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Abstract. The use of reliable forecasting models for the PV temperature is nec-

essary for a more correct evaluation of energy and economic performances. 

Climatic conditions certainly have a remarkable influence on thermo-electric 

behaviour of the PV panel but the physical system is too complex for an analyt-

ical representation. A neural-network-based approach for solar panel tempera-

ture modelling is here presented. The models were trained using a set of data 

collected from a test facility. Simulation results of the trained neural networks 

are presented and compared with those obtained with an empirical correlation. 
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1 Introduction 

Renewable Energy Sources (RES) are important for promoting the competitiveness of 

the economy of countries, the security of energy supply systems and to improve the 

environmental protection [1, 2]. Generally, RES are easily accessible, inexhaustible 

and compatible with the environment. Among RES, solar energy has the greatest 

energy potential and photovoltaic (PV) arrays permit to produce electric power direct-

ly from sunlight with no fossil-fuel consumption, no noise, and posing no health and 

environmental hazards during the operational phase of life. This fact, together with 

the slow but ongoing decline of conventional energy sources, implies a promising role 

for PV power-generation systems in the near future. Despite the technological and 

environmental benefits granted by this technology, the development of PV panels is 

hindered by economic factors. The high cost of production and installation makes the 

PV technology feasible only when public funding is available [2, 3]. 

Furthermore, it is clear that the availability of reliable predictive tools is very im-

portant for the dissemination of all renewable energy technologies [4, 5]. In details, 

from the point of view of the designer and end-users of PV systems, the availability of 

reliable software tools is essential  to optimize the performance of PV systems in the 

planning phase and finally to correctly assess the economic gain [6]. In order to eval-

uate the real performance of PV panels the correct prediction of operating temperature 

is very important [7]; an increase of few degrees can considerably reduce the conver-

sion efficiency of the system thus reducing the power output. 

A reliable tool for predicting the temperature of PV systems is also particularly 

important in those hybrid systems called PV-Thermal (PVT), which allow the recov-
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ery of thermal energy that otherwise, would be wasted into the surrounding environ-

ment [8-10]. 

The aim of this work is to explore the possibility to offer an alternative method, re-

spect to empirical correlations, which allows modelling the operating temperature of 

PV devices by using techniques based upon adaptive systems. Adaptive systems, such 

as Artificial Neural Networks (ANN) should allow to predict, with a fast and reliable 

procedure, the temperature of the PV module as weather conditions change. 

2 Introduction to Artificial Neural Networks and classification 

problems 

ANNs emulate some of the functions and capabilities of the human brain and their use 

is now widespread in the scientific literature, in particular in those physical models 

where, although the interconnections among some variables are widely demonstrated, 

the corresponding mathematical functions are not known or they are extremely com-

plex [11-13]. One of the most important area of ANNs is the pattern recognition and 

the main task of this approach is the classification [14]. What is a classifier? A classi-

fier is an expert system that builds a relation between a variable space A and a vector 

of labels B. A classifier is able to assign a label to a sample extracted from the space 

A. Nowadays, many expert systems are used as classifiers, e.g. in order to assign or 

not the label of “SPAM” to an email sent to our mailbox [15]. The classifier examines 

some features of the email such as the sender, the object, the text and other variables 

and then it assigns or not the label of SPAM. Another example of a classifier is an 

expert system able to recognize people from face images [16] or from the sound of 

voices [17]. 

Classification is different from clustering: in a cluster analysis, data are automati-

cally separated in groups characterized by some similarities, called clusters. So, clus-

tering is an unsupervised process that groups the data autonomously. Classification is 

a supervised process where a user decides the set of labels. 

A Neural Network Classifier (NNC) simply judges the distance between a pattern 

of input variables and some given labels. There are two ways to measure this distance: 

by numerical methods and non-numerical ones. The numerical techniques measure 

the above-mentioned distances in deterministic or statistical way. The non-numerical 

techniques are linked to symbolic processes like fuzzy sets. Making these activities 

automatic permits to reach the target in a faster and more reliable way. Furthermore, 

the use of NNCs often makes it possible to identify correlations between data which 

are so complex that they would be hardly recognized even by an expert human opera-

tor. 

