messages grow to

48,000 at requests 8,000. The ERSDN accept messages increase to 8,000 at requests

8,000 because ERSDN sends one accept message to the access switch. VSDN and

ERSDN message complexity are linear, but ERSDN increases slower.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 1000 2000 3000 4000 5000 6000 7000 8000

N
et

w
or

k
pl

an
e

m
es

sa
ge

s

Client requests

VSDN Control Plane
VSDN Data Plane

VSDN Total
ERSDN Control Plane

ERSDN Data Plane
ERSDN Total

Figure 4.5.: The control plane messages generated for thirteen-node network when

client requests increase. ERSDN generates fewer messages compared to VSDN

The messages in the control and data planes are linear in Figure 4.5; this behavior

is similar to the behavior in Figure 4.3. The VSDN events in the control plane double

at requests 1,000. The VSDN network events double at requests 2,000. The controller

generates an event for each switch along the path, increasing the control plane events

of VSDN in Figure 4.5. The ERSDN messages increase from requests 2,000 to requests

4,000. The VSDN messages double because of the switch-to-controller-processing of

the accept messages at requests 4,000. As the requests increase, the ERSDN and

102

VSDN messages increase in Figure 4.5. The ERSDN messages are fewer than 50,000

at requests 8,000 because only the access switch receives accept message from the

controller. These results in Figure 4.5 are similar to requests 8,000 in Figure 4.3

because the path length does not affect the events generated in the control plane

using ERSDN. The network events are 216,000 for VSDN at requests 8,000. ERSDN

decreases the control plane messages by 430% compared to VSDN at requests 8,000.

The explicit routing used by ERSDN decreases the events in control plane. ERSDN

specifies the path in the accept message which avoids the need to perform flow in-

stallation for each switch in the path by the controller. The switch in ERSDN re-

ceives the accept message and installs flow. Explicit routing allows trade-off between

time—control plane events and space—packet size due to appended path [314]. The

design goal of ERSDN is to reduce the events in control plane. Reducing the events

in control plane reduce stress on controller [248]. Source-based routing is needed to

minimize state distribution [248].

4.6 Related Works

The authors [248] address controller scalability and performance issue by devel-

oping a new source-based routing scheme. The motivation, similar to research in

this chapter, is to reduce state distribution between the controller and network in-

frastructure—switches to improve scalability and reduce network cost. The routing

scheme [248] labels each network interface. The labeled interfaces are linked together

to create a path that is a sequence of interfaces. The path is embedded in the packet

at ingress router with a hop count that represents the position of packet in the path.

The routing scheme [248] pushes only information to one node. The approach

in this chapter is similar to approach in [248] because the approach in this chapter

only pushes state to the access router. Pushing state only to access router reduces

state distribution required by the controller. The source packet headers [248] are

added and removed by trusted egress nodes. This chapter differs from the approach

103

in [248] because the path is appended by SDN controller on receiving and processing

the accept message. ERSDN is similar to approach in [248] because the path—source

packet header is removed by the egress router. The state reduction [248] is similar to

the results in this chapter; the results illustrate reduction in state distribution using

source-based and explicit routing schemes. The SDN state reduction is an Internet

draft [315] motivated to reduce burden on SDN controller. In the future, ERSDN

could be standardized for real-time interactive applications such as video.

4.7 Conclusions

This chapter presented the design and implementation of Explicit Routing in

Software-Defined Networking (ERSDN). ERSDN reduces the stress of the VSDN

controller by reducing the events generated in control plane. A prototype of ERSDN

was developed and the behavior of ERSDN was analyzed using the events generated

in the control plane. ERSDN reduces the control plane messages generated by Video

over Software-Defined Networking (VSDN) by 430% using an explicit routing scheme.

104

5 RELIABLE VIDEO OVER SOFTWARE-DEFINED NETWORKING

(RVSDN)

5.1 Abstract

Ensuring end-to-end quality of service for video applications requires the network

to choose feasible path using constraints such as bandwidth, delay and jitter. Quality

of Service (QoS) can be ensured if the paths are reliable—perform to specification for

each request. This chapter makes four contributions to the literature on providing

end-to-end QoS for real-time interactive video applications. This chapter presents

Reliable Video over Software-Defined Networking (RVSDN) that builds upon previ-

ous work—Video over Software-Defined Networking (VSDN) to address the issue of

finding most reliable path of the network. This chapter presents the design and im-

plementation of RVSDN. This chapter presents the experience of integrating RVSDN

in ns-3, a network simulator used by the research community for simulating and mod-

eling computer networks. This chapter presents the results of RVSDN and analyzes

the results using requests serviced by the network. RVSDN services 31 times more

requests than VSDN and MPLS explicit routing when reliability constraint is 0.995

or greater.

5.2 Introduction

Video traffic demands across the Internet are projected to be 69% of the Inter-

net traffic by 2017 [316]. The increase in video demand is caused by hardware such

as smart TVs, tablets, and smart phones and software such as Facebook, YouTube,

Netflix, and HuLu. Real-time interactive video applications such as video-on-demand

(VOD) and telesurgery are pushing the network infrastructure and protocols to the

105

limits. The real-time interactive video applications require specific level of Quality of

Service (QoS) from the network. The QoS that the network provides to video applica-

tions can be bandwidth and minimal delay and jitter. The network QoS frameworks

such as differentiated services, integrated services and Multiprotocol Label Switch-

ing (MPLS) provide limited QoS for real-time application such as video [311]. The

network QoS frameworks and the Internet were not developed for the demands of

real-time interactive video applications; therefore, new approaches for QoS, security,

reliability, and wireless technologies within the Internet are needed [317].

Supporting real-time interactive video applications requires rethinking about how

the network provides end-to-end QoS guarantees. The network QoS frameworks con-

sider bandwidth, delay and jitter constraints. Although bandwidth, delay and jitter

are important to real-time applications such as video, meeting the constraints do not

address reliability of paths or build confidence of the network operator about path

selection process. In this chapter, reliability is ability of network to perform to speci-

fication [308] for each request. This chapter builds on past work [200] and investigates

ability of the network to select reliable end-to-end path. Network frameworks can use

multi-path selections to decrease failure probability, respond to failures, or increase

bandwidth capacity [4]. Multi-path selection allows the network to load balance net-

work traffic and to provide failover in case the primary path fails. Multi-path selection

does not address reliability requirement for video applications such as remote surgery,

robotic packets, or interactive video.

Constraint-based routing or multiple path selection can fail to provide end-to-end

QoS for real-time interactive video applications. For example, if QoS requirements

for video application is 0.95 reliability, 1.5 Mbps bandwidth, 100ms delay, and 20ms

jitter, the QoS frameworks such as integrated services find a Path1 that meets the con-

straints—bandwidth, delay and jitter, but are unable to meet reliability constraint

because supporting reliability is not built-in the network design. The network op-

erator may configure MLPS failover links to address issue of reliability. Although

availability of network is increased using failover links, failover links may not pro-

106

vide required reliability for video application because MPLS explicit routing paths

are static. If the network operator configures MPLS failover as Path1 with reliabil-

ity of 0.75 and Path2 with reliability of 0.75, the overall reliability of the disjointed

paths is (1 − (1 − 0.75) × (1 − 0.75)) = 0.9375 which does not meet reliability of re-

quirement—0.95. Furthermore, the static routes of MPLS cannot dynamically select

a combination of reliable paths to service real-time applications such as interactive

video.

Meeting reliability requirement for video applications requires the path selection

process to consider more than a single path even if the path meets reliability require-

ment before failure. It requires path selection algorithms to dynamically consider

combination of bandwidth, delay, jitter, and reliability constraints across multiple

paths. The network QoS frameworks such as differentiated services, integrated ser-

vices and MPLS do not address issue of reliability which is the main idea of this

chapter.

Therefore, this chapter presents the experience and results of integrating relia-

bility support into Video over Software-Defined Networking (VSDN), a network ar-

chitecture that ensures end-to-end QoS for real-time interactive video applications.

The main contributions to research are. This chapter presents Reliable Video over

Software-Defined Networking (RVSDN), a network architecture that builds on previ-

ous work [200] to ensure end-to-end QoS for video application. This chapter presents

results of implementing prototype of RVSDN. This chapter presents a study that

evaluates the runtime performance of RVSDN using reliability.

Chapter organization. The remainder of this chapter is organized as fol-

lows. Section 5.3 motivates need for Reliable Video over Software-Defined Networking

(RVSDN). Section 5.4 discusses the design and implementation of RVSDN. Section 5.5

presents and interprets simulation results. Section 5.6 compares RVSDN to related

works. Section 5.7 provides concluding remarks.

107

5.3 Integrated Services (IntServ) and Video over Software-Defined Networking (VSDN)

This chapter discusses the limitations of IntServ and VSDN architectures in pro-

viding QoS for real-time interactive video applications.

5.3.1 Integrated Services (IntServ)

IntServ architecture uses a reservation protocol to configure end-to-end QoS over

IP networks. The network resources such as memory, central processing unit (CPU),

and bandwidth are reserved at each router along the path. The PATH message is sent

by the sender to receiver. The PATH message follows the same path as IP packet; the

PATH message cannot be sent using a different path. The receiver responds to sender

with RESV message that reserves network resources along the path. The PATH and

RESV messages configure soft states such as rate, max queue size, peak rate, and

minimal packet size at each router along the path. These metrics ensure the packets

belonging to specific flow receive guaranteed QoS. The soft states at each router are

periodically refreshed to avoid session timeout.

Sender Receiver R1

R3

R6

AS1

R2 R5

Figure 5.1.: A network with sender and receiver where routers in autonomous systems

one (AS1) make independent decisions about path selections. Finding a reliable path

across AS1 is difficult because each router makes its own routing decision.

108

IntServ advantages include software state adaptability, ability of receiver to ini-

tiate reservation, and ability for routers to merge reservations [311]. One disad-

vantage of IntServ is inability to select a different path from the routing proto-

cols—Intermediate System to Intermediate System (IS-IS), Open Shortest Path First

(OSPF), or Routing Information Protocol (RIP). For example, the best path for

video using bandwidth, delay, and jitter constraints is R1-R2-R5-R6 in Figure 5.1. If

routers in AS1 are running OSPF, the shortest path is R1-R6; therefore, video pack-

ets between the sender and receiver traverse path R1-R6 which is two hops, using

IntServ.

In this example, IntServ ensures QoS at routers R1 and R6, but the best path is

R1-R2-R5-R6 and not R1-R6. Furthermore, if path R1-R6 fails, OSPF finds the next

shortest path that is R1-R3-R6. IntServ installs reservations along path R1-R3-R6

after, but the best path is R1-R2-R5-R6. IntServ has failed to configure QoS along

the best path R1-R2-R5-R6.

Sender Receiver R1

R4

R3

R6

AS1

R2 R5

SDN
Controller

OpenFlow

Figure 5.2.: Software-defined networking (SDN) network with sender and receiver.

The controller programs the behavior of network including sender and receiver.

109

In Figure 5.2, VSDN architecture addresses the path inflexibility limitation of

IntServ architecture. VSDN, similar to IntServ, provides QoS guarantees to real-

time interactive applications such as video. VSDN selects optimum path for video

application using bandwidth, delay, and jitter constraints.

5.3.2 VSDN Limitations

Although VSDN selects the optimum path for real-time interactive video applica-

tion using bandwidth, delay and jitter, VSDN is limited in two ways when supporting

end-to-end QoS for video applications such as telesurgery. VSDN considers a single

path when servicing the request of video application. A single path may fail, neg-

atively affecting the performance of video application. For example, in Figure 5.2,

if packets traverse path R1-R6 and the path fails, VSDN recognizes the failures and

finds a different path.

VSDN does not consider reliability when making path selections. VSDN could

aggregate reliability over multiple paths to ensure QoS for real-time interactive video

application. For example, in Figure 5.2, VSDN have to reject request or service

the request with no guarantee using reliability of 0.92—if the paths have reliability

of 0.92 and the video application requests reliability of 0.95. If VSDN aggregates

reliability across two paths such as R1-R6 and R1-R3-R6, VSDN can ensure reliability

of 0.9936—(1 − (1 − 0.92) × (1 − 0.92))) across multiple paths.

The network has multiple paths, mobile devices have multiple radio interfaces,

computer devices have multiple network interfaces, and data centers have multi-

ple paths [318]. The client of video application needs to support multiple path

transport to take advantage of the reliability support of RVSDN. MultiPath TCP

(MPTCP) [318] has been shown to be feasible. A detailed explanation of multi-path

transport layer support is outside the scope of this chapter.

The network could select most reliable paths and aggregate reliability across multi-

ple paths. Aggregating reliability across multiple paths allows the network to perform

110

to specification for each request. Having the network operator configure explicit paths

across links using a protocol such as MPLS is hard. The remainder of this chapter

discusses how Reliable Video over Software-Defined Networking (RVSDN) addresses

issue of reliability.

5.4 Design and Implementation

This section discusses the design and implementation of Reliable Video over

Software-Defined Networking (RVSDN). This section discusses how RVSDN addresses

the challenges introduced in Section 5.3.2.

Video Over Software-Defined Networking (VSDN)

Sender Receiver R1

R4

R3

R6

AS1

R2 R5
100, 10, 5, 0.993

100, 8, 6, 0.993

SDN
Controller

OpenFlow

Figure 5.3.: SDN network with link constraints—bandwidth, delay, jitter, and relia-

bility.

111

Figure 5.3 shows the architecture of VSDN. The links are labeled with QoS con-

straints—bandwidth Mbps, delay ms, jitter ms, and reliability. VSDN uses SDN [16]

and OpenFlow [21] to separate the control and data planes of network devices—switches.

The control plane—routing is implemented in the controller which resides outside of

data plane—forwarding in Figure 5.3. The control plane and data plane communicate

with one another using OpenFlow. A key component of VSDN is the Routing Module

(RM) [200]. The RM is located in the controller and the RM uses constraint-based

routing to calculate feasible paths [200]. Constraint-based routing (CBR) with two or

more constraints is NP-hard [307]; therefore, a heuristics—A*Prune Algorithm finds

feasible paths through the network.

A*Prune Algorithm

A*Prune algorithm combines A*Search with a pruning technique [319]. A*Prune

algorithm solves finding K shortest paths subject to multiple constraints (KMCSP).

A*Prune algorithm takes a graph G—vertices V, and edges E. A*Prune starts at

path P(s, s) where s is a starting vertex in G. It expands paths P(s, V) that are

reachable from s. A*Prune performs specific pruning against constraint C, only paths

in admissible head path set P(s, V, H(p), C) are considered. The paths are ordered

in a way that the path with shortest project path length H0(p) is expanded first. The

algorithm terminates when there is a set of constraint shortest path (CSP) found or

there are no candidate paths found. There are 7 key processing steps in A*Prune

which are combined to select, expand, and prune candidate CSP until the algorithm

terminates [319].

5.4.1 VSDN Routing Module Changes

VSDN Routing Module (RM) uses a variation of A*Prune algorithm [319] to per-

form constraint-based routing using bandwidth, delay, and jitter as metrics. RVSDN

supports reliability constraint and aggregation of reliability across multiple paths

112

unlike VSDN. A path supporting real-time interactive video applications such as

telesurgery may support bandwidth, jitter, and delay constraints, but if the path is

unreliable, the performance of network for requests cannot be guaranteed. RVSDN

provides QoS for real-time interactive video applications that require constraints such

as bandwidth, delay, jitter, and reliability.

Algorithm 3 Find Reliable Paths

procedure FindReliablePath(G,B,D, J,R)

G: Network Graph

B: Bandwidth

D: Delay

J : Jitter

R: Reliability

EC = CreateEdgeConstraint(B,D, J,R)

R1 = GetIngressSwitch(G)

R6 = GetEgressSwitch(G)

P = GetFeasiblePath(R1, R6, EC)

RP = GetReliablePath(P,R)

return RP

end procedure

Algorithm 3 illustrates pseudo code that is implemented in the controller to sup-

port reliable path selection. The user creates an edge constraint EC that takes pa-

rameters B, D, J, and R where B is bandwidth, D is delay, J is jitter, and R is

minimal reliability for the video application. The ingress and egress switches—R1

and R6, in Figure 5.3, are retrieved using GetEgressSwitch and GetIngressSwitch.

The GetFeasiblePath(R1, R6, EC) is a functionality of routing module (RM). The

GetReliablePath(P, R) takes candidate paths P and reliability constraint R as pa-

113

Algorithm 4 Install Reliable Paths

procedure InstallReliablePath(RP,UUID)

RP : Reliability Path(s)

UUID: Unique Path ID

if (AcquireF lowResource(RP)) then

PathDatabase.Insert(UUID,RP)

InstallReliablePath(OFPFC ADD,RP)

return TRUE

end if

return FALSE

end procedure

114

rameters. The GetReliablePath(P, R) sorts candidate paths. The RVSDN controller

installs paths as illustrated in algorithm 4. The RVSDN controller acquires resources

for reliability paths using AcquireFlowResource(RP). The reliability paths are stored

in the path database using a unique id—UUID. The controller installs reliability paths

using InstallReliablePath(OFPFC ADD, RP).

For example, assume a video application requests reliability of 0.993 and Find-

ReliablePath(G, B, J, R) returns 4 paths with reliability 0.91, 0.75, 0.94 and 0.89.

The GetReliabilityPath(P, R) sorts paths P—0.94, 0.91, 0.89, 0.75. The GetReliabil-

ityPath(P, R) determines if first path with reliability 0.94 meets reliability constraint.

If not, it calculates reliability of first two paths—0.94 + 0.91 − 0.94 × 0.91 which is

0.9946. A reliability of 0.9946 meets constraint for reliability 0.993. The GetReli-

ablePath(P, R) returns reliability paths RP—paths with reliability of 0.94 and 0.91.

The controller updates path database and flow tables of switch in the paths RP, after

admission control—AcquireFlowResource(RP) determines that network resources are

available for the request.

Algorithms 3 and 4 illustrate the ease of use for controller developers to find

constraint-based paths and update switches. RVSDN is integrated into ns3 [313].

5.5 Results

This section analyzes requests serviced by the network architectures using relia-

bility—ability of the network architecture to perform to specification for request.

5.5.1 Experimental Setup

Performance metrics - This chapter chooses following performance metric to assess

performance of RVSDN.

115

• The requests serviced by the network - measures the requests serviced by net-

work—VSDN, MPLS, and RVSDN. The actual constraints for each request are

shown in Table 5.1.

The experiments were performed on an AMD Athlon X2 5400 system configured

with Fedora 18, ns-3 v3.16 [320], and 4GB RAM.

5.5.2 Experimental Results

0

20000

40000

60000

80000

100000

120000

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

R
eq

ue
st

s p
ro

ce
ss

ed

Reliablity (%)

RVSDN
MPLS
VSDN

Figure 5.4.: The requests serviced by network architecture when video application

reliability constraint increases. RVSDN services more requests than MPLS and VSDN

because RVSDN aggregates reliability of multiple paths and dynamically discovers

paths.

Figure 5.4 illustrates the requests serviced by the network architectures in Fig-

ure 5.3.

