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ABSTRACT

Trust plays an important role in e-commerce, P2P networks, and information 

filtering. Current challenges in trust evaluations include: (1) finding trustworthy 

recommenders, (2) aggregating heterogeneous trust recommendations of different trust 

standards based on correlated observations and different evaluation processes, and (3) 

managing efficiently large trust systems where users may be sparsely connected and have 

multiple local reputations. The purpose o f this dissertation is to provide solutions to these 

three challenges by applying ordered depth-first search, neural network, and hidden 

Markov model techniques. It designs an opinion filtered recommendation trust model to 

derive personal trust from heterogeneous recommendations; develops a reputation model 

to evaluate recommenders' trustworthiness and expertise; and constructs a distributed 

trust system and a global reputation model to achieve efficient trust computing and 

management. The experimental results show that the proposed three trust models are 

reliable. The contributions lie in: (1) novel application o f neural networks in 

recommendation trust evaluation and distributed trust management; (2) adaptivity o f the 

proposed neural network-based trust models to accommodate dynamic and multifacet 

properties of trust; (3) robustness o f  the neural network-based trust models to the noise in 

training data, such as deceptive recommendations; (4) efficiency and parallelism of 

computation and load balance in distributed trust evaluations; and (5) novel application of 

Hidden Markov Models in recommenders' reputation evaluation.

iii
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CHAPTER 1

INTRODUCTION

Online consumer trust is crucial for e-commerce (Cole 1998), because the online 

environment exposes consumers to the threat o f possible inappropriate opportunistic 

behaviors by online vendors, such as masquerading, misuse and unauthorized distribution 

of personal information, and even credit card fraud. Online consumer trust is important 

also because it helps consumers build appropriate favorable expectations o f what to 

expect o f the vendor (Gefen 2000). Empirical research shows the significant role o f trust 

in eCommerce (Jarvenpaa and Tractinsky 1999).

1.1 Trust and Reputation

Trust is classified into three types according to Ratnasingham and Kumar (2000). 

The three types are competence trust, predictability trust, and good will trust. 

Competence trust develops in an economic foundation and is concerned with whom to 

trust and under what circumstances. Predictability trust emphasizes the trading partners’ 

consistent behavior so that the traders can make predictions and judgments due to past 

experiments. This theory is widely accepted by researchers in establishing quantitative 

trust evaluation models.

Reputation is a concept highly related with trust. In fact, they are often used 

interchangeably. However, there are differences between the two. According to Wang

1
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and Vassileva (2003), “trust is an agent’s belief in another agent’s capabilities, honesty 

and reliability based on its own direct experience. Reputation is based on 

recommendations received from other agents.’’'’ In this context, an agent is a 

buyer/seller/vendor (collections o f sellers and buyers), or a node with trust systems in the 

network. Reputation can be centralized, computed by a trust third party, or decentralized.

We treat trust as an agent’s personalized belief in another agent’s trustworthiness. 

It can be based on direct experiences. It can also be opinion filtered recommendations 

from other agents, i.e., a personalized trust function is applied to one or more 

recommendations to form an agent’s own trust belief. In this dissertation, reputation is 

defined as a trust belief from authorized rating agents, for example, from an authorized 

central agent, from distributed trust agents or from other authorized rating agents.

The common characteristics o f trust and reputation are:

• Context Dependent: a user’s trust or reputation may differ with contexts. For 

example, a user may have a good reputation as a TV retailer, but has a less 

desirable reputation as a computer retailer. Trust models may also vary with 

contexts. In other words, retailers o f expensive products have their reputations 

updated more frequently than retailers o f  low-priced products. Also, response 

speeds o f trust models may differ since users’ sensitivity to the providers’ 

reputations is different. In all the following discussions, I only consider trust or 

reputation under one single context.

• Multi-facet: a user’s trust or reputation can be measured in different aspects, for 

example, service (or product) quality and in-time delivery. An overall reputation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Is a function o f the individual reputation in each aspect. The function varies with 

users’ preferences and reputation standards. Details are discussed in Chapter 2.

• Dynamic: a user’s trust or reputation can change. New users experience reputation 

built-up stage. Their reputation may converge at a certain level, or shift from one 

convergent level to another. See details in Appendix B.

1.2 Central Reputation, Personalized Trust, 
and Global Reputation

Reputations can be classified as central reputations and global reputations. In a

system where no central reputation is available, an alternative is reliance upon

recommendation trust. Recommendation trust is also referenced to as personalized trust.

1.2.1 Central Reputation

Examples o f representative central reputation systems in E-commerce are eBay,

amazon.com and eOpinion. Other central reputation systems are Sporas (Zacharia and

Mae 1999) and REGRET (Sabater and Sierra 2001; Sabater and Sierra 2002) etc. In a

central reputation system, transaction ratings o f  form {rater, ratee, rate) are sent to a

secured central agent. The central agent periodically updates the traders’ reputations

based on the transaction ratings received. In general, we have V = F (R ) ,  where V is the

central reputation o f a user (ratee), and R is the collection o f the user’s transaction 

ratings. F  varies with trust context and trust model M. F  may be public or private to the 

online users. For example, reputation in eBay is a function o f the cumulative positive and 

non-positive ratings for a seller or buyer over several recent periods (a week, a month, or 

6 months). Resnick and Zeckhauser (2000) have empirically analyzed eBay central 

reputation system and concluded that the system does encourage transactions. Figure 1.1
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4

shows how central reputations are obtained. Details of SPORAS is analyzed in Appendix 

B (on page 99).

Figure 1.1: A central reputation system: all users send their transaction ratings to a 
secured central agent. The secured central agent computes the users’ central reputations 
based on model M, which is context dependent.

1.2.2 Personalized Trust

Personalized trust refers to an agent’s personal trust opinion o f others. 

Personalized trust is based on direct experiences or indirect experiences, i.e.,

recommendations. It is computed as: V = f ( R ) ,  where V is the personalized trust, and 

R = {rx,r2,. . . ,r n} represents either the agent’s trust ratings from his/her direct experience

or the n recommenders’ trust ratings, coming from their direct or indirect experience. 

Function /  varies with agents and may be known only to agents themselves. However, 

through observations, we can learn function/ through approximation or machine learning 

techniques. Chapter 2 approximates function /  using graph searching algorithms and 

neural network techniques.

Q  Trader/User: Buyer or Se ller  in eC om m erce, 
Provider/Dovsn loader in P 2P  Applications

S ecu red  central reputation com puting agen t with 
com puting m odel M.
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Mostly, personalized trust is known as recommendation trust, or word-of-mouth

trust, where R = {r,, r2,..., rn} is a set of n recommendations. Representative

recommendation trust models include Bayesian model o f Mui, Mohtashemi, and 

Halberstadt (2002), Beyesian network model o f Wang and Vassileva (2003), Dempster- 

Shafer model o f Yu and Singh (2001), and HISTOS model o f Zacharia and Mae (1999).

1.2.3 Global Reputation

This dissertation differentiates global reputation from central reputation. Global 

reputation refers to an aggregated reputation from multiple distributed local reputation 

systems. A user may have different reputations at multiple local systems. Differences in 

local reputations may result from different local reputation models or trust behavior 

observations by the distributed local trust agents. The representative distributed 

reputation models are proposed by Yu and Singh (2002), and by Song and Phoha 

(2004a). A major difference o f the two models is that the former model assumes that a 

user does not have multiple local reputations. It relies on the social network o f the users 

in a distributed system to get chained recommendations. The later model uses neural 

network techniques to evaluate the users o f multiple local reputations. It distributes the 

load of memory and computation and monitors the system’s performance. Figure 1.2 

shows the structure o f distributed reputation system designed by Song and Phoha 

(2004a). Details are analyzed in Chapter 4.
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G lobal R eputation  
A gent

Local Reputation 
A gents

Figure 1.2: A distributed reputation management structure: The entire system is divided 
into several highly connected local communities managed by local agents - for example, 
A, B, C, and D. Local agents evaluate users’ local reputations using local reputation 
models. The global agent uses a global reputation model to derive a user’s (for instance, 
user T6 and Tj) global reputation from his multiple local reputations.

1.3 Objectives

Trust and reputation were first used in e-commerce systems (Schafer, Konstan, 

and Riedl 1999; Vassileva, Breban, and Horsch 2002) to encourage transactions between 

strangers. The use o f trust and reputation has extended to areas o f  distributed computing 

(Azzedin and Maheswaran 2002), file sharing P2P system (Comelli, Damiani, and 

Samarati 2002) and information filtering (Montaner, L'opez, and Rosa 2002) etc. 

However, there are some challenges. The first challenge is given heterogeneous 

recommendations, how to filter trust opinions. The second challenge is rather than 

aggregating heterogeneous trust opinions, how to select a trustworthy recommender. The 

question by nature is how to evaluate recommenders. With the development o f trust 

systems, the third challenge comes. That is, in a very large system how should one 

evaluate users’ trust efficiently? If a distributed reputation system is in use, how should
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the system derive a user’s global reputation? The objectives o f this dissertation are to 

provide solutions to these questions. The objectives are:

(1) to build an opinion filtered recommendation trust model to form, an agent’s trust 

opinion from heterogeneous trust recommendations in a multiagent reputation 

system;

(2) to build a rating model to evaluate the reputation o f recommenders; and

(3) to adopt efficient distribute trust management and build a global reputation model

to evaluate users o f multiple local reputations.

1.3.1 Filtering Heterogeneous 
Trust Recommendations

In a system where no global or central reputation mechanism is available, an

alternative is to aggregate recommendations. Current recommendation trust models

provide various mechanisms to select recommenders, and to aggregate the selected

recommenders’ trust evaluations. The HISTO model (Zacharia and Mae 1999) is based

on the assumption that a requester trusts some agents more than others. The

recommended trust is an aggregation o f the selected recommenders’ reputations, their

recommendations and the deviations among the recommendations. Similar to the HISTO

model, Riggs and Wilensky (2001) developed another quality filtering trust model. The

model rates reviewers and applies the quality o f the reviewers into merits o f the reviewed

papers. The idea is that a reviewer is reliable if  he/she consistently ranks papers near their

ultimate average. Thus, a reliable reviewer’s rate is the actual rate o f the paper. Mui,

Mohtashemi, and Halberstadt (2002) proposed a recommendation trust model based on

Beyesian probability theory. This model studies a parallel referral network between a

requester and a party o f interest. Yu and Singh (2001) presented an evidence model to
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evaluate recommendation trust It applies Dempster-Shafer theory (Shafer G. 1976) to 

multiple witnesses. In order to avoid continuous and explicit ratings o f references, Pujol, 

Sang, and Halberstadt (2002) proposed a recommendation trust model based on social 

network topology. Their model applies a noderanking algorithm to infer a node’s 

reputation. Other collabrative trust models are developed by Azzedin and Maheswaran 

2002; Daniani, Vimercati, Paraboschi, Samarati, and Violante 2002; Gupta, Judge, and 

Ammar 2003; Kamvar, Schlosser, and Garcia-Molina 2003; Schafer, Konstan, and 

J.Riedl 2002; Wang and Vassileva 2003; Yu and Singh 2003.

However, there are a few complexities that need to be built into the 

recommendation trust model. First, different recommenders may vary significantly in the 

estimation o f the performance of the same service provider. Second, different 

recommenders may observe different instances o f the performance of a given service 

provider. Third, deceptive recommendations may exist. To address the complexities, I 

develop an opinion-filtered recommendation trust model. The model applies graph 

searching algorithms and neural network techniques, and derives the recommendation 

trust based on a requester’s own trust standard and trust model.

1.3.2 Evaluating Recommenders’ Reputations

Instead o f integrating heterogeneous trust opinions, we might want to get the 

recommendations from trustworthy recommenders. However, there is limited research on 

evaluating an agent’s reputation as a recommender. A key challenge is that a 

recommender’s reputation is affected by both the recommender’s trustworthiness and the 

recommender’s expertise, including the recommender’s trust knowledge of others and the 

reliability of the recommender’s trust evaluation models. In this setting, I develop a
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Hidden Markov Model (HMM) based approach to measure an agent’s reputation as a

recommender. The approach models chained recommendation events as an HMM. Based

on the assumption that agents leam to choose reliable recommenders, the transition

probability matrix o f the HMM actually measures the recommenders’ reputations. There

are four attractive features of the approach. First, it does not require explicit reputation

evaluations o f chained recommendations. Second, it integrates a recommender’s

expertise as well as his/her trustworthiness into his/her reputation evaluations. Third, it is

applicable to any possible recommendation network including those with loops and

unreachable nodes. Fourth, the approach quantifies the learning speed of a

recommender’s reputation. The learning speed can be used as the reliability measurement

when recommendation events are sparse. The model can be applied to identify optimal

recommendation paths and to locate reliable file servers in P2P networks.

1.3.3 Deriving Global Reputation in 
a Distributed Trust System

With the development o f trust systems, an efficient trust management is in 

demand especially when the system becomes very large. Unfortunately, current 

centralized trust models are inappropriate to apply in large distributed multi-agent 

systems. This is mainly because, in a very large distributed trust system, local reputation 

management may use different trust evaluation models based on partially overlapped 

observations. Other related issues are computation complexity and efficiency, memory 

usage, scalability and availability. Under this situation, I aim to develop a global 

reputation model such that it has the capability (1) to distribute the load o f computation 

and memory among the global reputation management agent and local agents, (2) to 

allow local or distributed communities using different trust models, (3) to allow
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overlapping observations of the same user by different local communities, (4) to adjust to 

various changes, such as system restructuring, changes of trust models, local 

communities’ sizes and users’ trust behaviors etc., and (5) to express global reputations 

as linear or nonlinear combinations o f the local reputations, including some hidden 

factors that affect the reliability o f reputation evaluations such as local agents’ 

observation sizes and feedback deceptions in local communities.

1.4 D issertation Structure

This dissertation develops trust and reputation models in eCommerce and P2P 

applications. The dissertation consists o f five parts. Chapter 1 is the introduction. Chapter 

2 and Chapter 3 provide two different methods to obtain reliable recommendation trust 

respectively. Chapter 2 studies how to aggregate heterogeneous recommendations and 

builds an opinion filtered recommendation trust model in multiagent systems. Chapter 3 

provides an alternative method to get trustworthy recommendations. Instead of 

integrating multiple recommendations, it develops a Hidden Markov Model based 

approach to evaluate agents’ reputations as recommenders. Chapter 4 considers a special 

case in a distributed system where local agents are recommenders. Chapter 4 proposes 

distributed trust management when a trust system becomes very large and computation 

efficiency, scalability and availability become the issues. Chapter 4 builds a global 

reputation model for the users who participate in multiple local reputation systems. 

Chapter 5 concludes the research work.

In Chapter 2, an opinion filtered recommendation trust model is presented. This 

chapter studies the problem of heterogeneous and deceptive recommendations in trust 

management. It focuses on how to accurately and effectively derive trust value o f an
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unknown party from multiple recommendations. It designs an ordered process o f depth- 

first search for recommenders. It also develops an algorithm to identify qualified 

recommenders and to aggregate their recommendations. The aggregation is done by back 

propagation neural techniques. Since the derived trust value is based on an agent’s own 

trust standards, it makes trust decisions easier. The experimental results show that the 

neural network trust model converges at fast speed with high accuracy. More important, 

the model performs well under various accuracy requirements and is capable of 

aggregating multiple recommendations nonlinearly.

In Chapter 3, a Hidden Markov Model based approach is developed to measure an 

agent’s reputation as a recommender. The approach models chained recommendation 

events as an HMM. Based on the assumption that agents learn to choose reliable 

recommenders, the transition probability matrix o f the HMM actually measures the 

recommenders’ reputations. The Baum Welch algorithm is modified so that it can 

accommodate cycles and non-reachable states in a recommendation network, and have 

the capability to model a global maximum of multiple recommendation chains.

In Chapter 4, a distributed trust management structure is proposed. This chapter 

designs a global reputation model. The model derives global reputations for users with 

multiple local reputations in a large and sparse distributed system. The distributed 

reputation model has the capability (1) to allow local or distributed communities using 

different trust models, (2) to allow overlapping observations o f the same user by different 

local communities, (3) to adjust to changes o f system restructuring, local communities’ 

sizes, their trust models, and users’ trust behaviors etc., (4) to distribute the load of 

computation and memory among global reputation management agent and local agents,
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(5) to express global reputations in terms o f nonlinear combinations of the local 

reputations as well as the various factors that affect the reliability o f reputation 

evaluations such as observation sizes and rating deceptions. The experimental results 

showed that a three-layered neural network converges at 4th iteration o f the 

backpropagation algorithm and has accuracy o f 94.4% and above when we compared the 

derived reputation from the distributed reputation model with a centralized reputation 

model. The rapid convergence speed and high accuracy meets the online reputation 

management requirements, that is, fairness, responsiveness, and reliability.
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CHAPTER 2

OPINION FILTERED RECOMMENDATION 

TRUST MODEL

A multiagent distributed system consists o f a network of heterogeneous peers o f 

different trust evaluation standards. A major concern is how to form a requester’s own 

trust opinion o f an unknown party from multiple recommendations, and how to detect 

deceptions since recommenders may exaggerate their ratings. This chapter presents a 

novel application o f neural networks in deriving personalized trust opinion from 

heterogeneous recommendations.