In time series forecasting problems one of the approaches often used by researchers 

is represented by ANN based techniques that can be used as an alternative method in 

the analysis of complex and/or ill-defined engineering problems. ANNs do not require 

the formulation of a mathematical relation describing a complex natural and/or physi-

cal system and have the capability of detecting its hidden structure. Accurate forecast-

ing of time series can be useful in many practical situations and the knowledge of 



variation in the operating temperature of PV can play a remarkable role in the assess-

ment of power output. 

3 The operative temperature of a PV panel 

To design and assess the performances of a PV system, an accurate PV model should 

predict reliable Current-Voltage (I-V) and Power-Voltage (P-V) curves under real 

operating conditions [18]. 

The “five-parameters model” represents the most common equivalent circuit that 

better describes the electrical behavior of a PV system. The equivalent circuit is com-

posed of a photocurrent source IL, a diode in parallel with a shunt resistance Rsh, and a 

series resistance Rs as shown in Figure 1. 

 

Fig. 1. Schema of one diode equivalent simplified circuit closed on a resistive load RL. 

Based on this simplified circuit, the mathematical model of a photovoltaic cell can 

be defined in accordance with the following expression that permits to retrieve the I-V 

curve: 
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in which IL depends on the solar irradiance, I0 is the diode reverse saturation cur-

rent and is affected by the silicon temperature, n is the ideality factor and Tc is the cell 

temperature [K]. 

As it is well known, the performance of a photovoltaic panel is defined according 

to the “peak power”, which identifies the maximum electric power supplied by the 

panel when it receives an insolation of 1 kW/m2 at a cell temperature of 25°C. In ac-

tual conditions, it is essential to evaluate the operating conditions under all possible 

circumstances of irradiance G, cell temperature Tc, wind speed W, air temperature Tair 

and electric load RL. 

The Tc temperature thus is a key parameter that affects the energy conversion effi-

ciency of a PV panel: increasing the temperature, the delivered power decreases. In 
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literature, there are several available empirical correlations to obtain the PV panel 

operating temperature and these correlations have been developed for common geom-

etries and weather conditions. From a mathematical point of view, the correlations for 

the PV operating temperature are either in explicit or implicit form; in the latter case, 

an iteration procedure is necessary for the calculation. Most of the correlations typi-

cally include the reference conditions and the corresponding values of the pertinent 

variables [19]. 

3.1 Impact of solar irradiance and temperature on the I-V and P-V curves 

For given values of G, Tc and RL, the operating point can be identified by drawing 

lines of the different loads RL on the I-V characteristics. 

In Figure 2 and Figure 3, it is possible to observe how the intersection between the 

load line and PV characteristics corresponds to the working point; with the same 

graphical method, it is possible to identify the working point in terms of electric pow-

er. The red circles indicate the locus of maximum power output points. 

 

Fig. 2. Working point of a generic PV panel at constant temperature (25 °C) varying insolation 

and electric load. 



 

Fig. 3. Working point of a generic PV panel at constant irradiance (1000 W/m2) varying tem-

perature and electric load. 

The solar energy conversion into electrical energy is obviously influenced by the 

operation point of the panel [20]. 

4 Artificial Neural Network application 

As shown by the previous considerations, the thermo-electrical behavior of a PV pan-

el is a complex function of the actual climatic conditions and of the cell characteris-

tics. 

The complexity of this physical phenomenon does not allow a complete and accu-

rate analytical representation of the thermo-electric balance of the PV panel and the 

performance assessment generally follows two paths: 

1. a simplification of the thermo-electric balance by using empirical correlations; 

2. an application of adaptive systems that learn from a large amount of monitored da-

ta. 

