177,678 research outputs found

    A Neural-CBR System for Real Property Valuation

    Get PDF
    In recent times, the application of artificial intelligence (AI) techniques for real property valuation has been on the increase. Some expert systems that leveraged on machine intelligence concepts include rule-based reasoning, case-based reasoning and artificial neural networks. These approaches have proved reliable thus far and in certain cases outperformed the use of statistical predictive models such as hedonic regression, logistic regression, and discriminant analysis. However, individual artificial intelligence approaches have their inherent limitations. These limitations hamper the quality of decision support they proffer when used alone for real property valuation. In this paper, we present a Neural-CBR system for real property valuation, which is based on a hybrid architecture that combines Artificial Neural Networks and Case- Based Reasoning techniques. An evaluation of the system was conducted and the experimental results revealed that the system has higher satisfactory level of performance when compared with individual Artificial Neural Network and Case- Based Reasoning systems

    Feature selection using genetic algorithms and probabilistic neural networks

    Get PDF
    Selection of input variables is a key stage in building predictive models, and an important form of data mining. As exhaustive evaluation of potential input sets using full non-linear models is impractical, it is necessary to use simple fast-evaluating models and heuristic selection strategies. This paper discusses a fast, efficient, and powerful nonlinear input selection procedure using a combination of Probabilistic Neural Networks and repeated bitwise gradient descent. The algorithm is compared with forward elimination, backward elimination and genetic algorithms using a selection of real-world data sets. The algorithm has comparative performance and greatly reduced execution time with respect to these alternative approaches. It is demonstrated empirically that reliable results cannot be gained using any of these approaches without the use of resampling

    Application of adaptive models for the determination of the thermal behaviour of a photovoltaic panel

    Get PDF
    The use of reliable forecasting models for the PV temperature is necessary for a more correct evaluation of energy and economic performances. Climatic conditions certainly have a remarkable influence on thermo-electric behaviour of the PV panel but the physical system is too complex for an analytical representation. A neural-network-based approach for solar panel temperature modelling is here presented. The models were trained using a set of data collected from a test facility. Simulation results of the trained neural networks are presented and compared with those obtained with an empirical correlation

    Evaluation and implementation of an auto-encoder for compression of satellite images in the ScOSA project

    Get PDF
    The thesis evaluates the efficiency of various autoencoder neural networks for image compression regarding satellite imagery. The results highlight the evaluation and implementation of autoencoder architectures and the procedures required to deploy neural networks to reliable embedded devices. The developed autoencoders evaluated, targeting a ZYNQ 7020 FPGA (Field Programmable Gate Array) and a ZU7EV FPGA

    Evaluation and implementation of an auto-encoder for compression of satellite images in the ScOSA project

    Get PDF
    The thesis evaluates the efficiency of various autoencoder neural networks for image compression regarding satellite imagery. The results highlight the evaluation and implementation of autoencoder architectures and the procedures required to deploy neural networks to reliable embedded devices. The developed autoencoders evaluated, targeting a ZYNQ 7020 FPGA (Field Programmable Gate Array) and a ZU7EV FPGA

    Evaluating online trust using machine learning methods

    Get PDF
    Trust plays an important role in e-commerce, P2P networks, and information filtering. Current challenges in trust evaluations include: (1) fnding trustworthy recommenders, (2) aggregating heterogeneous trust recommendations of different trust standards based on correlated observations and different evaluation processes, and (3) managing efficiently large trust systems where users may be sparsely connected and have multiple local reputations. The purpose of this dissertation is to provide solutions to these three challenges by applying ordered depth-first search, neural network, and hidden Markov model techniques. It designs an opinion filtered recommendation trust model to derive personal trust from heterogeneous recommendations; develops a reputation model to evaluate recommenders\u27 trustworthiness and expertise; and constructs a distributed trust system and a global reputation model to achieve efficient trust computing and management. The experimental results show that the proposed three trust models are reliable. The contributions lie in: (1) novel application of neural networks in recommendation trust evaluation and distributed trust management; (2) adaptivity of the proposed neural network-based trust models to accommodate dynamic and multifacet properties of trust; (3) robustness of the neural network-based trust models to the noise in training data, such as deceptive recommendations; (4) efficiency and parallelism of computation and load balance in distributed trust evaluations; and (5) novel application of Hidden Markov Models in recommenders\u27 reputation evaluation

    Quality of Service Evaluation and Assessment Methods in Wireless Networks

    Get PDF
    Wireless networks are capable of facilitating a reliable multimedia communication. The ease they can be deployed is ideal for disaster management. The Quality of Service (QoS) for these networks is critical to their effectiveness. Evaluation of QoS in wireless networks provides information that supports their management. QoS evaluation can be performed in multiple ways and indicates how well applications are delivered. In this work, fuzzy c-means clustering (FCM) and Kohonen unsupervised neural networks were compared for their abilities to differentiate between Good, Average and Poor QoS for voice over IP (VoIP) traffic. Fuzzy inference system (FIS), linear regression and multilayer perceptron (MLP) were evaluated to quantify QoS for VoIP. FCM and Kohonen successfully classified VoIP traffic into three types representing Low, Medium, and High QoS. FIS, regression model and MLP combined the QoS parameters (i.e. delay, jitter, and percentage packet loss ratio) with information from the generated clusters and indicated the overall QoS
    • …
    corecore