MPLS services 33,333 requests before rejecting other requests at reliability 0.90 be-

cause MPLS uses path R1-R6 which is 100Gbps. MPLS is using explicit routes—R1-

R3-R6 and R1-R6 in Figure 5.3; therefore, after label switching paths resources are

exhausted, MPLS is unable to guarantee QoS for video requests. VSDN and RVSDN

116

service 103,333 requests at reliability 0.90 because VSDN and RVSDN can explore

undiscovered paths. RVSDN behaves similar to VSDN because there is no need to ag-

gregate links at reliability 0.90. The paths in Figure 5.3 have reliability greater than

0.90 in Figure 5.4; therefore, as illustrated in Figure 5.4, each network architecture

services requests between reliability 0.90 and 0.97.

MPLS services 33,333 requests at reliability 0.98. The path R1-R6 has reliability

of 0.993 which meets reliability of 0.98 when using MPLS. The requests serviced

by VSDN decreased to 70,000 requests at reliability 0.98 because VSDN does not

aggregate reliability across multiple paths. VSDN uses reliability of a single path;

therefore, only paths R1-R3-R6—0.995 × 0.995 = 0.990, R1 - R6—0.993, and R1-

R4-R6—0.993 × 0.993 = 0.9860 meet reliability constraint of 0.98. RVSDN services

103,333 requests because RVSDN can aggregate reliability over multiple paths, at

reliability constraint 0.98.

The requests serviced by VSDN decreases to 36,666 at reliability 0.99 because only

paths—R1-R3-R6 and R1-R6 meet reliability constraint of 0.99. VSDN at reliability

0.99 behaves similar to MPLS because VSDN uses a single path when satisfying reli-

ability constraint. MPLS services 33,333 requests at reliability constraint 0.99. The

requests serviced by RVSDN remain constant at reliability 0.99 because it aggregates

reliability across links. The requests serviced by each network architecture remain the

same at reliability 0.993. The requests serviced by VSDN and MPLS drops to 3,333

because the architectures use path R1-R3-R6 that has bandwidth of 10Gbps and

reliability of 0.999—0.999 = 0.9995 × 0.9995. RVSDN continues to service 103,333

requests because RVSDN aggregates reliability across multiple paths which allows

RVSDN to service more requests at reliability constraint 0.999.

The ability of RVSDN to aggregate reliability across multiple paths allows RVSDN

to service more requests than MPLS and VSDN. VSDN services more requests than

MPLS because the paths of VSDN are dynamically discovered and no explicit con-

figuration is required by VSDN.

117

5.6 Related Works

The most reliable path (MRP) is determined by using a find shortest path first

algorithm similar to Dijkstra or Floyd. Petrovic [321] uses labeling procedure and

matrix algorithm to compute MRP. RVSDN uses a variation of the A*Prune algorithm

with a combination of Dijkstra shortest path algorithm. RVSDN similar to [321]

creates an adaptive routing process that selects most reliable path between nodes.

RVSDN uses multiple network path aggregation to ensure reliability of service which

differs from technique purposed by Petrovic [321].

Lee et al. [322] select most reliable path considering link cost and capacity such as

average queue sizes. Lee et al. [322] use random early detection (RED), an algorithm

for avoiding network congestion using buffer management in routers. Lee et al. [322]

use Floyd shortest path algorithm and combines probability of packets dropped on link

by RED algorithm to select MRP. RVSDN uses a variation of the A*Prune algorithm

combined with Dijkstra shortest path algorithm to calculate MRP. RVSDN does not

use queue length on links when calculating MRP. For RVSDN to support queue

length, the switches need to report their average queue length to controller where the

queue length can be used in MRP calculation. Statistic gathering is an expensive

operation of OpenFlow switch [52]. More research is needed to determine if dynamic

statistics gathering is cost effective. The idea of finding MRP under abnormal traffic

conditions purposed by Lee et al. [322] is a technique that RVSDN could use to

improve robustness.

Wang et al. [323] use MRP to ensure delivery of relief material after a natural

disaster. Wang et al. [323] use concept of detour vital edge to choose adjustable

reliable path that has higher connectivity reliability and minimal detour distant.

Wang et al. [323] present three shortest path algorithms—depth first search and

Dijkstra and modeled and compared modified versions of each algorithm. Wang

et al. [323] use a modified version of Dijkstra shortest path to compute reliability

and weight. Both traffic and communication networks can be complicated after a

118

natural disaster. Although networks are complicated, Wang et al. [323] illustrated

feasibility and correctness of finding MRP after a natural disaster that RVSDN does

not assume has occurred. RVSDN can use concept of detour vital edge and ability

to function during abnormal traffic conditions [322] to calculate aggregated MRP in

communication networks after a natural disaster. In this chapter, network failures

were not introduced during experiment.

5.7 Conclusions

This chapter presented the design and implementation of Reliable Video over

Software-Defined Networking (RVSDN). RVSDN builds on previous work [200] of

providing end-to-end QoS for real-time interactive video applications that require

bandwidth, delay, and jitter constraints. RVSDN added the support for reliability

constraint to be used during the path selection process. RVSDN used multiple paths

when determining if the network can service requests that require reliability. RVSDN

services requests that required reliability of 0.999, whereas MPLS and VSDN ability

to service requests decreased starting at reliability 0.995. RVSDN serviced 31 times

more requests compared to VSDN and MPLS at reliability 0.995 or greater.

119

T
ab

le
5.

1:
T

h
e

Q
oS

co
n
st

ra
in

ts
u
se

d
d
u
ri

n
g

ex
p

er
im

en
t

w
h
er

e
b
an

d
w

id
th

,

d
el

ay
,

an
d

ji
tt

er
re

m
ai

n
ed

co
n
st

an
t,

b
u
t

re
li
ab

il
it

y
va

ri
ed

b
et

w
ee

n
0.

90
an

d

1.
00

.

B
an

d
w

id
th

D
el

ay
J
it

te
r

R
el

ia
b
il
it

y

3.
0

M
b
p
s

15
0m

s
30

m
s

0.
90

-
1.

00

120

6 MULTI-DOMAIN OVER SOFTWARE-DEFINED NETWORKING (MDVSDN)

6.1 Abstract

Supporting end-to-end quality of services for real-time interactive video applica-

tions such as videoconferencing and distance learning across the Internet requires a

collection of independent networks or domains to work together to route packets be-

tween source and destination. Routing packets across the Internet using a feasible

path—a path that meets the quality of service (QoS) attributes of video application

is hard because the quality of service attributes such as bandwidth, delay, and jitter

are not natively supported by the Border Gateway Protocol (BGP) which is the de

facto routing protocol for the Internet. Although there may be multiple feasible paths

between source and destination, BGP is unable to explore alternative paths because

BGP advertises a single best path—feasible path, decreasing network flexibility.

This chapter provides three contributions to the literature on providing end-to-

end QoS for real-time interactive video applications across the Internet. This chap-

ter presents Multi-Domain Video over Software-Defined Networking (MDVSDN), a

network architecture that selects end-to-end QoS path for real-time video application

across independent domains. This chapter describes the architectural features of MD-

VSDN. This chapter presents results of implementing the prototype of MDVSDN and

evaluates behavior of MDVSDN using message complexity. The message complexity

of MDVSDN is linear.

6.2 Introduction

Supporting end-to-end quality of service (QoS) for real-time interactive video ap-

plications across the Internet requires a collection of independent network domains

121

to work together to provide QoS to the video applications such as videoconferencing

and distance learning. The independent networks of the Internet work together to

route packets between network devices that are geographically dispersed; therefore,

performance of each network domain contributes to final service quality [324].

The QoS attributes such as bandwidth, delay, and jitter of network domains are

not advertised by network operator and are not natively supported by Border Gate-

way Protocol (BGP) [325] which is the de facto routing protocol for the Internet.

The real-time interactive video applications require guaranteed bandwidth, bounded

delay [326], and bounded jitter [5], requiring the Internet to select a feasible path

among multiple paths.

The Internet is vertically integrated where control plane—decision plane and data

plane—forwarding plane are packaged together in network devices such as switches

and middleboxes which makes it difficult to change the behavior of network. Due to

tight coupling of the data plane and control plane, selecting a feasible path across the

Internet is difficult. Furthermore, programming paths through the network is chal-

lenging because of closed interfaces of network devices. Software-defined networking

(SDN) [16], a network architecture that decouples the data plane and control plane,

has been proposed to address the challenges of managing network devices and pro-

gramming the behavior of network. Nevertheless, the SDN solutions do not naturally

support multi-domain environments [276].

Video over Software-Defined Networking (VSDN) [200], a network architecture

that selects an optimum path among multiple paths, assumes the network domains

operate independently of one another and path information is not exchanged between

the network domains, thus decreasing the Internet’s ability to provide end-to-end QoS

for real-time interactive video applications. The network domains should coordinate

flow setup originated by applications, containing information such as path require-

ment, QoS, and service-level agreement (SLA) across multiple SDN domains [327].

For example, there are two VSDN network domains, Domain1 and Domain2,

peered. The sender is connected to Domain1 and the receiver is connected to Do-

122

main2. If sender initiates a video session with receiver, the sender sends receiver a

request message. When receiver receives request message, the receiver generates an

accept message. The accept message instructs Domain1 to install a feasible path

which meets the video application QoS requirement. After installing path, Domain1

forwards accept message to Domain2 which configures a QoS path for video applica-

tion. Domain1 and Domain2 independently install QoS paths without coordinating

flow setup originated by video application. The two paths—Path1 that is selected by

Domain1 and Path2 that is selected by Domain2 individually meet video application

QoS requirement, but when stitched together may not meet QoS requirement such as

delay and jitter of video application.

Because VSDN lacks the ability to select multiple domain QoS paths for real-

time interactive video application, this chapter presents Multi-Domain Video over

Software-Defined Networking (MDVSDN), a network architecture that selects end-

to-end QoS multiple domain path for real-time interactive video applications.

The main contributions of this chapter to research are. This chapter presents

Multi-Domain Video over Software Defined Networks (MDVSDN), a multi-domain

network architecture that supports end-to-end QoS for real-time interactive video

applications. This chapter presents results of implementing prototype of MDVSDN.

This chapter analyzes MDVSDN behavior using message complexity.

Chapter organization The remainder of this chapter is organized as follows.

Section 6.6 compares MDVSDN to related works. Section 6.3 motivates need for

MDVSDN. Section 6.4 gives an overview of MDVSDN architecture and discusses

implementation. Section 6.5 presents and interprets simulation results. Section 6.6

compares MDVSDN to related works. Section 6.7 draws together the topics discussed

in this chapter.

123

Sender A Receiver B

R1 R2

R3

Domain1

R4 R6

R5

Domain2

VSDN
Controller1

VSDN
Controller2

Receiver A Sender B

OpenFlow

R7 R9

R8

Domain3

VSDN
Controller3

Figure 6.1.: VSDN network, illustrating three independent domains connected by

links R2-R4, R4-R9, and R2-R7. The domains lack multi-domain flow management.

124

6.3 Motivation: VSDN Network

VSDN provides end-to-end quality of service for real-time video applications.

VSDN uses the network-wide view to provision and select path that supports video

application QoS requirements including bandwidth, delay, and jitter. VSDN sup-

ports three types—CIF, ED, and HD [200]. VSDN uses a variation of the A*prune

algorithm to find Constrained Shortest Path First (CSPF) [307,319].

VSDN simplifies application programmable interface (API) for video applica-

tion developer, requiring minimal input to request service. VSDN has four mes-

sage types, request—requests QoS from network, the video application generates a

request message, accept—starts session, the receiver generates an accept message, re-

move—explicitly removes session from the network, the sender or receiver can generate

a remove message, and error—indicates an error condition, the sender, receiver, con-

troller, or switch can generate an error message. The sessions are implicitly removed

by the network devices if flow timeout occurs [70].

VSDN operates on a single network domain. Although VSDN finds optimum path

within a single network domain, it may not find optimum multi-domain path—paths

across independent network domains that are stitched together to create an end-to-

end path.

For example, in Figure 6.1, the best path for video application with respect to

bandwidth, delay, and jitter is path Domain2-Domain3-Domain1 from sender A to

receiver B. The VSDN controllers in Domain1, Domain2, and Domain 3 configure

their paths independent of one other.

To initial session with receiver B, sender A sends a request message to R1, R1

forwards the request message to VSDN controller1. The controller determines sender

A can reserve network resources within Domain1 and receiver B is unreachable from

Domain1. The controller returns request message to R1 which forwards the request

message over default path to R2. R2 forwards request message to R4—highest weight,

local preference, or shortest path, in Figure 6.1. R4 forwards request message to

125

VSDN controller2. The controller in Domain2 determines receiver B is reachable

from Domain2. The VSDN controller returns request message to R4 that forwards

the request message through the default path to R6. R6 forwards request message to

receiver B.

Upon receiving request, receiver B accepts the request from sender A by generating

an accept message. The accept message is sent to R6. R6 forwards accept message

to VSDN controller2. The controller performs admission control and policy control

on request from receiver B. The controller in Domain2 calculates end-to-end path

and installs flow rules and queues in receiver B, R6, and R4—path receiver B-R6-

R4. After installing flow rules and queues, the controller returns accept message

to R6. R6 forwards accept message to R4. R4 forwards accept message to R2.

R2 forwards accept message to VSDN controller1. The controller receives accept

message from R2 and performs admission control and policy control. The controller

that manages Domain1 installs path sender A-R1-R3-R2 and returns accept message

to R2. R2 forwards accept message to R3 and R3 forwards the accept message to

R1 and R1 forwards accept message to sender A. The VSDN network has finished

installing the multi-domain path between sender A and receiver B—path Domain1-

Domain2; however, the best path for video application using bandwidth, delay, and

jitter constraints is path Domain1-Domain3-Domain2.

The VSDN network is unable to select the best path for real-time video application

across multi-domains because it lacks multi-domain flow management. The VSDN

networks independently select the multi-domain path using local domain routing in-

formation. The multi-domain paths when stitched together may not be best path for

real-time video applications.

One can attempt to solve this issue by having one VSDN controller program

Domain1, Domain2 and Domain3 using slices [164]. Slices allow a single physical

network to be used by multiple programs without harmful interference [164]. The

network slices are static and are unable to be programmed dynamically [164].

126

Although VSDN networks select optimum path of a single domain, relying on

VSDN networks to select feasible multi-domain path result in worst-case multi-domain

path being selected. Selecting a feasible multi-domain paths requires two issues to be

addressed.

Issue 1: Develop a network service layer that supports optimum multi-

domain path selection among independent network domains. Selecting a

multi-domain path across domains is feasible using a multi-domain network service

layer that provides traffic engineering service. Selecting paths independently across

domains, in Figure 6.1 may result in worst-case path being selected for real-time

interactive video applications. A multi-domain network service layer with end-to-end

visibility across domains needs to be developed.

Issue 2: Develop a control protocol that allows independent VSDN

controllers to communicate with the network service layer and inform the

network service layer of internal network state changes. A protocol that

allows the controllers to request traffic engineering service from network service layer

needs to be developed. The protocol should allow the controllers to inform the network

service layer about internal state changes such as bandwidth, delay, and jitter [279,

328].

6.4 Architecture and Design

A network service layer in Figure 6.2 has been added to the VSDN architecture,

addressing the issue in Section 6.3. The multi-domain SDN network architecture

needs end-to-end visibility over the network to provide end-to-end QoS for video ap-

plications. For multi-domain SDN, the independent network domains are physically

connected via the border switches [329]. MDVSDN uses a hierarchical design to

increase scalability of network architecture [330]. Figure 6.2 illustrates a single MD-

VSDN controller for brevity. The network service layer can be made up of multiple

127

Sender A Receiver B

R1 R2

R3

Domain1

R4 R6

R5

Domain2

VSDN
Controller1

VSDN
Controller2

Receiver A Sender B

OpenFlow

MDVSDN
Controller

R7 R9

R8

Domain3

VSDN
Controller3

Figure 6.2.: MDVSDN network with three independent domains. Each VSDN con-

troller has a view of its own network domain, lacking multi-domain flow management.

The MDVSDN controller has the network-wide view which enables multi-domain flow

management.

128

MDVSDN controllers that communicate with one another to establish an end-to-end

path.

Sender A Receiver B

R1

Domain1

R2

Domain2

VSDN
Controller1

VSDN
Controller2

Receiver A Sender B

MDVSDN
Controller

R3

Domain3

VSDN
Controller3

OpenFlow

Figure 6.3.: A MDVSDN network view from the view of the MDVSDN controller.

The MDVSDN controller does not have the local detail as the seen by the VSDN

controllers. The MDVSDN controller sees an aggregated view of the network.

For the MDVSDN service layer to provide end-to-end QoS, each VSDN controller,

in Figure 6.2, managed by the network service layer provides its aggregated network

state to the network service layer. The aggregated state from controller includes

average bandwidth, average delay, and average jitter. The aggregated state including

reachability information and topology information is used by the MDVSDN controller

to construct the network topology and to find feasible path for real-time interactive

video applications, in Figure 6.3.

6.4.1 Controller

The service layer includes a global [82] or network-wide controller that commu-

nicates with the local [82] controllers to establish an end-to-end path and maintains

129

VSDN Controllers (Publishers) Control Plane

QoS Process

Routing Module

Topology Database

Topology Builder
(Subscriber)

Service Plane

Controller
Registry

Broker

Admission
Control

Resource
Database

Routing
Information
base (RIB)

Reachability
Updates

Flow
Management

Policy
Control

Policy
Database

Figure 6.4.: MDVSDN controller, illustrating relationship between the elements. The

MDVSDN controller services multi-domain QoS requests from VSDN controllers. The

MDVSDN controller exchanges reachability information and QoS information with

peering MDVSDN controllers, providing end-to-end multi-domain flow management

and QoS.

130

global network resource database to capture the overall network—summarized topol-

ogy and active flow information [278]. The MDVSDN controller receives aggregated

topology information from VSDN controllers or publishers, reachability information

from peering MDVSDN controller, and flow management information including QoS

request from other independent MDVSDN controller [327]. The main elements of

MDVSDN controller are shown in Figure 6.4.

In Figure 6.4, the controller registry stores the VSDN controllers that have regis-

tered with the MDVSDN controller. To request QoS, the VSDN controller registers

with the MDVSDN controller using VSDN register message.

The routing updates received from other MDVSDN controllers or peers are stored

in the routing information base (RIB). After routing process [110, 250] processes the

updates using defined routing policies, the routes are stored in RIB.

The admission control, in Figure 6.4, maintains network status of paths including

bandwidth. The admission control gives the MDVSDN controller an idea about status

of network resources.

In Figure 6.4, the policy control provides consistency among VSDN controllers.

The policy control contains information about communication policies among network

domains. The text-based policies of network operator are converted into network

configuration [205] using a policy translator. The policy control enforces security

constraints that are configured by the network operator [284] and agreed upon by

peering networks [331].

