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ABSTRACT
In recent times, the application of artificial intelligence (AI) techniques for real property valuation has been on the
increase. Some expert systems that leveraged on machine intelligence concepts include rule-based reasoning, case-based
reasoning and artificial neural networks. These approaches have proved reliable thus far and in certain cases outperformed
the use of statistical predictive models such as hedonic regression, logistic regression, and discriminant analysis. However,
individual artificial intelligence approaches have their inherent limitations. These limitations hamper the quality of
decision support they proffer when used alone for real property valuation. In this paper, we present a Neural-CBR system
for real property valuation, which is based on a hybrid architecture that combines Artificial Neural Networks and Case-
Based Reasoning techniques. An evaluation of the system was conducted and the experimental results revealed that the
system has higher satisfactory level of performance when compared with individual Artificial Neural Network and Case-
Based Reasoning systems.
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1. INTRODUCTION
In recent years, the application of artificial

intelligence (AI) approaches for real property valuation
has been on the increase. Expert systems that leverage
machine intelligence concepts such as rule-based
reasoning [39, 29], case-based reasoning (CBR) [30], and
artificial neural networks (ANN) [10, 15, 27, 43, 45] have
been used. These AI approaches have been found to
outperform traditional statistical approaches such as
hedonic regression, logistic regression, and discriminant
analysis, and very capable to complement the decision
making process [37].

However, these AI approaches have their
individual strengths and weaknesses, which inherently
affect the quality of performance when used alone for real
estate valuation.  For example, in order to engage a rule-
based expert system approach, optimal weights must be
assigned to individual property attributes that are to be
used for composing rules of the rule-base, by using
standardized regression coefficients.  However, a major
challenge of a rule-based system is that these optimal
weights  derived from regression are not generalized, but
rather are location dependent, therefore, the rules and
weights must be updated regularly in order to sustain the
relevance of the system, which is usually a very
demanding task [12]. Data mining offers an alternative
approach to developing intelligent systems for real
property valuation but their viability is only guaranteed
when there is a large pool of transaction data to work with,
which may not exist or may be unreliable in some
locations [26].

The use of Artificial Neural Networks (ANN) for
the appraisal of real estate property is particularly
prevalent [44, 2].   ANN could be defined as a group of
simple interconnected units, called neurons that function

together in parallel for the purpose of performing a
common task. It is a model of computation that emulates
the operational principles of the biological nervous
systems by providing a mathematical equivalent of the
combination of neurons connected in a network.  The
neurons of an ANN are linked with each other through
connections. Each connection is assigned a weight that
controls the flow of information among the neurons.
Whenever data is fed into a neuron through the
connections, it is summed up first and then gets
transformed by an activation function.  The outputs of this
activation function are then sent to other neurons (for feed
forward networks) or back to itself as input (for recurrent
networks) [35]. ANN has very strong adaptive learning
ability from which it derives its strong interpolative
capability. This makes it very suitable for prediction,
especially in instances of noisy data or incomplete data,
which many other alternative prediction models are not
able to handle [44]. However, ANN has very weak
explanation mechanism, which makes it difficult to
understand the reasoning behind its conclusions [2]. This
is a major limitation particularly in the real estate domain
where it is essential to have a strong rationale for making
investment decisions.

CBR is an approach that entails the use of the
experience gained in previous problem episodes to arrive
at a solution for a new problem [1, 21].  It is a machine
learning paradigm that closely models the human
reasoning process. Solving a problem using CBR involves
a number of processes: (1) case matching and retrieval of a
relevant case using defined similarity metrics; (2) case
adaptation for reuse; (3) case revision for appropriateness
and; (4) case retention in the case base [2, 1]. The nature
of CBR, which relates every new episode to similar past
episodes, makes it very suitable for building intelligent
systems with effective explanation mechanism. It has
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proved useful for real property valuation in some locations
where transaction data is not readily available or is
unreliable. The past experiences of experts have been used
as a basis to implement a CBR system for decision support
purposes [32]. CBR systems have very strong explanation
mechanism because of the existence of sufficiently similar
previous cases that provides good rationale for new
solutions obtained. However, the disadvantage of CBR is
that the quality of its solutions depends solely on the
existence of good cases that are relevant to solving the
new case at hand.  This brings the tendency to overly rely
on previous experiences without validating them in a new
situation.