ANNs are distributed, adaptive, generally nonlinear learning machines built from 

many different processing elements similar to biological neurons. Each artificial neu-

ron (AN) receives connections from other ANs and/or itself. The structure of these 

connections defines the ANN topology. The signals flowing on the connections are 

scaled by adjustable parameters called weights and the values of these weights are 

updated during the training phase. The ANs sum all contributions and produce an 

output. The outputs of each AN can be either system outputs or inputs sent to the 

same or other ANs. 

In this work, the authors have tested the use of ANNs to predict the operating tem-

perature of a PV panel using the data monitored in a test facility. Different ANNs 

topologies and typologies were tested. 



4.1 Data for training and testing  

A large database of specific data that represent the analyzed physical system is re-

quired to construct an adaptive system. In order to forecast the temperature of a PV 

panel, an experimental system (Figure 4) was installed on the roof of the Energy De-

partment of the University of Palermo. The test facility and the monitoring system 

consist of the following equipment: 

 a photovoltaic panel (Kyocera KC175-GH-2), 

 a precision resistance set, 

 a multimeter Fluke189/FVF2, 

 a Delta Ohm pyranometer mod. LP PYRA 02 AV linked to 

 an Advantech ADAM 6024 module,  

 a Davis Vantage PRO2 Plus Weather station; more details concerning the test facil-

ity are explained in [21]. 

The PV panels and the pyranometer were tilted at an angle that is equal to the lati-

tude of the location (38° South). The electrical load RL was obtained by precision 

resistances, and the current was calculated on the basis of the measured voltage, ac-

cepting the error due to the resistances value. The silicon temperature was measured 

using thermocouples (type T, copper-constantan) [22] installed at the rear film of the 

panel [23]. 

 

Fig. 4. Experimental system. 

All data were collected every 30 minutes and stored for further calculations and 

comparisons. The physical data used for the training of the ANN were: 

 Air temperature [°C]; 

 Solar irradiance [W/m2]; 

 Wind speed [m/s]; 

 Voltage [V]; 

 Power output [W]; 

 Electrical Load [Ω]. 



The process by which the knowledge of the physical system is transferred to the 

adaptive system is carried out in the training phase. During the training phase of an 

ANN, a set of known input–output vectors are presented to the network updating 

some mathematical entities. The subsequent testing phase will assess the quality of 

the neural network model comparing the output with the real data belonging to a da-

taset not used in the training phase. 

4.2 Preliminary analysis of the collected data 

It is possible to find a wide range of ANNs characterized by different topologies and 

typologies. Before choosing the neural topology, all data are subject to a pre-

processing step that consists in a preliminary analysis that permits to identify possible 

outliers, to remove unreliable values, to carry out a statistical analysis, and to perform 

a correlation analysis. After the pre-processing step, the database is validated and the 

correlation analysis permits a first evaluation of the mutual relationships among the 

considered variables. 

Fig. 5. Correlation analysis between operating temperature and all input data. 

Figure 5 shows the linear correlation between Tc and all the other features. The 

higher the bar goes, the more the features are correlated. Blue bars indicate a positive 

correlation while red bars indicate a negative correlation. The preliminary correlation 

analysis identified a strong positive correlation between Tc and the solar irradiance; on 

the contrary, a weak negative correlation with the wind speed was detected. Further-

more, a moderate positive correlation with electrical power, air temperature and volt-

age was found. 

A statistical analysis permitted to assess the maximum (Max), mean (Mean) and 

minimum (Min) values and the standard deviation (StDev) of all considered features 

(Table 1). 

Table 1. Statistical Evaluation. 