In Figure 6.5, the MDVSDN controller subscribes to topology updates from reg-

istered VSDN controllers, allowing the MDVSDN controller to build an aggregated

view of network. The topology builder, in Figure 6.4, constructs the network topology

using the topology updates from the VSDN controllers. The broker that the MD-

VSDN controller subscribes to decouples MDVSDN controller and VSDN controllers

in time, space, and synchronization, thus increasing scalability of MDVSDN.

The routing module is used by the QoS process for finding feasible paths. The

routing module paths may not be the optimum path because the network topology is

131

VSDN
Controller

Broker

MDVSDN
Controller

VSDN
Controller
(Domain2)

Subscribe Domain1

Subscribe Domain2

Receive updates from
broker

VSDN
Controller
(Domain1)

Publish Domain2
updates

Publish Domain1
updates

Publish Domain1
updates

Publish Domain2
updates

Process updates,
build network
topology

Figure 6.5.: VSDN publish-subscribe interaction diagram, illustrating how MDVSDN

controller subscribes to topology updates.

132

an aggregated representation of the actual network. The path is a feasible path—path

that meets video application QoS requirement. The routing module uses heuristics

presented in [330] to identify feasible paths where source of inaccuracies is aggregation

process that occurs in hierarchically interconnected networks [330]. The RM returns

a list of subgraphs or paths that meet QoS constraints such as bandwidth, jitter, and

delay [200].

6.4.2 Controller to Controller Communication

VSDN
Controller

MDVSDN
Controller

VSDN
Controller

Request

Request

Multi-MDVSDN Domain

Request

Video Call

Sender Receiver MDVSDN
Controller

Request (Default Path)
Request

Accept

Request
Configure
domain end-
to-end Qos
Path Accept

Accept

Accept Configure
domain end-
to-end Qos
Path

Accept (QoS Path)

Accept

Calculate multi-
domain path and
send request to each
domain Calculate multi-

domain path and
send request to each
domain

Figure 6.6.: MDVSDN controller communication, illustrating how independent MD-

VSDN controllers communicate to establish a multi-domain end-to-end path. The

VSDN controller and MDVSDN controller use the same protocol and messages which

simplifies VSDN protocol and design.

The MDVSDN controllers communicate with one another to establish an end-to-

end path over the Internet where there are tens of thousands of independent domains.

When the MDVSDN controller receives a request that destination prefix is outside of

133

its domain, the MDVSDN controller looks up the prefix in its RIB. The MDVSDN

controller calculates a path to next MDVSDN controller that is in the path of the

destination and sends next hop MDVSDN controller VSDN request message. The

next hop MDVSDN controller looks at the destination prefix and determines if the

prefix is reachable. If destination is reachable, the MDVSDN controller calculates a

feasible path and requests the VSDN controllers to configure a feasible path within

their domains.

After the VSDN controllers configure feasible path, they send an accept message

to the MDVSDN controller. The MDVSDN controller, after receiving the accept mes-

sages from the VSDN controllers, returns an accept message to source MDVSDN con-

troller. The source MDVSDN controller calculates feasible path through the VSDN

controllers, sends the VSDN controllers request message, after receiving the accept

messages from the VSDN controllers, the MDVSDN controller returns the accept

message to the VSDN controller that initially requested service. The VSDN con-

troller that requested multi-domain network service configures a feasible path through

its network domain, completing multi-domain path. The accept message is sent to

sender. Figure 6.6 illustrates communication between MDVSDN controllers.

6.5 Simulation Results

Figure 6.7 illustrates VSDN messages generated by MDVSDN with two VSDN

domains when network clients request service from the network. The VSDN message

is 400 when the network client requests are 50. The vsdn-request and vsdn-accept

messages equal 400 because each local VSDN controller processes packets that des-

tination is local to its network. The mdvsdn-request and mdvsdn-accept message

count equals 100 because there are two local controller domain managed by MD-

VSDN controller. Each VSDN domain controller sends inter-domain traffic request

to MDVSDN controller, increasing the request and accept messages in network ser-

vice layer—MDVSDN controller. The VSDN message count continues to increase as

134

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 50 100 150 200 250 300 350 400 450 500

V
S

D
N

 M
es

sa
ge

s

Client Requests

Message Complexity

vsdn-request
vsdn-accept

vsdn-remove
mdvsdn-request
mdvsdn-accept

total

Figure 6.7.: Average VSDN messages generated when client requests increase. MD-

VSDN message complexity is linear. There were two independent domains, two

senders, and two receivers in simulation.

135

network client requests increases, in Figure 6.7. The highest VSDN message count

is 14,000 when the network client requests are 500. The message complexity of MD-

VSDN is linear, in Figure 6.7. The MDVSDN controller messages are one-fourth the

VSDN messages generated by the VSDN controller.

6.6 Related Works

Distributed Virtual Network Operations Center (DvNOC) [275] is a multi-domain

SDN network framework [276] which combines SDN operations and management

across multiple domains, integrating SDN and non-SDN environments. DvNOC in-

corporate three functionalities—multi-domain network awareness, efficient NOC-to-

NOC cooperation, and user-oriented virtual network management. MDVSDN unlike

DvNOC, which focuses on NOC-to-NOC collaboration, is specific to real-time interac-

tive video applications across multi-domain SDN [276]. DvNOC uses east-westbound

API to communicate between controllers in independent domains. The MDVSDN

controllers—domain level communicate indirectly with one another using the service

layer. The domain level controllers register with MDVSDN service layer that in-

structs the local controllers to configure end-to-end paths. MDVSDN service layer

coordinates the multi-domain flow management.

The author [125] proposes a new inter-network paradigm that maintains hetero-

geneous Internet with independent domains, but incorporates market-driven multi-

ple broker services between independent administrative domains [125]. The market-

driven brokers in the control plane drive evolution and improvements during pol-

icy negotiation. The policy agreement between network domains is driven through

market-driven incentives. MDVSDN avoids providing financial incentives for deliver-

ing video over multi-domain SDN. This chapter focuses on solving the technological

challenges including multi-domain flow management using MDVSDN. MDVSDN and

solution [125] are similar because both solutions provide a choice of end-to-end ser-

vices using customer requirements, but differs because customer service varies between

136

service providers-brokers [125]. MDVSDN has four services tiers that the customer

can choose. Service providers and independent domain that agrees to support VSDN

services provide the same tier service to customer. The solution [125] may be used

by MDVSDN for providing better QoS in each tier, thus using cognitive brokers with

machine learning to route more intelligently.

Distributed Multi-domain SDN Controllers (DISCO) [60] is an open and exten-

sible distributed control plan which manages Wide-Area Networks (WANs) such as

the Internet. Each domain has its own SDN controller that manages its own net-

work resources. The independent SDN controllers communicate with one another

using a light-weight control channel [61]. The SDN controllers build a network-wide

topology by sharing network state across control channels. DISCO provides failure

recovery for inter-domain disruptions and end-to-end priority service requests, and

supports virtual machine migration. Although MDVSDN and DISCO are similar in

the service they provide, their architecture differs. The independent controllers of

MDVSDN communicate indirectly through the service layer—brokers are responsible

for finding end-to-end path for QoS request. Unlike Disco, MDVSDN local controllers

communicate with one another using the service layer. MDVSDN uses a hierarchy

architecture that allows local controller to control its network resources similar to

DISCO. MDVSDN is design to support real-time interactive video applications such

as Google Hangouts [332] and Skype [333].

B4 is a private WAN that connects the data centers of Google across the globe [273].

B4 main objective is to increase bandwidth utilization between data centers, where

large scale data copies are performed. The applications that data traverses B4

network are prioritized, allowing higher priority applications to use more of band-

width—dynamically allocating bandwidth as needed. B4 [273] uses SDN to central-

ized traffic engineering between data centers. MDVSDN is similar to B4 because

the requirements of application drives adaptability of network—network adapts to

QoS need of the application. MDVSDN differs from B4 because MDVSDN does not

adapt network bandwidth with the application demands. MDVSDN guarantees QoS

137

to video application. The request is rejected if MDVSDN is unable to fulfill the

request [2].

Video over Software-Defined Networking (VSDN) [200] is a network architecture

which provides end-to-end QoS for real-time interactive video applications such as

videoconferencing and distance learning. VSDN selects the optimum path among

multiple paths [200]. The VSDN is a protocol that allows video applications to

request service from the network. VSDN uses a tiered service model that allows video

applications to request three levels of services—CIF, ED, and HD. MDVSDN builds on

the idea of VSDN, introducing hierarchical VSDN network to improve the scalability

of network. VSDN assumes a single controller for network which is infeasible for the

Internet. Furthermore, independent VSDN controllers lack multi-domain network-

wide view. The VSDN controllers are unable to locate the feasible multi-domain

path. Similar to using independent VSDN controllers, MDVSDN adheres to video

application request such as HD, but may not find the optimal path, an inherent

behavior of hierarchical network architectures [330].

6.7 Conclusions

This chapter presented Multi-Domain Video over Software-Defined Networking

(MDVSDN), a network architecture that provides end-to-end QoS for real-time in-

teractive video applications across independent domains. This chapter describes the

architectural features of MDVSDN. A prototype of MDVSDN was implemented and

its behavior was analyzed using message complexity. The message complexity of MD-

VSDN is linear. MDVSDN selects feasible multi-domain path for real-time interactive

video applications, improving the QoS and performance of video application across

independent VSDN domains.

138

7 CONCLUSIONS

”The internal topologies of many networks are such that multiple paths can be found

between most points. A major limitation of conventional IP forwarding is that single-

metric, shortest-path trees use only one of the possible paths towards any given desti-

nation.” Grenville Armitage

This thesis developed a network architecture that provides QoS for real-time inter-

active video applications such as videoconferencing, distant learning, and telesurgery.

In Chapter 1, this thesis outlined the requirements for a network architecture that

supports real-time interactive video applications. The requirements were:

• The network applications and services needed centralized control of network

resources.

• The network applications and services needed ability to program the behavior

of network.

• The network needed to reject requests that the network is unable to service.

• The network needed to perform constraint based routing using bandwidth, de-

lay, jitter, and reliability.

• The network needed to know traffic rates in advance.

• The network needed to enforce network policies consistently.

• The network architecture needed to support multi-domain end-to-end QoS path

selection.

139

The network architectures such as DiffServ, IntServ, and MPLS were unable to

meet requirements of the proposed network architecture. The network architectures

had limitations such as inability to reject flows and select a feasible end-to-end path

among multiple destination paths; therefore, the primary thesis research question

was:

What is the network architecture needed to support real-time interactive

video applications?

In Chapter 2, this thesis summarized SDN research and presented taxonomy of

SDN research. Chapter 2 gave motivation of this work and related the proposed

network architecture to previous work on SDN. This thesis builds on SDN to develop

a network architecture that determines how traffic flows through the network.

In Chapter 3, this thesis presented a network architecture and resource provi-

sioning protocol—Video over Software-Defined Networking (VSDN) that selected a

feasible constrained path among multiple paths to support real-time interactive video

applications. VSDN used SDN network-wide view to manage network resources such

as bandwidth. The message complexity of VSDN was linear.

In Chapter 4, ERSDN addressed VSDN controller scalability issue by reducing net-

work events processed in the control plane by 430%. In Chapter 5, RVSDN addressed

issue of finding the most reliable path for real-time interactive video applications such

as telesurgery which requires reliability, bandwidth, delay, and jitter. RVSDN ser-

viced 31 times more requests than VSDN and MPLS explicit routing when reliability

constraint was 0.995 or greater. In Chapter 6, MDVSDN addressed the issue of select-

ing a feasible end-to-end path across independent domains. The message complexity

of MDVSDN was linear.

The network architecture needed to support real-time interactive video applica-

tions has a logically centralized control plane that makes decisions using the network-

wide view. The network architecture allows network applications and services to

program the behavior of network. The network architecture knows network traffic

characteristics in advance. The network architecture has linear message complexity.

140

The network architecture has an API that accepts three input parameters. The net-

work architecture has a traffic engineering service that selects feasible multi-domain

paths using bandwidth, delay, jitter, and reliability. The network architecture rejects

requests that the network is unable to service.

7.1 Future Work

This thesis identifies five areas of future research.

• Implement VSDN in testbed and analyze how VSDN responds to changes in

video application workload and traffic patterns

• Add ability to MDVSDN for selecting trusted paths such as routing traffic

around certain locations during bad weather or where physical security is a

concern

• Abstract and convert VSDN routing module (RM) to a TE service where other

applications can request path selection service such as path selection using prox-

imity to improve performance of VM migration and content delivery networks

• Extend VSDN prototype to support real world applications such as Google

Hangouts and Microsoft Skype, illustrating how VSDN can improve perfor-

mance of real-time interactive video applications

• Integrate VSDN into Mininet network emulator that creates network of virtual

hosts, switches, controllers, and links on a laptop or personal computer

LIST OF REFERENCES

141

LIST OF REFERENCES

[1] Cisco. Cisco visual networking index: Forecast and methodology, 20142019.
http://www.cisco.com, May 2015. White paper.

[2] Lawrence G. Roberts. The next generation of ip-flow routing. In Proceedings
of the International Conference on Advances in Infrastructure for e-Business,
e-Education, e-Science and e-Medicine on the Internet, 2003.

[3] Xipeng Xiao and Lionel M. Ni. Internet qos: A big picture. IEEE Network,
13:8–18, 1999.

[4] Shuchita Upadhyaya and Gaytri Devi. Mingling multipath routing with quality
of service. International Journal of Computer Science Issues (IJCSI), 8(5):156
– 161, Sep 2011.

[5] Grenville Armitage. Quality of Service in IP Networks: Foundations for a
Multi-service Internet. Macmillan Publishing Co., Inc., Indianapolis, IN, USA,
2000.

[6] David McDysan. QoS and traffic management in IP and ATM networks.
McGraw-Hill, Inc, New York, NY, USA, 2000.

[7] Vilho Raisanen. Implementing Service Quality in IP Networks. John Wiley &
Sons, Inc., West Sussex, England, 2003.

[8] Eric D. Siegel. Designing Quality of Service Solutions for the Enterprise. Wiley
Computer Publishing, Hoboken, NJ, USA, 1999.

[9] David Durham and Raj Yavatkar. Inside the Internet’s Resource Reservation
Protocol: Foundations for Quality of Service. John Wiley & Sons, Inc., New
York, NY, USA, 1999.

[10] Z. Wang and J. Crowcroft. Quality-of-service routing for supporting multimedia
applications. Selected Areas in Communications, IEEE Journal on, 14(7):1228–
1234, Sep 1996.

[11] D.O. Awduche. Mpls and traffic engineering in ip networks. Communications
Magazine, IEEE, 37(12):42–47, Dec 1999.

[12] Roberto Sabella and Paola Iovanna. Traffic engineering in next generation
multilayer networks based on the gmpls paradigm. In Ilkley, West Yorkshire,
United Kingdom, pages 26–28, Washington, DC, USA, 2004. IEEE.

[13] Ian Foster, Markus Fidler, Alain Roy, Volker Sander, and Linda Winkler. End-
to-end quality of service for high-end applications. Computer Communications,
27(14):1375 – 1388, 2004. Network Support for Grid Computing.

142

[14] Sebastian Rampfl. Network simulation and its limitations, 2013. Seminar Fu-
ture Internet SS2013, Lehrstuhl Netzarchitekturen und Netzdienste, Fakultt fr
Informatik, Technische Universitt Mnchen.

[15] Jerry Banks, John S. Carson, Barry L. Nelson, and David M. Nicol. Discrete-
Event System Simulation. Prentice Hall, Upper Saddle River, NJ, USA, 5th
edition, 2010.

[16] Open Networking Foundation (ONF). Software-defined networking: The new
norm for networks. https://www.opennetworking.org, 2012.

[17] Siamak Azodolmolky. Software Defined Networking with OpenFlow. Packt Pub-
lishing, Oct 2013.

[18] Fei Hu. Network Innovation through OpenFlow and SDN: Principles and De-
sign. CRC Press, Feb 2014.

[19] Thomas D. Nadeau and Ken Gray. SDN: Software Defined Networks. O’Reilly
Media, Aug 2013.

[20] Rajesh Kumar Sundararajan. Software Defined Networking (SDN) - a definitive
guide. Rajesh Kumar Sundararajan, Jun 2013.

[21] OpenFlow. Openflow switch specification version 1.5.0. https://www.
opennetworking.org, 2014.

[22] Antonio Manzalini, Roberto Saracco, Cagatay Buyukkoc, Prosper Chemouil,
Slawomir Kuklinski, Andreas Gladisch, Masaki Fukui, Wenyu Shen, Eliezer
Dekel, David Soldani, Mehmet Ulema, Walter Cerroni, Franco Callegati, Gio-
vanni Schembra, Vincenzo Riccobene, Carmen Mas Machuca, Alex Galis, and
Julius Mueller. Software-defined networks for future networks and services:
Main technical challenges and business implications. White paper, IEEE,
Nov 2014. 2013 Software Defined Networks for Future Networks and Services
(SDN4FNS).

[23] Wenfeng Xia, Tina Tsou, Diego R. Lopez, Qiong Sun, Felix Lu, and Haiyong
Xie. A software defined approach to unified ipv6 transition. In Proceedings of
the ACM SIGCOMM 2013 conference on SIGCOMM, SIGCOMM ’13, pages
547–548, New York, NY, USA, 2013. ACM.

[24] HP. Software defined networking: Create an intelligent, programmable,
centrally-controlled network to master diverse applications and workloads.
https://www.hpe.com/us/en/networking/sdn.html, 2015.

[25] NEC. Nec sdn solutions: Dynamic solutions for new business creation. http:
//www.nec.com/en/global/solutions/sdn, 2015.

[26] Big Switch. Sdn products: Modern network architecture enabled by bare metal
fabrics. http://www.bigswitch.com/products, 2015.

[27] Arista. Software driven cloud networking. https://www.arista.com/en/
products/software-driven-cloud-networking, Nov 2015.

[28] Elisa Bellagamba, Attila Takacs, and Joe Wilke. Software-defined networking:
the service provider perspective. http://www.ericsson.com, Feb 2013.

143

[29] Ericsson. Service provider sdn. http://www.ericsson.com, Nov 2015.

[30] Juniper Networks. Software defined networking (sdn). http://www.juniper.
net, Sep 2015.

[31] IBM. Ibm software defined networking, Sep 2015.

[32] Extreme Networks. Software-defined networking (sdn). http://www.
extremenetworks.com, 2015.

[33] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: An intel-
lectual history of programmable networks. Queue, 11(12):20:20–20:40, 2013.

[34] O. Martikainen, J. Lipiäinen, and K. Molin. Tutorial on Intelligent Net-
works. Raportti / Lappeenrannan teknillinen korkeakoulu, tietotekniikan os-
asto. Lappeenranta University of Technology, 1994.

[35] David L. Tennenhouse and David J. Wetherall. Towards an active network
architecture. Computer Communication Review, 26:5–18, 1996.

[36] D. Ruffen, T. Len, and J. Yanacek. Cabletron’s securefast vlan operational
model, 1999.

[37] Seong Gon Choi, Hyun Joo Kang, and Jun Kyun Choi. An efficient handover
mechanism using the general switch management protocol on a multi-protocol
label switching network. ETRI Journal, 25(5):369–378, Oct 2003.