Our approach in this work, innovates the
combination of ANN and CBR in a single system
framework leveraging the strengths of the two instance-
based learning techniques. The experienced-based
problem solving capability of CBR systems and its viable
explanation mechanism is combined with the strong
interpolative capability of ANN in producing a Hybrid
Intelligent System (HIS) for qualitative decision support
for real property valuation. This, to the best of our
knowledge represents a first attempt at hybridizing these
two approaches in a practical scenario for improved
decision support in the real estate domain. To achieve this,
data from selected input variables of new cases are
transformed via a pre-processing procedure into numerical
data that are suitable for ANN computation, and the result
of the ANN is passed to the CBR component. Thereafter,
the CBR component seeks for existing past cases that are
sufficiently similar to the input case whose solution and
explanation can be adapted to the new context.  Hence,
this work introduces the novel hybridization of ANN and
CBR decision support in real property valuation for
improved performance relative to the application of a
solitary ANN or CBR approach.

The remaining part of the paper is described as
follows: In section 2 we give an overview of related work,
while Section 3 discusses the hybrid architecture of the
Neural-CBR system. Section 4 is a case study report of the
application of the Neural-CBR system to business data of
properties sales obtained from a Nigerian company (Dan
Odiete and Co. Ltd. based in Benin City, Nigeria). The
paper is concluded in section 5 with a brief note.

2. RELATED WORK
A number of machine learning methods and

techniques that are applicable to property appraisal and
valuation have been reported in literature. Wilson et al.
[44] reported the implementation of an intelligent system
for valuation of residential property. The intelligent
system was built using a hybrid of Multi-Layer Perceptron
(MLP) ANN and rule-based expert system. The study by
Guan et al [17] describes the design and implementation of
an Adaptive Neuro-Fuzzy Inference System-based
(ANFIS) approach to estimate prices for residential
properties. The paper represents a first attempt to evaluate
the feasibility and effectiveness of ANFIS in assessing real

estate values. In [22], a multi-resolution approach was
used to determine real estate price in the Chinese real
estate market applying three theories: (1) Unascertained
theory, (2) Principal Component Analysis - PCA and (3)
Ant Colony Optimization ACO-based ANN. The result
forecasted is in good agreement with the actual values, and
have been very accurate and meet the actual needs. Lin
and Chen [23] applied Back Propagation Neural Networks
(BPN) and Support Vector Regression (SVR) to property
valuation in Taiwan. The results of the BPN & SVR were
compared. It was found that SVR with trial-and-error
method performed the best with MAPE = 4.466% and R2
= 0.8540. That is, stepwise regression is efficient but not
the best variable selection method with both BPN and
SVR. Also ANN was used as a valuation technique in [10,
15, 27, 43, 45, 44, 8, 9, 33].

Most of the existing CBR systems that have been
reported in literature find application in the fields of
medicine, law, planning and design. These include CHEF
[18], PESUADER [41], CABOT [11], GINA [14]), and
CYRUS [20]. Relatively few CBR systems have been
reported to have application in the real estate domain.
However, PROFIT [6], is a Fuzzy CBR (FCBR) system
for residential property valuation. It is an advanced
prototype system developed to estimate residential
property values for real estate transactions that was based
on the use of CBR techniques with Fuzzy predicates.
PROFIT has been successfully tested on thousands of real
estate transactions. Also, Pacharavanich et al. [32]
reported the application of a CBR tool for the valuation of
residential property in Bangkok, also an evaluation of the
CBR tool was conducted.  Juan et al. [19] developed a
“pre-sale housing”-based decision support system for the
Taiwan real estate market using a hybrid of CBR and
Genetic Algorithm (GA).  Based on the customer’s needs,
CBR is used to retrieve relevant housing layout. Out of the
retrieved cases, nearest neighbour method was used to
calculate similarity of cases. GA was then applied to
optimize cost and housing conditions. Hybrid CBR
systems are those that combine other forms of knowledge
and reasoning methods with CBR. Examples include
Fuzzy-CBR [7], rule-based and case-based [36, 16],
combining case-based and model-based [34], case-based
and inductive learning [13, 5, 25, 3]. Thus far, relatively
few instances of Neural-CBR hybrids have been reported
in the literature with no report of its application to the real
estate domain. Although, Taffasse [42] discussed the
prospects of Neural-CBR approach to real property
appraisal, the paper did not report any implementation
experience to practically validate the propositions made.
Specifically, a combination of CBR and a Radial basis
ANN in the implementation of a Sales-Advisory system
was reported in [28].