2.1 Background and Motivation

Trust evaluations in multiagent systems (Azzedin and Maheswaran 2002; 

Comelli, Damiani, and Samarati 2002; Daniani, Vimercati, Paraboschi, Samarati, and 

Violante 2002; Gupta, Judge, and Ammar 2003) have been studied by many researchers. 

Examples o f recommendation trust models are social network topological model (Pujol, 

Sang, and Halberstadt 2002), Bayesian rating model (Mui, Mohtashemi, and Halberstadt 

2002), Bayesian Network model (Wang and Vassileva 2003), Dempster-Shafer belief 

model (Yu and Singh 2001; Yu and Singh 2003) and EigenTrust model (Kamvar, 

Schlosser, and Garcia-Molina 2003).

13
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In a large distributed system of heterogeneous agents, there is no centralized trust 

storage or management facility. Agents rely on social mechanisms to form their trust 

opinions o f other unknown parties (Montaner, L'opez, and Rosa 2002; Riggs and 

Wilensky 2001; Schafer, Konstan, and Riedl 1999; Schafer, Konstan, and J.Riedl 2002; 

Vassileva, Breban, and Horsch 2002; Zacharia and Mae 1999). However, agents o f 

different estimation processes and trust evaluations may evaluate the same online 

service/product differently. Also, agents may provide deceptive recommendations.

Consider a simple scenario. A requester gets trust opinions from M  agents (known 

as recommenders) about an unknown movie file provider. Assuming all the 

recommenders use weighted average methods to evaluate the provider’s service, if  there 

are m factors affecting the recommenders’ trust evaluations, we have:

m
A = • (2.1)

i=i

Where v,- stands for Recommender z’s trust opinion, w'} stands for a weight assigned to 

trust factor j  by Recommender z, and u'. stands for Recommender z’s trust evaluation of 

Factor j .  For example, u, can be movie file download speed or file quality, wf and are

unknown to the requester.

An opinion filtered problem is: given v,- based on Equation (2.1) and a requester’s 

trust evaluation weightsw °(j = 1, 2 ,- - , m ), how can someone obtain the requester’s trust

opinion o f the party o f interest v q ?  We have M  equations o f 2Mm unknown variables.

There are other complexities involved in obtaining opinion filtered 

recommendation trust. Two of the notable situations are:
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(1) Local trust models used by recommenders may vary. If recommenders use 

weighted average methods to evaluate a single file sharing application, an 

accumulated evaluation based on past behaviors becomes:

m
L = f  ( X  (OX i = h 2, • • •, M , t = 1, 2, • • •, 7) (2.2)

j =i

where f  stands for Recommender i ’s trust model, t is the transaction, and 7} stands 

for total number of trust evaluations, f ,  vt/- m'. and 7) are unknown to the 

requester.

(2) Recommenders may exaggerate their trust opinions. Equation (2.2) then 

becomes:

m
”, = (2.3)

M

Where gt stands for Recommender i’s deception function. gt is unknown to the 

requester.

The opinion filtered recommendation problem then becomes: given v;- based on 

Equation (2.3), a requester’s trust evaluation weightsw°(y =1, m ), and his trust

model fo, how should one obtain the requester’s trust opinion o f the party o f interest vo?

M
There are 2M r n ^ T t unknown variables and 2 M unknown functions in M equations.

(=i

This chapter addresses these challenges and provides a solution to filter 

heterogeneous recommendations. It assumes that a requester’s trust opinion is a function 

o f the M  recommenders ’ recommendations:

v0 = F (vl ,v 2, . . . , v M). (2.4)
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What it does is to approximate function F. Suppose there are N  movie file providers with 

whom the requester and the M  recommenders all have direct experiences. Given the 

requester’s and the recommenders’ trust opinions o f the N  providers, v / , where 

i = 0 ,1 ,. . . , M , j  = 1, 2 ,.. . ,  N , the original opinion filtered recommendation trust 

problem now changes into an optimal problem, i.e., to find a function F  such that the 

summation of the squared estimation errors is minimized.

m inZ ( vo “ F (vi ’ v2 > - . < ) ) 2 (2.5)

Where vJQ stands for the requester’s trust opinion o f movie file provider j ,  and v/ stands

for recommender i’s trust opinion of movie file provider j .  Once F  is found, we plug in 

the M  recommenders’ trust opinions o f the party o f interest and obtain the requester’s 

trust estimation o f the party of interest.

We use neural network techniques to solve optimal problem (2.5). Before solving 

the optimal problem, we need to find the M  recommenders and N  movie file providers. 

The M  movie file providers are known as qualified recommenders (see Section 2.3). They 

have direct experiences with the N  movie file providers as well as the party o f interest. 

An ordered depth-first search algorithm and an algorithm to identify qualified 

recommenders are developed for this purpose.

2.2 Development of Depth-First Recommendation Network

An ordered depth-first search algorithm is developed. In order to facilitate an 

efficient search for recommenders, I rate recommenders and search in the order o f their 

ranks.
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2.2.1 Evolution of Ordered Recommender Set

A requester keeps a rated set o f recommenders (context dependent). A 

recommender set R contains both qualified recommenders (see Section 2.3) QR and 

unqualified recommenders NQR. All qualified recommenders are ranked higher than 

unqualified recommenders. Qualified recommenders are ranked by the number o f times 

they have been selected as qualified recommenders. Unqualified recommenders are 

ranked by the number o f times they have selected as recommenders but are excluded 

from being the qualified recommenders. Initially, the qualified recommender set is empty 

and the unqualified recommender set consists o f all the acquaintances of the requester. 

The acquaintances are ranked by their trust values. Recommender set R  is updated and 

reordered after the requester sends a new query to every recommender r e R and obtains 

a current set of qualified recommenders QRC and unqualified recommenders NQRC. A 

requester’s recommender set is updated as the following:

Algorithm 2.1. Update Ordered Recommender Set
1: for each r e QRC
2: if  r e  QR
3: increase the rank o f  r  by 1;
4: end if
5: else if  r e  NQR
6: remove r from NQR,
7: append r to QR with rank -  1;
8: end else if
9: else
10: append r  to QR with rank = 1;
11: end else
12: end for
13: for each r  e NQRC 
14: if  r e  NQR
15: increase the rank o f r  by 1;
16: end if
17: else i f  r i  R
18: append r to NQR with rank = 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

19: end else if
20: end for

2.2.2 O rdered D epth-First Recommendation Network

A requester sends trust queries to the agents in his/her recommender set R. The 

agents send back their feedbacks. If an agent has direct trade experiences with the party 

o f interest, his/her feedback is a recommendation, including his/her ID and the trust value 

o f the target. Otherwise, the agent sends up to Ref_Limit referrals, where R efL im it  is the 

branching factor o f recommendation trust networks. A referral contains a referrer’s ID 

and a referee’s ID. The referees are the top ranked recommenders in the referrer’s 

recommendation set R. The referrals are sent to the requester in the order o f  the referees’ 

ranks. The referrals are also processed in the order o f the referees’ ranks. Once a referral 

is processed, it is processed sequentially till one o f the following scenarios happens:

(1) A recommender is found;

(2) A referral reaches an agent that ends up nowhere;

(3) The referral chain reaches the chain length limit; or

(4) the referee has already been queried in a previously processed feedback.

The requester then starts processing the next highly ranked feedback till all the feedbacks 

are processed. That is how a trust recommendation network is built. By building the 

recommendation trust network in a depth-first style (Cornien, Leiserson, Rivest, and 

Stein 2001), every referee is queried exactly once. Figure 2.1 shows an example o f an 

ordered depth-first recommendation trust network trustNet.

Feedback: Feedback is represented by a C++ struct containing a recommender 

JD,fromAgiiet_ id, and a union V al. V al is either a referee ID, toAngent_ id, or the trust 

value o f the party o f interest, trustVal.
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struct {
String from  Agent__ id; 
union/'

String toAgent_ id; 
real irustVal;

}Val;
^Feedback;

Recommendation: If Feedback. Val is a real type, the feedback is a 

recommendation. Feedback.fromAgen.t__ id is the recommender and Feedback. Val is the 

recommended trust value o f the party o f interest.

Referral: If Feedback. Val is a String type, the feedback is a referral. 

Feedback. Val is the referee ID.

Referral Chain: A referral chain is a sequence o f referrals, where the previous 

referee is the next referrer in any two contiguous referrals.

Figure 2.1: Ordered depth-first recommendation trust network. The edges are numbered 
in the order o f the reference. A number inside a pair o f parenthesis shows a repeated 
reference. A solid edge represents a first time reference. A dotted edge represents a 
reference already processed.

Q  Requesting agent  New referee at the right end 3 The order in which the ed ge  is visited

o r  -10.(2 4 )  |={e feree at the right end already exists 

(O )  Recommender, the last node of a successful referral chain Q  referrer as well a s  referee

Referrer (last node of a chain) who refers already existent referees/recommenders only

The referee reaching the referral length limitation at a referral chain, or a dead-end referee
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In Figure 2.1, users are identified by different shapes such as requester, 

recommender, and intermediate recommender (referrer as well as referee). The detailed 

algorithm (developed based on standard depth-first search algorithm by Cormen, 

Leiserson, Rivest, and Stein 2001) is shown in Algorithm 2.2 ODFS and Algorithm 2.3 

ODFS-Visit, where nodes’ colors are used to represent the search status. For example, a 

white node stands for the node whose reference is not yet processed; a gray node stands 

for the node whose reference and the chained sequences o f the references have not yet 

fully searched; and a black node stands for the node whose references and the 

correspondent chained sequences o f references have been fully searched.

Algorithm 2.2. Ordered Depth-First Search. ODFS (Requester)
1: length 0
2: for each r e f ?  o f the Requester’s recommender set (initialization)
3: color[r] <- white (white: unprocessed)
4: parent[r]«- nil
5: end for 
6: time «- 0
7: for each r e f ?  (search)
8: if  color[r] — white
9: length <- length + 1
10: ODFS-Visit (r, Requester)
11: end if
12: end for

Algorithm  2.3. O rdered D epth-First Visit. ODFS-Visit (r, Requester)
1: colorfr] *- gray (gray: in process)
2: time *- time + 1
3: d[r] •*- time (set discover time)
4: if  r has direct experience or length > limit
(r is a recommender or the recommendation chain has reached length limit)
5: colorfr] *- black (black: finished)
6: parent[r]<- Requester
7: f[r] •*- time «- time + 1 (finish time)
8: length ■*- length-1 (backtrack one level)
9: return
10: end if
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11: for each recommender i in r ’s ordered recommender set
12: if  color[i] = white
13: parent[i] r
14: length length + 1
15: ODFS-Visit(i, r)
16: end if
17: end for
18: color[r] ■*- black
19: f[r] time time + 1 (finish time)

2.3 Identification of Qualified Recommenders

Qualified recommenders (QRc) is a subset o f recommenders Rc obtained through 

building trustNet. Their trust opinions are used as training data to build a neural network 

(see details in Section 2.4). Algorithm 2.4 summarizes the process o f selecting qualified 

recommenders. First, the requester selects top N  active movie providers with whom he 

has direct experiences and exchanges his opinions with the recommenders. A two 

dimensional array RP  is built where element 2?P[z][/] is either 1 or 0, representing that 

recommender r; e  Rc has or has not direct trust experiences with movie file provider

Pj e  P . Recommenders that know less than ceil\ movie file providers (in our case, 18)

are excluded and movie providers that are known by less than ceih  recommenders (in our 

case, 4) are also excluded. A new RP  array is built based on the selected recommenders 

and movie file providers. The top ceil3 (in our case, 4) recommenders that know the 

majority of the movie file providers are selected as qualified recommenders. Those movie 

file providers that are known by all the ceih qualified recommenders form new P.

Qualified Recommenders: recommenders who have direct experiences with a 

set o f movie file providers that the requester also has direct experience with.

Algorithm 2.4. Identify Qualified Recommenders
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1: build RP  table;

2 : set r[i] = £ .« ;> [< ][/];

3: set % ']= £ » > [ ;] [ .,■ ] ;

4: set QRc — fa}, where T[i\ >ceil\ ;
5: set P  = {pj}, where S{j] >ceili;
6 : rebuild RP table;
7 :s e t r [ i ]  = ^ .i? P [ i] [7];

8: sort 1\i] and select the top ceils recommenders as QRc; 
9: set P  = {pj}, where itP[z'][/] = 1 for each rf e QRC;

2.4 Neural Network-Based Opinion Filtered 
Recommendation Trust M odel

A recommendation trust neural network is trained by the qualified recommenders’ 

and the requester’s trust opinions o f the movie file providers ( Vpj e  P). The model is

adaptable based on the requester’s accuracy requirement and the dynamic nature o f

online trust (see Section 2.4.2).

2.4.1 Artificial Neural Network 
of Recommendation Trust

A recommendation trust neural network is composed of highly interconnected 

processing neurons. The neurons work together to estimate the requester’s trust opinion 

o f an unknown party from heterogeneous recommendations. Like people, a 

recommendation trust neural network leams by examples. A recommendation trust neural 

network has one input layer, one or more hidden layers, and one output layer. There are 

\QRc\ neurons in the input layer, which receives the trust opinions from the qualified 

recommenders QRc. The optimal number o f hidden layers and the optimal number o f 

neurons in those hidden layers are mainly determined by the nonlinear relationship 

between the heterogeneous recommendations and the desired convergence speed o f the
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model as well as the accuracy requirement. Since the desired output is an opinion filtered 

recommendation trust, we set only one neuron in the output layer.

The backpropagation algorithm (Mitchell 1997) is used to train the neural 

network. It adjusts the weights o f neuron connections until an optimal estimation error is 

achieved. Iterations o f three steps are involved:

(1) Qualified recommenders’ trust opinions flow forward through the neural network. 

The output of Neuron i is:

°i =(JC L vj wj^  (2-6)
j

Where j  stands for a neuron in the input layer if  i is a neuron in the hidden layer, 

or, j  is the neuron in the hidden layer if  i is a neuron in the output layer, vj stands 

for the input value of Neuron j .  If  j  is a neuron in the input layer, vj stands for 

Recommender f s  trust opinion. Otherwise it stands for the input value from 

Neuron j  in the hidden layer, wy represents the weight assigned to the connection 

between Neuron i and Neuron j .  a is the sigmoid function. It is also known as 

logistic function:

o - W - r - Q -  (2.7)
1 + e >

(2) Approximation errors flow backward. The error term of the only one neuron at the 

output layer is:

Sk = ok( \ - o k) ( t - o k) (2 .8)

Where Neuron k  is the only neuron in the output layer. ok stands for an output

trust, specifically, an approximated opinion filtered recommendation trust. T  

stands for an actual trust opinion o f the requester. (t -  ok) stands for the difference
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between an estimated recommendation trust and an actual trust opinion o f the 

requester. o*(l-o*) is the derivative o f sigmoid function o*. The error item of 

Neuron j  in the hidden layer is:

Where oj stands for the output o f Neuron j  in the hidden layer, wjk stands for the 

weight of the connection between the hidden layer Neuron j  and the only output 

layer Neuron k.

(3) Connection weights are adjusted based on the errors. The squared estimation 

errors are reduced for each data flow iteration. The purpose of backpropagating 

error items is to adjust the weights assigned to the neuron connections and 

decrease the errors. Weights are updated as:

Where i stands for an input layer or hidden layer neuron, j  stands for a hidden 

layer or output layer neuron, v,- stands for the input value o f Neuron i, and r} stands 

for learning speed.

The three-step process continues until a stop condition satisfies. The stop

condition can be an acceptable approximation error size, number o f weight updates

(known as iterations), or a certain accuracy level, or any combinations o f  the three.

Algorithm 2.5 summarizes the training process o f a neural network. Algorithm 2.6

develops an opinion filtered recommendation trust model.

Algorithm 2.5. Train Trust Network 
1: initiate neural network neuralNet:
2: set up stop condition stopCond;
3: while (stopCond is not satisfied)
4: for each p ( e  P

5j = oj Q .-o j )w]k8k (2.9)

wij = wij (2 .10)
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5: calculate the output o f neurons;
6 : propagate errors backward;
7: update connection weights ;
8: end for
9: end while

Algorithm 2.6. Neural Network-Based Trust Model
1: ordered depth-first search for recommenders Rc;
2: identify QRc (See Algorithm 2.4);
3: update ordered recommender set i?(see Algorithm 2.1);
4: train trust neural network (see Algorithm 2.5);
5: input recommendations from QRc into the nueral network;
6: output the opinion filtered recommendation trust

2.4.2 Adaptability and Optimization 
of the Model

One of the advantages o f the neural network-based recommendation model is its 

adaptability and flexibility. The model is designed to be able to catch the dynamic nature 

o f online trust, such as changes o f trust behaviors, changes o f trust models, and changes 

o f expertise o f agents. Figure 2.2 shows the architecture o f the model. A requester keeps 

the last trained neural network in its memory. Once a new query o f the same trust 

category comes up, the requester first communicates with the qualified recommenders 

whose opinions had been used to build the neural network (see Step 1 in Figure 2.2). If 

all o f them know the new party o f  interest, the requester inputs their trust opinions 

through the neural network and immediately gets the requester’s own trust opinion (see 

Step 6 following the thick solid arrows in Figure 2.2). However, if  the neural network 

was built beyond a certain period o f time, or some qualified recommenders have changed 

their trust models, or the requester changes his/her trust estimation accuracy requirement, 

the requester needs to collect up-to-date trust data and retrain the neural network (see 

Step 7 following the dotted arrows in Figure 2.2). If  not all the neural network 

recommenders can provide current trust recommendations, the requester needs to build
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recommendation trust network, identify qualified recommenders, update his/her rated 

recommendation set and build a new neural network (see Step 2-5 following the thin. 

solid arrows in Figure 2.2).