[38] Th. Magedanz and F. C. de Gouveia. Ims − the ip multimedia system as
ngn service delivery platform. e & i Elektrotechnik und Informationstechnik,
123:271–276, 2006.

[39] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman
Shaikh, and Jacobus van der Merwe. Design and implementation of a routing
control platform. In Proc. Networked Systems Design and Implementation,
Berkeley, CA, USA, 2005. USENIX Association.

[40] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer
Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A clean slate 4d
approach to network control and management. SIGCOMM Comput. Commun.
Rev., 35(5):41–54, Oct 2005.

[41] Martin Casado, Tal Garfinkel, Aditya Akella, Michael J. Freedman, Dan Boneh,
Nick McKeown, and Scott Shenker. Sane: a protection architecture for enter-
prise networks. In Proceedings of the 15th conference on USENIX Security
Symposium - Volume 15, USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX
Association.

[42] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick Mck-
eown, and Scott Shenker. Ethane: Taking control of the enterprise. In In
SIGCOMM Computer Comm. Rev, New York, NY, USA, 2007. ACM.

[43] Changhoon Kim, Matthew Caesar, and Jennifer Rexford. Floodless in seat-
tle: a scalable ethernet architecture for large enterprises. In SIGCOMM ’08:
Proceedings of the ACM SIGCOMM 2008 conference on Data communication,
pages 3–14, New York, NY, USA, 2008. ACM.

144

[44] Greg Goth. Software-defined networking could shake up more than packets.
IEEE Internet Computing, pages 6–9, 2011.

[45] ngel Leonardo Valdivieso Caraguay, Alberto Benito Peral, Lorena Isabel Barona
Lpez, and Luis Javier Garca Villalba. Sdn: Evolution and opportunities in
the development iot applications. International Journal of Distributed Sensor
Networks, 2014, 2014.

[46] IBM. Ibm software defined networking in the new business frontier, Jul 2015.

[47] Joseph Packy Laverty, David Wood, and John Turchek. Software defined net-
working (sdn) network virtualization for the is curriculum? In 2014 Proceedings
of the Information Systems Educators Conference, volume 31. EDSIG (Educa-
tion Special Interest Group of the AITP) and FITE (Foundation for Information
Technology Education), 2014.

[48] Aryan TaheriMonfared and Chunming Rong. Multi-tenant network monitor-
ing based on software defined networking. In Robert Meersman, Herv Panetto,
Tharam Dillon, Johann Eder, Zohra Bellahsene, Norbert Ritter, Pieter De Leen-
heer, and Deijing Dou, editors, On the Move to Meaningful Internet Systems:
OTM 2013 Conferences, volume 8185 of Lecture Notes in Computer Science,
pages 327–341. Springer Berlin Heidelberg, 2013.

[49] J. Wickboldt, W. De Jesus, P. Isolani, C. Both, J. Rochol, and L. Granville.
Software-defined networking: management requirements and challenges. Com-
munications Magazine, IEEE, 53(1):278–285, Jan 2015.

[50] V.K. Gurbani, M. Scharf, T.V. Lakshman, V. Hilt, and E. Marocco. Abstracting
network state in software defined networks (sdn) for rendezvous services. In
Communications (ICC), 2012 IEEE International Conference on, pages 6627–
6632, Jun 2012.

[51] Rob Sherwood, Glen Gibb, Kok-kiong Yap, Guido Appenzeller, Martin Casado,
Nick Mckeown, and Guru Parulkar. Flowvisor: A network virtualization layer.
Technical Report Openflow-tr-2009-1 Openflow-tr-2009-1, Stanford University,
Stanford, CA, 2009.

[52] Jeffrey C. Mogul and Paul Congdon. Hey, you darned counters!: get off my asic!
In Proceedings of the first workshop on Hot topics in software defined networks,
HotSDN ’12, pages 25–30, New York, NY, USA, 2012. ACM.

[53] Open Networking Foundation (ONF). Sdn architecture overview. https://
www.opennetworking.org, Dec 2013. version 1.0.

[54] Brandon Heller, Colin Scott, Nick McKeown, Scott Shenker, Andreas Wund-
sam, Hongyi Zeng, Sam Whitlock, Vimalkumar Jeyakumar, Nikhil Handigol,
James McCauley, Kyriakos Zarifis, and Peyman Kazemian. Leveraging sdn
layering to systematically troubleshoot networks. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 37–42, New York, NY, USA, 2013. ACM.

[55] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casado, Nick
McKeown, and Scott Shenker. Nox: towards an operating system for networks.
SIGCOMM Comput. Commun. Rev., 38(3):105–110, Jul 2008.

145

[56] Saro Velrajan. Application-aware routing in software-defined networking.
https://www.aricent.com, 2013.

[57] Hesham Mekky, Fang Hao, Sarit Mukherjee, Zhi-Li Zhang, and T.V. Lakshman.
Application-aware data plane processing in sdn. In Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, HotSDN ’14, pages
13–18, New York, NY, USA, 2014. ACM.

[58] MRV Communications. Application-aware networking at a glance. http://
www.mrv.com, 2013.

[59] Zafar Ayyub Qazi, Jeongkeun Lee, Tao Jin, Gowtham Bellala, Manfred Arndt,
and Guevara Noubir. Application-awareness in sdn. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 487–488,
New York, NY, USA, 2013. ACM.

[60] K. Phemius, M. Bouet, and J. Leguay. Disco: Distributed multi-domain sdn
controllers. In Network Operations and Management Symposium (NOMS), 2014
IEEE, pages 1–4, May 2014.

[61] H. Yin, H. Xie, D. Lopez, P. Aranda, and R. Sidi. Sdni: A message exchange
protocol for software defined networks (sdns) across multiple domains. Internet-
Draft draft-yin-sdn-sdni-00, Internet Engineering Task Force, Dec 2012. Work
in progress.

[62] Hyojoon Kim and N. Feamster. Improving network management with soft-
ware defined networking. Communications Magazine, IEEE, 51(2):114–119,
Feb 2013.

[63] Aurojit Panda, Colin Scott, Ali Ghodsi, Teemu Koponen, and Scott Shenker.
Cap for networks. In Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13, pages 91–96, New
York, NY, USA, 2013. ACM.

[64] Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. A roadmap
for traffic engineering in sdn-openflow networks. Comput. Netw., 71:1–30, Oct
2014.

[65] Yohei Kuga, Takeshi Matsuya, Hiroaki Hazeyama, Kenjiro Cho, and Osamu
Nakamura. Etherpipe: An ethernet character device for network scripting.
In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, HotSDN ’13, pages 61–66, New York, NY, USA,
2013. ACM.

[66] A. Doria, F. Hellstrand, K. Sundell, and T. Worster. General switch manage-
ment protocol (gsmp). RFC 3292, Jun 2002.

[67] H. Khosravi and T. Anderson. Requirements for separation of ip control and
forwarding. RFC 3654 (Informational), Nov 2003.

[68] Barath Raghavan, Mart́ın Casado, Teemu Koponen, Sylvia Ratnasamy, Ali
Ghodsi, and Scott Shenker. Software-defined internet architecture: decoupling
architecture from infrastructure. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, pages 43–48, New York, NY, USA, 2012. ACM.

146

[69] Muhammad Shahbaz and Nick Feamster. The case for an intermediate repre-
sentation for programmable data planes. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking Research, SOSR ’15, pages
3:1–3:6, New York, NY, USA, 2015. ACM.

[70] A. Lara, A. Kolasani, and B. Ramamurthy. Network innovation using openflow:
A survey. Communications Surveys Tutorials, IEEE, 16(1):493–512, Jan 2014.

[71] Vasileios Kotronis, Xenofontas Dimitropoulos, and Bernhard Ager. Outsourcing
the routing control logic: better internet routing based on sdn principles. In
Proceedings of the 11th ACM Workshop on Hot Topics in Networks, pages 55–
60, New York, NY, USA, 2012. ACM.

[72] Glen Gibb, Hongyi Zeng, and Nick McKeown. Outsourcing network function-
ality. In Proceedings of the first workshop on Hot topics in software defined
networks, HotSDN ’12, New York, NY, USA, 2012. ACM.

[73] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,
commodity data center network architecture. In Proceedings of the ACM SIG-
COMM 2008 conference on Data communication, SIGCOMM ’08, pages 63–74,
New York, NY, USA, 2008. ACM.

[74] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann.
Ofrewind: enabling record and replay troubleshooting for networks. In Proceed-
ings of the 2011 USENIX conference on USENIX annual technical conference,
USENIXATC’11, pages 29–29, Berkeley, CA, USA, 2011. USENIX Association.

[75] Kanak Agarwal, Eric Rozner, Colin Dixon, and John Carter. Sdn traceroute:
Tracing sdn forwarding without changing network behavior. In Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking, HotSDN
’14, pages 145–150, New York, NY, USA, 2014. ACM.

[76] Arne Schwabe and Holger Karl. Using mac addresses as efficient routing labels
in data centers. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, HotSDN ’14, pages 115–120, New York, NY, USA, 2014.
ACM.

[77] Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupt. Vl2: A scalable and flexible data center network. In ACM SIGCOMM
Conference - SIGCOMM 2009, pages 51–62, New York, NY, USA, 2009. ACM.

[78] Chen Chen, Changbin Liu, Pingkai Liu, Boon Thau Loo, and Ling Ding. A
scalable multi-datacenter layer-2 network architecture. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research, SOSR
’15, pages 8:1–8:12, New York, NY, USA, 2015. ACM.

[79] Sangeetha Abdu Jyothi, Mo Dong, and P. Brighten Godfrey. Towards a flex-
ible data center fabric with source routing. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15,
pages 10:1–10:8, New York, NY, USA, 2015. ACM.

147

[80] Luyuan Fang, Fabio Chiussi, Deepak Bansal, Vijay Gill, Tony Lin, Jeff Cox,
and Gary Ratterree. Hierarchical sdn for the hyper-scale, hyper-elastic data
center and cloud. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, SOSR ’15, pages 7:1–7:13, New York,
NY, USA, 2015. ACM.

[81] Zhongjin Liu, Yong Li, Li Su, Depeng Jin, and Lieguang Zeng. M2cloud: Soft-
ware defined multi-site data center network control framework for multi-tenant.
In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIG-
COMM ’13, pages 517–518, New York, NY, USA, 2013. ACM.

[82] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: a framework for efficient
and scalable offloading of control applications. In Proceedings of the first work-
shop on Hot topics in software defined networks, HotSDN ’12, pages 19–24, New
York, NY, USA, 2012. ACM.

[83] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mo-
han Nanduri, and Roger Wattenhofer. Achieving high utilization with software-
driven wan. In Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, SIGCOMM ’13, pages 15–26, New York, NY, USA, 2013. ACM.

[84] Li Erran Li, Z. Morley Mao, and Jennifer Rexford. Toward software-defined
cellular networks. In Proc. European Workshop on Software Defined Networking,
Oct 2012.

[85] M. Bouet, J. Leguay, and V. Conan. Cost-based placement of virtualized deep
packet inspection functions in sdn. In Military Communications Conference,
MILCOM 2013 - 2013 IEEE, pages 992–997, Nov 2013.

[86] Anat Bremler-Barr, Yotam Harchol, David Hay, and Yaron Koral. Deep packet
inspection as a service. In Proceedings of the 10th ACM International on Con-
ference on Emerging Networking Experiments and Technologies, CoNEXT ’14,
pages 271–282, New York, NY, USA, 2014. ACM.

[87] Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feldmann, and Teresa
Vazao. Towards programmable enterprise wlans with odin. In Proceedings of the
first workshop on Hot topics in software defined networks, HotSDN ’12, pages
115–120, New York, NY, USA, 2012. ACM.

[88] Nachikethas A. Jagadeesan and Bhaskar Krishnamachari. Software-defined
networking paradigms in wireless networks: A survey. ACM Comput. Surv.,
47(2):27:1–27:11, Nov 2014.

[89] Julius Schulz-Zander, Carlos Mayer, Bogdan Ciobotaru, Stefan Schmid, and
Anja Feldmann. Opensdwn: Programmatic control over home and enterprise
wifi. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, SOSR ’15, pages 16:1–16:12, New York, NY, USA, 2015.
ACM.

[90] Manu Bansal, Jeffrey Mehlman, Sachin Katti, and Philip Levis. Openradio: a
programmable wireless dataplane. In Proceedings of the first workshop on Hot
topics in software defined networks, HotSDN ’12, pages 109–114, New York,
NY, USA, 2012.

148

[91] Aditya Gudipati, Daniel Perry, Li Erran Li, and Sachin Katti. Softran: Software
defined radio access network. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, HotSDN ’13, pages
25–30, New York, NY, USA, 2013. ACM.

[92] Mao Yang, Yong Li, Depeng Jin, Li Su, Shaowu Ma, and Lieguang Zeng. Open-
ran: A software-defined ran architecture via virtualization. In Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages
549–550, New York, NY, USA, 2013. ACM.

[93] Kanthi Nagaraj and Sachin Katti. Procel: Smart traffic handling for a scalable
software epc. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, HotSDN ’14, pages 43–48, New York, NY, USA, 2014.
ACM.

[94] M. Kind, F. Westphal, A. Gladisch, and S. Topp. Splitarchitecture: Apply-
ing the software defined networking concept to carrier networks. In World
Telecommunications Congress (WTC), 2012, pages 1 –6, Mar 2012.

[95] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester. Software
defined networking: Meeting carrier grade requirements. In Local Metropolitan
Area Networks (LANMAN), 2011 18th IEEE Workshop on, pages 1–6, Oct
2011.

[96] Yu Hua, Xue Liu, and Dan Feng. Smart in-network deduplication for storage-
aware sdn. In Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM, SIGCOMM ’13, pages 509–510, New York, NY, USA, 2013. ACM.

[97] Dennis M. Volpano, Xin Sun, and Geoffrey G. Xie. Towards systematic de-
tection and resolution of network control conflicts. In Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, HotSDN ’14, pages
67–72, New York, NY, USA, 2014. ACM.

[98] Marshini Chetty and Nick Feamster. Refactoring network infrastructure to
improve manageability: a case study of home networking. SIGCOMM Comput.
Commun. Rev., 42(3):54–61, Jun 2012.

[99] Yiannis Yiakoumis, Kok-Kiong Yap, Sachin Katti, Guru Parulkar, and Nick
McKeown. Slicing home networks. In Proceedings of the 2nd ACM SIGCOMM
workshop on Home networks, HomeNets ’11, pages 1–6, New York, NY, USA,
2011. ACM.

[100] National. Global environment for network innovations (geni). Available from:
http://www.geni.net/, 2006.

[101] Minseok Lee, Younggi Kim, and Younghee Lee. A home cloud-based home
network auto-configuration using sdn. In Networking, Sensing and Control
(ICNSC), 2015 IEEE 12th International Conference on, pages 444–449, Apr
2015.

[102] Kuang-Ching Wang. Floodlight. http://www.projectfloodlight.org/
floodlight, Apr 2013.

149

[103] David Erickson. The beacon openflow controller. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 13–18, New York, NY, USA, 2013. ACM.

[104] Nick Shelly, Ethan J. Jackson, Teemu Koponen, Nick McKeown, and Jarno
Rajahalme. Flow caching for high entropy packet fields. In Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, HotSDN ’14,
pages 151–156, New York, NY, USA, 2014. ACM.

[105] Srinivas Narayana, Jennifer Rexford, and David Walker. Compiling path queries
in software-defined networks. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, pages 181–186, New York,
NY, USA, 2014. ACM.

[106] Ye Yu, Chen Qian, and Xin Li. Distributed and collaborative traffic monitoring
in software defined networks. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, pages 85–90, New York,
NY, USA, 2014. ACM.

[107] B. Martini, F. Paganelli, A.A. Mohammed, M. Gharbaoui, A. Sgambelluri, and
P. Castoldi. Sdn controller for context-aware data delivery in dynamic service
chaining. In Network Softwarization (NetSoft), 2015 1st IEEE Conference on,
pages 1–5, Apr 2015.

[108] Christian Esteve Rothenberg, Marcelo Ribeiro Nascimento, Marcos Rogerio
Salvador, Carlos Nilton Araujo Corrêa, Sidney Cunha de Lucena, and Robert
Raszuk. Revisiting routing control platforms with the eyes and muscles of
software-defined networking. In Proceedings of the first workshop on Hot topics
in software defined networks, HotSDN ’12, pages 13–18, New York, NY, USA,
2012. ACM.

[109] Heng Pan, Hongtao Guan, Junjie Liu, Wanfu Ding, Chengyong Lin, and Gao-
gang Xie. The flowadapter: Enable flexible multi-table processing on legacy
hardware. In Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN ’13, pages 85–90, New York,
NY, USA, 2013. ACM.

[110] Zhou Jingjing, Cheng Di, Wang Weiming, Jin Rong, and Wu Xiaochun. The de-
ployment of routing protocols in distributed control plane of sdn. The Scientific
World Journal, 2014, 2014.

[111] N. van Adrichem, B. van Asten, and F. A. Kuipers. Fast recovery in software-
defined networks. In European Workshop on Software Defined Networking
(EWSDN 2014), Budapest (Hungary), Sep 2014.

[112] Maciej Kuźniar, Peter Pereš́ıni, Nedeljko Vasić, Marco Canini, and Dejan
Kostić. Automatic failure recovery for software-defined networks. In Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, HotSDN ’13, pages 159–160, New York, NY, USA, 2013. ACM.

[113] Dan Williams and Hani Jamjoom. Cementing high availability in openflow with
rulebricks. In Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN ’13, pages 139–144, New York,
NY, USA, 2013. ACM.

150

[114] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet De-
meester. Automatic configuration of routing control platforms in openflow net-
works. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, pages 491–492, New York, NY, USA, 2013. ACM.

[115] Matt Davy. A case for expanding openflow/sdn deployments on university
campuses. http://www.openflow.org, 2011.

[116] Nick McKeown. Clean slate: An interdisciplinary research program. http:
//cleanslate.stanford.edu, 2015.

[117] Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin Casado, and
Scott Shenker. Extending networking into the virtualization layer. In 8th ACM
Workshop on Hot Topics inNetworks (HotNets-VIII), Oct 2009.

[118] Justin Pettit, Jesse Gross, Ben Pfaff, Martin Casado, and Simon Crosby. Virtual
switching in an era of advanced edges. In 2nd Workshop on Data Center -
Converged and Virtual Ethernet Switching (DC CAVES), Wrzburg, Germany,
Sep 2010. DC CAVES.

[119] Abhinava Sadasivarao, Sharfuddin Syed, Ping Pan, Chris Liou, Andrew Lake,
Chin Guok, and Inder Monga. Open transport switch: A software defined
networking architecture for transport networks. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 115–120, New York, NY, USA, 2013. ACM.

[120] M. Channegowda, R. Nejabati, and D. Simeonidou. Software-defined opti-
cal networks technology and infrastructure: Enabling software-defined opti-
cal network operations [invited]. Optical Communications and Networking,
IEEE/OSA Journal of, 5(10):A274–A282, Oct 2013.