In [24] an ongoing work on the development of
hybrid Neural-CBR classifiers for building on-line
communities was reported. The objective of the work is to
identify communities of use in the context of an organized
group of people. The process involves mining users
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bookmark files in order to identify communities that share
the same information interests. An intelligent agent is used
to observe user behavior in order to learn the user
bookmark classification strategy before hybrid neural
case-based reasoning component is used as incremental
classifier. Also, Bajo et al. [4] reported the implementation
of a Case-Based Planner for Monitoring Patients
(CBPMP) system. It is an autonomous deliberative case-
based planner designed to plan the nurses' working time
dynamically, to maintain the standard working reports
about the nurses' activities, and to guarantee that the
patients assigned to the nurses are given the right care. The
CBPMP was integrated with a Routing Problems with
Time Windows (RPTW) neural network component in
order to realize an intelligent environment for monitoring
patients' health care in execution time in hospital
environments.  Hence, the contribution of this work stems
from the novel hybridization of MLP-ANN and CBR in
the implementation of a Neural-CBR decision support
system in real estate property valuation.

3.  THE HYBRID NEURAL-CBR SYSTEM
The Neural-CBR system is a hybrid modular

architecture of two components with five user interfaces.
The two components are the ANN component and the
CBR component (see Figure 1).

Fig 1: A Schematic View of the hybrid Neural-CBR
Architecture

3.1 The Multi-Layer Perceptron ANN Component
The multi-layer perceptron (MLP) ANN is a

powerful neural network model that can be used for
solving approximation, estimation, classification and
prediction problems. Generally, it consists of an input
layer, an output layer and one hidden layer. The hidden
layer(s) and the output layer are the processing layers in
the network where activation takes place. The knowledge
of the network is encoded in the weights connecting the
neurons.  Each neuron in an inner layer acts as a linear
combiner whose summation function is given as:

Sum = 



n

j
ii xww

1
0

(1)

Where w0 is the bias weight, wi and xi are the
weight and input vectors respectively. The activation at
each neuron is given by the sigmoid function:

f(a) =
)1(

1
sume

(2)

The sigmoid function is continuous and
differentiable in the interval [0, 1], and is one of mostly
used activation function for the MLP. The MLP is trained
using the back propagation algorithm [35], which is a form
of supervised learning, by presenting sample input-output
pairs to the network. The error difference between the
network’s output and the expected target output are fed
back into the network for updating the weights connecting
the hidden-output layers and the input-hidden layers.

In our Neural-CBR system, symbolic data
obtained from case instances are transformed into
numerical data through pre-processing and fed as input
into the MLP. The data pre-processing is therefore, a
necessary precursor to the operations of the MLP-ANN
component of the Neural-CBR system.

3.2 The CBR Component
The set of input variable values and the predicted

output obtained from the MLP component is passed to the
CBR component. The CBR component has a case base
indexed on unique case identity field (case_id) and the
computed similarity score of each case. The typical
structure of a case consists of the following:
 Case_id – which is an auto-generated primary

key of the table;
 Case_simscore – which is the computed

similarity score of a case in the case base relative
to a particular case instance;

 Case_attributesset – input values of individual
attributes stored as a string separated by
delimiters;

 Case_sellingprice – the predicted valuation of a
case instance;

 Case_weightSet – the set of weights associated
with each attribute variable such that wi

represents the weight of the ith attribute.

3.2.1 Similarity Analysis
Similarity analysis was done using the nearest

neighbour algorithm. The similarity measure used was the
inverse of weighted normalized Euclidian distance. A
similarity score is computed by:

SIM(X, Y) = 1- DIST(X,Y) (3)

DIST(X, Y) = (4)

Where X and Y are the new and stored case
respectively with n number of attributes while and
are the normalized values for the ith attribute. A
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normalized weight wi is assigned to each attribute based
on contextual experts’ knowledge of the location
concerned. This calculation is repeated for every stored
case in the case base. The cases with the highest similarity
score (that is up to or above the similarity benchmark
value) are picked as candidates for adaptation in providing
explanation for the new case scenario.  The algorithm of
the Neural-CBR system is given in Figure 2.