 Tair 

[°C] 

Tcell 

[°C] 

G 

[W/m2] 

V 

[V] 

W 

[m/s] 

P 

[W] 

RL 

[Ω] 

Max 32.60 64.97 1221.00 28.01 8.00 167.09 18.00 

Min 9.80 14.43 44.93 3.90 0.00 15.20 1.00 

Mean 19.98 36.52 675.01 19.31 2.30 70.75 7.18 

StDev 3.49 7.643 262.86 6.72 1.41 40.54 5.59 

sample 3432 3432 3432 3432 3432 3432 3432 

 
 

 

        Tair                 G    V         W               P                   RL 



In the following Training Step, the authors decided not to consider the Voltage and 

Electric load input because their values are already computed in the Electrical power 

value; the tested ANNs will consider as input only a vector with four components 

(Tair, G, P and W) and as output the Tc. The training dataset is composed by 2827 

vectors and the testing dataset consists in 605 vectors to be used in the validation 

phase. After the pre-processing phase, it was possible to choose the topology of neural 

network; different simulations relating to several topologies of ANNs have been test-

ed but in this work only the best ANN solutions will be described: the Gamma two 

Layer, the Recurrent one Layer and the MLP two Layer. For each topology the design 

and the algorithm are analyzed, each neural networks was trained and was validated 

with a post processing phase. 

4.3 Gamma two Layer 

A Gamma ANN is characterized by special memory ANs. The memory AN receives 

several inputs and produces multiple outputs which are delayed versions of the com-

bined input. This feature has a biological interpretation because, when the biological 

neuron receives multiple connections, the signal propagation is delayed [24]. 

As it is possible to see in Figure 6, the proposed Gamma topology is composed of 

two data sources block (input and output), three gamma memory blocks, three func-

tion layer blocks, three weight layer blocks and one delta terminator block. The func-

tion layer can be seen as non-linear thresholds for the propagation of the signals. They 

give the adaptive system its non-linear computing capabilities. The weight layer rep-

resents the long-term memory of the system and is adjusted during the learning phase. 

Finally, the delta terminator is an error criterion block that takes two signals and com-

pares them according to a specific criterion. The appellation “Terminator” means that 

the signals terminate to flow across the system. 

 

Fig. 6. Gamma two Layer layout. 



After the training, the post-processing phase evaluates the error (Figure 7) and the 

absolute error (Figure 8) between the measured operating temperature data and the 

calculated output employing the remaining 605 vectors. 

 

Fig. 7. Error distribution over 605 vectors of Tc with Gamma two Layer topology 

 

Fig. 8. Absolute Error distribution over 605 vectors of Tc with Gamma two Layer topology 

The values of the Mean Error (ME) and Mean Absolute Error (MAE) of the Gamma 

two Layer topology are reported in Table 2. 

Table 2. Mean Error and Mean Absolute Error of the Gamma two Layer topology.  

 Gamma two Layer 

 ME MAE 

[°C] -0.119 2.428 

StDv 3.286 2.217 



As shown in Figure 9 a Confidence plot of ± 4.408 °C contains 95% of the outputs.  

 

Fig. 9. Confidence Plot of calculated output versus measured data of Gamma two Layer topol-

ogy 

The black line, which represents the calculated output, well follows the trend of the 

purple line that represents the experimental output. The 95% confidence is delimited 

by the red (high) and blue (low) lines. 

4.4 Multi-Layer Perceptron (MLP) two Layer 

A (MLP) is a kind of ANN consisting of multiple layers of ANs in a directed graph, 

with each layer fully connected to the next one. Except for the input ANs, each node 

is a neuron with a non-linear activation function. A MLP utilizes a common super-

vised learning technique called back-propagation for training the network. This topol-

ogy is one of the simplest available for ANNs. In our work, the MPL two Layer is 

composed by: two data sources blocks (input and output), two function layer blocks, 

two weight layer blocks and one delta terminator block as shown in Figure 10. 

 

Fig. 10. MLP two Layer topology 

http://en.wikipedia.org/wiki/Activation_function
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Backpropagation


After the training, the post-processing phase evaluates the error and the absolute error 

between the measured and the calculated operating temperature data. The cumulative 

results are reported in Table 3. 