To save the time spending on the search o f current recommenders, identification 

of current qualified recommenders and train of a new neural network, each agent may 

save several most recently used neural networks (under the same trust context). An agent 

searches for current recommenders only when all the recommendation neural networks 

are unable to provide recommendations for the current trust query. In this case we trade 

memory for speed.

2.5 Experimental Results on Simulation Data

My experiments are based on the simulation result o f movie file sharing in a P2P 

network o f 50 agents. Total 500 transactions were simulated. Movie file providers and 

downloaders were generated randomly from the 50 agents. Each movie file provider was 

randomly assigned an average file quality value and file download speed value. A movie 

file provider’s trust behavior is evaluated by the weighted average o f file quality and file 

download speed. The weights o f those two factors are normalized and vary from one 

agent to another. The weights are unknown to other agents. I also simulated both 

deceptive and nondeceptive recommendations. I assume a recommendation trust follows:

Vrec = min{\, CVact) (2.11)

Where c is a factor larger than 0. vact is the actual trust rating, and vrec is the 

recommendation. I f  c =  1, the recommendation is honest. If  c < 1, the recommendation is 

exaggeratively low, and i f  c > 1, it is exaggeratively high.
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Three experiments were conducted based on the simulation data. Experiment 1 

tests the model’s convergence speed under various estimation accuracy requirements. 

Experiment 2 tests the robustness o f the model with increased training data sets 

containing deceptive recommendations. Experiment 3 trains the trust model by the first 

half o f the training data and uses the second half o f the training data to test the model’s 

reliability. I set 10 different estimation error sizes and ran the opinion filtered 

recommendation trust model (see Algorithm 2.5) twenty times for each error size. To 

train a trust neural network, I randomly set learning speed r? in a range o f [0.4, 0.6], I 

randomly set the initial weights o f the connections in a range o f [-0.05, 0.05], The stop 

condition o f training the neural network was set as logic AND combination of: (1) there 

were at least 15 out o f 16, or 17 out o f 18, or 32 out o f 36 correct estimations (see 

correctness definition in Equation (2.13)), given that there were 16, 18 and 36 sets of 

training data separately, (2) the summation o f the squared estimation errors over the 

training data sets was less than 0.2, and (3) total iterations o f training the neural network 

were less than 2,000,000.
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1. Com m unicate with last qualified recom m endersC hanged  qualified recom m enders'

C hanged  trust accuracy, out of dats 
Neural network?

6, input recom m endations through 
the  trained neural network

Figure 2.2: Adaptive recommendation trust neural network. The neural network is 
adaptive to various changes in trust behaviors, trust evaluations, recommenders’ expertise 
and requester accuracy requirem ent.

2.5.1 Convergence Speed and Accuracy

Experiment 1 generated four qualified recommenders based on 200 transactions. 

There were 16 movie file providers with whom the requester and the recommenders all 

had direct experiences. Table 2.1 provides their trust opinions on those 16 movie file 

providers. Let of stand for the output trust value o f movie file provider pi from the neural 

network model, and U stand for the requester’s actual trust opinion o fp t. err is defined as:

(2 -12)JL i

A correct estimation is defined as the one satisfying \o{-U\ <0 (6 is a constant), i.e.,
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f 1, fo r  | o; -  tf |< 0 
r ( 0^ H  ’ * (2.13)

0, otherwise.

Table 2.1. R u i  net ns Trust Opinions
Movie Fite 
Provider

Quahfit J  I0..i,.ouim.ei3cter OR,- Requester
<F i j <Fa qr4 ro

Pi 0,4 0.45 0.55 0.35 0.6
1>2 0.46 0,5 0.58 0.42 0.62
Pi 0.76 0,75 0.73 0.77 0.72
P i 0.58 0.6 0.64 0,56 0,66
PS 0.72 0.75 0.81 0.69 0,84
P6 0.7 0.7 0.7 0.7 0.7
P7 0.52 0.55 0.61 0.49 0.64
PS 0.68 0.7 0.74 0,66 0.76
P9 0.74 0.75 0.77 0.73 0,78

PlO 0.78 0.8 0,84 0.76 0.86
Pll 0.72 0,75 0.81 0,69 0.8-4
p i  2 0.56 0.6 0.68 0,52 0,72
Pl3 0.66 0.7 0.78 0,62 0,82
P14 0.7 0.7 0.7 0.7 0.7
PI 5 0,64 0.65 0,67 0.63 0.68
Pm 0.52 0,55 0.61 0.49 0.64

Where 0 is an error threshold, o and 0 stands for the output trust and the requester’s 

actual trust evaluation o f movie file provider p t. I ran the opinion filtered 

recommendation trust model twenty times on an initial neural network with a randomly 

assigned learning rate and neuron connections. The purpose is to examine the 

performance o f the model under different neural network parameters (finding optimal 

parameters are out o f our current discussion scope). Figure 2.3 demonstrates the 

convergence speed o f the model when 93.75% estimations have error size less than 0.08. 

The average convergence speed was only 4545 iterations. The summation o f estimation 

errors, i.e., err, varied from 0.019 to 0.020 for each o f 20 runs.
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Convergence at Various Learning 
Rates with Estimation Correctness 93% 

and above

15000

10000

5000

0

learning rate

O  Estimation Error 
Threshold 0.08

Figure 2.3: Convergence at various learning rates with estimation correctness 93% and 
above, where 6 = 0.08. All 20 runs had err in the range o f [0.019, 0.020],

Table 2.2 shows the average convergence speed and estimation correctness under 

various estimation error thresholds. The estimations were 100% correct if  the estimation 

threshold was allowed to be no more than 0.15. The model converged at 404,047 

iterations. To increase the estimation accuracy such that the allowable error threshold is 

less than 0.05, I had 93.8% correct estimations. The average convergence speed was 

1,435,770 iterations.

2.5.2 Reliability

I tested the reliability o f the model in terms o f the model’s convergence speed and 

accuracy by:

(1) varying the estimation accuracy requirement, i.e., error threshold 9;

(2) introducing deceptions to the recommendations;

(3) varying training data sizes;
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(4) varying learning rates;

(5) varying a mix of the above parameters;

(6) using testing data to test the accuracy o f the trust model.

Figure 2.4 compares the convergence o f the model at different estimation error 

thresholds. It shows that when 6 was decreased from 0.08 to 0.05, in order to maintain the 

same high estimation correctness level, more iterations are required. O f the 20 runs, an 

average o f 9275 iterations was taken when 9 = 0.05, which was 2834 more than the 

average iterations when 9 = 0.08.

Figure 2.5 compares the convergence o f the model with and without deceptive 

recommendations under estimation error threshold 9 = 0.05. Deceptive recommendations 

follow Equation (2.11), where c = 1, 1.3, 1.2, and 0.9 for the four qualified 

recommenders individually, c is unknown to the requester. I ran the trust model 20 times 

with random learning rates and random initial connection weights. It took only 2023 

more iterations in average to detect deceptive recommendations. All results, with or 

without deceptions, had 93% correct estimations. Deceptive recommendations do not 

have significant impact on the model’s accuracy and convergence speed.
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Table-! 2,2, Con c ,*n H ’n ioctness of Opinion Filtered Trust Model
Es t i tn at; ion Error Learning Rate Convergence Correctness

9 ' } ] (number of iterations) E  T t u m

30% 0.485 54042 16
25%- 0.48 165260 16
20% 0.49 273207 16
15% 0.515 told 17 16
10% 0.555 r c i ’t.vj 15
9% 0.475 684838 15
8% 0,5 810923 15
7% 0,59 1006285 15
6% 0,595 1221718 15
5% 0.595 143-5770 15

Convergence at Various Learning Rates 
with at least 93% Correct Estimations

(A
Co

20000

15000

10000

5000

0

. l l

m n m

so m r- co o> so io in ioo  o  •*' **•; oo  o  o  o
learning rate

i
□  Estim ation Error 

Threshold 0 .0 8

■  E stim ation Error 
Threshold 0 .0 5

Figure 2.4: Convergence at various learning rates with at least 93% estimation 
correctness. Extra 2834 iterations were taken to detect deceptions and maintain the same 
level o f estimation correctness.
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Convergence at Various Learning Rates 
with at least 93% Correct Estimations

20000

m 15000c
;§ 10000

S  5000 

0 iililt
~i n —rn —n  n —m —r i —n —n —r

c o  m  ur> c o  lo  cdlO ID O

learning rate

O Non Deceptions 
■ Deceptions

Figure 2.5: Convergence at various learning rates with at least 93% correct estimations. 
Estimation error threshold 8 = 0.05.

Figure 2.6 and Figure 2.7 show the performance o f the opinion filtered trust 

model under different accuracy requirement with and without deceptive 

recommendations, where c = 1, 1.3, 1.2, and 0.9 (see Equation (2.11)) for the four 

qualified recommenders individually, c is unknown to the requester. The results show 

that the model converged at an average o f 34.8% more iterations under deceptive 

recommendations than under nondeceptive recommendations when estimation error 

thresholds were set less than 0.15. When estimation error thresholds were in the range 

from 0.15 to 0.30, surprisingly, the model converged faster by 12.5% under deceptive 

recommendations than under nondeceptive recommendations. This might result from 

differences in randomly generated learning rates and initial neuron connections. 

Estimation error threshold 8 = 0.10 is a critical point. Once 0 is less 0.10, the
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convergence speed dramatically slows down. Figure 2.6 and 2.7 both demonstrate that 

deceptive recommendations do not significantly affect the reliability o f the model.

Estimation Correctness with and without 
Deceptive Recom m endations under Various 

Accuracy Requirement

100
90
80
70
S3
93
40
30
3D.
10.

0

00%
00%
00%
00%
00%
00%
00%
00%
00%
00%
00%

□Non deceptions 
^Deceptions

kO CO o o o
O O O CO o o  o o o o 

esB  m a tro n  error threshold

oo cr) o  m o  w  oo  O ■*- t- CM (N co

Figure 2.6: Estimation correctness o f the trust model with and without deceptions under 
various estimation accuracy requirements.

Convergence and Accuracy with and without 
Deceptions

1 6 0 0 0 0 0

1 4 0 0 0 0 0
1 2 3 0 0 0 0
1000000

800000
600000
400000
230000

0
0.03

-Non Deceptions

-Deceptions

0.10 0.20 0 .3 0 0.40

estimation eirar threshold

Figure 2.7: Convergence o f the trust model with and without deceptions under various 
estimation accuracy requirements.

Experiment 2 generated four qualified recommenders based on all the 500 

transactions. There were 36 movie file providers with whom the four qualified 

recommenders and the requester had direct experience. I compared the model’s
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performance trained by 36 sets o f recommendations with the performance by 16 sets of 

recommendations. Both recommendation sets contained deceptions. Figure 2.8 shows 

that the convergence speed o f the trust neural network trained by 16 sets of 

recommendations was slower by 6.4%. The reason is that since there was not enough 

training data to catch deceptions, it took more iteration to achieve the same level of 

estimation accuracy. Figure 2.9 compares correctness estimations under both cases. It 

demonstrates that the model provided comparable correctness estimations under 36 sets 

o f recommendations with 6.4% less iterations. Thus, the model is robust and reliable.

In Experiment 3, four qualified recommenders gave trust recommendations on 36 

movie file providers. I used the trust opinions o f the first 18 movie file providers as the 

training data and the trust opinions o f the second 18 file providers ( p ‘, i  = 1, 2, ...18) as

the testing data to test the accuracy o f the model. Table 2.3 shows the experimental 

results, where \ot -  h| stands for the estimation error. The average estimation error is less 

than 0.012 for the training data set without deception recommendations and less than 

0.015 for the training data set with deceptions. The estimations over the 18 testing data 

set were 100% for both nondeceptive data and deceptive data. O f all the 36 training sets, 

the estimation correctness was 97.2% with and without deceptive recommendations.

2.6 Experim ental Results on Real D ata 

Due to the unavailability o f eCommerce trust data, I design a survey as an 

alternative to test the proposed neural network-based recommendation trust model. Based 

on the real data collected from the survey obtained through ordered depth-first search, a 

neural network trust model is constructed. Neural network training, validation and testing 

techniques are applied to the constructed model.
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Accuracy under Different Training Size with 
Deceptions

® 100.00% -| 
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Figure 2.8: Estimation correctness o f the trust model trained by 16 and 36 sets of 
recommendations under various estimation accuracy requirements. The training data 
contain deceptive recommendations.

Convergence and Accuracy with and without 
Deceptions

1600000 
1400000 
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Figure 2.9: Convergence o f the trust model trained by 16 and 36 sets o f recommendations 
under various estimation accuracy requirements. The training data contain deceptive 
recommendations.

Table 2.3: Estimation error size o f the opinion filtered recommendation trust model on 
the test data with and without deceptive recommendations. The neural network was 
trained at 6 = 0.05 with 94.4% correctness.
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Movie Fils Non Deceptions Deceptions
Provider -  Li |<>i -  f ,j

A Cl t 90 .5 > Ok 17, {*
d o f * <rvi ’1 OOOiO't
d 0.013394 0.010787
n 0.000045 0.004974
n 0.007191 0.005288
t i 0.024573 0,033638
A 0,000761 0.006260
p$ 0.037626 0,042990
A 0,013394 0.010787
Pm 0.007191 0.005288
„tPn 0,050580 0.056620
i d 0.000761 0,006260

. Ms 0.029345 o . o n m
M, 0.007191 O.OOUw
i% 0,002656 0.001046

~  A T ....‘
0.000635 0,004730

-r-SPl7 0.01)0761 0,006260
Pm (1 007191 U 9  i

Average 0 011972 ‘Mil 1 -ij

2.6.1 Survey Design and Trust 
Model Construction

The purpose o f the survey is to build a recommendation network and select 

qualified recommenders. The recommenders are faculty members in the computer 

science program, graduate students in the CAM and computer science programs and 

undergraduates in computer science at Louisiana Tech University. Recommendation 

chains are developed through ordered-depth first search, where faculty members have the 

highest rank, followed by senior graduate students, junior graduate students and 

undergraduate students. O f the recommendation network, four chains are fruitless and the 

last nodes o f the chains do not provide any feedback. Figure 2.10 shows the 

recommendation network we developed in the survey. Different from the simulation 

where a node in the recommendation network is either a direct recommender or an
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intermediate recommender, a node in the survey recommendation network can be both

the direct recommender and the intermediate recommender. We chose some well known

computer and mathematic books, widely used programming software, search engines,

and eCommerce websites as the target objects for recommendations. Recommendation

rates are real numbers in the range o f 0 and 1, where 0 means least satisfaction and 1

means highest satisfaction. Out o f the 16 recommenders, we selected the five

recommenders who rated all the common 30 objects (see details in Appendix A). O f the

five recommenders, we randomly selected four as the qualified recommenders and the

other one as the requester. Thus the input of the recommendation neural network is the

four qualified recommenders’ rates. The requester’s rates are used as the target values to

adjust the weights o f the neural network such that the output o f the neural network trust

model provides the least square estimation o f the target values. Table 2.4 lists the

recommendation rates.

2.6.2 Performance of the Neural Network 
Recommendation Model

Two sets o f performance testing are conducted in terms o f convergence speed and 

accuracy. Set one tests the performance o f the trained recommendation neural network 

only. Set two validates and tests the performance o f the trained recommendation neural 

network.

2.6.2.1 Testing the Model I use the first 15 sets o f  the recommendation data in Table 2.4 

as the training data to train the neural network. I then use the second 15 sets o f the data as 

the testing data to test the performance o f the established neural network model. To train 

the neural network, I randomly set the learning rate and initial weights o f the neural
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© Direct recommenderI I Intermediate recommenderRequester

\O j  A dead-end referee where no feedbacks have been received.

  Successful referral ------------  Repeated referral

Figure 2.10: Ordered depth-first recommendation network in the survey. A solid edge 
represents a first time reference. A dotted edge represents a reference already processed.

network. Twenty experiments were carried out. The average estimation error size is 

0.025, the average estimation correctness is 93.33%, and the average convergence speed 

is 140823. Using these twenty trained neural networks, I test how accuracy they are by

the second 15 sets o f the survey data. Table 2.5 shows that 6 out o f the 20 trust models

have estimation correctness higher than 73.3% and 12 out o f the 20 trust models have 

estimation correctness o f 60%, and the rest 2 trust models have estimation correctness o f 

53.3%. By average, the estimation correctness is 63.3%. The experiments indicate that 

the model may be overfitted to the training data sets since the estimation correctness o f 

the test data is not very high. Also, the six trust models with the highest testing accuracy 

indicate that we may optimize the recommendation neural network model by adjusting
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the initial weights and learning rate through validation. That is why the neural network is 

validated and tested in Section 2.6.2.2.