[121] Casimer DeCusatis. Reference architecture for multi-layer software defined op-
tical data center networks. Electronics, 4(3):633, 2015.

[122] N. Kitsuwan, S. McGettrick, F. Slyne, D.B. Payne, and M. Ruffini. Indepen-
dent transient plane design for protection in openflow-based networks. Optical
Communications and Networking, IEEE/OSA Journal of, 7(4):264–275, Apr
2015.

[123] D. Simeonidou, R. Nejabati, and S. Azodolmolky. Enabling the future optical
internet with openflow: A paradigm shift in providing intelligent optical network
services. In Transparent Optical Networks (ICTON), 2011 13th International
Conference on, pages 1–4, Jun 2011.

[124] Hui Yang, Yadi Cui, and Jie Zhang. Unified multi-layer among software defined
multi-domain optical networks (invited). Electronics, 4(2):329, 2015.

[125] S.J.B. Yoo. Multi-domain cognitive optical software defined networks with
market-driven brokers. In Optical Communication (ECOC), 2014 European
Conference on, pages 1–3, Sep 2014.

[126] S. Tariq and M. Bassiouni. Qamo-sdn: Qos aware multipath tcp for software
defined optical networks. In Consumer Communications and Networking Con-
ference (CCNC), 2015 12th Annual IEEE, pages 485–491, Jan 2015.

151

[127] NetFPGA Team. Netfpga website, Mar 2012.

[128] Jad Naous, Glen Gibb, Sara Bolouki, and Nick McKeown. Netfpga: reusable
router architecture for experimental research. In Proceedings of the ACM work-
shop on Programmable routers for extensible services of tomorrow, PRESTO
’08, pages 1–7, New York, NY, USA, 2008. ACM.

[129] Jad Naous, David Erickson, G. Adam Covington, Guido Appenzeller, and Nick
McKeown. Implementing an openflow switch on the netfpga platform. In Pro-
ceedings of the 4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS ’08, pages 1–9, New York, NY, USA, 2008.
ACM.

[130] Muhammad Bilal Anwer, Murtaza Motiwala, Mukarram bin Tariq, and Nick
Feamster. Switchblade: a platform for rapid deployment of network protocols on
programmable hardware. SIGCOMM Comput. Commun. Rev., 40(4):183–194,
Aug 2010.

[131] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The
click modular router. In Proceedings of the seventeenth ACM symposium on
Operating systems principles, SOSP ’99, pages 217–231, New York, NY, USA,
1999. ACM.

[132] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. Scalable
flow-based networking with difane. SIGCOMM Comput. Commun. Rev., 41(4),
Aug 2010.

[133] Ying Zhang, Sriram Natarajan, Xin Huang, Neda Beheshti, and Ravi Manghir-
malani. A compressive method for maintaining forwarding states in sdn con-
troller. In Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pages 139–144, New York, NY, USA, 2014. ACM.

[134] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula,
Puneet Sharma, and Sujata Banerjee. Devoflow: scaling flow management for
high-performance networks. SIGCOMM Comput. Commun. Rev., 41(4):254–
265, Aug 2011.

[135] Martin Casado, Teemu Koponen, Daekyeong Moon, and Scott Shenker. Re-
thinking packet forwarding hardware. In In Proceedings of ACM HotNets, New
York, NY, USA, 2008. ACM.

[136] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael Reiter, and Guangyu Shi.
Design and implementation of a consolidated middlebox architecture. Techni-
cal Report UCB/EECS-2011-110, EECS Department, University of California,
Berkeley, Oct 2011.

[137] Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, and Aditya Akella. To-
ward software-defined middlebox networking. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, HotNets-XI, pages 7–12, New York, NY,
USA, 2012. ACM.

[138] Joao Martins, Mohamed Ahmed, Costin Raiciu, and Felipe Huici. Enabling
fast, dynamic network processing with clickos. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 67–72, New York, NY, USA, 2013. ACM.

152

[139] Bilal Anwer, Theophilus Benson, Nick Feamster, and Dave Levin. Programming
slick network functions. In Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, SOSR ’15, pages 14:1–14:13, New
York, NY, USA, 2015. ACM.

[140] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. Simple-fying middlebox policy enforcement using sdn. SIGCOMM
Comput. Commun. Rev., 43(4):27–38, Aug 2013.

[141] Aaron Gember, Robert Grandl, Junaid Khalid, and Aditya Akella. Design
and implementation of a framework for software-defined middlebox networking.
SIGCOMM Comput. Commun. Rev., 43(4):467–468, Aug 2013.

[142] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone.
Openstate: programming platform-independent stateful openflow applications
inside the switch. Computer Communication Review, 44(2):44–51, 2014.

[143] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and Ramesh
Govindan. Flow-level state transition as a new switch primitive for sdn. In Pro-
ceedings of the Third Workshop on Hot Topics in Software Defined Networking,
HotSDN ’14, pages 61–66, New York, NY, USA, 2014. ACM.

[144] Minlan Yu, Andreas Wundsam, and Muruganantham Raju. Nosix: A
lightweight portability layer for the sdn os. Computer Communication Review,
44(2):28–35, 2014.

[145] Hani Jamjoom, Dan Williams, and Upendra Sharma. Don’t call them middle-
boxes, call them middlepipes. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, pages 19–24, New York,
NY, USA, 2014. ACM.

[146] Angela Chiu, Vijay Gopalakrishnan, Bo Han, Murad Kablan, Oliver Spatscheck,
Chengwei Wang, and Yang Xu. Edgeplex: Decomposing the provider edge for
flexibilty and reliability. In Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, SOSR ’15, pages 15:1–15:6, New
York, NY, USA, 2015. ACM.

[147] Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo. mswitch: A
highly-scalable, modular software switch. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking Research, SOSR ’15, pages
1:1–1:13, New York, NY, USA, 2015. ACM.

[148] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, and Scott Shenker. Onix: a distributed control platform for
large-scale production networks. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation, OSDI’10, pages 1–6, Berkeley,
CA, USA, 2010. USENIX Association.

[149] Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol, and Anja
Feldmann. Logically centralized?: state distribution trade-offs in software de-
fined networks. In Proceedings of the first workshop on Hot topics in software
defined networks, HotSDN ’12, pages 1–6, New York, NY, USA, 2012. ACM.

153

[150] Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. Towards secure
and dependable software-defined networks. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN
’13, pages 55–60, New York, NY, USA, 2013. ACM.

[151] Amin Tootoonchian and Yashar Ganjali. Hyperflow: a distributed control plane
for openflow. In Proceedings of the 2010 internet network management confer-
ence on Research on enterprise networking, INM/WREN’10, pages 3–3, Berke-
ley, CA, USA, 2010. USENIX Association.

[152] Brandon Heller, Rob Sherwood, and Nick McKeown. The controller placement
problem. In Proceedings of the first workshop on Hot topics in software defined
networks, HotSDN ’12, pages 7–12, New York, NY, USA, 2012. ACM.

[153] Francisco Javier Ros and Pedro Miguel Ruiz. Five nines of southbound reliabil-
ity in software-defined networks. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, pages 31–36, New York,
NY, USA, 2014. ACM.

[154] S. Lange, S. Gebert, J. Spoerhase, P. Rygielski, T. Zinner, S. Kounev, and
Phuoc Tran-Gia. Specialized heuristics for the controller placement problem in
large scale sdn networks. In Teletraffic Congress (ITC 27), 2015 27th Interna-
tional, pages 210–218, Sep 2015.

[155] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and M. Hoff-
mann. Heuristic approaches to the controller placement problem in large
scale sdn networks. Network and Service Management, IEEE Transactions on,
12(1):4–17, Mar 2015.

[156] Long Yao, Peilin Hong, Wen Zhang, Jianfei Li, and Dan Ni. Controller place-
ment and flow based dynamic management problem towards sdn. In Commu-
nication Workshop (ICCW), 2015 IEEE International Conference on, pages
363–368, Jun 2015.

[157] Shan Gao, Sho Shimizu, Satoru Okamoto, and Naoaki Yamanaka. A high-
speed routing engine for software defined network. Journal of Selected Areas in
Telecommunications (JSAT), pages 1–7, Aug 2012.

[158] Zheng Cai, Alan L. Cox, and T. S. Eugene Ng. Maestro: A system for scalable
openflow control. Rice University Technical Report TR10-08, Rice University,
Houston, TX, 2010.

[159] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and Andrew W.
Moore. Oflops: an open framework for openflow switch evaluation. In Proceed-
ings of the 13th international conference on Passive and Active Measurement,
PAM’12, pages 85–95, Berlin, Heidelberg, 2012. Springer-Verlag.

[160] Danny Yuxing Huang, Kenneth Yocum, and Alex C. Snoeren. High-fidelity
switch models for software-defined network emulation. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-
working, HotSDN ’13, pages 43–48, New York, NY, USA, 2013. ACM.

[161] Maciej Kuzniar, Peter Peresini, Marco Canini, Daniele Venzano, and Dejan
Kostic. A soft way for openflow switch interoperability testing. In Proceedings
of the 8th international conference on Emerging networking experiments and
technologies, CoNEXT ’12, pages 265–276, New York, NY, USA, 2012. ACM.

154

[162] Keqiang He, Junaid Khalid, Aaron Gember-Jacobson, Sourav Das, Chaithan
Prakash, Aditya Akella, Li Erran Li, and Marina Thottan. Measuring con-
trol plane latency in sdn-enabled switches. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15,
pages 25:1–25:6, New York, NY, USA, 2015. ACM.

[163] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and
Rob Sherwood. On controller performance in software-defined networks. In
Proceedings of the 2nd USENIX conference on Hot Topics in Management of
Internet, Cloud, and Enterprise Networks and Services, Hot-ICE’12, pages 10–
10, Berkeley, CA, USA, 2012. USENIX Association.

[164] Stephen Gutz, Alec Story, Cole Schlesinger, and Nate Foster. Splendid isolation:
a slice abstraction for software-defined networks. In Proceedings of the first
workshop on Hot topics in software defined networks, HotSDN ’12, pages 79–84,
New York, NY, USA, 2012. ACM.

[165] Laurent Vanbever, Joshua Reich, Theophilus Benson, Nate Foster, and Jennifer
Rexford. Hotswap: Correct and efficient controller upgrades for software-defined
networks. In Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN ’13, pages 133–138, New York,
NY, USA, 2013. ACM.

[166] Ilya Baldin, Shu Huang, and Rajesh Gopidi. A resource delegation framework
for software defined networks. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, pages 49–54, New York,
NY, USA, 2014. ACM.

[167] Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, Guru
Parulkar, Elio Salvadori, and Bill Snow. Openvirtex: Make your virtual sdns
programmable. In Proceedings of the Third Workshop on Hot Topics in Soft-
ware Defined Networking, HotSDN ’14, pages 25–30, New York, NY, USA, 2014.
ACM.

[168] A. Blenk, A. Basta, and W. Kellerer. Hyperflex: An sdn virtualization architec-
ture with flexible hypervisor function allocation. In Integrated Network Man-
agement (IM), 2015 IFIP/IEEE International Symposium on, pages 397–405,
May 2015.

[169] N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network
virtualization. Computer Networks, 54(5):862–876, 2010.

[170] Dmitry Drutskoy, Eric Keller, and Jennifer Rexford. Scalable network virtual-
ization in software-defined networks. Internet Computing, IEEE, 17(2):20–27,
Mar 2013.

[171] Soudeh Ghorbani and Brighten Godfrey. Towards correct network virtualiza-
tion. In Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pages 109–114, New York, NY, USA, 2014. ACM.

[172] Sergey Guenender, Katherine Barabash, Yaniv Ben-Itzhak, Anna Levin, Eran
Raichstein, and Liran Schour. Noencap: Overlay network virtualization with no
encapsulation overheads. In Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, SOSR ’15, pages 9:1–9:7, New York,
NY, USA, 2015. ACM.

155

[173] Fang Hao, T. V. Lakshman, Sarit Mukherjee, and Haoyu Song. Enhancing dy-
namic cloud-based services using network virtualization. SIGCOMM Comput.
Commun. Rev., 40(1):67–74, Jan 2010.

[174] Peyman Kazemian, George Varghese, and Nick McKeown. Header space anal-
ysis: static checking for networks. In Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implementation, NSDI’12, pages 9–9,
Berkeley, CA, USA, 2012. USENIX Association.

[175] Stephanos Matsumoto, Samuel Hitz, and Adrian Perrig. Fleet: Defending sdns
from malicious administrators. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, pages 103–108, New York,
NY, USA, 2014. ACM.

[176] Abhishek Dwaraki, Srini Seetharaman, Sriram Natarajan, and Tilman Wolf.
Gitflow: Flow revision management for software-defined networks. In Proceed-
ings of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, SOSR ’15, pages 6:1–6:6, New York, NY, USA, 2015. ACM.

[177] Abhishek Chanda, Cedric Westphal, and Dipankar Raychaudhuri. Content
based traffic engineering in software defined information centric networks. http:
//arxiv.org/abs/1301.7517, 2013.

[178] S. Agarwal, M. Kodialam, and T. V. Lakshman. Traffic engineering in software
defined networks. In INFOCOM, 2013 Proceedings IEEE, pages 2211–2219.
IEEE, Apr 2013.

[179] Eric Keller, Soudeh Ghorbani, Matt Caesar, and Jennifer Rexford. Live mi-
gration of an entire network (and its hosts). In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, HotNets-XI, pages 109–114, New York,
NY, USA, 2012. ACM.

[180] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. Hedera: dynamic flow scheduling for data center
networks. In Proceedings of the 7th USENIX conference on Networked systems
design and implementation, NSDI’10, pages 19–19, Berkeley, CA, USA, 2010.
USENIX Association.

[181] Kang Xi, Yulei Liu, and H.J. Chao. Enabling flow-based routing control in
data center networks using probe and ecmp. In Computer Communications
Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on, pages 608–613,
2011.

[182] Nikhil Handigol, Srinivasan Seetharaman, Nick Mckeown, and Ramesh Johari.
Plug-n-serve: Load-balancing web traffic using openflow, 2008.

[183] S. Das, A.R. Sharafat, G. Parulkar, and N. McKeown. Mpls with a simple
open control plane. In Optical Fiber Communication Conference and Exposition
(OFC/NFOEC) and the National Fiber Optic Engineers Conference, pages 1 –3,
Washington, DC, USA, Mar 2011. IEEE.

[184] Ali Reza Sharafat, Saurav Das, Guru Parulkar, and Nick McKeown. Mpls-te and
mpls vpns with openflow. SIGCOMM Comput. Commun. Rev., 41(4):452–453,
Aug 2011.

156

[185] Monia Ghobadi, Soheil Hassas Yeganeh, and Yashar Ganjali. Rethinking end-
to-end congestion control in software-defined networks. In Proceedings of the
11th ACM Workshop on Hot Topics in Networks, pages 61–66, New York, NY,
USA, 2012. ACM.

[186] Bo Yan, Yang Xu, Hongya Xing, Kang Xi, and H. Jonathan Chao. Cab: A
reactive wildcard rule caching system for software-defined networks. In Pro-
ceedings of the Third Workshop on Hot Topics in Software Defined Networking,
HotSDN ’14, pages 163–168, New York, NY, USA, 2014. ACM.

[187] Richard Wang, Dana Butnariu, and Jennifer Rexford. Openflow-based server
load balancing gone wild, 2010.

[188] A. Craig, B. Nandy, I. Lambadaris, and P. Ashwood-Smith. Load balancing
for multicast traffic in sdn using real-time link cost modification. In Communi-
cations (ICC), 2015 IEEE International Conference on, pages 5789–5795, Jun
2015.

[189] Gergely Pongrácz, László Molnár, Zoltán Lajos Kis, and Zoltán Turányi. Cheap
silicon: A myth or reality? picking the right data plane hardware for software
defined networking. In Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13, pages 103–108,
New York, NY, USA, 2013. ACM.

[190] Peng Sun, Laurent Vanbever, and Jennifer Rexford. Scalable programmable
inbound traffic engineering. In Proceedings of the 1st ACM SIGCOMM Sym-
posium on Software Defined Networking Research, SOSR ’15, pages 12:1–12:7,
New York, NY, USA, 2015. ACM.

[191] Seugwon Shin, Phillip Porras, Vinod Yegneswaran, Martin Fong, Guofei Gu,
and Mabry Tyson. Fresco: Modular composable security services for software-
defined networks. In Proceedings of the ISOC Network and Distributed System
Security Symposium, ISOC, Geneva, Switzerland, 2013. Internet Society.

[192] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,
and Guofei Gu. A security enforcement kernel for openflow networks. In Proceed-
ings of the first workshop on Hot topics in software defined networks, HotSDN
’12, pages 121–126, New York, NY, USA, 2012. ACM.

[193] Zhiyuan Hu, Mingwen Wang, Xueqiang Yan, Yueming Yin, and Zhigang Luo. A
comprehensive security architecture for sdn. In Intelligence in Next Generation
Networks (ICIN), 2015 18th International Conference on, pages 30–37, Feb
2015.

[194] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. Flowguard:
Building robust firewalls for software-defined networks. In Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, HotSDN ’14,
pages 97–102, New York, NY, USA, 2014. ACM.

[195] Y. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin, and E. Raichstein. Enforsdn:
Network policies enforcement with sdn. In Integrated Network Management
(IM), 2015 IFIP/IEEE International Symposium on, pages 80–88, May 2015.

157

[196] S. Civanlar, M. Parlakisik, A.M. Tekalp, B. Gorkemli, B. Kaytaz, and E. Onem.
A qos-enabled openflow environment for scalable video streaming. In GLOBE-
COM Workshops (GC Wkshps), 2010 IEEE, pages 351–356. IEEE, Dec 2010.

[197] H.E. Egilmez, B. Gorkemli, A.M. Tekalp, and S. Civanlar. Scalable video
streaming over openflow networks: An optimization framework for qos rout-
ing. In Image Processing (ICIP), 2011 18th IEEE International Conference on,
pages 2241 –2244, Brussels, Belguim, Sep 2011. IEEE.

[198] S. Laga, T. Van Cleemput, F. Van Raemdonck, F. Vanhoutte, N. Bouten,
M. Claeys, and F. De Turck. Optimizing scalable video delivery through open-
flow layer-based routing. In Network Operations and Management Symposium
(NOMS), 2014 IEEE, pages 1–4, May 2014.

[199] K. A. Noghani and M. O. Sunay. Streaming multicast video over software-
defined networks. In Mobile Ad Hoc and Sensor Systems (MASS), 2014 IEEE
11th International Conference on, pages 551–556, Oct 2014.

[200] H. Owens II and A. Durresi. Video over software-defined networking (vsdn). In
Proceedings of the 16th International Conference on Network-Based Information
Systems (NBiS’2013), pages 44–51, Sep 2013.

[201] Thomas G. Edwards and Warren Belkin. Using sdn to facilitate precisely timed
actions on real-time data streams. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, pages 55–60, New York,
NY, USA, 2014. ACM.