Table 3. Mean Error and Mean Absolute Error of the MLP two Layer 

 MLP two Layer 

 ME MAE 

[°C] 0.207 2.476 

StDv 3.407 2.349 

 

For the MLP two Layer topology the confidence plot that contains the 95% of the 

outputs is of ± 3.936°C (Figure 11). 

 

Fig. 11. Confidence Plot of calculated output versus measured data of MLP two Layer topology 

4.5 Recurrent MLP one Layer 

The Recurrent MLP one Layer is a simple ANN topology that employs a recursive 

flow of the signal to preserve and to use the temporal sequence of events as useful 

information. This topology (Figure 12) is composed of two data sources blocks (input 

and output), two weight layer blocks, two function layer blocks and one delta termina-

tor block. 



 

Fig. 12. Recurrent MLP one Layer topology.  

Figure 12 iconizes a feedback connection where μ is the weight of the feedback 

used to scale the input. Of course, there are different values of μ for each signal flow-

ing into the first function block layer. After the opportune training phase, the follow-

ing results are observed: 

Table 4. Error Distribution of the Recurrent MLP one Layer topology.  

 Recurrent MLP one Layer 

 ME MAE 

[°C] 0.229 2.489 

StDv 3.436 2.386 

 

For the Recurrent MLP one Layer topology the confidence plot that contains the 

95% of the outputs is ± 4.517° C, as shown in Figure 13.  

 

Fig. 13. Confidence Plot of Recurrent one Layer topology 



5 Evaluation of the results 

Each neural network was characterized by the same Input Data (Air Temperature, 

Wind Speed, Solar Irradiance and Electric Power) and was trained with a dataset of 

2827 vectors. The Gamma two Layer and the Recurrent MLP two Layer are two ANN 

typologies that, with different approaches, have the capability to preserve the tem-

poral sequence of data (memory), while the MLP two Layer is a static ANN. The 

results show that all the considered ANNs provide a reliable model that is able to fit 

well with the experimental trends. Generally, the ME is about ± 0.2 °C and the MAE 

is close to 2.4°C. The training phase of Gamma two Layer ANN requested 1 minute, 

while the other two typologies requested a shorter time. 

In literature [19, 25-29], there are different models that allow calculating the oper-

ating temperature. In order to validate the neural network approach, the authors made 

a comparison between the values of Tc obtained by the three previously illustrated 

networks and the operating temperature calculated by one of the most cited empirical 

correlation:  

     (1 ) (1 ) (1 1.053 )
C Ca aT T G T W            (2) 

where c is the efficiency of a PV panel and ,  and  are three constants 

(=38.0385, β =3.15126, γ =2.64173) [24]. 

The comparison, as represented in Table 5, shown that the empirical correlation 

achieves a MAE that is about twice compared to the ANN results. 

Table 5. Comparison between the ANN and empirical correlation results.  

ANN Training 

time 

MAE 

Gamma two Layer ≈ 1 min 2.428 

Recurrent MLP one 

Layer 
≈ 10 s 2.489 

MLP two Layer ≈ 20 s 2.476 

Empirical  - 4.719 

6 Conclusions 

In this paper, an artificial neural network approach has been proposed to determine 

the operative temperature of a PV panel. 

The application of the artificial neural network model represents a simple and fast 

solution to correctly evaluate the operative regimen of a PV system. To this purpose, 

different network architectures have been tested and trained with experimental data 

consisting in: air temperature, wind speed, solar irradiance, power output and cell 

temperature. The three best solutions of ANNs are reported: Gamma two Layer, MLP 

two Layer and Recurrent MPL one Layer. 



The results obtained by the ANNs demonstrates that this approach can be consid-

ered a reliable tool to forecast the cell temperature of the PV panel. Comparing the 

performances of these networks with a very often cited empirical model, used for 

determining the operating temperature of the panel, the ANN approach presents a 

significant lower MAE. Furthermore, the very short time required by MLP two Layer 

and Recurrent MPL one Layer for the training phase, suggests that ANNs could be 

integrated in a software for run-time evaluation. 
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