2.6.2.2 Validating and Testing the M odel I use the first 9 sets o f the recommendation 

data in Table 2.4 as the training data, the second 9 sets o f the recommendation data as the 

validation data to modify the neural network to ensure higher accuracy, and the last 12 

sets o f the recommendation data as the testing data to test the accuracy o f the model. I 

first tested the existence o f neural network overfit. In the process o f  neural network 

training, I applied the neural network weights to both the testing data and the validation 

data sets and compute the estimation errors. Figure 2.11(a) shows that the estimation 

errors o f the training data decrease monotonically with the iterations. Figure 2.11(b) 

shows that the estimation errors o f validation data decrease first then increase 

dramatically. The dramatic increase o f estimation errors in validation data is known as 

the problem o f overfitting. This means the neural network fits the unique characteristics 

o f the training data, instead o f fitting the general properties.

To prevent overfitting, I applied validation techniques to the back propagation 

process. The back propagation process is terminated when the estimation errors o f the 

validation data increases significantly. In other words, before the neural network fits the 

specific characteristics o f the training data, the training process finishes and returns a 

neural network o f higher accuracy on both the training data and validation data. 

Validation could also be done by adjusting the neural network parameters, for example,
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Table 2.4. Training data o f the recommendation neural network model

Object. Qualified Recommender Q R C, Requester
P ’i ?r2 9 r 3 | f ' “4 >"0

Pi i! 0.8 0.4 1 0:9
Pi M S'.

i> ?f
0.9 0.7 1 0.9

P3 0.9 0.3 ....” ..........”1 ........ ............... ' 0.95
P'i U.6 0.8 1 0.9 0,8
Ps 0.7 0.4 0 0.7
PC 0.5 0,9 0.2 0.65
P7 0.6 i! I 1 0.2 0,85
PH 0.9 0.9 1 0.8 0,85
P» 0.85 0.98 0,2 0.8 0.6

Pm 0.8 0.9 0.2 0.1 0.6
Pn 0.75 0.95 0.5 0.5 0.8
Pl‘2 0.85 0,88 0.3 0.3 0.85
Pis 0.9 0.9 0.3 0.3 0,65
P it 0.7 0.85 1 0.8 0.85
p u 0.7 0.9 1 0.8 0.7
Pis 0.7 0.8 1 0.3 0.7
P17 0.8 0.8 1 0.5 0.7
Pis 0.8 0.8 1 0.1 i 0.75
PlO 0.85 0.85 1 0.5 | 0.7
m 0.75 0.85 0.8 1 | 0.65
pit 0.8 0.8 0.5 1 j 0.6
P22 0.8 0.8 0.4 0.9 | 0.6
P23 0.7 0.9 0.4 1  ! 0.65
P il 0.75 0.85 0.6 0.9 i 0.7
P25 0.8 0.9 0.6 o . 9  ; 0.7

0.8 0.8 0.6 1 0.75
m 0.75 0.85 0.4 1  i 0.8
Pas 0 .85 0.85 0.8 0 .9  j 0.7
P.2 3 0 .8 0.8 0.4 1  ! 0,7
•P30 0.8 0.8 0.5 0.8 ! 0.7
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Table 2.5: Testing o f the recommendation neural network model. 
Training data sets: 15; Testing data sets: 15.

Learning
rate

Training Testing
convergence err correctness j CTT correct ness

0.59 ! 17ft T 0.01,55 14 f i i 'Jd f 11
0.46 21 ■"0.0154 14 ft 1 Jgv 11
0.42 1 OMlJj 0.0300 14 o.i,>52 9
0.51 90 *.75 0.0299 14 0.2326 9
0.59 | 0,0271 14 0,2265 8
0.55 j 94131 0.0295 14 0.2296 9
0.52 1 87948 0.0299 14 0.2315 9
0.59 ! 173454 13.0154 14 0.1915 11
0.52 j 80557 0.0800 14 0.2337 9
0.53 i 90781 0.0299 14 0.2320 9
0.48 I 70000 0,0210 14 0.2403 8
0.45 1 100160 0.0299 14 0.2337 9
0.54 i 183942 0.0155 14 0,1938 11
0.4 i 249219 0.0155 14 0.1947 11

0.59 ! 76359 0.0300 14 0.2330 9
0.42 1 200928 0.0289 14 0,2222 9
0.48 | 210783 0.0155 14 0.1957 11
0.4 | 127312 0.0296 14 0.2298 9

0.45 j 127739 0.0295 14 *"0.2300 9

the learning rate and the initial weights o f the neural network. The reason is that the 

searching space may have multiple local minimums. Through parameter adjustment, we 

are most likely to have high accuracy and fast convergence speed, or be able to obtain the 

global minimum. In the experiments, I combine both parameter adjustment and 

overfitting prevention in the validation process. I then tested the accuracy o f the validated 

neural network by the test data. Table 2.6 shows the training, validation and testing 

results when the error threshold is set to be 0.15. By average, the estimation correctness 

over the entire data sets is 74.7%. The optimal learning rate is 0.52, and the estimation 

correctness is 80%. Figure 2.12 shows the estimation correctness o f the testing data after 

validation at various estimation error thresholds. When the estimation error threshold is
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0.15, the estimation correctness o f the testing data is 83.3%. When the estimation error 

threshold is above 0.15, the estimation correctness is 100%.

V alic ttio n  Data Error

0,14 ^

b 0,3

uj o.2

0,04

0.02
5000 10000 25000 30000

N unter if Weight Updates10000 1 5000 30000

(a) Training Data Error (b)Validation Data Error
Figure 2.11. Evidence o f overfitting in training recommendation neural network.

Table 2.6: Validation and testing o f the recommendation neural network model. 
Training data: 9 sets; Validation data: 9 sets; Testing data: 12 sets, 

it: iteration; corr: correctness; corr pctg: correctness percentage

j Learning Tfaininij Validation Testing Total
! rate it. e rr COXT err corr err corr err corr corr pctg
j 0,46' 21 0.118 7 0.124 6 0.094 !> 0.336 22 73.3%
! 0.41 24 0.117 7 0.125 g 0.094 9 0.336 22 73.3%

0,41 23 0.120 7 0,124 G 03)91 W 0.335 23 76.7%
0.49 20 0.117 8 0.124 6- 0.095 8 0,336 22 73.3%
0,4 25 0.118 7 0.125 6 0.093 9 0M B 2*2 73.3%.

0.52 17 0.121 7 0.122 7 0.092 1,0 0.335 24 80.0%
6.59 16 0.119 8 0.123 6 0.094 8 0.337 22 73.3%
Cl 41 24 0.118 8 0.122 7 0.094 8 (L334 \ 33 76,7%
0.41 24 0.117 7 0.126 6 0.094 9 0.386 22 73 m
0.51 19 0.118 8 0,124 6 0,094 8 0.336 22 i
0.48 19 0.119 7 0.125 i> 0.093 9 ; 0.337 22 73.3%.
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2.7 Related Work

Trust and reputation were first used in e-commerce systems (Schafer, Konstan, 

and Riedl 1999; Vassileva, Breban, and Horsch 2002) to encourage transactions between 

strangers. The use o f trust and reputation has extended to areas of distributed computing 

(Azzedin and Maheswaran 2002), file sharing P2P system (Comelli, Damiani, and 

Samarati 2002) and information filtering (Montaner, I/opez, and Rosa 2002).

Estimation Correctness

Estimation Enor Thretfiold

Figure 2.12. Estimation correctness o f  the testing data after validation.

In Amazon and eBay’s trust systems, a user’s reputation is a function o f 

cumulative ratings by his trading partners. SPORAS system (Zacharia and Mae 1999) 

introduces raters’ reputations, variation o f the new ratings, and deviations o f the new 

ratings from an expectation as additional factors to derive a user’s trust. These models are 

based on a centralized rating system where users’ reputations are globally accessible. 

Song and Phoha (2004a) has developed a global reputation model in a distributed trust 

management system, where users’ multiple local reputations are aggregated.
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However, in. a system where no central or global reputation mechanism is 

available, an alternative is to aggregate recommendations. Current recommendation trust 

models provide various mechanisms to select recommenders, and to aggregate the 

selected recommenders’ trust evaluations. HISTO model (Zacharia and Mae 1999) is 

based on the assumption that a requester trusts some agents more than others. It uses 

breadth first search algorithm to find all the referral chains within a certain length limit 

and branching size. The recommended trust is an aggregation of the selected 

recommenders’ reputations, their recommendations and the deviations among the 

recommendations.

Similar to HISTO model, Riggs and Wilensky (2001) developed a quality filtering 

trust model. The model rates reviewers and applies the quality o f the reviewers into 

merits o f the reviewed papers. The idea is that a reviewer is reliable if  he/she consistently 

ranks papers near their ultimate average. Thus, a reliable reviewer’s rate is the actual rate 

o f the paper. Mui, Mohtashemi, and Halberstadt (2002) proposed a recommendation trust 

model based on Bayesian probability theory. This model studies a parallel referral 

network between a requester and a party o f  interest. It assumes that trust is the probability 

that a user will be honest for the next online trade. The recommended trust o f the party o f 

interest is a weighted average o f referral chains’ trust values. A referral chain’s trust is 

measured by successive applications o f  Bayesian probability o f any two contiguous 

references along the chain. The weight o f a referral chain is the productivity o f  each 

edge’s weight. Chemoff Bound is used as a reliability measurement for trust information 

gathered along each chain.
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Yu and Singh (2001) presented an evidence model to evaluate recommendation 

trust. It applies Dempster-Shafer theory to multiple witnesses. The witnesses are 

recursively selected from referrers’ neighborhood. However, this model requires explicit 

ratings o f each reference.

In order to avoid continuous and explicit ratings o f references, Pujol, Sang, and 

Halberstadt (2002) proposed a recommendation trust model based on social network 

topology. Their model applies noderanking algorithm to infer a node’s reputation. The 

noderanking algorithm is similar to the ranking algorithms for Web pages based on Web 

topology.

However, there are a few caveats to the approaches mentioned above. First, 

different users may arrive at significantly varying estimates o f the performance o f the 

same service provider. Second, different users may be able to observe different instances 

o f the performance of a given service provider. Third, deceptive recommendations may 

exist. More sophisticated collaborative trust models are developed by Azzedin and 

Maheswaran 2002; Daniani, Vimercati, Paraboschi, Samarati, and Violante 2002; Gupta, 

Judge, and Ammar 2003; Kamvar, Schlosser, and Garcia-Molina 2003; Schafer, Konstan, 

and J.Riedl 2002; Wang and Vassileva 2003; and Yu and Singh 2003.

Wang and Vassileva (2003) applied Naive Bayesian network to recommendation 

trust since trust is multifaceted. Their trust model provides a differentiated trust in 

different aspects o f peers’ trust behaviors in file sharing peer-to-peer applications. It can 

be used to solve the first problem, i.e., different estimation process o f the same online 

service.
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Kamvar, Schlosser, and Garcia-Molina (2003) focus on detecting malicious file 

providers in peer-to-peer file sharing networks. Their model derives agents’ global 

reputations from the distributed local trust values. The model is built on the notion o f 

transitive trust. A peer trusts authentic file providers as well as their recommendations. A 

major issue of applying this model is to find pre-trusted peers that guarantee convergence 

o f the algorithm and avoid malicious collectives; however, this has not been investigated.

Yu and Singh (2003) applied weighted majority technique to belief function and 

belief propagation. The model detects deceptions by decreasing the weights assigned to 

unsuccessful recommenders. Gradually, the weights assigned to successful 

recommenders are increased and the weights assigned to unsuccessful or deceptive 

recommenders are decreased. The conceived recommendation trust is a weighted average 

o f all the recommendations. The model fails to discuss nonlinear aggregation o f 

recommendations.

This work is designed to derive trust opinions from multiple heterogeneous 

recommendations o f different estimation processes and different trust evaluation models 

with or without deceptions. It concentrates on the algorithm o f selecting qualified 

recommenders and the algorithm o f aggregating their recommendations both linearly and 

nonlinearly. The approach is a novel application o f neural network techniques in 

recommendation trust management.

2.8 Conclusion and Future  Work

A multiagent system consists o f a network o f heterogeneous peers whose trust 

evaluation standards may differ. Additionally, reliability o f a recommendation lies in a 

recommender’s expertise and the authenticity o f the recommendation. This chapter
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designs an adaptive recommendation trust model that filters different recommendation 

opinions and trust standards. The model derives a trust value based on an agent’s own 

trust standards and thus makes trust decision easier. The model is designed to adapt to 

various changes, such as changes in trust behaviors, trust evaluations, agents’ expertise 

and trust accuracy requirement. The neural-network based recommendation trust model 

has the following properties: (1) fast speed with high accuracy, (2) capability o f non

linear aggregation o f heterogeneous agent’s recommendations, (3) capability of catching 

hidden variables in the hidden layers o f the model, (4) robustness to noises in the training 

data, and (5) adaptivity.

The model is based on the assumption that agents are willing to exchange trust 

opinions. This is beneficial to both the requester and the recommender. However, the 

performance of the model will be affected if  there are frequent emergence o f new agents 

and exit o f old agents. In the future, I plan to build an automatic mechanism to monitor 

the changes and adjust the model.
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CHAPTER 3

HIDDEN MARKOV MODEL BASED 

REPUTATION MODEL

There is limited research on evaluating an agent’s reputation as a trust 

recommender. A key challenge is that a recommender’s reputation is affected by both the 

recommender’s trustworthiness and the recommender’s expertise, including the 

recommender’s trust knowledge o f others and the reliability o f the recommender’s trust 

evaluation models. In this chapter, I develop a Hidden Markov Model (HMM) based 

approach to measure an agent’s reputation as a recommender.

3.1 Background and Motivation

Evaluation o f recommenders’ reputations is important in e-commerce and P2P 

networks (Resnick and Zeckhauser 2000; Sarwar, Karypis, Konstan, and Ridel 2000). 

Online users rely on recommendations to familiarize themselves with new services and 

products. Reliability o f recommendations depends on the reputation o f the 

recommenders, including both their trustworthiness and their expertise.

Many evaluation models have been developed to obtain the reputation o f a party 

o f interest from recommendations (Kamvar, Schlosser, and Garcia-Molina 2003; Pujol, 

Sang, and Halberstadt 2002; Riggs and Wilensky 2001; Song and Phoha 2004b; Song,

49
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Phoha, and Xu 2004; Zacharia and Mae 1999). However, very limited research has 

explicitly studied the reputation o f an agent as a trust recommender.

Yu and Singh (2001) apply Dempster-Shafer belief theory to aggregate 

recommendations on a referral chain. “Their model requires explicit expressions o f  the 

recommenders ’ reputations on the chain. However, it does not address how to obtain the 

recommenders ’ reputations'" (Song, Phoha and Xu 2004c).

Mui, Mohtashemi, and Halberstadt (2002) use Bayesian theory to derive 

recommendation trust of a party o f interest. In general, the model evaluates how agent A 

should trust agent C, given agent A trusts B  to a certain degree, and agent B  trusts C to 

another certain degree. Agent B ’s reputation is interpreted as A ’s trust opinion of B  

through their direct interactions rather than B ’s reputation as a recommender. The model 

is limited to parallel referral networks only. Parallel referral networks are those with no 

shared nodes or paths.

Song and Phoha (2004a) use neural network techniques in evaluating the 

reputation o f a party o f interest with multiple local reputations in a distributed system. 

Their model hides the recommenders’ (local agents’) reputations in the neural network. 

However, the weights o f the neural network connections fail to give explicit evaluations 

o f the recommenders’ reputations.

Pujol, Sang, and Halberstadt (2002) develop noderanking algorithm to infer a 

node within a social network. The noderanking algorithm is similar to the ranking 

algorithms for web pages based on web topology. Each node has an authority and a part 

o f  this authority is propagated to the out-nodes via out-edges. This model requires

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

measuring social relationships, such as email traffic, sharing o f physical resources, and 

hierarchical structure among the nodes.

M y approach explicitly evaluates a recommender3 s reputation in terms of the 

recommender3s expertise and the trustworthiness o f the recommendations. The idea is 

that all agents learn from experiences and always choose the most reliable recommenders 

at the current time. As time goes on, those frequently selected recommenders must be the 

trustworthy experts in the evaluations of other agents’ trust (context dependent). The 

challenge then becomes: (1) how to find a most reliable recommender, and (2) how to 

model all the chained recommendation events (leading to the reliable recommender) and 

their transitions. Obviously, based on the observation of reliable recommendation events, 

the transition probability from Requester (or intermediate recommender) A to 

Recommender B measures B’s reputation as a recommender in the eyes o f A.

To address the challenges, I first develop an ordered depth first search algorithm 

with thresholds (ODFST) for the most reliable recommenders. I assume that a requester 

always searches for the most reliable recommender for the time being and get the 

recommended trust value of the party o f interest. Second, based on the observations o f 

repeated references o f most reliable recommenders, I build a Hidden Markov Model 

(HMM) to model recommendation transitions. The transition probabilities are actually 

how reliable the recommenders are in the eye o f the requesters (or intermediate 

recommenders). An attractive feature o f the model is that it derives the learning speed of 

a requester as well as the recommenders’ convergent reputations. The learning speed is 

measured by the minimum number o f recommendation queries an agent has made. The 

learning speed can be used to measure the reliability o f reputation evaluations when
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sparse recommendation events are available. To our belief, the model can find other 

applications, such as identifying optimal recommendation paths and locating optimal file 

servers in P2P networks.