Fig 2: Neural-CBR System’s Operational Procedure

3.3 Algorithm of Neural-CBR System
In this section, we present the algorithm of the

Neural-CBR systems that details how it reaches its
conclusions (see Figure 2). Given an input Cnew and the
existence of the case base CB. A variable Sim Benchmark
is set as the minimum acceptable value for sufficient
similarity between cases. The algorithm selects the
SimBenchmark value to be in the interval [0.75, 1.0], such
that the value 0.75 implies a degree of similarity in the
upper quartile while the value 1.0 denotes perfect
similarity. Likewise, the value 0.5 connotes an average
similarity score. Step 4, 5, 6 in the algorithm represents the
pre-processing, ANN training and ANN prediction phases
of the system’s operation. In Step 7, a one pass scan of the
case base (CB) was carried out to compute similarity
between Cnew and the existing cases in the case base using
the Weighted Euclidean distance (see equations 1, 2). If
cases with similarity score up to or above the
SimBenchmark exist (i.e. similarity ≥ SimBenchmark)
then case adaptation is conducted as follows:

i. Rank all cases found by their similarity score;
ii. Group the retrieved cases based on their solution

values Pcbr (case selling price) into different

categories, g1, g2, g3..., gk, with their
corresponding Pcbr as P1, P2,.., Pk;

iii. Take count of the number of cases retrieved in
each category gi (i = 1...k) and store them as t1,
t2...tk);

iv. Choose category gi with the highest frequency;
v. If there exist only one category gi with highest

frequency then take Pcbr of a case in gi as Pvalue

(i.e. final output) else, if there is more than one
category gi with highest frequency, such as gi1,
gi2... gim then compute average value Pave of all
Pim in gi as Pvalue (final output) and as Pcbr for Cnew

.
vi. Next, use descriptions of case attributes

(Case_attributesset) in category gi as explanation
for Cnew (line 9-12).

If cases with similarity score of at least 0.5, but
less than SimBenchmark exists then the Neural-CBR
system uses the neural computed Pneural (ANN predicted
output) in case adaptation thus:

1) Use retrieved cases to retrain ANN-MLP in order
to determine Pneural;

2) Assign Pneural as solution for Pcbr and also as Pvalue

in this case;
3) Use descriptions of attributes of retrieved cases

that are closest to corresponding Cnew variables
for explanation. Where no sufficiently similar
case is found, then restate description attributes
of Cnew for explanation (see line 15-18) i.e. for all
retrieved cases   Cr = {c1, c2 …cn)  where fi

(i=1...15) is a specific attribute feature of Ck  Cr,
fj a corresponding attribute feature of Cnew, wi, the
weight associated with attribute feature fi,
compute SIM(fi, fj) = │wifi-wifj│ and rank cases
where SIM(fi, fj) ≤ 0.5. Pick as explanation for
Cnew highest ranked fi in Cr, for each instance
where SIM(fi, fj) ≤ 0.5 is not found use the
description of  fj in Cnew as explanation for Cnew.
end for

If sufficiently similar cases do not exist then the
system takes Pneural as Pvalue. However in this case it
restates the features of Cnew as explanation for output (line
20-21).

4.  THE CASE STUDY
A prototype system was developed using data

collected from a real estate firm (Dan Odiete and Co. Ltd)
in Nigeria [31]. The instance data used in the case study is
for the periods of 2002 to 2005, a sample is shown in
Table 1. Data associated with fifteen core attribute features
used in the appraisal of residential properties were
extracted and used to train the neural network component
to yield an estimate of the price of the property. The
features, description and range of values obtained from the
training set used are given in Table 2.
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Table 1: Bedroom Bungalow BQ optional

Table 2: Description of features for real property valuation

4.1 Data-Preprocessing
The raw input data (see Table 1) were normalized

based on min-max normalization [40] to values between 0
and 1 using the data-preprocessing interface of the Neural-
CBR system. The rescaled values of the attribute features
extracted from the data are as shown in Table 3. All the
values are numerical except the following: borehole, BQ,
fenced_round, neighbourhood_group and accessibility.
These five were category inputs, therefore were

represented as A (available) or B (not available), which
are assigned vales 1 for A and 0 for B. In the case of
neighbourhood_group, A (high), B (medium), or C (low)
are assigned values 1, 0.5 and 0 respectively.
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Table 3: Showing normalized feature values from Table 1