[202] Andreas Voellmy and Paul Hudak. Nettle: taking the sting out of programming
network routers. In Proceedings of the 13th international conference on Practical
aspects of declarative languages, PADL’11, pages 235–249, Berlin, Heidelberg,
2011. Springer-Verlag.

[203] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jen-
nifer Rexford, Alec Story, and David Walker. Frenetic: a network programming
language. SIGPLAN Not., 46(9):279–291, Sep 2011.

[204] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait
Dixit, and Mihai Budiu. Dc.p4: Programming the forwarding plane of a data-
center switch. In Proceedings of the 1st ACM SIGCOMM Symposium on Soft-
ware Defined Networking Research, SOSR ’15, pages 2:1–2:8, New York, NY,
USA, 2015. ACM.

[205] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: a language for
high-level reactive network control. In Proceedings of the first workshop on Hot
topics in software defined networks, HotSDN ’12, pages 43–48, New York, NY,
USA, 2012. ACM.

[206] Timothy Nelson, Arjun Guha, Daniel J. Dougherty, Kathi Fisler, and Shriram
Krishnamurthi. A balance of power: expressive, analyzable controller program-
ming. In HotSDN, pages 79–84. ACM, 2013.

[207] Tim Nelson, Andrew D. Ferguson, Da Yu, Rodrigo Fonseca, and Shriram Kr-
ishnamurthi. Exodus: Toward automatic migration of enterprise network con-
figurations to sdns. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, SOSR ’15, pages 13:1–13:7, New York,
NY, USA, 2015. ACM.

158

[208] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. Fattire: Declara-
tive fault tolerance for software-defined networks. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 109–114, New York, NY, USA, 2013. ACM.

[209] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. A com-
piler and run-time system for network programming languages. In Proceedings
of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’12, pages 217–230, New York, NY, USA, 2012.
ACM.

[210] Shambwaditya Saha, Santhosh Prabhu, and P. Madhusudan. Netgen: Synthe-
sizing data-plane configurations for network policies. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research, SOSR
’15, pages 17:1–17:6, New York, NY, USA, 2015. ACM.

[211] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul
Hudak. Maple: Simplifying sdn programming using algorithmic policies. SIG-
COMM Comput. Commun. Rev., 43(4):87–98, Aug 2013.

[212] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks, Hotnets-IX, pages 19:1–19:6,
New York, NY, USA, 2010. ACM.

[213] Jiaqi Yan and Dong Jin. Vt-mininet: Virtual-time-enabled mininet for scalable
and accurate software-define network emulation. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15,
pages 27:1–27:7, New York, NY, USA, 2015. ACM.

[214] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
Veriflow: verifying network-wide invariants in real time. In Proceedings of the
first workshop on Hot topics in software defined networks, HotSDN ’12, pages
49–54, New York, NY, USA, 2012. ACM.

[215] Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jennifer Rex-
ford, and David Walker. An assertion language for debugging sdn applications.
In Proceedings of the Third Workshop on Hot Topics in Software Defined Net-
working, HotSDN ’14, pages 91–96, New York, NY, USA, 2014. ACM.

[216] Naga Praveen Katta, Jennifer Rexford, and David Walker. Incremental consis-
tent updates. In Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN ’13, pages 49–54, New York,
NY, USA, 2013. ACM.

[217] Xitao Wen, Chunxiao Diao, Xun Zhao, Yan Chen, Li Erran Li, Bo Yang, and
Kai Bu. Compiling minimum incremental update for modular sdn languages.
In Proceedings of the Third Workshop on Hot Topics in Software Defined Net-
working, HotSDN ’14, pages 193–198, New York, NY, USA, 2014. ACM.

[218] Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, and Mar-
tin Vechev. Sdnracer: Detecting concurrency violations in software-defined
networks. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, SOSR ’15, pages 22:1–22:7, New York, NY, USA,
2015. ACM.

159

[219] Marco Canini, Daniele Venzano, Peter Pereš́ıni, Dejan Kostić, and Jennifer
Rexford. A nice way to test openflow applications. In Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation,
NSDI’12, pages 10–10, Berkeley, CA, USA, 2012. USENIX Association.

[220] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres, and
Nick McKeown. Where is the debugger for my software-defined network? In
Proceedings of the first workshop on Hot topics in software defined networks,
HotSDN ’12, pages 55–60, New York, NY, USA, 2012. ACM.

[221] Hui Zhang, Cristian Lumezanu, Junghwan Rhee, Nipun Arora, Qiang Xu, and
Guofei Jiang. Enabling layer 2 pathlet tracing through context encoding in
software-defined networking. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, pages 169–174, New York,
NY, USA, 2014. ACM.

[222] Mukta Gupta, Joel Sommers, and Paul Barford. Fast, accurate simulation for
sdn prototyping. In Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, HotSDN ’13, pages 31–36, New
York, NY, USA, 2013. ACM.

[223] Seyed K. Fayaz and Vyas Sekar. Testing stateful and dynamic data planes
with flowtest. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, HotSDN ’14, pages 79–84, New York, NY, USA, 2014.
ACM.

[224] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Cherrypick: Tracing
packet trajectory in software-defined datacenter networks. In Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research,
SOSR ’15, pages 23:1–23:7, New York, NY, USA, 2015. ACM.

[225] István Pelle, Tamás Lévai, Felicián Németh, and András Gulyás. One tool
to rule them all: A modular troubleshooting framework for sdn (and other)
networks. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, SOSR ’15, pages 24:1–24:7, New York, NY, USA,
2015. ACM.

[226] Tim Nelson, Da Yu, Yiming Li, Rodrigo Fonseca, and Shriram Krishnamurthi.
Simon: Scriptable interactive monitoring for sdns. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research, SOSR
’15, pages 19:1–19:7, New York, NY, USA, 2015. ACM.

[227] Yang Xu, Yong Liu, Rahul Singh, and Shu Tao. Identifying sdn state inconsis-
tency in openstack. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, SOSR ’15, pages 11:1–11:7, New York,
NY, USA, 2015. ACM.

[228] Andrew D. Ferguson, Arjun Guha, Jordan Place, Rodrigo Fonseca, and Shri-
ram Krishnamurthi. Participatory networking. In Proceedings of the 2nd
USENIX conference on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services, Hot-ICE’12, pages 2–2, Berkeley, CA, USA,
2012. USENIX Association.

160

[229] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram
Krishnamurthi. Hierarchical policies for software defined networks. In Proceed-
ings of the first workshop on Hot topics in software defined networks, HotSDN
’12, pages 37–42, New York, NY, USA, 2012. ACM.

[230] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. Software trans-
actional networking: Concurrent and consistent policy composition. In Pro-
ceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13, pages 1–6, New York, NY, USA, 2013. ACM.

[231] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. Consistent
updates for software-defined networks: change you can believe in! In Proceed-
ings of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, pages
7:1–7:6, New York, NY, USA, 2011. ACM.

[232] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David
Walker. Abstractions for network update. In Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures, and pro-
tocols for computer communication, SIGCOMM ’12, pages 323–334, New York,
NY, USA, 2012. ACM.

[233] Rick McGeer. A safe, efficient update protocol for openflow networks. In
Proceedings of the first workshop on Hot topics in software defined networks,
HotSDN ’12, pages 61–66, New York, NY, USA, 2012. ACM.

[234] Soudeh Ghorbani and Matthew Caesar. Walk the line: consistent network
updates with bandwidth guarantees. In Proceedings of the first workshop on
Hot topics in software defined networks, HotSDN ’12, pages 67–72, New York,
NY, USA, 2012. ACM.

[235] Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey C. Mogul. Flow-
tags: Enforcing network-wide policies in the presence of dynamic middlebox
actions. In Proceedings of the Second ACM SIGCOMM Workshop on Hot Top-
ics in Software Defined Networking, HotSDN ’13, pages 19–24, New York, NY,
USA, 2013. ACM.

[236] Xin Jin, Jennifer Rexford, and David Walker. Incremental update for a com-
positional sdn hypervisor. In Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, HotSDN ’14, pages 187–192, New York, NY,
USA, 2014. ACM.

[237] Peter Peréıni, Maciej Kuzniar, Marco Canini, and Dejan Kostić. Espres: Trans-
parent sdn update scheduling. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, pages 73–78, New York,
NY, USA, 2014. ACM.

[238] Tal Mizrahi, Efi Saat, and Yoram Moses. Timed consistent network updates.
In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, SOSR ’15, pages 21:1–21:14, New York, NY, USA, 2015.
ACM.

[239] Masoud Moshref, Minlan Yu, and Ramesh Govindan. Resource/accuracy trade-
offs in software-defined measurement. In Proceedings of the Second ACM SIG-
COMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,
pages 73–78, New York, NY, USA, 2013. ACM.

161

[240] Nikolai Matni, Ao Tang, and John C. Doyle. A case study in network archi-
tecture tradeoffs. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, SOSR ’15, pages 18:1–18:7, New York,
NY, USA, 2015. ACM.

[241] Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. Opentm: traffic
matrix estimator for openflow networks. In Proceedings of the 11th international
conference on Passive and active measurement, PAM’10, pages 201–210, Berlin,
Heidelberg, Apr 2010. Springer-Verlag.

[242] Arsalan Tavakoli, Martin Casado, Teemu Koponen, and Scott Shenker. Apply-
ing nox to the data center. In In Proceedings of ACM HotNets, 2009.

[243] Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang,
and Harsha V. Madhyastha. Flowsense: Monitoring network utilization with
zero measurement cost. In Proceedings of Passive and Active Measurement
Conference (PAM). PAM, 2013.

[244] Jeffrey R. Ballard, Ian Rae, and Aditya Akella. Extensible and scalable network
monitoring using opensafe. In Proceedings of the 2010 internet network manage-
ment conference on Research on enterprise networking, INM/WREN’10, pages
8–8, Berkeley, CA, USA, Apr 2010. USENIX Association.

[245] N. Grover, N. Agarwal, and K. Kataoka. liteflow: Lightweight and distributed
flow monitoring platform for sdn. In Network Softwarization (NetSoft), 2015
1st IEEE Conference on, pages 1–9, Apr 2015.

[246] Yanlei Gong, Xiong Wang, Mehdi Malboubi, Sheng Wang, Shizhong Xu, and
Chen-Nee Chuah. Towards accurate online traffic matrix estimation in software-
defined networks. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, SOSR ’15, pages 26:1–26:7, New York,
NY, USA, 2015. ACM.

[247] Lavanya Jose, Minlan Yu, and Jennifer Rexford. Online measurement of large
traffic aggregates on commodity switches. In Proceedings of the 11th USENIX
conference on Hot topics in management of internet, cloud, and enterprise
networks and services, Hot-ICE’11, pages 13–13, Berkeley, CA, USA, 2011.
USENIX Association.

[248] Mourad Soliman, Biswajit Nandy, Ioannis Lambadaris, and Peter Ashwood-
Smith. Source routed forwarding with software defined control,considerations
and implications, Dec 2012.

[249] Hailong Zhang and Jinyao Yan. Performance of sdn routing in comparison
with legacy routing protocols. In Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), 2015 International Conference on, pages 491–
494, Sep 2015.

[250] Gautam Khetrapal and Saurabh Kumar Sharma. Demystifying routing services
in software-defined networking, 2013. Aricent.

[251] David M. Beazley. Swig: An easy to use tool for integrating scripting languages
with c and c++. In Proceedings of the 4th Conference on USENIX Tcl/Tk
Workshop, 1996 - Volume 4, TCLTK’96, pages 15–15, Berkeley, CA, USA,
1996. USENIX Association.

162

[252] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: en-
abling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, Mar 2008.

[253] Haoyu Song. Protocol-oblivious forwarding: Unleash the power of sdn through
a future-proof forwarding plane. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, HotSDN ’13, pages
127–132, New York, NY, USA, 2013. ACM.

[254] OpenStack. Openstack cloud software. http://docs.openstack.org, 2015.

[255] Big Switch. The open sdn architecture. http://www.bigswitch.com, 2012.

[256] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov,
William Snow, and Guru Parulkar. Onos: Towards an open, distributed sdn
os. In Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pages 1–6, New York, NY, USA, 2014. ACM.

[257] Anand Krishnamurthy, Shoban P. Chandrabose, and Aaron Gember-Jacobson.
Pratyaastha: An efficient elastic distributed sdn control plane. In Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking, HotSDN
’14, pages 133–138, New York, NY, USA, 2014. ACM.

[258] P. Patil, A. Gokhale, and A. Hakiri. Bootstrapping software defined network
for flexible and dynamic control plane management. In Network Softwarization
(NetSoft), 2015 1st IEEE Conference on, pages 1–5, Apr 2015.

[259] Md. Faizul Bari, Arup Raton Roy, Shihabur Rahman Chowdhury, Qi Zhang,
Mohamed Faten Zhani, Reaz Ahmed, and Raouf Boutaba. Dynamic controller
provisioning in software defined networks. In 9th International Conference on
Network and Service Management 2013 (CNSM 2013), pages 18–25, Zrich,
Switzerland, Oct 2013.

[260] Advait Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and Ramana Kom-
pella. Towards an elastic distributed sdn controller. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN ’13, pages 7–12, New York, NY, USA, 2013. ACM.

[261] Stefan Schmid and Jukka Suomela. Exploiting locality in distributed sdn con-
trol. In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking, HotSDN ’13, pages 121–126, New York, NY,
USA, 2013. ACM.

[262] Xuan-Nam Nguyen, Damien Saucez, Chadi Barakat, and Thierry Turletti. Op-
timizing rules placement in openflow networks: Trading routing for better effi-
ciency. In Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pages 127–132, New York, NY, USA, 2014. ACM.

[263] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. Infinite
cacheflow in software-defined networks. In Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking, HotSDN ’14, pages 175–180,
New York, NY, USA, 2014. ACM.

163

[264] Guohan Lu, Rui Miao, Yongqiang Xiong, and Chuanxiong Guo. Using cpu as
a traffic co-processing unit in commodity switches. In Proceedings of the first
workshop on Hot topics in software defined networks, HotSDN ’12, pages 31–36,
New York, NY, USA, 2012. ACM.

[265] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. Netpaxos: Consensus at network speed. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15,
pages 5:1–5:7, New York, NY, USA, 2015. ACM.

[266] Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. Ravana:
Controller fault-tolerance in software-defined networking. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking Research,
SOSR ’15, pages 4:1–4:12, New York, NY, USA, 2015. ACM.

[267] Michael Borokhovich, Liron Schiff, and Stefan Schmid. Provable data plane
connectivity with local fast failover: Introducing openflow graph algorithms.
In Proceedings of the Third Workshop on Hot Topics in Software Defined Net-
working, HotSDN ’14, pages 121–126, New York, NY, USA, 2014. ACM.

[268] Maulik Desai and Thyagarajan Nandagopal. Coping with link failures in central-
ized control plane architectures. In Proceedings of the 2Nd International Con-
ference on COMmunication Systems and NETworks, COMSNETS’10, pages
79–88, Piscataway, NJ, USA, 2010. IEEE Press.

[269] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester. Enabling
fast failure recovery in openflow networks. In Design of Reliable Communication
Networks (DRCN), 2011 8th International Workshop on the, pages 164–171,
Oct 2011.

[270] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester. Fast failure
recovery for in-band openflow networks. In Design of Reliable Communication
Networks (DRCN), 2013 9th International Conference on the, pages 52–59, Mar
2013.

[271] N. M. Sahri and Koji Okamura. Fast failover mechanism for software defined
networking: Openflow based. In Proceedings of The Ninth International Con-
ference on Future Internet Technologies, CFI ’14, pages 16:1–16:2, New York,
NY, USA, 2014. ACM.

[272] Antonio Capone, Carmelo Cascone, Alessandro Q. T. Nguyen, and Brunilde
Sansò. Detour planning for fast and reliable failure recovery in SDN with open-
state. CoRR, abs/1411.7711, 2014.

[273] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon
Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a
globally-deployed software defined wan. SIGCOMM Comput. Commun. Rev.,
43(4):3–14, Aug 2013.

[274] Elias Molina, Eduardo Jacob, Jon Matias, Naiara Moreira, and Armando As-
tarloa. Availability improvement of layer 2 seamless networks using openflow.
The Scientific World Journal, 2015, 2015.

164

[275] Dongkyun Kim, Won-Hyeak Lee, Myung-Il Kim, and Seung-Hae Kim. Dvnoc:
Multi-domain sdn operations and management framework. In Research Notes
in Information Science (RNIS), volume 14, pages 540–543. Advanced Institute
of Convergence Information Technology (AICIT), 2013.

[276] ukasz Podleski, Radek Krzywania, Miosz Przywecki, Eduardo Jacob, Alaitz
Mendiola, Ignacio Jos, Albert Aznar-Baranda, Vico-Oton, Kurt Baumann,
and Christos Argyropoulos. Multi-domain software defined network: explor-
ing possibilities. In TERENA Networking Conference 2014 (TNC2014). Trans-
European Research and Education Networking Association (TERENA), 2014.

[277] Boyang Zhou, Haifeng Zhou, Wen Gao, Xiaoyan Hong, Bin Wang, and Chun-
ming Wu. Lossless reconfiguration protocol for multi-domain data plane in
software-defined networks. In Computer Communications Workshops (INFO-
COM WKSHPS), 2014 IEEE Conference on, pages 193–194, Apr 2014.

[278] S. Civanlar, E. Lokman, B. Kaytaz, and A. Murat Tekalp. Distributed manage-
ment of service-enabled flow-paths across multiple sdn domains. In Networks
and Communications (EuCNC), 2015 European Conference on, pages 360–364,
Jun 2015.

[279] Dan Marconett and S.J.B. Yoo. Flowbroker: A software-defined network con-
troller architecture for multi-domain brokering and reputation. Journal of Net-
work and Systems Management, 23(2):328–359, 2015.

[280] Jun-Huy Lam, Sang-Gon Lee, Hoon-Jae Lee, and Y.E. Oktian. Securing dis-
tributed sdn with ibc. In Ubiquitous and Future Networks (ICUFN), 2015
Seventh International Conference on, pages 921–925, Jul 2015.

[281] Rodrigo Braga, Edjard Mota, and Alexandre Passito. Lightweight ddos flooding
attack detection using nox/openflow. In Local Computer Networks (LCN), 2010
IEEE 35th Conference on, pages 408 –415, Denver, CO, USA, Oct 2010. IEEE.

[282] Manar Jammal, Taranpreet Singh, Abdallah Shami, Rasool Asal, and Yim-
ing Li. Software-defined networking: State of the art and research challenges.
CoRR, abs/1406.0124, 2014.

[283] Natali Ruchansky and Davide Proserpio. A (not) nice way to verify the open-
flow switch specification: Formal modelling of the openflow switch using alloy.
SIGCOMM Comput. Commun. Rev., 43(4):527–528, Aug 2013.

[284] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: configuration analysis and
verification of federated openflow infrastructures. In Proceedings of the 3rd
ACM workshop on Assurable and usable security configuration, SafeConfig ’10,
pages 37–44, New York, NY, USA, 2010. ACM.

[285] OpenFlow Switch Consortium. Openflow switch consortium. http://www.
OpenFlowSwitch.org, 2008.