3.2 Development of Recom m ender’s Reputation 

Current recommendation trust models adopt different criteria o f selecting 

recommenders, for example, depth first search (Song and Phoha 2004b), breadth first 

search (Zacharia and Mae 1999) and nearest neighbors (Montaner, L'opez, and Rosa 

2002). I introduce an ordered depth first search with thresholds (ODFST). First, a 

requester always chooses the most reliable recommender for the time being. If  the 

selected recommender can not provide recommendation for the current request, two 

scenarios may occur. One is that the recommender becomes a requester and forwards the 

trust request to the most reliable recommender he/she knows of. This may result in either 

a fruitless or a successful recommendation chain. If  it comes up with a fruitless 

recommendation chain, the second scenario occurs, i.e., the requester selects the next 

most reliable recommender he knows of. The requester sets a maximum depth o f 

recommendation chains as well as reputation thresholds for recommenders at each depth 

level. While searching for a most reliable recommender, if  the recommendation depth is 

beyond the depth limit, the search retrieves back along the chain and looks for the next 

most reliable recommender. If  the next most reliable recommender does not have a 

reputation higher than the preset threshold at that depth level, the search further retrieves 

back along the chain. The purpose o f doing so is to guarantee the reliability o f 

recommendation chains. The process continues till a recommender is found to provide
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the tmst opinion of the party o f interest. Algorithm 3.1 and 3.2 show the details. In

ODFST-visit (Algorithm 3.2), backtracks occur when (1) the depth is beyond the depth

limit, (2) all recommenders’ reputations are less than the threshold at that depth level, and 

(3) an intermediate recommender ends up with no successful recommendations.

Algorithm 3.1. ODFST (Requester)
1: length 0
2: for each r e R o f the Requester’s recommender set (initialization)
3: color[r] ■«- white (white: unprocessed)
4: parent[r] *- nil
5: end for 
6: time 0
7: for each r e  R (search)
8: if  color[r] = white
9: length^- length + 1
10: ODFST-Visit (r, Requester)
11: end if
12: end for

Algorithm 3.2. ODFST-Visit (r, Requester)
1: color[r] gray (gray: in process)
2: time time + 1 
3: d[r] «- time (set discover time)
4: if  r has direct experience or length > limit or Rr < Threshold[length]
(r is a recommender or the recommendation chain has reached length limit or r ’s 
trust value is less than the threshold at the depth level)
5: color[r] *- black (black: finished)
6: parent[r]«- Requester
7: f[r] <- time *- time + 1 (finish time)
8: length <- length-1 (backtrack one level)
9: return
10: end if
11: for each recommender i in r ’s ordered recommender set
12: if  color[i] = white
13: parentp] **- r
14: length ■*- length + 1
15: ODFST-Visit(i, r)
16: end if
17: end for
18: color[r] <- black
19: f[r] *- time *- time + 1 (finish time)
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Initially, when recommenders5 reputations are not available, a requester sends Ms 

trust request o f a party o f interest to all recommenders. Based on the recommended trust 

value o f the party o f interest and the actual transaction experiences, the requester updates 

the recommenders’ reputations. A recommender’s reputation can be updated by a 

weighted average method, such as:

Vr = < V ^ + ( l - w i ) ( l - \ v r -  v\) (3.1)

Where V ‘R stands for recommender R ’s reputation evaluated by the direct requester i. 

Initially, V lR = 1. vr and v stand for the recommended trust value by R  and the trust rating 

by requester i based on the actual transaction respectively. wl0 is the weight, reflecting 

reputation change rate per update. w!0 varies with requesters. In general, a requester 

updates recommender R ’s reputations as:

K = f i ( n , v r,v )  (3.2)

Where f  is the reputation update function and does not necessarily to be a weighted 

average model. If there are several recommenders o f the highest reputation, the requester 

sends trust queries to one o f them and updates the recommender’s reputation based on 

Equation 3.2. Also rating v is forwarded along the recommendation chain, such that every 

intermediate recommender (a requester as well) can update the final recommender’s 

reputation. Thus, through repeated references, requesters get to know their recommenders 

and the recommenders build up their reputations. Figure 3.1 shows an example o f how 

ODFST works. An arrow line represents a recommendation event. The number on the 

arrow line is the event’s sequential order on the recommendation chain. The edge value is 

the recommender’s reputation evaluated by the requester (or intermediate recommender).
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3.3 B M M  Based Recommender’s Reputation Model

Intermediate recommenders in a recommendation chain may not be obligated to 

provide explicit reputation evaluations o f the next recommenders. What we can observe 

are a series o f recommendation events. Based on the observations and the assumptions 

that requesters always choose the most reliable recommenders at the current time, I 

develop an HMM-based reputation model to evaluate recommenders. The general idea is, 

the more often a recommender is referenced, the higher his/her reputation is. Since if  a 

recommender gives false or inaccurate trust information, his/her reputation value would 

decrease. The recommender may not be referenced next time if  he is not the most reliable 

recommender among other competing recommenders.

0.75
0.70

,0.40 0.7!
0.70

0.75
i.80 I0-9

0.8J

,0.7
i.30

( I f

Figure 3.1: Ordered depth first search with thresholds. The nodes with lower values are 
requester or intermediate requesters. The leaf nodes are all possible final recommenders. 
The numbered arrow lines show the search process. The edge value is the recommender’s 
reputation evaluated by the requester (or intermediate requester). The most reliable 
recommendation chain is: 1 -* 2 -> 5 -* 10.
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3.3.1 B M M  Model of Recommendations

A recommendation HMM is a state diagram. The starting state represents a 

requester. All the other states are possible recommenders. When a trust query is 

forwarded from one recommender to another, a recommendation event occurs. To build 

an HMM (Rabiner 1989) is to find the three parameters A, B , and 4>. A = {ay}  is the state 

transition probability matrix. Each element ay = p{q{\qi) is the probability that agent i 

forwards the trust query to recommender j ,  given that agent i is selected as an 

intermediate recommender (a direct requester for the current recommendation event). 

B  = {by} is the recommendation event distribution matrix. Each element by = p(oy  | i s  

the probability that recommendation event <jy occurs given that agent i is the requester. 

= {(Pi) is the initial trust query distribution. A recommendation HMM can be uniquely

identified as X= (A, B, # ). In recommendation HMM, matrix A and B ’s relationship is 

shown in Equation 3.3. Since we study trust queries from Agent 1 (the requester) only, 

<Pi =1 if  i =1, otherwise it is zero.

3.3.2 Extended Baum-Welch Aleorithm (EBW)

Baum-Welch algorithm (BW) (Baum, Petrie, Soules, and Weiss 1970; Rabiner 

1989) is used to model an HMM X The basic idea o f BW algorithm is to repeatedly 

produce a better HMM model X+i such that P(<9|X+i) ^P (0 |X ) until X converges, where 

O = (o\, o% . . . , o t }  is a recommendation chain o f length T  and \  is the HMM model 

obtained at the tth iteration o f BW algorithm. At each iteration, matrix B  is improved, and 

so is matrix A.  The relationship between A and B  is:

ay — biipy) (3.3)
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Where ay stands for the observed event that requester (or intermediate recommender) i 

sends the trust query to recommender /'.

Let Ot(i) be the probability of the partial observation sequence, o \,o 2, . . .  , ou and 

at time t the recommender is i, given a model X aXf) can be computed iteratively as:

where 1 <j <n and 1 <t < T - 1. Let ft(z') be the probability o f the partial observation 

sequence from t + 1 to the end, given model A and at time t the recommender is z. ft(z') is 

solved inductively as:

Where t -  T - \ ,  T -  2, . . . , \ and 1 <i <n. T is the recommendation chain length, n is 

the total number o f agents in the recommendation network. Let %{J) be the forward 

backward probability, representing the probability that the trust query is forwarded to 

recommender j  at time t given the observed recommendation chain and the model X yt(j) 

is computed as:

"Where ot stands for the observed recommendation event at time t, and 0}* stands for the 

reference event from recommender j  to recommender k. The initial HMM X> is set as:

a i (0  -  (° i)n (3.4)

Pr (0 =  1
n (3.5)

(3.6)

Matrix B  can be calculated as:

(3.7)
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0, otherwise

a.. =bi(ay) = bij

Where V{ is the number of ail possible recommenders o f requester i (or intermediate 

recommender).

However, there are two limitations o f the BW algorithm. One is that BW 

algorithm only takes one observation sequence. Given multiple observation sequences,

i.e., recommendation chains, we are unable to achieve a global maximum. Additionally, 

BW algorithm does not allow = 0  for any i. This is unreasonable. Due to the

thresholds imposed on the ordered depth first search for the most reliable recommenders, 

some recommenders may never be referenced.

Extended Baum-Welch algorithm is developed to derive a recommendation 

HMM. To allow for unreachable states in a HMM, instead o f requiring = 1 , we

modify the constraint as:

where 0 < 9 «  1 is a constant, standing for the probability o f  any event that is not 

modeled in the HMM.

To avoid local maximum, we derive HMM \  i = I, 2, ■ ■ % N, for each of the N  

most reliable recommendation chains. /L, is the mean value o f the N  HMMs, i.e., 

2, =  mean{Xl , X2, X N) . Then we increase the observations by another N  

recommendation chains. Similarly, we obtain X2 based on the total 2N  recommendation

(3-9)
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chains. W e keep increasing the observation size o f the recommendation chains till 

Xi = mean(Xl, X2, . . . ,X iN) converges. The convergence condition is that the Euclidean

distance between Bj and B ;_x is less than a predefined thresholds, i.e.,

Where n stands for the total number o f recommenders. The approximated global 

maximum Matrix B is:

Global maximum approximation o f Matrix A  can be obtained by Equation 3.3. ay  is the 

transition probability that requester i forwards a trust request to recommender j .  ay, in 

effect, measures recommender f  s reputation in the eye o f agent i. The relative reputation 

evaluation includes both recommender f s  expertise and trustworthiness.

Figure 3.2 shows how EBW works. Algorithm 3.3 describes a step-by-step 

HMM-based approach using the EBW algorithm to derive agents’ reputations as 

recommenders.

Algorithm  3.3. HMM-Based Recom m ender Reputation Model
initialize HMM \  (Equation 3.8);
set X0 =  X0 ,

increase i by 1;
increase recommendation chains by N; 
for each o f iN  recommendation chains

generate a HMM \  by running the 
BW algorithm (Equation 3.3 and 3.7); 

Calculate X{ ;

calculate d(Xi,X i_l) (Equation 3.10); 

until d  (Xj , X ^  ) < s

(3-10)

Bglobal (3.11)
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calculate B by Equation 3.11; 
set A  by Equation 3.3;
return A as the recommender reputation matrix;

Increase observation size
initializing i _  

— ' 4 = 4,
No

fteeomintffHMon;
Qtostrvatterts i 7  \  /  Yes "y

A  \  • • i: .

[ iw j—a
i 4

sw a,*

mm

m i

Figure 3.2: Extended Baum-Welch algorithm. The algorithm derives a mean HMM based 
on multiple recommendation chains. The number o f recommendation chains keeps 
increasing till the mean HMM converges.

3.4 Experiments

Based on the simulation results o f the most reliable recommendation chains, I ran 

the EBW algorithm to obtain the HMM \  where Matrix A  represents recommenders5 

reputations.

3.4.1 Simulation of the Most Reliable 
Recommendation Chains

I simulated recommendation events (context dependent) based on a

recommendation network o f Figure 3.3. ODFST is used to derive the most reliable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

recommendation chains. Recommendation chain length is limited to 6. Reputation 

thresholds at different depth levels are all set to be 0.5. Recommenders’ reputations were

updated by the weighted average model as in Equation 3.1, where w0 = and the initial

recommenders’ reputations are all set to be 1. Notice that the updated reputations are only 

known to the requester himself.

Figure 3.3: Recommendation network. The starting state is the requester. All other states 
are possible recommenders. One state transits to another when a recommendation event 
occurs.

Two simulation sets o f recommendation events were generated. Simulation 1 is 

based on the recommendation network given in Figure 3.4(a). In this simulation, Agent 1 

randomly (a uniform distribution) selects an agent and sends the trust query o f the 

selected agent to his/her recommenders. We assume all recommenders are trustful and 

their trust evaluations o f the queried agents are exactly how the requester (the querying 

agent) perceives those agents, i.e., vr = v (see Section 3.2); however, the recommenders 

may have different knowledge area. For example, recommender i evaluates 60% of the 

agents (context dependent) while recommender j  evaluates the other 40% of the agents.

Reques
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In Simulation 2, I assume some recommenders are more knowledgeable o f agents’ 

reputations than others as shown in Figure 3.4(b). For simplicity, I assume that all 

recommendations provided by the recommenders satisfy vr = v. In theory, false

recommendations are also applicable.

1/3 1/51/5

1/2
4/51/3 3/5s

1/2 4/5
1/2 1/5' 1/21/21/3 1/5

1/2 1/2

(a) Simulation 1 (b) Simulation 2

Figure 3.4. Recommendation event distributions o f the two simulations.

A total o f 9500 recommendation chains were generated for each simulation. O f

both simulations, all recommenders’ reputations are evaluated by the weighted average

reputation model (see Equation 3.1). Obviously, the weighted average model does not

catch all the factors affecting the recommenders’ reputations, for example, their

knowledge size o f other agents’ trust. This is another reason that I introduce the HMM-

based reputation model.

3.4.2 Reliability of HMM-Based 
Reputation Model

Based on the simulated 9500 recommendation chains in Simulation 1, 

recommender reputation matrix A\ obtained via EBW is as follows:
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0 ,82.3 .325 .326 0 0 0 I) 0 ^

0 0 0 1} 0 0 . 9 3 0 0
0 0 0 A M .487 0 0 0 0
0 0 0 0 0 0 .499 0 .481

0 0 0 0 0 .98 0 0 0
0 0 0 0 0 I) Q .499 ,481

0 0 0 0 0 0 0 .98 0
0 0 0 0 0 0 0 0 ,S8
fl f't 0 0 0 0 0 0 0  }

Recommender reputation matrix A2 over another 9500 simulated recommendation chains 

in Simulation 2 is obtained as:

f 0 .195 .585 .2 0 0 0 0 0

0 0 .98 0 0 0 ,08 0 0

0 0 0 ,481 ,499 0 0 0 0

0 0 0 0 0 0 .198 0 .782

0 0 0 0 0 m 0 0 0
0 0 0 0 0 0 .764 .216 0
0 0 0 0 0 0 0 ,98 0

0 0 0 0 0 0 0 0 .98
\ 0 0 0 0 0 0 0 0 0 /

Matrix A\ tells us that Agent 1 has three recommenders, Agent 2, Agent 3 and 

Agent 4. The recommendation transition probabilities to those three agents are 0.325, 

0.329 and 0.326 respectively. This means that Agent 2, 3 and 4 are equally reliable and 

knowledgeable o f agents’ reputations (context dependent). Agent 2 has one recommender 

only, Agent 7. As long as Agent 7’s reputation is higher than the predefined threshold, 

Agent 2 will always forward the trust query to Agent 7. In our simulation, Agent 7’s 

reputation is 1 (updated by Equation 3.1). Therefore, <227 = 0.98 fits our simulation data 

(ideally, a2i should be 1). In matrix A 2, Agent 6 ranks Agent 8 and Agent 9 ’s reputation 

as 0.764 and 0.216 respectively, which indicates that Agent 8 is more trustful or more 

knowledgeable as a recommender.
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Figure 3.5 and 3.6 show the convergence process of obtaining the HMMs of 

Simulation 1 and Simulation 2 respectively. The convergence speed accelerated 

dramatically for the first 1500 recommendation chains in both cases. This indicates that 

an HMM based on less than 1500 recommendation chains is not stable. Correspondingly, 

the derived recommenders’ reputations may not be reliable. When the observation size o f 

recommendation chains increased to 3500, the HMMs started to converge. In fact, 

recommendation trust matrix A2 obtained from the 9500 recommendation chains is 

insignificantly different from the recommendation trust matrix obtained from the 3500 

recommendation chains.

C onvergence of HMM by EBW
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Figure 3.5: Convergence o f HMM obtained from EBW based on recommendation chains 
generated in Simulation 1.

I also analyze the accuracy o f the HMM-based reputation model by comparing the 

derived reputation matrix A via the EBW algorithm with the simulation data. Figure 3.7 

shows the estimation error by comparing A\ with the Simulation 1 data set in Figure 

3.4(a). Figure 3.8 displays the estimation error by comparing A2 with the generated 

Simulation 2 data set in Figure 3.4(b). The error o f the worst case is less than 10%. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

result shows that the reputation value obtained from the HMM model is close to the true 

value. So the HMM based approach via the EBW algorithm is a reliable method to 

generate the reputation of recommenders for a given recommendation network.