4.2 Training the MLP-ANN
The configuration of the MLP-ANN model used

for our training instance is a 15-16-1 MLP in which the
number of core attribute variables (15 of them)
corresponds to the number of input neurons with one
hidden layer containing 16 neurons and 1 neuron in the
output layer, which returns as output the predicted sales
price estimate. The Neural-CBR system environment
allows for the specification of a desired configuration for
the MLP network, which is then dynamically created. The
MLP was trained using the back propagation algorithm
with three sets of data, the training set, the validation set
(to verify correctness during training) and the test set.  The
summary of the ANN experiments that was conducted
with the Neural-CBR system framework in order to arrive
at the 15-16-1 MLP configuration and other optimal
training parameters such as number of neurons in the
hidden layer, learning rate and threshold are presented in
Tables 4, 5 and 6. In each occasion recordings were taken
and the average computed to determine the optimum value
in each case.

Table 4: Variation of neurons in the hidden layer of MLP

Table 5: Variation of learning rate

Table 6: Variation of threshold

After the training experiment, the MLP
configuration was 15-16-1, with 1.0 learning rate and
0.005 threshold value. This was used for predicting the
sale price of a property and the predicted result passed to
the CBR component.

4.3 Implementation of the Neural-CBR System
The Borland C++ Builder version 6.0 software

was used as the programming platform to realize the
Neural-CBR system. The case base was implemented as
SQL Server database table of records (cases) indexed on
case_id and the computed weighted Case_simscore fields.
The CBR component does similarity analysis and uses
parameterized SQL statements to determine the best-case



Vol. 4, No. 8 Aug 2013 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

617

matches. The procedure employed by the Neural-CBR
system to reach its final conclusion is based on the
algorithm shown in figure 2.  Figures 3-5 show

Fig 3: Feature Extraction Interface of the Neural-CBR
System

Fig 4: Network Training Interface of the Neural-CBR
System

Fig 5: Prediction and Explanation Interface of the Neural-
CBR System

4.4 Performance Evaluation of Neural-CBR System
Evaluation is the process of determining the

appropriateness of a specific system relative to its
functional requirements and objectives.  Validation of an
expert system is conducted by determining whether the
system's outcome is consistent with the conclusions of the
human experts. Validation focuses on evaluating the
outcomes rather than the process by which the outcomes

are determined. In our specific case, the output of the
Neural-CBR system was validated by using a direct
method [38]. In the direct method of expert system
validation a human expert does a quantitative assessment
of the expert system software by engaging it to perform a
simple benchmark problem over a specified period. The
expert then responds to a set of questions about the
software based on past experience. The questions are
quantitative and are based on a 0 (very false) to 5 (very
true) numerical scales. Thereafter, a single numerical
factor results called the Satisfaction Level that ranges from
0 (least satisfied user) to 5 (most satisfied user) is
computed, which is used to rank the expert system
software in terms of its likelihood to satisfy a prospective
end user.

4.4.1 Description of the Evaluation Experiment
The objective of the validation experiment was to

determine the level of users’ satisfaction with the hybrid
Neural-CBR system relative to CBR alone and ANN alone
systems. In order to do this, a real property valuation
system was created that allows the user to alternate
between three system modalities, Neural-CBR, CBR and
ANN, such that, if one of the modality is activated the
other two modalities are automatically disabled. A
comparative assessment of the three system modalities
was then undertaken using some selected human experts
from the real estate industry for the evaluation. The
participants in the experiment were persons with
significant professional experience in the real property
valuation.  Fifteen (15) real estate experts drawn from two
firms, Dan Odiete & Co. and Ajeb Associates (both
located in Benin City, Nigeria) with varying professional
experience ranging from 2 (lowest) to 15 (highest) years
were selected to participate in the user-based system
usability experiment. Each received a copy of a
questionnaire instrument and had the system to be
evaluated installed for them. The participants who were
people with tangible knowledge of the use of software
were given one-week training on how to make use the
system prior to the commencement of the experiment.
Details of how to switch modalities and to engage the
system in specific modality for operations such as data
preprocessing, training, and prediction were clearly
outlined. In addition, the participants had the license to
engage the system in as many trial sessions as deemed
convenient commencing with the actual assessment.
Moreover, one IT support staff was temporarily assigned
to each company for the trial period of three weeks.  The
human experts were asked to give a rating of 0 to 5 of their
assessment of the performance of the three (Neural-CBR,
CBR, ANN) system modalities covering seven aspects and
a total of sixteen questions. Each question has specific
weight assigned to it, which had the mutual consent of
human experts that participated in the experimental
process.  Table 7 shows a sample of a typical response to
the questionnaire test instrument and how the satisfaction
score for an evaluator is computed.
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Table 7: A Typical System Evaluation Template