[286] OpenDayLight. Opendaylight. http://www.opendaylight.org, 2013.

[287] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti. A sur-
vey of software-defined networking: Past, present, and future of programmable
networks. Communications Surveys Tutorials, IEEE, PP(99):1–18, 2014.

165

[288] Juniper Networks. 5 tenets of instant evolution. http://www.juniper.net/
instantevolution, Aug 2015.

[289] IBM Systems and Technology Group. Openflow: The next generation in net-
working interoperability, May 2011.

[290] Glen Hunt. Software defined networking: An imperative for the service provider
network. http://www.juniper.net, May 2013.

[291] Sangam Racherla, David Cain, Scott Irwin, Per Ljungstrm, Pushkar Patil, and
Alessio M. Tarenzio. Implementing ibm software defined network for virtual
environments, Sep 2014.

[292] Oracle. Oracle sdn performance acceleration with software-defined networking.
http://www.oracle.com, 2015.

[293] Cisco. Cisco open network environment: Bring the network closer to applica-
tions. http://www.cisco.com, 2015.

[294] Pica8. Pica8: White box sdn. http://www.pica8.com, 2015.

[295] Pingping Lin, Jonathan Hart, Umesh Krishnaswamy, Tetsuya Murakami,
Masayoshi Kobayashi, Ali Al-Shabibi, Kuang-Ching Wang, and Jun Bi. Seam-
less interworking of sdn and ip. SIGCOMM Comput. Commun. Rev., 43(4):475–
476, Aug 2013.

[296] MetaSwitch. The network software provider: A new vendor category. http:
//www.metaswitch.com, 2015.

[297] Ericsson. The real-time cloud: Combining cloud, nfv, and service provider sdn.
http://www.ericsson.com, Feb 2014.

[298] Ericsson. Virtual cpe and software defined networking. http://www.ericsson.
com, Mar 2014.

[299] Ericsson. Dynamic service chaining with sdn. http://www.ericsson.com, May
2014.

[300] Joe Skorupa, Mark Fabbi, and Akshay K. Sharma. Ending the confusion about
software-defined networking: A taxonomy, Mar 2013.

[301] Ryan Hand and Eric Keller. Closedflow: Openflow-like control over propri-
etary devices. In Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, HotSDN ’14, pages 7–12, New York, NY, USA, 2014. ACM.

[302] C. Jasson Casey, Andrew Sutton, and Alex Sprintson. tinynbi: Distilling an
api from essential openflow abstractions. In Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking, HotSDN ’14, pages 37–42, New
York, NY, USA, 2014. ACM.

[303] S.J. Vaughan-Nichols. Openflow: The next generation of the network? Com-
puter, 44(8):13–15, Aug 2011.

[304] Juniper Networks. Decoding software defined networking. http://www.
juniper.net, Feb 2013.

166

[305] Zeus Kerravala. Cisco intelligent wan is the foundation for the software-defined
wan. http://www.cisco.com, Sep 2015.

[306] Jennifer Rexford, Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy
Myers, Geoffrey Xie, Jibin Zhan, and Hui Zhang. Network-wide decision mak-
ing: Toward a wafer-thin control plane. In In Proceedings of HotNets III, 2004.

[307] Ossama Younis and Sonia Fahmy. Constraint-based routing in the internet:
Basic principles and recent research. IEEE Communications Surveys and Tu-
torials, 5:2–13, 2003.

[308] S. Shenker and C. Partridge. Specification of guaranteed quality of service.
http://www.ietf.org, 1997. RFC 2212.

[309] J. Wroclawski. Specification of the controlled-load network element service.
http://www.ietf.org, 1997. RFC 2211.

[310] Puqi Perry Tang and Tsung-Yuan Charles Tai. Network traffic characterization
using token bucket model. In In Proceedings of IEEE Infocom99, pages 51–62,
1999.

[311] Rajiv Chakravorty, Subrat Kar, and Peyman Farjami. End-to-end internet
quality of service (qos): An overview of issues, architectures and frameworks.
In Proceedings of International Conference on Information Technology (ICIT),
2000.

[312] Jos Ruela and Manuel Ricardo. MPLS - Multiprotocol Label Switching. In The
Industrial Information Technology Handbook, pages 1–9. CRC Press, 2004.

[313] George F. Riley and Thomas R. Henderson. The ns-3 network simulator mod-
eling and tools for network simulation. In Modeling and Tools for Network Sim-
ulation, chapter 2, pages 15–34. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[314] Johannes Schneider and Roger Wattenhofer. Trading bit, message, and time
complexity of distributed algorithms. In 25th International Symposium on Dis-
tributed Computing (DISC), Rome, Italy, Sep 2011.

[315] P. Ashwood-Smith and M. Soliman. Sdn state reduction. http://tools.ietf.
org, Jul 2013.

[316] Cisco. Cisco visual networking index: Forecast and methodology, 2012 - 2017.
http://www.cisco.com, 2012.

[317] Ted H. Szymanski and Dave Gilbert. Provisioning mission-critical telerobotic
control systems over internet backbone networks with essentially-perfect qos.
IEEE J.Sel. A. Commun., 28(5):630–643, Jun 2010.

[318] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,
Fabien Duchene, Olivier Bonaventure, and Mark Handley. How hard can it be?
designing and implementing a deployable multipath tcp. In Proceedings of the
9th USENIX Conference on Networked Systems Design and Implementation,
NSDI’12, pages 29–29, Berkeley, CA, USA, 2012. USENIX Association.

167

[319] Gang Liu and K. G. Ramakrishnan. A*Prune: An Algorithm for Finding K
Shortest Paths Subject to Multiple Constraints. In IEEE INFOCOM, volume 2,
pages 743–749, 2001.

[320] The ns-3 network simulator. http://www.nsnam.org, 2015.

[321] Radivoj Petrovic and S. Jovanovic. Two algorithms for determining the most
reliable path of a network. Reliability, IEEE Transactions on, R-28(2):115–119,
1979.

[322] Do-Hyeon Lee, Doo-Young Kim, Jae-Il Jung, and Young-Soo An. An algo-
rithm for acquiring reliable path in abnormal traffic condition. In Proceedings
of the 2008 International Conference on Convergence and Hybrid Information
Technology, ICHIT ’08, pages 682–686. IEEE Computer Society, 2008.

[323] Jing Wang, Jianming Zhu, and Haoxiong Yang. Reliable path selection problem
in uncertain traffic network after natural disaster. Mathematical Problems in
Engineering, 2013, 2013. 5 pages.

[324] J. Gozdecki, A. Jajszczyk, and R. Stankiewicz. Quality of service terminology
in ip networks. Communications Magazine, IEEE, 41(3):153 – 159, Mar 2003.

[325] Y. Rekhter, T. Li, and S. Hares. Rfc 4271: A border gateway protocol 4 (bgp-4),
2006.

[326] Wes Simpson. Video Over IP: IPTV, Internet Video, H.264, P2P, Web TV,
and Streaming: A Complete Guide to Understanding the Technology. Focal
Press, 2008.

[327] OpenDaylight. Odl-sdni app (opendaylight- sdn interface application). https:
//wiki.opendaylight.org/view/Project_Proposals:ODL-SDNi_App, Jun
2015.

[328] Deepankar Gupta and Rafat Jahan. Inter-sdn controller communication: Using
border gateway protocol. http://www.tcs.com, 2014.

[329] GAO Wen, ZHOU Boyang, WU Chunming, ZHOU Haifeng, JIANG Ming, and
HONG Xiaoyan. Safe reconfiguring data plane via supervision over resource
and flow states. Chinese Journal of Electronics, 24(CJE-3):642, 2015.

[330] R. Guerin and A. Orda. Qos based routing in networks with inaccurate in-
formation: theory and algorithms. In INFOCOM ’97. Sixteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Driving the
Information Revolution., Proceedings IEEE, volume 1, pages 75–83 vol.1, Apr
1997.

[331] William B. Norton. The Internet Peering Playbook: Connecting to the Core of
the Internet. DrPeering Press, 2014.

[332] Google. Hangouts system requirements on a computer. https://support.
google.com, 2015.

[333] Microsoft. How much bandwidth does skype need? https://support.skype.
com, 2015.

168

[334] HP. Hp van sdn controller 2.4 installation guide. http://www.hp.com, 2014.

[335] HP. Hp van sdn controller 2.4 administrator guide. http://www.hp.com, 2014.

[336] HP. Hp van sdn controller programming guide. http://www.hp.com, 2013.

[337] HP. Hp sdn controller architecture. http://www.hp.com, 2013.

[338] HP. Hp switch software management and configuration guide for wb.15.16.
http://www.hp.com, 2013.

[339] J. Rubio-Loyola, A. Galis, A. Astorga, J. Serrat, L. Lefevre, A. Fischer, A. Paler,
and H. Meer. Scalable service deployment on software-defined networks. Com-
munications Magazine, IEEE, 49(12):84 –93, Dec 2011.

[340] Frank Drr. Towards cloud-assisted software-defined networking. Universitat
Stuttgart Technical Report TR-2012-04, Institute of Parallel and Distributed
Systems Universitat Stuttgart, 70569 Stuttgart Germany, Aug 2012.

[341] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis,
Puneet Sharma, Sujata Banerjee, and Nick McKeown. Elastictree: saving en-
ergy in data center networks. In Proceedings of the 7th USENIX conference on
Networked systems design and implementation, NSDI’10, pages 17–17, Berkeley,
CA, USA, 2010. USENIX Association.

[342] Zdravko Bozakov. An open router virtualization framework using a pro-
grammable forwarding plane. In Proceedings of the ACM SIGCOMM 2010
conference, SIGCOMM ’10, pages 439–440, New York, NY, USA, 2010.

[343] Raj Jain and Subharthi Paul. Openadn: mobile apps on global clouds using
software defined networking. In Proceedings of the third ACM workshop on
Mobile cloud computing and services, MCS ’12, pages 1–2, New York, NY,
USA, 2012. ACM.

[344] Kwangtae Jeong, Jinwook Kim, and Young-Tak Kim. Qos-aware network op-
erating system for software defined networking with generalized openflows. In
NOMS, pages 1167–1174. IEEE, 2012.

[345] Marcelo Ribeiro Nascimento, Christian Esteve Rothenberg, Marcos Rogério
Salvador, and Mauŕıcio Ferreira Magalhães. Quagflow: partnering quagga with
openflow. SIGCOMM Comput. Commun. Rev., 40(4):441–442, Aug 2010.

[346] Marcelo R. Nascimento, Christian E. Rothenberg, Marcos R. Salvador, Car-
los N. A. Corrêa, Sidney C. de Lucena, and Mauŕıcio F. Magalhães. Virtual
routers as a service: the routeflow approach leveraging software-defined net-
works. In Proceedings of the 6th International Conference on Future Internet
Technologies, CFI ’11, pages 34–37, New York, NY, USA, 2011. ACM.

APPENDICES

169

Appendix A Data Tables

The data set used to generate Figure 3.7.

Requests Set Unset Request Accept Remove Error Total

500 2004 2000 2000 3000 3000 0 12005

1000 4004 4000 4000 6002 6000 0 24007

2000 8004 8000 8000 12000 12000 0 48005

3000 12004 12000 12000 18000 18000 0 72005

3500 14004 14000 14000 21000 21000 0 84005

4000 16004 16000 16000 24000 24000 0 96005

The data set used to generate Figure 3.8.

Requests Set Unset Request Accept Remove Error Total

500 2505 2500 2500 3498 3500 0 14504

1000 5005 5000 5000 7000 7000 0 29006

2000 10005 10000 10000 14000 14000 0 58006

3000 15005 15000 15000 20999 21000 0 87005

3500 17505 17500 17500 24495 24500 0 101501

170

The data set used to generate Figure 5.4.

Reliability RVSDN MPLS VSDN

0.90 103333 33333 103333

0.91 103333 33333 103333

0.92 103333 33333 103333

0.93 103333 33333 103333

0.94 103333 33333 103333

0.95 103333 33333 103333

0.96 103333 33333 103333

0.97 103333 33333 103333

0.98 103333 33333 70000

0.99 103333 33333 36666

0.993 103333 33333 36666

0.995 103333 3333 3333

0.996 103333 3333 3333

0.997 103333 3333 3333

0.998 103333 3333 3333

0.999 103333 3333 3333

171

T
h
e

d
at

a
se

t
u
se

d
to

ge
n
er

at
e

F
ig

u
re

4.
2

an
d

F
ig

u
re

4.
3.

R
eq

u
es

ts
S

et
U

n
se

t
R

em
ov

e-
co

n
tr

ol
A

cc
ep

t-
co

n
tr

ol
S

et
-d

at
a

U
n

se
t-

d
at

a
R

eq
u

es
t-

d
at

a
R

em
ov

e-
d

at
a

A
cc

ep
t-

d
at

a
C

on
tr

ol
p

la
n

e
D

at
a

p
la

n
e

T
ot

al

50
0

35
07

35
00

50
0

50
0

20
04

20
00

20
00

25
00

25
00

80
08

11
00

5
19

01
4

10
00

70
07

70
00

10
00

10
01

40
04

40
00

40
00

50
00

49
98

16
00

9
22

00
3

38
01

3

15
00

10
50

7
10

50
0

15
00

15
06

60
04

60
00

60
00

75
00

74
88

24
01

4
32

99
3

57
00

8

20
00

14
00

7
14

00
0

20
00

20
21

80
04

80
00

80
00

10
00

0
99

61
32

02
9

43
96

6
75

99
6

25
00

17
50

7
17

50
0

25
00

25
09

10
00

4
10

00
0

10
00

0
12

50
0

12
48

2
40

01
7

54
98

7
95

00
5

30
00

21
00

7
21

00
0

30
00

30
16

12
00

4
12

00
0

12
00

0
15

00
0

14
96

8
48

02
4

65
97

3
11

39
98

35
00

24
50

7
24

50
0

35
00

35
12

14
00

4
14

00
0

14
00

0
17

50
0

17
47

6
56

02
0

76
98

1
13

30
02

40
00

28
00

7
28

00
0

40
00

40
64

16
00

4
16

00
0

16
00

0
20

00
0

19
87

6
64

07
2

87
88

1
15

19
54

45
00

31
50

7
31

50
0

45
00

45
20

18
00

4
18

00
0

18
00

0
22

50
0

22
46

0
72

02
8

98
96

5
17

09
94

50
00

35
00

7
35

00
0

50
00

50
21

20
00

4
20

00
0

20
00

0
25

00
0

24
95

8
80

02
9

10
99

63
18

99
93

55
00

38
50

7
38

50
0

55
00

55
24

22
00

4
22

00
0

22
00

0
27

50
0

27
45

2
88

03
2

12
09

57
20

89
90

60
00

42
00

7
42

00
0

60
00

60
26

24
00

4
24

00
0

24
00

0
30

00
0

29
94

8
96

03
4

13
19

53
22

79
88

65
00

45
50

7
45

50
0

65
00

65
25

26
00

4
26

00
0

26
00

0
32

50
0

32
45

0
10

40
33

14
29

55
24

69
89

70
00

49
00

7
49

00
0

70
00

70
42

28
00

4
28

00
0

28
00

0
35

00
0

34
91

7
11

20
50

15
39

22
26

59
73

75
00

52
50

7
52

50
0

75
00

75
14

30
00

4
30

00
0

30
00

0
37

50
0

37
47

5
12

00
22

16
49

80
28

50
03

80
00

56
00

7
56

00
0

80
00

80
25

32
00

4
32

00
0

32
00

0
40

00
0

39
95

2
12

80
33

17
59

57
30

39
91

172

T
h
e

d
at

a
se

t
u
se

d
to

ge
n
er

at
e

F
ig

u
re

4.
2

an
d

F
ig

u
re

4.
3.

R
eq

u
es

ts
S

et
U

n
se

t
R

em
ov

e-
co

n
tr

ol
A

cc
ep

t-
co

n
tr

ol
S

et
-d

at
a

U
n

se
t-

d
at

a
R

eq
u

es
t-

d
at

a
R

em
ov

e-
d

at
a

A
cc

ep
t-

d
at

a
C

on
tr

ol
p

la
n

e
D

at
a

p
la

n
e

T
ot

al

50
0

10
02

10
00

50
0

50
0

25
05

40
00

20
00

25
00

25
00

30
03

13
50

6
16

51
0

10
00

20
02

20
00

10
00

10
00

50
05

80
00

40
00

50
00

50
00

60
03

27
00

6
33

01
0

15
00

30
02

30
00

15
00

15
00

75
05

12
00

0
60

00
66

45
75

00
90

03
39

65
1

48
65

5

20
00

40
02

23
10

11
56

20
00

10
00

5
86

74
80

00
77

17
10

00
0

94
69

44
39

7
53

86
7

25
00

50
02

22
80

11
41

25
00

12
50

5
83

86
10

00
0

73
86

12
50

0
10

92
4

50
77

8
61

70
3

30
00

60
02

47
48

23
75

30
00

15
00

5
18

45
7

12
00

0
15

44
7

15
00

0
16

12
6

75
91

0
92

03
7

35
00

70
02

70
00

35
00

35
00

17
50

5
28

00
0

14
00

0
12

06
1

17
50

0
21

00
3

89
06

7
11

00
71

40
00

80
02

80
00

40
00

40
00

20
00

5
32

00
0

16
00

0
19

89
5

20
00

0
24

00
3

10
79

01
13

19
05

45
00

90
02

90
00

45
00

45
00

22
50

5
36

00
0

18
00

0
22

50
1

22
50

0
27

00
3

12
15

07
14

85
11

50
00

10
00

2
10

00
0

50
00

50
00

25
00

5
40

00
0

20
00

0
24

99
4

25
00

0
30

00
3

13
50

00
16

50
04

55
00

11
00

2
11

00
0

55
00

55
00

27
50

5
44

00
0

22
00

0
27

50
0

27
50

0
33

00
3

14
85

06
18

15
10

60
00

12
00

2
12

00
0

60
00

60
00

30
00

5
48

00
0

24
00

0
30

00
7

30
00

0
36

00
3

16
20

13
19

80
17

65
00

13
00

2
13

00
0

65
00

65
00

32
50

5
52

00
0

26
00

0
32

50
0

32
50

0
39

00
3

17
55

06
21

45
10

70
00

14
00

2
14

00
0

70
00

70
00

35
00

5
56

00
0

28
00

0
34

99
7

35
00

0
42

00
3

18
90

03
23

10
07

75
00

15
00

2
15

00
0

75
00

75
00

37
50

5
60

00
0

30
00

0
37

50
4

37
50

0
45

00
3

20
25

10
24

75
14

80
00

16
00

2
16

00
0

80
00

80
00

40
00

5
64

00
0

32
00

0
40

00
0

40
00

0
48

00
3

21
60

06
26

40
10

173

T
h
e

d
at

a
se

t
u
se

d
to

ge
n
er

at
e

F
ig

u
re

4.
4

an
d

F
ig

u
re

4.
5.