Convergence of HMM by EBW
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Figure 3.6: Convergence o f HMM obtained from EBW based on recommendation chains 
generated in Simulation 2.
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Figure 3.7: Error analysis o f recommender’s reputation obtained through HMM using
Simulation 1 data set.
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HMM T rust Model Accuracy
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Figure 3.8: Error analysis o f recommender’s reputation obtained through HMM using 
Simulation 2 data set.

3.5 Conclusions

This chapter presents an HMM-based technique to model recommendation 

networks in distributed trust systems. The EBW algorithm is developed to derive 

recommenders’ reputations. We uniquely identify a recommendation network by its 

initial states, state transition probability matrix, and event probability matrix, i.e., an 

HMM. Based on the assumption that agents are rational and they forward trust requests 

only to trustworthy recommenders, the state transition matrix, in effect, represents 

recommenders’ reputations (an integrated measurement o f both their trustworthiness and 

their trust knowledge o f other agents). The model does not only estimate the reputation o f 

every recommender in the recommendation network, it also provides reputation 

reliability measurement based on the convergence o f the derived HMM via the EBW 

algorithm.
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The model can be applied to evaluate agents’ expertise under a certain settings. It 

can also be used to derive optimal recommendation paths across different trust 

management systems. In P2P applications, it evaluates qualifications and trustworthiness

o f online processors, and contributes to routing an online application to a correct 

processor.
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CHAPTER 4

GLOBAL REPUTATION IN A DISTRIBUTED 

TRUST SYSTEM

Current trust models do not provide a mechanism in managing users’ global 

reputations in a distributed system. This chapter proposes a distributed master-slave 

reputation management structure. The distributed structure has advantages over a large 

and sparse central system in optimal local reputation management and in load balance of 

computation time and memory storage. The chapter also develops a global reputation 

model to derive global reputations from distributed local reputations. The model is 

adaptive (1) to heterogeneous local reputation models, and (2) to changes o f a distributed 

system structure, users’ trust behaviors, and local reputation models.

4.1 Introduction

Current trust or reputation models can be classified into two categories, central 

and personalized. Central reputation models evaluate online users’ reputations based on 

the entire observations o f their online behaviors. Examples are average models, such as e- 

Bay and Amazon.com, and pairwise trust models, such as SPORAS (Zacharia and Mae 

1999). Personalized trust models are also known as recommended trust models. They are 

based on selected observations. There are four representative personalized trust models. 

They are the social network topological model developed by Pujol, Sang, and Halberstadt

68
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(2002), Bayesian rating model o f Mui, Mohtashemi, and Halberstadt (2002) and Wang 

and Vassileva (2003), Dempster-Shafer belief model by Yu and Singh (2001), and 

EigenTrust model by Kamvar, Schlosser, and Garcia-Molina (2003). All these 

personalized trust models are pairwise. These models use different trust propagation and 

aggregation algorithms. For example, the social network referral trust model applies the 

noderanking algorithm (Pujol, Sang, and Halberstadt 2002) to infer reputation o f a node 

within a social network. The noderanking algorithm is similar to the ranking algorithms 

for Web pages based on Web topology. Bayesian rating model (Mui, Mohtashemi, and 

Halberstadt 2002) iteratively applied conditional probability along each referral chain and 

aggregated the derived trust from multiple referral chains by a weighted average method. 

Wang and Vassileva (2003) introduced naive Bayesian network in managing trust in P2P 

networks. In the Dempster-Shafer belief model, Yu and Singh (2001) used a belief 

function. The model was later improved by introducing deception detection mechanisms. 

Riggs and Wilensky (2001) proposed a distributed and secure method to compute global 

trust values based on Power iterations. The approach is based on the notion o f transitive 

trust, i.e., trade partners o f high reputation are also trustful in making recommendations.

Now, current trust models do not provide a mechanism in managing global 

reputation of a distributed or decentralized system. This chapter proposes a reputation 

management structure and designs a reputation model for a very large and sparse 

distributed system. A distributed reputation system (see Figure 4.1) has a global 

reputation management agent. It authorizes local agents to manage each o f its sub-trust- 

systems. The sub-trust-system may be grouped by certain criteria; for example, similarity 

o f traders, or traders’ connections, in particular, highly connected traders a r e  grouped into
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one sub system. A sub trust system is defined as a local community in our research. The 

authorized local agents apply centralized or distributed trust management to their 

communities. The global agent collects trust values from its most direct local agents and 

computes the global reputations o f users. The organization o f the distributed reputation 

system is context dependent, i.e., the communities and their members may differ under 

different contexts.

This chapter also proposes a global reputation model based on the theory o f 

neural networks (Mitchell 1997; Ham and Kostanic 2001). The global agent applies back 

propagation algorithm (Rumelhart, Hinton, and McClelland 1986) to trust evaluations 

from its local agents and builds multilayered neural networks. The neural network takes 

the local trust evaluations as the input and generates approximated global reputations as 

the output as if  the system is centrally managed. Our simulation results show that the 

neural network converges at a speed o f four computation iterations with the 

approximation accuracy o f 94.4%. The neural-network based reputation model has the 

following properties: (1) The model converges very quickly with high accuracy, and 

therefore meets the responsible and reliable requirements for online reputation 

management. (2) The model has the capability to approximate global reputation by 

nonlinear aggregation o f local trust evaluations. (3) Variables that affect global reputation 

reliability, such as deceptive ratings and local agents’ expertise (as a result o f their 

observation sizes, and reliability o f  their trust models) can be captured by the multiple 

layers o f the neural network. (4) The model is adaptive to changes, including changes in 

local communities’ sizes, their trust models, users’ trust behaviors, and restraction o f the
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distributed system. (5) The model has better performance in terms of computation time 

and memory than a large and sparse centralized pairwise trust system.

4.2 D istributed R eputation Systems 

Reputation is the rate o f online users’ past behaviors. It is computed based on 

observations or direct experiences within a specific context at a given time. In a 

distributed reputation system, local trust management agents may rate the same user 

differently even under the same context. The top level global reputation management 

agent is responsible for deriving a user’s system-wide reputation from multiple local trust 

evaluations, no matter whether those ratings are based on completely disjoint or partially 

overlapped observations.

In a distributed reputation management structure, the global agent aggregates a 

user’s local trust evaluations and derives his global reputations. Figure 4.1 shows the 

distributed reputation management structure in a large sparse system with multiple local 

agents. There are one global master agent and many distributed local slave agents. The 

master agent groups users (context dependent) to distributed local agents. If  under the 

same trust context, a user is assigned to different local agents, the global master agent 

aggregates the user’s multiple local reputations into a global reputation. Grouping criteria 

can be users’ similarities and transaction natures. Local slave agents observe and evaluate 

trust behaviors o f the assigned users only. Local agents determine optimal reputation 

evaluation models (context dependent). There are total three processes running at the 

master agent side. One is the global reputation model. The global reputation model is 

invoked only when the user being evaluated has multiple local reputations. Another is the 

central reputation model. The central reputation model collects a user’s multiple local
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reputations and runs a centralized evaluation algorithm. The derived central reputations 

are used to train the user’s global reputation neural network (see details in Section 3). The 

third process is a monitor process. The monitor process monitors performance of 

groupings and performance of global reputation neural networks. Once there are changes 

affecting the performance of a global reputation neural network, the monitor process 

activates the central reputation model, which in turn generates training data and runs the 

global model to retrain the neural network. As shown in Figure 4.2, the entire system is 

made up o f four highly connected local systems, A, B, C and D. There is a local agent for 

each local trust system. Local agents observe their own system members’ trust behaviors 

only and may use different trust models to evaluate their members’ local trust. Local 

agents may also adopt distributed global trust management. The dotted rectangle areas at 

the bottom layer o f Figure 4.2 stand for the local trust system A and B respectively. The 

small cycles inside a local system represent the local system users/members. The edge 

between two users stands for a pair o f  transaction ratings o f one toward the other. Local 

agents are represented by the small rectangles labeled with A, B, C and D at the middle 

level. The heavy directed edges from a local agent towards its users stand for the users’ 

local trust. The big oval area at the top stands for the global trust model, i.e., a neural 

network that generates a user’s global trust by inputting its multiple local trust 

evaluations. Derivation o f the neural network is displayed by Algorithm 4.1.

The advantages o f introducing distributed reputation management in a very large 

and sparse e-commerce system or P2P networks are:
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(1) Local reputation evaluations are more reliable than a large sparse centralized 

evaluation since the local reputations are evaluated based on the ratings from 

users o f similar trust standards and opinions;

G, : {user}, user}, • • •] user} }
, - Model,
■ > f.— -——

participate

Local 
T rust System1

°  nO oO o  ° Model Local 
Trust System-,G 2 : {user}, user2 ,■■■!, user; }Q O O

participate

Global 
Trust System

r <  Monitor J> Mode Local 
Trust System:

p G, : {user}, user}, • ■ userlt} )
participate

r'Centai Trust
Mode!

Local 
Trust System

G  : {user, , user2 user, }Gio tel Trust 
Model participate

Queries/Tasks

Responses/Reports of relevant changes

Figure 4.1: Distributed reputation system, where G, stands for the ith user group evaluated 
by a local agent. Local slave agents evaluate their users’ local reputations. A global 
master agent evaluates users’ global reputations from their multiple local reputations 
(context dependent).

(2) Local communities have the flexibility to decide which trust model best suits its 

community members’ interests in a certain context and therefore have high impact 

on users’ online transaction decisions;

(3) Distributed and decentralized pairwise trust management is more efficient than 

centralized pairwise management in terms o f memory and data retrieving time. A 

large centralized sparse system uses either more memory or more tracking time to 

retrieve pairwise ratings depending on the data structures that the system uses. For 

example, a central system o f N  users takes 0(N 2) memory to keep the rating
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records under a single context if  arrays are used. However, online traders are 

usually very sparsely connected. Some users have strong brand or quality 

preferences; they may never trade with some other users. If the same system can 

be divided into n (in a very large sparse system, n can be very large) highly

N 2connected sub systems (assumed o f equal size), it takes only 0 {---- ) memory.
n

Similarly, if  the central system uses ordered linked lists to store the pairwise

2 Nratings, it takes on average N  retrieving time while the retrieving time is only -—
2 n

in the distributed system.

(4) A distributed reputation system distributes loads among its global reputation 

management agent and local trust management agents. The local agents decide the 

optimal trust models (context dependent) and evaluate their members’ local 

reputations. The global agent organizes and structures efficient distributed 

systems, including the grouping of the local communities under different contexts. 

The global agent also provides global reputation evaluations for users with 

multiple local reputations.

4.3 Global R eputation M odel in D istributed Systems 

This section develops a distributed reputation model based on feed-forward neural 

networks. I apply backpropagation algorithm to build and retrain the networks at a 

satisfying accuracy level. The basic idea is to aggregate a user’s multiple local 

reputations through a neural network to approximate his/her global reputations. I use 

SPORAS trust model to evaluate local reputations. I also use this model to derive central 

reputations.
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Figure 4.2: Distributed reputation management structure: The entire system is divided 
into several highly connected local communities managed by local agents. Local agents 
evaluate users’ local reputations using local trust models (see an example in Figure 4.3 
and Figure 4.4). The global agent uses a global reputation model to derive a user’s global 
reputation from his multiple local reputations (see Figure 4.6).

4.3.1 Derivation of Local Reputations: SPORAS

In SPORAS, new traders are assigned a minimum positive trust value. Trading 

partners evaluate each other for each transaction. The local agent aggregates those ratings 

by assigning weights based on the raters’ reputations and the deviations o f their ratings. 

The local reputations are computed as a summation o f all the ratings or feedbacks 

occurred so far, i.e.,
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® w >=1— W (4.1)

l + e

Where, R t+i is the trust value o f the ratee at timestep t + 1; E(Ri) is the expected trust 

value o f the ratee at timestep i + 1 , i — 1, 2, . . . , t; 8 is a  constant integer greater than 1, 

it is a context dependent parameter; W,- represents the rating given by the rater at timestep 

i, i — \, 2, t, Wj is the feedback value; R°ther is the rater’s reputation at timestep i 

( i = 1, 2 , . . . , t ) when he/she evaluated the ratee; D is a constant. It is the system-defined 

upper bound o f the reputation value; $  is the dumping function. It determines the 

system’s sensitivity to changes and it is context specific; a is a constant. It is used as an 

acceleration factor to reflect the correspondent trust sensitivities o f different e-commerce 

markets. For example, expensive laptop online market is more trust sensitive than low 

priced postcards.

One obvious advantage o f SPORAS trust model is that it introduces weights on 

raters’ feedbacks. The weights are the combination o f raters’ reputations and their 

ratings’ diversity. The model has the capability to detect deceptive ratings In some sense. 

Figure 4.3 shows pairwise transaction ratings among users in a single local community.

Local agents can update a user’s local reputation by Equation 4.2:

(4.2)
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(Tj, R(1)) ^

Figure 4.3: Pairwise trust evaluations in a local community. 7} stands for Trader i, is 
the local reputation o f Trader i and wy is the rate given by Trader i (rater) to Trader j  
(ratee).

Figure 4.4 shows how Trader TVs reputations are updated, where the combination 

o f the new rating, the rater’s reputation and the diversity o f the ratings take effect.

Figure 4.4: Updating Trader T\ s Reputation. The new reputation o f 7) is determined by 
the three single directed weighted arrows. The two heavy arrows stand for high weights 
assigned to the new ratings.

I choose to use SPORAS trust model for the following reasons:

(1) SPORAS (Zacharia and Mae 1999) is a reputation system designed for highly 

connected communities made up o f users o f similar trust opinions. Therefore, 

SPORAS provides good trust management for local communities since the 

reputation evaluation can be widely agreeable by those o f similar opinions.

(2) SPORAS trust model is fair, reliable and responsive in certain senses according to 

a case study that was conducted which is provided in Appendix B. In fact, as the
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information in Appendix B shows, no matter what the local trust models are, 

those models only affect the training data value and have no effect on the global 

reputation model itself.

(3) Distributed trust management is more efficient than centralized pairwise trust

management for a large sparse e-commerce community or P2P network in term of

memory and computational time as analyzed in Section 2.

4.3.2 Nueral Network Training:
Backpropagation Algorithm

Backpropagation is one o f the most common, practical and successful artificial

neural network (ANN) approaches. Neural network-based reputation model suits the

needs in the distributed reputation management system because:

(1) Multiple local reputations of a user can be easily represented by the input units in 

the neural network.

(2) Global reputations may be discrete-valued, real-valued, or a vector o f real or 

discrete values. For example, a music file provider’s reputation may be 

represented by the music quality and the file download speed. Global reputations, 

as the output units o f the neural network(s), can be represented by any 

combination o f the input local reputations linearly or nonlinearly. If  a vector 

reputation is used, we can have one neural network for each o f the vector element.

(3) Local reputations may contain errors due to users’ fraud ratings. Backpropagation 

has proved to have very good performance to noises in training data (Mitchell 

1997). This makes our neural network based global reputation model more robust 

to erroneous local reputation evaluations.
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(4) Local reputations may be based on completely disjoined or partially overlapped 

observations. Neural networks updated by backpropagation rale are capable o f 

expressing a rich variety o f nonlinear decision surface. In fact, a network o f three 

layers of units (see Figure 4.6) is able to approximate any function to arbitrary 

accuracy given a sufficient number o f units in each layer. Our model is set to be 

three-layered to ensure estimation accuracy and convergence speed.

(5) Neural network-based global reputation model trained by backpropagation can 

meet different accuracy requirement as long as the network contains sufficient 

inner layer units (Mitchell 1997). This empowers reputation evaluations under 

different contexts since some online transactions may have rigid requirement on 

the reliabilities of reputation evaluations.

Backpropagation algorithm uses gradient descent to minimize the squared 

estimation errors o f users’ global reputations. The hypothesis space considered by the 

algorithm is the space o f all functions that can be represented by assigning weights to the 

given network. Therefore, the reputation model has the capability to catch other hidden 

factors other than the multiple local reputations through multi-layered network structures.

Two steps are involved in building a neural network. The first step is to initialize 

layers, units in those layers and weights o f unit connections. The number o f input units is 

equal to the number o f a user’s local reputations. There is only one unit in the output 

layer representing the user’s global reputation. Hidden layers and hidden units can be set 

as many as necessary such that they can catch nonlinear relationship between local 

reputations and the desired global reputations, and can meet accuracy and convergence 

speed requirements. There Is a neural network per user context. The second step is to
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train the neural network so that the summation of squared approximation errors is 

minimized. The backpropagation algorithm is used for this purpose. The user’s local 

reputations at different time periods are forwarded through the neural network. 

Approximation errors are the differences between the generated global reputation values 

by the output layer unit o f the global reputation model and the central reputation values 

obtained through a central reputation model. These errors are propagated backward 

through the neural network to adjust the connection weights. Every time the weights are 

updated, the approximation errors are decreased. The weight update process (Mitchell 

1997) continues till the neural network provides satisfying global reputation estimations. 

The output at unit u is:

o  = ------------------------------------------------------------------------------------- (4 .3 )“ 1  -W  R W - Vl + e

Error terms at the output unit and the hidden units are 8  and 5h individually:

8  — o(l -  o ) { t  -  o )  (4 .4 )

8h = o h{ l - o h)wh8  (4 .5 )

Weights are updated as:

Wy =Wy+f]SjOi (4.6)

Where Wu and Ru represent a weight vector and a reputation vector forwarded to unit u 

respectively, o  is the estimated global reputation generated by the output unit, and o,- is 

the output value o f unit i. t is the central reputation obtained from a central reputation 

model. Wh is the weight o f a connection between hidden unit h and the output unit. Wy is 

the weight from unit i to unit j .
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Once a user’s global reputation neural network is built, if  there axe no changes in

system structures, local agents’ reputation models, or the user’s trust behaviors, we can

simply feed the user’s multiple local reputations through the neural network and

immediately get the user’s global reputation. However, when any o f the changes occur,

the monitor process will invoke the central reputation model, which in turn retrains the

global reputation neural network. Algorithm 4.1 shows the details.

Algorithm 4.1. Global Reputation Model of Distributed T ru st Management 
while (the master agent is waiting for reputation queries) 

run monitor process; 
if  (there are changes)

for (each related user o f multiple local reputations) 
run central reputation model; 
train global reputation neural network;

end for
end if 

end while
if  (the user is evaluated by one local agent)

forward the reputation query to that local agent;
else

collect the user’s multiple local reputations;
input the local reputations through the user’s global
reputation neural network;
output the approximated global reputation;

end if

4.4 Experiments

The experiments consider a distributed network o f four local trust communities A, 

B, C and D. Within each community, the members are highly connected and have similar 

trust opinions. I simulated a distributed reputation network o f 10 users and four local 

reputation communities. Total 2000 transactions were generated randomly among the 

users. Table 4.1 shows the local communities’ sizes and members. User 1-10’s trust 

behaviors are listed in Table 4.2 regardless o f their communities. User 6 and User 7 are 

evaluated by all the four trust communities.
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The experiments evaluated User 6 and User 7 ’s local and global reputations, and 

tested the performance o f the neural network-based global reputation model. For 

simplicity, all the local slave agents were assumed using SPORAS pairwise reputation 

model. The master agent also used SPORAS as his central reputation model. In theory, 

local reputation models and the central reputation model can be different. The parameters 

o f SPORAS model were set as: 0 = 5, a = 10, and D  — 3000.

Table 4.1. Simulated distribute system

Loca I C om m unity Community Member Community Size j
A U&erl~7 i 1
B User6-10 0 \
C U seif>-7 3 |
D User4-8 5 |

Table 4.2. User’s trust behavior

f T s a  1 | Oser 2 | 1,-ser 3~f P'spr~j CserT) | U Ser7  | C»er S’ ] User 9  ( User it) |
1 1-6, 1.0| | [.7. .91 | 1.8, .8] | [-8. l.Oj | (.9, l.Of 1 {1.0, l.Oj j j.4, 1.0! 1 1-7, l.Oj | (.6, 0.91 1 1-8, .9 | 1

4.4.1 Local Reputations

Figure 4.5 compares User 6 and User 7 ’s reputation development in the four local 

communities. User 6 and User 7 ’s central reputations are also plotted. User 6 ’s local and 

central reputations converged at a stable value, 3000, which is the highest possible trust 

level o f the SPORAS system. This agrees with User 6 ’s trust behaviors specified in Table 

4.2. User 7’s local and central reputations converged at a vibration o f  a central value 

2100, agreeing with the product o f his average trust behavior value and the system 

highest reputation value. An interesting phenomenon is that User 6 and User 7 were still 

in the phases o f building up their familiarity and reputation in Community C while their 

reputations were convergent in the other three communities A, B and D. The reason is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

that User 6 and User 7 traded least frequently in Community C. As shown in Table 4,3, 

User 6’s transactions at Community A, B, C, D were 202, 127, 98, and 48 respectively. 

User 7’s transactions at those communities were 190, 27, 86 and 46 respectively. 

Transaction volumes lead to the differences in local reputation evaluations and in 

reputation convergence.

Table 4.3: Transaction volumes of User 6 and User 7 in different local communities
Transaction

Volumes
C om m unity

A
C om m unity

B
C om m unity

C
C om m unity

D
Us€T b 2(32 127 48 98
User 7 190 127 46 86

Reputation o f User 6 Reputation of User 7

3000 3000

2500 2500—  C entral

—  Local A

—  Local B 

 Local C

—  Local D

 Central

 Local A

—  Local B

2000 2000

1500 1500

*  1000 a  1000
Local D

500 500

500 1000 1500 2000 500 1000 1500 2000

Figure 4.5: Reputation evolution of User 6 and User 7. The speed o f convergence
monotonically increases with trade volumes.

4.4.2 Robustness of the Global 
Reputation Model

I tested the reliability o f  the global reputation model in terms of the model’s 

correctness and convergence speed by varying:

(1) learning speed,

(2) training data size, and

(3) estimation accuracy.
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I set a three-layered neural network where there axe three units in the hidden layer 

(See Figure 4.6). The initial neural network connection weights were set randomly in the 

range o f [-0.05, 0.05], Learning rate ij was set randomly in the range o f [0.4, 0.6]. 

Estimation error threshold d  was set in the range from 0.05 to 0.30. An estimation is 

correct i f  it satisfies: \o -  t\ < d, where o is the output o f the neural network and t is the 

desired reputation (obtained through the central reputation model). I stopped training the 

neural networks when at least 92% estimations were correct at a predefined error 

threshold.

Input layer of 
it at

I
Local Reputations —t*- GIobal Reput;

r ! I r ~ n

I J L J

Figure 4.6: Neural Network: a three-layered neural network with 3 units in the hidden 
layer. Rt, i = A, B, C, D, stands for the local reputation and wy stands for the connection 
weight from unit / to unit j .

Given a training set o f 16 local reputations, learning rate rj = 0.59, and the initial 

connection weights as:

/

W Q —' 1 in  ~

- 0 .0 5 - 0 .0 5 0.05

0.05 0.05 - 0 .0 5

0.05 0.05 0.05

- 0 .0 5 0.05 - 0 .0 5

\

if)CJc1

l l rQ — 0.05

^ - 0 .0 5  j
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Where W°  is the connection weights between the input layer and the hidden layer, and 

Wh° is the connection weights between the hidden layer and the output layer. The neural 

network converged at the 4th iteration (of algorithm 4.1) with 100% successful 

estimations. The summation o f the squared estimation errors is only 0.1403. The 

connection weights of the converged neural network are:

/

Win =

\

-0,00754 -0.0809 0,1682

0.1448 0.1550 -0,0454

0.G981 -0.0717 0.0700

-0.0458 0.1559 -0,0464

\
/  n a s o s  \

/

0.8896

1.1.106

0.8961 /

Table 4.4 and Table 4.5 show the experimental results with various initial neural 

network connection weights and learning rates. There were 16 sets o f training data. I 

repeated the experiments over twenty times. All the results showed that the neural 

network converged at no more than 5 iterations with at least 93.75% successful 

estimations. The convergence speed and the high accuracy satisfy the requirement o f 

online trust evaluations, i.e., responsiveness and reliability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

Table 4.4: Convergence and correctness o f User 6 ’s global reputation under various
neural network learning rates and initial connection weights

Learning R ato Convergence Speed j Estimation
| Correctness

Approximation Error
■v-VM f , -2 

-  %
0.59 4 | 100% 0.1403
u,a i 4 i 100%  | 0.150
0.47 4 1 100% 0.188
0.43 4 j 100% 0 .2 3 4
0 .4 5 5 j 100SC 0.156

Table 4.6 shows the experimental results after training 18 sets of User 6’s local 

reputations. The distributed reputation model converges at 3rd or 4th iteration with 94.44% 

successful estimations (17 out o f 18).

Figure 4.7 and Figure 4.8 show the correctness and convergence o f the global 

trust model under various accuracy requirements. I set 10 different estimation thresholds. 

At each threshold, I ran the global reputation model 20 times. Each time I randomly 

selected a learning rate and initial neural network connection weights. The mean values 

o f correctness and convergence speed are compared. Figure 4.7 shows that all the 

estimations o f the global reputation model had at most an estimation error size o f 0.10. 

When estimation error threshold was 0.05, there were at least 93.75% correct estimations. 

Figure 4.8 shows that in the worst case, the model converged at an average o f 71,696 

iterations such that 93.75% estimations were at the accuracy level o f the estimation error 

less than 0.05. The convergence speed was reduced from 267 iterations to 5714 iterations 

when User 7’s global reputation estimation error threshold was reduced from 0.30 to 

0.05. I noticed a dramatic slowdown o f User 6’s global reputation convergence speed 

when the estimation error threshold was reduced to 0.05. Nonlinearity o f  local reputations 

and global reputations, or learning rate size may contribute to the slowdown.
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Table 4.5: Convergence and correctness o f User 7 ’s global reputation under various
neural network learning rates and initial connection weights

Learning Rate C onvergence Speed Estimation j 
Correctness j

A p p ro x im atio n  Error 
E f c i i 0 - f .)

0.43 4 100% | 0,2096
! 4 l int ' ,  | 0.1672

1 4 o:i 753 ! 0.2156
0.57 4 100% | 0.1533
0.51 4 100% | 0.1703

4.5 Conclusions and Future W ork

Centralized trust models are not appropriate to apply in a large and sparse 

distributed trust system. First, online users are usually sparsely connected under one or 

more reputation contexts. Second, local reputations may be evaluated by different trust 

models based on partially overlapped observations. To improve reputation evaluation 

reliability, this paper proposes a distributed trust management structure, and designs a 

neural network based reputation model. The model derives users’ global reputations from 

their multiple local reputations. The distributed reputation model is a novel application of 

neural networks. A user’s global trust neural network takes the user’s multiple local 

reputations as input and output the user’s global reputation as if  the system were centrally 

managed. The model has several important properties for online reputation evaluations:

(1) It can be used to derive global vector reputations.

(2) It is applicable to any distributed trust systems based on different criteria, such as 

similarity o f users, geographic closeness, and connectivity o f users.
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Table 4.6: Convergence and correctness o f User 6’s global reputation given 18 sets o f
training data

Learning Rate Convergence Speed j Estimation 
j Correctness

Approximation Error
v-clS j 112

0.52 3 1 9 4 .4 % 1.1564
0,41 3 j 94. v . 1.1672

i 3 j 94.4U 1.2087
Cl 5 8 4 ! 94 i ;i 1.6042
0.54 3 | 94 r , 3.2595

Estimation Correctness at Various 
Estimation Error H ires hold

100.00% 1 

98.00% 

98.00% 
94.00% 

92.00% 41 
90.00% 11

Estimation Error Threshold

□User 6 
■ User 7

Figure 4.7: Estimation correctness o f User 6 and User 7 ’s global reputations at various 
estimation error thresholds.
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Convergence Speed at Various 
Estimation ErrorTfireshold
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60000

|  50000 
I  40300 
j® 30000
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0 -------------1------------------ i------------------- 1---------— f—

0.05 0.1 0.15 0.2 0.25
Estimation Error Threshold

0.3

—  User 6 
 -  User 7

Figure 4.8: Convergence o f User 6 and User 7’s global reputations at various estimation 
accuracy levels.

(3) It allows different local reputation models.

(4) It is adaptable to any changes in local trust systems or distributed trust system 

restructuring.

(5) It has robust performance o f quick convergence speed and high estimation 

accuracy.

The model has several important applications. It can be applied in a decentralized 

trust system. It can also be used to aggregate recommendation trust from multiple 

resources. If  used in a P2P network or in pairwise trust management, the model 

distributes the load o f memory space and computation time between global and local 

reputation management agents. In addition, the model can be used to derive both single 

valued and vector valued global reputations. For example, a global reputation vector may 

include attributes o f product quality, in-time-delivery, and after-sales-services.
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The performance o f the global reputation model depends largely on the monitor 

process, which detects any related changes that may require neural networks retraining. 

Future research includes: (1) developing change detection algorithms used in the monitor 

process; (2 ) testing the global trust model’s performance in a dynamic environment, 

where agents change their trust models, or users change their trust behaviors; and (3) 

applying real data to test the reliability o f  the global trust model, if  real data are available.
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER WORK

5.1 Summary

Trust plays an important role in e-commerce, distributed computing and peer-to- 

peer networks. To solve the recommendation trust problem, this dissertation begins with 

two alternative methods to obtain recommendation trust. One way is to filter and 

integrate heterogeneous trust opinions (Chapter 2). The other way is to evaluate the 

trustworthiness o f the recommenders (Chapter 3). Then I discuss the scalability and 

efficiency o f a trust system by introducing distributed trust management, where local 

trust agents can be taken as recommenders. To solve this special trust recommendation 

problem in a distributed system, I develop a global trust model (Chapter 4).

Current recommendation trust models fall into one category, i.e., seeking 

recommendations from agents that have similar trust standards and evaluation models. 

However, in multiagent systems, we may be unable to find such recommendations. It is 

with this background that we develop a method to derive an agent’s trust opinion from 

heterogeneous recommendations. First, I develop an ordered depth-first search algorithm 

to find reliable recommenders (Section 2.2.2). Then I develop an algorithm to identify 

qualified recommenders from those recommenders (Algorithm 2.4). A neural network is

91
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built and trained by the trust opinions of the qualified recommenders. The neural network 

detects the patterns between the requester’s trust opinion and the recommenders’ trust 

opinions. By feeding the neural network with the heterogeneous recommendations, we 

get the requester’s trust opinion. This work is a new application o f neural networks in 

recommendation trust. It filters opinions o f different trust standards, evaluation models 

and trust observations. The experimental results showed that a three-layered neural 

network converges at an average of 12528 iterations and 93.75% of the estimations have 

an error size less than 0.05. More important, the model is adaptive to trust behavior 

changes and has robust performance when there is high estimation accuracy requirement 

or when there are deceptive recommendations.

Alternatively, instead o f finding the patterns between the requester’s trust 

opinions and the recommenders’ trust opinions, we evaluate recommenders, since we can 

get reliable recommendations from trustworthy recommenders. A Hidden Markov Model 

(HMM) is used to model recommendation events with the assumption that agents learn to 

choose the most reliable and knowledgeable recommenders. There are four attractive 

features o f the approach. First, it does not require explicit reputation evaluations o f 

chained recommendations. Second, it integrates a recommender’s expertise as well as his 

trustworthiness into his reputation evaluations. Third, it is applicable to any possible 

recommendation networks including those with unreachable nodes and loops. Fourth, the 

approach quantifies the learning speed o f an agent’s converged reputation as a 

recommender. The learning speed can be used as a reliability measurement when 

recommendation events are sparse. The model can be applied to identify optimal 

recommendation paths and to locate reliable servers in P2P networks.
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W ith the growth o f trust systems, scalability and load balance need to be taken 

care of. As a result, distributed trust systems are in demand. Due to the fact that in a very 

large distributed trust system, local level reputation management may use different trust 

evaluation models, and users’ reputations may be reported by multiple agents based on 

different (may be partially overlapped) observations, I propose a distributed trust system 

including its structure, architecture, and trust computations. Correspondingly, a global 

trust model is developed to aggregate a user’s multiple local reputations. We use the back 

propagation algorithm to train the global neural network model. The experimental results 

show that the global reputation model had estimation error size less than 0.10. When 

estimation error threshold was 0.05, there were at least 93.75% correct estimations. In the 

worst case where strong nonlinearity exists, the model converged at an average of 71,696 

iterations such that 93.75% estimations had estimation error less than 0.05.

In summary, this work is made up o f three parts. The first two parts solve the 

recommendation trust problem in two different ways. Part one (Chapter 2) filters and 

integrates heterogeneous trust recommendations by building an opinion filtered 

recommendation trust model in multiagent systems. Part two (Chapter 3) evaluates 

recommenders’ reputations to get reliable trust recommendation by constructing HMM 

model. Part three (Chapter 4) considers a special case where local agents are the 

recommenders in a distributed trust system. A global reputation model is developed.
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5.2 Further Work

This section consists o f two parts. First, we introduce the further work to improve

the proposed three trust models. Then we discuss the need to develop metrics to evaluate

various trust models.

5.2.1 Improvement of the Three 
Proposed Trust Models

First, a monitor process needs to run on top o f the opinion filtered 

recommendation trust model. The opinion filtered recommendation trust model is not 

appropriate to apply in a newly developed P2P network where agents have not developed 

enough direct experiences with each other. Given insufficient recommendations from the 

qualified recommenders, the trained neural network may not provide a desirable accuracy 

level. This can be avoided by integrating an opinion filtered recommendation trust model 

with another recommendation model, for example, Bayesian model by Mui, Mohtashemi, 

and Halberstadt (2002). When the system is first established, the other trust model is put 

into use. While training data grows, the opinion filtered recommendation trust model 

takes the place o f the other trust model. However, when qualified recommenders change 

their trust evaluation models, the neural network model needs to be retrained to maintain 

high accuracy. That is why a monitor process needed to ensure the reliability and 

accuracy o f the opinion filtered recommendation trust model. In the future, a monitor 

algorithm needs to be developed such that the monitor process can automatically make 

the decision to retrain the neural network to improve its accuracy.

Second, there is a need to design a recommender’s reputation model in a dynamic 

environment. Since the hidden Markov reputation model requires fixed state transition 

networks and independent recommendation observations (a series o f  recommendation
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events under the same trust context), the hidden Markov reputation mode! is not 

applicable to a dynamic system. For instance, nodes in a P2P network may be removed or 

replaced by new nodes. This leads to frequent changes o f the recommendation trust 

network that results in the failure o f building a HMM-based recommender’s reputation. 