R
eq

u
es

ts
S
et

U
n
se

t
R

em
ov

e-
co

n
tr

ol
A

cc
ep

t-
co

n
tr

ol
S
et

-d
at

a
U

n
se

t-
d
at

a
R

eq
u
es

t-
d
at

a
R

em
ov

e-
d
at

a
A

cc
ep

t-
d
at

a
C

on
tr

ol
p
la

n
e

D
at

a
p
la

n
e

T
ot

al

50
0

70
14

70
00

50
0

50
1

25
05

25
00

25
00

30
00

29
97

15
01

6
13

50
3

28
52

0

10
00

14
01

4
14

00
0

10
00

10
10

50
05

50
00

50
00

60
00

59
70

30
02

5
26

97
6

57
00

2

15
00

21
01

4
21

00
0

15
00

15
07

75
05

75
00

75
00

90
00

89
79

50
22

40
48

5
85

50
8

20
00

28
01

4
28

00
0

20
00

20
08

10
00

5
10

00
0

10
00

0
12

00
0

11
97

6
60

02
3

53
98

2
11

40
06

25
00

35
01

4
35

00
0

25
00

25
17

12
50

5
12

50
0

12
50

0
15

00
0

14
95

2
75

03
2

67
45

8
14

24
91

30
00

42
01

4
42

00
0

30
00

30
18

15
00

5
15

00
0

15
00

0
18

00
0

17
94

9
90

03
3

80
95

5
17

09
89

35
00

49
01

4
49

00
0

35
00

35
16

17
50

5
17

50
0

17
50

0
21

00
0

20
95

2
10

50
31

94
45

8
19

94
90

40
00

56
01

4
56

00
0

40
00

40
24

20
00

5
20

00
0

20
00

0
24

00
0

23
92

8
12

00
39

10
79

34
22

79
74

45
00

63
01

4
63

00
0

45
00

45
38

22
50

5
22

50
0

22
50

0
27

00
0

26
88

6
13

50
53

12
13

92
25

64
46

50
00

70
01

4
70

00
0

50
00

50
65

25
00

5
25

00
0

25
00

0
30

00
2

29
80

5
15

00
80

13
48

13
28

48
94

55
00

77
01

4
77

00
0

55
00

55
37

27
50

5
27

50
0

27
50

0
33

00
0

32
89

4
16

50
52

14
84

00
31

34
53

60
00

84
01

4
84

00
0

60
00

60
67

30
00

5
30

00
0

30
00

0
36

00
0

35
80

1
18

00
82

16
18

07
34

18
90

65
00

91
01

4
91

00
0

65
00

65
61

32
50

5
32

50
0

32
50

0
39

00
0

38
81

7
19

50
76

17
53

23
37

04
00

70
00

98
01

4
98

00
0

70
00

70
05

35
00

5
35

00
0

35
00

0
42

00
0

41
99

1
21

00
20

18
89

97
39

90
18

75
00

10
50

14
10

50
00

75
00

75
60

37
50

5
37

50
0

37
50

0
45

00
0

44
82

4
22

50
75

20
23

30
42

74
06

80
00

11
20

14
11

20
00

80
00

80
54

40
00

5
40

00
0

40
00

0
48

00
0

47
83

8
24

00
69

21
58

44
45

59
14

174

T
h
e

d
at

a
se

t
u
se

d
to

ge
n
er

at
e

F
ig

u
re

4.
4

an
d

F
ig

u
re

4.
5.

R
eq

u
es

ts
S

et
U

n
se

t
R

em
ov

e-
co

n
tr

ol
A

cc
ep

t-
co

n
tr

ol
S

et
-d

at
a

U
n

se
t-

d
at

a
R

eq
u

es
t-

d
at

a
R

em
ov

e-
d

at
a

A
cc

ep
t-

d
at

a
C

on
tr

ol
p

la
n

e
D

at
a

p
la

n
e

T
ot

al

50
0

10
02

10
00

50
0

50
0

30
06

50
00

25
00

30
00

30
00

30
03

16
50

7
19

51
1

10
00

20
02

20
00

10
00

10
00

60
06

10
00

0
50

00
60

00
60

00
60

03
33

00
7

39
01

1

15
00

30
02

30
00

15
00

15
00

90
06

15
00

0
75

00
90

02
90

00
90

03
49

50
9

58
51

3

20
00

40
02

40
00

20
00

20
00

12
00

6
20

00
0

10
00

0
12

00
0

12
00

0
12

00
3

66
00

7
78

01
1

25
00

50
02

50
00

25
00

25
00

15
00

6
25

00
0

12
50

0
15

00
4

15
00

0
15

00
3

82
51

1
97

51
5

30
00

60
02

60
00

30
00

30
00

18
00

6
30

00
0

15
00

0
18

00
0

18
00

0
18

00
3

99
00

7
11

70
11

35
00

70
02

70
00

35
00

35
00

21
00

6
35

00
0

17
50

0
21

00
2

21
00

0
21

00
3

11
55

09
13

65
13

40
00

80
02

80
00

40
00

40
00

24
00

6
40

00
0

20
00

0
24

00
0

24
00

0
24

00
3

13
20

07
15

60
11

45
00

90
02

90
00

45
00

45
00

27
00

6
45

00
0

22
50

0
26

99
6

27
00

0
27

00
3

14
85

03
17

55
07

50
00

10
00

2
10

00
0

50
00

50
00

30
00

6
50

00
0

25
00

0
30

00
0

30
00

0
30

00
3

16
50

07
19

50
11

55
00

11
00

2
11

00
0

55
00

55
00

33
00

6
55

00
0

27
50

0
33

00
0

33
00

0
33

00
3

18
15

07
21

45
11

60
00

12
00

2
12

00
0

60
00

60
00

36
00

6
60

00
0

30
00

0
35

90
0

36
00

0
36

00
3

19
79

07
23

39
11

65
00

13
00

2
13

00
0

65
00

65
00

39
00

6
65

00
0

32
50

0
39

00
0

39
00

0
39

00
3

21
45

07
25

35
11

70
00

14
00

2
14

00
0

70
00

70
00

42
00

6
70

00
0

35
00

0
42

01
8

42
00

0
42

00
3

23
10

25
27

30
29

75
00

15
00

2
15

00
0

75
00

75
00

45
00

6
75

00
0

37
50

0
45

01
0

45
00

0
45

00
3

24
75

17
29

25
21

80
00

16
00

2
16

00
0

80
00

80
00

48
00

6
80

00
0

40
00

0
48

00
0

48
00

0
48

00
3

26
40

07
31

20
11

175

T
h
e

d
at

a
se

t
u
se

d
to

ge
n
er

at
e

F
ig

u
re

6.
7.

R
eq

u
es

ts
R

eq
u
es

t
A

cc
ep

t
R

em
ov

e
C

on
tr

ol
le

r-
re

q
u
es

t
C

on
tr

ol
le

r-
ac

ce
p
t

T
ot

al

50
40

0
40

0
40

0
10

0
10

0
14

00

10
0

80
0

80
0

80
0

20
0

20
0

28
00

15
0

12
00

12
00

12
00

30
0

30
0

42
00

20
0

16
00

16
00

16
00

40
0

40
0

56
00

25
0

20
00

20
00

20
00

50
0

50
0

70
00

30
0

24
00

24
00

24
00

60
0

60
0

84
00

35
0

28
00

28
00

28
00

70
0

70
0

98
00

40
0

32
00

32
00

32
00

80
0

80
0

11
20

0

45
0

36
00

36
00

36
00

90
0

90
0

12
60

0

50
0

40
00

40
00

40
00

10
00

10
00

14
00

0

176

Appendix B Network Topologies

The network topology used to generate Figure 4.2 and Figure 4.3.

void initialize6NodeTopology ()

{

// addEdge(source , target , bandWidth , delay , jitter , name)

graph.addEdge(A, B, 40000 , 5.5f, 5, "A-B");

graph.addEdge(B, C, 40000 , 5.0f, 8, "B-Edge -C");

graph.addEdge(B, E, 40000 , 8.0f, 7, "B-E");

graph.addEdge(D, E, 40000 , 7.0f, 5, "D-E");

graph.addEdge(A, D, 40000 , 5.0f, 5, "A-D");

graph.addEdge(C, E, 40000 , 6.0f, 5, "Edge -C-E");

graph.addEdge(F, A, 40000 , 5.0f, 5, "Edge -F-A");

graph.addEdge(F, D, 40000 , 2.0f, 5, "Edge -F-D");

}

The network topology used to generate Figure 4.4 and Figure 4.5.

void initialize13NodeTopology ()

{

// addEdge(source , target , bandWidth , delay , jitter , name)

graph.addEdge(A, B, 40000 , 5.5f, 1, "Edge -A-B");

graph.addEdge(A, C, 40000 , 5.5f, 1, "Edge -A-C");

graph.addEdge(A, D, 40000 , 5.5f, 1, "Edge -A-D");

graph.addEdge(B, E, 40000 , 5.0f, 1, "B-E");

graph.addEdge(B, C, 40000 , 5.0f, 1, "B-C");

graph.addEdge(B, F, 40000 , 5.0f, 1, "B-F");

graph.addEdge(C, F, 40000 , 5.0f, 1, "C-F");

graph.addEdge(C, D, 40000 , 5.0f, 1, "C-D");

177

graph.addEdge(C, G, 40000 , 5.0f, 1, "C-G");

graph.addEdge(D, G, 40000 , 5.0f, 1, "D-G");

graph.addEdge(E, H, 40000 , 5.0f, 1, "E-H");

graph.addEdge(F, I, 40000 , 5.0f, 1, "F-I");

graph.addEdge(G, J, 40000 , 5.0f, 1, "G-J");

graph.addEdge(E, K, 40000 , 8.0f, 1, "E-K");

graph.addEdge(K, I, 40000 , 7.0f, 1, "K-I");

graph.addEdge(F, K, 40000 , 5.0f, 1, "F-K");

graph.addEdge(K, H, 40000 , 5.0f, 1, "K-H");

graph.addEdge(M, F, 40000 , 8.0f, 1, "M-F");

graph.addEdge(M, G, 40000 , 7.0f, 1, "M-G");

graph.addEdge(M, J, 40000 , 5.0f, 1, "M-J");

graph.addEdge(M, I, 40000 , 5.0f, 1, "M-I");

graph.addEdge(L, H, 40000 , 6.0f, 1, "Edge -L-H");

graph.addEdge(L, I, 40000 , 5.0f, 1, "Edge -L-I");

graph.addEdge(L, J, 40000 , 2.0f, 1, "Edge -L-J");

}

178

Appendix C SDN Lab Experience

My plan was to develop VSDN on the HP VAN Controller. The lab had one HP

2900 series Openflow switch that connected two application servers and one HP VAN

controller that I installed [334,335]. HP gives the developer a 60-day trial license for

the HP VAN controller which has 50-node limit. The HP VAN controller SDK [336]

is substantial and was new at the time of research. The challenging aspect of the

research was mapping the concepts of the VSDN architecture into the HP SDN con-

troller and switch architecture [337]. For example, the topology monitor of VSDN

with the topology monitor of the HP VAN controller. The HP VAN controller targets

enterprise-ready networking applications, requiring a collaboration and development

effort from a team of researchers. The configuration of the HP switch [338] was chal-

lenging, learning the commands and how the HP switch behaves. A major challenge

was configuring the Linux operating system and ensuring the correct dependencies

were installed on the application servers, HP VAN controller, and switch.

VITA

VITA

HAROLD OWENS II

Department of Computer and Information Science

Purdue University

Email: owensh@iupui.edu

EDUCATION

December 2016 Purdue University Indianapolis, IN

Major: Computer Science Advisor: Arjan Durresi

 Doctor of Philosophy

 Research Area: Area of focus is a combination of software engineering,

distributed systems, and computer networks. My dissertation research

focuses on the design and development of Software-Defined Networking

(SDN) architecture and applications such as routing, quality of service

(QoS), and traffic engineering

 Dissertation: Provisioning End-to-End Quality of Service for Real-time

Interactive Video over Software-Defined Networking

Relevant Coursework

 Data Communication and Computer Networks, Cloud Computing,

Programming Languages, Computer Algorithms, Distributed Systems,

Advance Distributed Systems, Database Systems, Object-Oriented Design

and Programming, and Software Engineering

179

August 2003 University of North Texas Denton, TX

Major: Computer Science

 Master of Science

 Research Area: Adhoc and Wireless Networks

 Thesis: Resource Allocations in Wireless and Mobile Networks

Relevant Coursework

 Human-Computer Interactions, Artificial Intelligence, Mobile Ad-hoc

Networking, Computer Architecture, Parallel Programming, Computer

Algorithms, Operating System Design, and Programming Languages

December 1999 McMurry University Abilene, TX

Major: Computer Science Minor: Mathematics

 Bachelor of Science

 28 Mathematics Credit Hours

May 2000 Community College of the Air Force Maxwell AFB, AL

Major: Avionics Systems Technology

 Associate of Applied Science

180

PROFESSIONAL EXPERIENCE

2016 – Present Interactive Intelligence Inc. Indianapolis, IN

Director of Testing and Development

2013 – 2016 Interactive Intelligence Inc. Indianapolis, IN

Senior Manager of Testing and Development

2011 – 2013 Interactive Intelligence Inc. Indianapolis, IN

Manager of Testing and Development

2011 – 2013 IUPUI Indianapolis, IN

Graduate Teaching Assistant (TA)/Research Assistant (RA), SE-DRC Group

2011 – 2011 Intel Corporation Portland, OR

Graduate Internship Technical, Intel Architecture Group, PC Client Group (PCCG)

2003 - 2010 Interactive Intelligence Inc. Indianapolis, IN

Senior Software Engineer

2001 - 2002 Aastra Addison, TX

Software Engineer

181

PUBLICATIONS

Refereed Journals

1. Owens II, H, and Durresi, A., (2015, October), Video over Software-Defined

Networking (VSDN), Computer Networks (September 2015),

http://dx.doi.org/10.1016/j.comnet.2015.09.009.

2. Owens II, H. and Boukerche, A., Media synchronization and QoS packet

scheduling algorithms for wireless systems, ACM, Mobile Networks and

Applications (February 2005), Volume 10 Issue 1-2.

Selective Conferences

1. Owens II, H. and Durresi, A., Explicit Routing in Software-Defined

Networking (ERSDN): Addressing Controller Scalability, 17th International

Conference on Network-Based Information Systems, NBiS 2014, p.128-134,

Salerno, Italy, September 10-12, 2014.

2. Owens II, H., Durresi, A., and Jain, R., Reliable Video over Software-Defined

Networking (RVSDN), Global Communications Conference (GLOBECOM), p.

1974-1979, 2014 IEEE.

3. Owens II, H. and Durresi, A., Video over Software-Defined Networking

(VSDN), 16th International Conference on Network-Based Information

Systems (NBiS), Gwangju, Korea, September, 2013.

4. Owens II, H. and Hill, J. H., Generating Valid Interface Definition Language

from Succinct Models, Proceeding of the 14th IEEE Int'l Symposium on

Object/Component/Service-oriented Real-time Distributed Computing

(ISORC 2011). Newport Beach, CA, USA. March 2011.

182

5. Owens II, H. and Boukerche, A., Energy Aware Routing Protocol for Mobile

and Wireless Ad hoc Networks, Proceedings of the 28th Annual IEEE

International Conference on Local Computer Networks, p.768, October 20-

24, 2003.

6. Owens II, H. and Boukerche, A., “Media Synchronization Quality of Packet

Scheduling Algorithm for Wireless Systems using Hard Handoff”, IEEE

MWCM, Singapore, 2003.

7. Owens II, H. and Boukerche, A., “Media Synchronization Quality of Packet

Scheduling Algorithm for Wireless Systems using Soft Handoff”,

Proceedings of the 11th IEEE/ACM International Symposium on Modeling

Analysis and Simulation of Computer Telecommunications Systems, IEEE

MASCOTS, USA 2003.

Submitted Papers

1. Owens II, H. and Durresi, A., Multi-Domain Video over Software-Defined

Networking (MDVSDN), The 31st IEEE International Conference on

Advanced Information Networking and Applications (AINA-2017) Tamkang

University, Taipei, Taiwan, 2017.

2. Owens II, H. and Durresi, A., Software-Defined Networking Survey: A

Research Landscape, Journal of Network and Computer Applications -

Elsevier, 2016.

Papers in Preparation

1. Owens II, H. and Durresi, A., Trusted Video over Software-Defined

Networking (TVSDN), 2016.

183

Poster Presentations

1. Owens II, H. and Durresi, A., Video over Software-Defined Networking

(VSDN), IUPUI Research Day, Indianapolis, IN, April 5, 2013.

2. Owens II, H. and Durresi, A., Cloud Computing: Applications, Benefits, and

Challenges, 2011 Research Conference of the Midwest Crossroads Alliance

for Graduate Education and the Professoriate (AGEP) at IUPUI on

November 4-6, 2011.

Workshop

1. Hill, J.H. and Owens II, H. (2011, May). Towards Using Abstract Behavior

Models to Evaluate Software System Performance Properties. 5th

International Research Workshop on Advances and Innovations in Software

Testing, Memphis, TN.

PROFESSIONAL SERVICE

 External reviews

 ISRCS 2015, IEEE SCC 2016

 Journal reviews

 COMNET 2015, COMNET 2016

184

TECHNICAL EXPERTISE

 Software Design Patterns: Architectural Patterns, OO Design Patterns, Anti-

Patterns, and SOA Design Patterns

 Software Development Lifecycle Processes: SCRUM, Agile, Extreme

Programming (XP), and iterative

 Programming Standards and Languages: C/C++, Java, C#, .NET, ASP .net,

MVC, Windows Forms, WPF, WCF, OOA/OOD/OOP, DCOM, COBRA, UML,

Assembly Language, Visual Basic, Unix Shell, Perl, and SQL

 Text Based Data Formats and Manipulation: XML, JSON, XSLT, and regex

 Web Technologies: Bootstrap, AngularJS, REST, SOAP, HTML, XML, WSDL,

HTTP, CSS, and JavaScript

 Operating Systems Platforms: Windows, LINUX, UNIX, and Mac OS

 Programming Applications: Microsoft Visual Studio, GNU C/C++, SlickEdit,

and Eclipse

 Database Applications: MySQL, SQL Server, and Oracle

IT CERTIFICATION TRAINING

 AWS Certified Solutions Architect – Associate Certification, Amazon, 2015

 A+ Certification, CompTIA, Chicago, IL, 2006

 Network+ Certification, CompTIA, Chicago, IL, 2006

 An Effective Introduction to the STL, Developmentor Inc., FW291-10, 2006

 High-Performance C++ Programming, Developmentor Inc., FW295-10,

2006

185

HONORS AND AWARDS

 Kappa Mu Epsilon: Mathematics Honor Society

 NSF GK-12 Fellowship Recipient

 GEM Fellowship Recipient

 SREB Doctoral Scholar

 O.P. Thrane Scholarship

 Outstanding Junior Award

PROFESSIONAL SOCIETIES

 McMurry University Alumni Association

 University of North Texas Alumni Association

 Institute of Electrical and Electronics Engineers (IEEE)

 Association for Computing Machinery (ACM)

186