Therefore, new methods need to be developed to accommodate the dynamic property o f a 

changing trust network.

In addition, there is a need to develop an algorithm to detect changes in users’

trust behaviors. The performance o f the global reputation model in a distributed system is

subject to changes in users’ local trust behaviors. I f  such changes are detected in time, a

user’s global reputation can be reevaluated by retraining the underlying neural networks

and thus improve the model’s reliability and accuracy. Some initial results have shown

that quality control technique is a good method in detecting changes at the early stage

(Xu, Phoha, and Song 2005a; Xu, Phoha, and Song 2005b). In the future, I plan to apply

other statistical related methods and anomaly detection algorithms to detect trust behavior

changes and false trust reports.

5.2.2 Development of Trust Model 
Evaluation Metrics

Although much research has been conducted in building trust models, very little 

research is available in evaluating these trust models, and more importantly, in 

developing formal methods or metrics to measure the robustness o f the various trust 

models. Existence o f contradicting research findings also demonstrates the need for a 

well established discipline to evaluate trust systems. For example, Dellarocas (Dellarocas 

2003) argued for the efficiency and robustness o f eBay-like online feedback mechanisms, 

but Mui et al. (Mui, Mohtashemi, and Halberstadt 2002) claimed “a few recent high
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profile fraud cases in eBay by individuals with high eBay ratings suggest that the 

company should seriously consider enhancing their simple rating system”. Rensnick et al. 

(Resnick and Zechhauser ) found Pollyarma effect (disproportionately positive feedbacks 

from users and rare negative feedbacks) in eBay reputation reporting system and 

interpreted this as an evidence o f the poor functioning o f eBay’s trust mechanism. 

However, Dellarocas (Dellarocas 2003) explained this as a supporting evidence o f the 

efficiency of eBay trust mechanism.

In the future, I aim to conduct research in formalizing evaluations o f various trust 

models. The research will focus on a characterization and analysis o f a fa ir, reliable and 

responsive trust system, and on the development o f metrics to evaluate trust systems in 

terms o f fairness, reliability and responsiveness. The research will be carried out 

specifically in four aspects: (1) formally defining fairness, reliability and responsiveness;

(2 ) developing metrics to evaluate trust models in terms o f fairness, reliability and 

responsiveness; (3) studying the effect o f trust on users’ profitability by building 

optimization models under various product life cycle scenarios. The optimization models 

are used to test whether a trust system punishes users o f oscillating transaction qualities 

and makes their overall profit less optimal; and (4) conducting case studies to evaluate 

and compare different trust models, for example SPORAS, and some average trust 

models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A P P E N D IX  A

LIST OF THE RECOM MENDATION OBJECTS

(1) JBuilder

(2) JCreator

(3) Visual C++

(4) SAS

(5) Blackboard

(6 ) University Email

(7) Yahoo Email

(8) Google search

(9) Yahoo search

(10) MSN search

(11) java.sun.com

(12) Amazon.com

(13) eBay.com

(14) Numerical Analysis (6th edition) by Richard L. Burden, J. Douglas Faires, 

Brooks/Cole Publishing Company, 1997, ISBN: 0-534-95532-0.

(15) Partial Differential Equations by Lawrence C. Evans.
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(16) Introduction to the Finite Element Method by Erick G. Thompson, John Wiley, 

& Sons, 2005

(17) A first course in Probability (6 th edition) by Sheldon Ross, 2001.

(18) Time Series Analysis by William W. S. Wei, ISBN: 0-201-15911-2.

(19) Design and Analysis o f Experiments by Angela Dean and Daniel Voss, 

Springer, 1999, ISBN: 0-387-98561-1.

(20) Fundamentals o f Sequential and Parallel Algorithms (6 th edition) by Kenneth A. 

Berman and Jerome L. Paul, PWS Publishing Company, 1996, ISBN: 0-534- 

94674-7.

(21) Introduction to Algorithms by Thomas H. Cormen.

(22) Concepts of Programming Languages (6 th edition) by Robert W. Sebesta.

(23) Software Engineering by Ian Somerville.

(24) Operating System Concepts by Abraham Silberschatz et. al.

(25) Computer Organization and Architecture (5th edition) by Williams Stallings, 

Prentice-Hall International, Inc., ISBN: 0-13-085263-5.

(26) Modem Database Management (7th edition) by Jeffrey A. Hoffer et al., 2004.

(27) Fundamentals o f Database Systems (4th edition) by Ramez Elmasri and 

Shamkant B. Navathe.

(28) The C Programming Language by Brain W. Kemighan, Dennis Ritchie et al.

(29) Advanced Computer Architecture: A design space approach by Dezso Sima, 

Terence Fountain and Peter Kacsuk, 1997.

(30) High performance cluster computing: Architectures and Systems (Vol. 1) by 

Rajkumar Buyya (editor), ISBN: 0-13-013784-7.
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APPENDIX B

CASE STUDY: SPORAS SYSTEM

This case study measures update scales, effectiveness and significance of 

transaction feedbacks, and response speed, to evaluate SPORAS (Zacharia and Mae 

1999), a pairwise central trust model.

The case study is based on simulated data. Data simulations were made up of two 

parts. In the first part I simulated users’ online transactions. 500 transactions were 

simulated among 5 users. Trading partners and the 1000 transaction feedbacks were 

randomly generated. The transaction feedbacks are in a range from 0 to 1. In the second 

part we applied SPORAS trust model and simulated the evolution o f the users’ trust 

values. The parameters in SPORAS trust model were set as: D  = 3000, 0 = 5, and a -  10. 

The trust value is updated whenever there is a transaction feedback. I assume each 

transaction has the same transaction size.

I conducted the study o f  SPORAS in the following three aspects:

(1) Fair and Appropriate Trust Update: This part tests the fairness and reliability o f 

SPORAS. We measured the trust update scales by computing the five users’ trust value 

at different timesteps. Figure B .l shows the five users’ trust values at different timesteps. 

The five users had identical transaction feedbacks randomly distributed in the range 

from 0 to 1. In the beginning, users’ trust values increase. The increase rate at the 158te
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timestep is the largest (the slope is the sharpest at timestep!58). After the first 500 

updates, trust values vibrate around a centered value, 1500. This central value is actually 

the convergence trust value (Zacharia and Mae 1999) Dw , where w is the mean value 

of the transaction feedbacks. Figure B.2 shows the users’ trust values when the users do 

not have identical transaction feedbacks. Table B .l shows the five users’ transaction 

feedbacks in detail. Table B.2 shows the convergence trust values and the transaction 

sizes o f the five users. Both Figure B .l and Figure B.2 indicate that SPORAS is fair in 

terms o f distinguishing users o f different trust levels.

Table B .l. Online transaction feedbacks o f User 1-5

User 1 User 2 User 3 User 4 i User 5................. i
;o j .. 0 .5; 115. 0.7 0.6, 0.9 0.8. 0.9; [ [0,9. lo;

Table B.2. Online transaction feedbacks o f User 1-5
| Users User 1 User 2 User 3 User 4 UserS 1
J  Tot al Transaction Size 117 135 134 123 123 I
j Transactions before Convergence 72 64 78 98 86 j
j Mean Trust Value 1197.14 1825.68 2232.43 2547.25 2843.45 j

Users of Identical Transaction 
Feedbacks

2250 
*  2000 S 1750 
« 1500 
>  1250
tu 1000
3  750
H 500
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0

,-4

/V'T N p f c jK d M PM
J P :

• l V  V
f  f  ' *
i /!  ~
i f f

/ i f ;
J -

— user-1
—  user-2 

user-3
 user-4
—  user-5

0 50 100 150 200 250
Timesteps

Figure B .l: Trust value evolutions o f  five identical users. There are two evolutionary 
stages o f SPORAS system: trust building stage before timestep 158 and trust 
convergence stage after timestep 158.
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Figure B.3 demonstrates the trust update scales at the trust building stage and the 

trust convergence stage. The update scales in the building stage are 5 times as large as 

the update scales in the convergence stage. This reflects the relationship between the 

transaction size and the trust value update size, i.e., a single transaction has different 

effect on users of different transaction histories.

To further measure the effectiveness and significance o f a single transaction 

feedback on a user’s trust value, I interpolate User l ’s trust value and his transaction 

size. Since the transactions are uniformly and randomly generated, and all the 

transactions are o f equal size, trust value update timesteps can be used to represent User 

l ’s transaction size. Therefore, an interpolation o f User l ’s trust values and the update 

timesteps would demonstrate the effect and significance o f transaction feedbacks. 

Among least squares, minimax and absolute deviation methods, I chose to use least 

squares method because o f the following theoretical considerations:

(a) The minimax approach generally assigns too much weight to a bit o f data that is 

badly in error.

(b) The method using absolute deviation simply averages the error at the various 

points and does not give sufficient weight to a point that is considerably out o f 

line with the approximation.

(c) The least square approach puts substantially more weight on a point that is out o f 

line with the rest o f data but will not allow that point to completely dominate the 

approximation.

(d) Least square approach has better performance in terms of the statistical 

distribution o f error (pp463~481, Larson 1984).
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Users of Different Trust Levels
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Figure B.2: Discrimination of the users o f different trust feedbacks (see Table B .l for 
details).
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(a) Update Scale in Increasing Stage (b) Update Scale in Convergence Stage

Figure B.3: Comparison o f trust update size o f User 3 at increasing and convergence 
stages.

I use piece-wise approximations since the simulation results shown in Figure B .l 

and B.2 demonstrate two distinct stages in trust value evolutions. I use quadratic method 

to approximate User l ’s trust values in the trust building or increasing stage. Let Pi(t)
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stand for the approximated trust value at timestep /, we have: Piit) = ao + a\t + ei2t2. Our 

aim is to minimize the squared estimation errors, i.e., 

min E  = min - P 2 (t) ) 2
/^increasing stage

The squared error summation E  is minimized when dE/daj = 0 for each j  -  0, 1, 2. This 

gives 3 normal equations with 3 unknown a j ’s, i.e.,

, i  = 0, 1, 2 .
k = 0 / = ]  1=1

Given that p’s are distinct, the three normal equations have a unique solution. Since in the 

convergence stage, the trust values converge to Dw  (Zacharia and Mae 1999), where 

D  = 3000 is the system maximum trust value, and w  is the mean feedback value. User 

1 ’s trust function is interpolated as:

f 0.02/2 -  3.5526/ + 102.2598,143 </ < 344 
R(t) = \ (1)

[ 1200 ,/> 344

Function (1) shows that User l ’s trust value update scales are positively related with his 

transaction size (represented by update timesteps due to uniformly randomized 

transaction generation and equal transaction size). This is because in the increasing stage,

dR
we have —  = 0.0410/ —3.5526 > 0. Figure B.4 demonstrates the approximation 

dt

accuracy o f Function (1). The average error o f 161 sets o f data is only 3.64%, and the

| R  — Ji |
standard deviation o f the errors is 0.189. The error is defined as — —------- , where Rapp

R

and R represent the estimated trust value by Function (1) and the derived trust value by 

SPORAS model respectively.
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Trust Model Approxim ation
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Figure B.4: Approximation of User l ’s trust value. The estimation function demonstrates 
the effectiveness and significance o f transaction feedbacks, i.e., each single transaction 
matters and transaction history matters.

(2) Reliable Response to changes: Response time is used to test the short term 

responsiveness o f SPORAS. Response time is the number o f transactions between the 

user’s two convergence trust values before and after the trust behavior changes. We 

conducted two tests to study the responsiveness o f SPORAS.

In Test 1, among the five users only User l ’s trust behavior changed. User l ’s 

trust behavior changed from a uniform distribution of [0.3, 0.5] in the first 500 

transactions to [0.9, 1.0] in the second 500 transactions. The results (see in Figure B.5) 

show that before the new convergence, User 1 ’s trust value increased at an average rate 

o f 104.03% each consecutive timestep. It took only three updates (out o f total 20 system- 

wide updates) before User 1 ’s trust value converged to a new equilibrium value. The test 

also shows that the model provided a fair evaluation mechanism, since the changes in 

User 1’s trust behavior did not have significant effects on the other users’ trust values 

although the system applies higher weight to User 1’s feedbacks because o f his 

improved trust values. This property is very important since the system is capable o f
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deciding to which extend the rater’s reputation takes effect on other users’ (ratees’) trust 

values. According to SPORAS model, a ratee’s trust value is determined by the product 

of the changes in the ratee’s trust behavior (W  -E (R )) (see Section 4.3.1) and the rater’s 

reputation. However, when factor W ~E{R) is zero or small enough, the rater’s 

reputation has no or neglectable effect on the ratee’s trust value. This explains why the 

trust values o f the other four users were almost unaffected.

Effect of Change in Trust Behavior

3000 ->
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-user 1

~ user 2 
user 3 

user 4 

-user 5

2000
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1000

500

500 1000 1500 2000

Timestep

Figure B.5. Responsiveness o f SPORAS: User 1 ’s trust behavior changes.

Test 2 simulated the scenario that three out o f the five users changed their trust 

behaviors. Table B.3 shows the details o f  the changes. Figure B .6  shows how the system 

responses to the changes. User 1 and User 3 ’s trust values increased by 12.645% and 

2.886% respectively before their trust values converged. User 5’s trust value decreased 

by 9.977%. The changes in those three users’ trust behaviors did not have significant 

effect on other users’ trust values. Test 2 confirmed the analysis that a rater’s reputation 

takes effective only when the changes in the ratee’s trust behavior (W  -  E{R)) (see 

Section 4.3.1) is significant.
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Table B.3. Trust behaviors o f User 1-5 in the 1000 transactions

i User l 3i 500 T ransu  uoiis 2»d goo Transactions j

| User 1 0 . 3 .  0  5 ] 0  9 1 <!] |
! User 2 0,1), 0 .  i ] ' 0 . 5 . 0.7] j

Us.-] T
' > ,  , 4

[0.6, 0 . 9 ’ 

[0.8, 0.0
[0.85.0,95] | 

..1
\ J T . . . . . . . . . . .  j- 1. xL'l J [ 0.9, 1 . 0 ' Tt.3,. 0.5] !

l .. {

Effect of Change in Trust Behavior
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userS

500

1000 1500 2000500

Figure B.6 : Responsiveness o f SPORAS: User 1, User 3 and User 5 ’s trust behavior 
changes.

(3) Effect o f deceptive transaction feedbacks: The effect and significance o f 

transaction feedbacks is also applied to test how SPORAS trust system performs when 

there are deceptive feedbacks. SPORAS assumes that feedbacks are more reliable from 

the raters o f high reputations than from the raters o f low reputations. Given that the 

assumption holds, to study the impact o f deceptive transaction feedbacks on a user’s 

trust is actually to study the effect and significance o f the raters’ reputations. Two tests 

were conducted. The first test is to study the effect o f a rater’s reputation on a ratee’s
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trust value. The second test is to study the effect o f the deviations o f the raters’ 

reputations on a ratee’s trust value.

I simulated two ratees with same transaction size and transaction feedbacks. The 

only difference is that one ratee traded with a partner (a rater as well) o f a constant 

transaction quality, 0.8. The other ratee traded with a partner o f  a constant transaction 

quality 0.5. Figure B.7 shows that the rater’s reputation has a positive effect on the 

ratee’s trust value in the trust building stage. The rater’s high reputation also speeds up 

the ratee’s trust value convergence. However, the positive effect disappears after the 

convergence, given that the ratee’s trust behaviors keep unchanged.

Effect of Raters' Reputation 
Levels
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Figure B.7. Effect o f raters’ reputation levels on a ratee’s trust value.

I also studied how the variation o f raters’ reputations would affect a ratee’s 

reputation given that all the other factors (transaction size, and trust update intervals etc.) 

are the same. I simulated a SPORAS trust system o f five sellers (ratees) and three buyers 

(raters). All the five sellers have constant online transaction feedbacks o f 0.9. In the first 

scenario, the three buyers have constant transaction feedbacks o f 0.8. In the second 

scenario, the three buyers have the same mean value o f transaction feedbacks o f 0 .8 , but

T - --------------r-

rater - 0 .5  
- rater - 0.8
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of different variations. The three buyers5 transaction feedbacks are uniformly distributed 

in the range of [0.7, 0.9], [0.6, 1.0], and [0.8, 0.8] separately. Figure B.8 shows the effects 

of raters’ reputations in both scenarios. The results show that the variances in the three 

raters’ trust values do not have significant effect on the five ratees’ trust values in the 

trust building stage and have no effect on their trust convergence speed.

Trust value of 5 i.Ld sellers — trade 
with 3 buyers of constant reputations
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Trust value of 5 i.i.d. sellers — trade 
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(a) Raters o f constant reputations (b) Raters o f  disperse reputations

Figure B.8 . Effect o f raters’ reputations.

In summary, the findings show that SPORAS is fair, reliable and responsive in 

terms o f (1) how it discriminates traders o f different transaction qualities, (2 ) how large 

the correlations o f traders’ reputations are, (3) when raters’ reputations take effect, and

(4) how the system responds to changes.
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