4.5 Results and Discussion
At the end of the evaluation experiment, the mean

satisfaction level as computed from the assessments of the
fifteen real estate expert evaluators for the three systems
are as shown in Table 8. The Neural-CBR system had a
mean score of 3.83/5.0 (viz. 3.83 out of the possible
maximum score of 5.0); CBR system had 3.64/5.0; and
ANN system 3.75/5.0; all which are indicative of good
performance.

Table 8: Result of Evaluation Experiment

However, in order to determine the best of the
three systems; we compared the computed mean
satisfaction level of the three systems to determine
whether the differences in the mean values are statistically
significant. To achieve this we formulated the following
hypothesis:
Hypothesis one
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H0: There is no significant difference in the mean
satisfaction level of the CBR, Neural-CBR, and ANN
systems, and hence the three systems are at par
performance wise.

H1: There is significant difference in the mean
satisfaction level of the CBR, Neural-CBR, and ANN
system, and the Neural-CBR systems is better than the
other two systems.
Testing the hypothesis

In order to test the hypothesis that was
formulated, the Analysis of Variance (ANOVA) statistic
was employed to compare the three sets of data obtained
from the evaluation experiment. The coefficient of
variation (CV) (see Table 10) of the sets of data was
computed in order to determine the system with the best
rating distribution. This is given as:

Where σ = standard deviation of the data distribution, µ =
mean of the data distribution

At 1% significance level (i.e. p < 0.01), it was
found that the mean satisfaction levels of the three systems
(ANN, Neural-CBR and CBR) systems are significantly
different because the p-value of 0.008305 from the
ANOVA test is less than 0.01 (see Table 9). In addition,
the coefficient of variation (CV) for the hybrid Neural-
CBR system is the lowest when compared to the other two
systems, which is indicative of a relatively better user
rating. Therefore, H0 is rejected and H1 accepted, which
states that there is significant difference in the mean
satisfaction level of ANN, Neural-CBR and CBR systems
and the Neural-CBR system is better than the other two
systems.

Table 9: ANOVA Table for Mean Satisfaction Level
Comparison

Table 10: Coefficient of Variation for three Systems

Generally the observations from the case study
reveal potential benefits of the novel hybridization of
ANN and CBR. First, the output of the system shows the
interpolative power of ANN especially in instances where
other predictive models may be deficient. Second, the
results from the system reveal how well the ANN
component could make up for the limitation of the CBR
component in instances when there is lack of sufficiently
similar old cases in the case base for a new case. At the
same time the Neural-CBR system leverages the existence
of a case base, in providing justifiable explanation for
results instead of being a black box like a typical ANN.
Additionally, the provisioning of rich GUI interfaces for
preprocessing and training of ANN enables real-time
acquisition of expert knowledge in the process of solving a
problem such as being able to assign weights to specific
real property attribute variables, which makes the system
very adaptive and suitable as a decision support tool.

5. CONCLUSION
In this work, a novel hybridization of ANN and

CBR techniques for real estate property valuation has been
demonstrated. A prototype Neural-CBR system was
developed and evaluated in a case study to confirm the
viability of the concept. The result obtained revealed that
the Neural-CBR combination offers more acceptable level
of usability and performance satisfaction relative to
solitary ANN systems and CBR systems. Also, the system
showed significant strength in key areas of weaknesses
usually associated with solitary ANN and CBR intelligent
systems, which gives merit to the hybridization. In future
work, we intend to investigate the applicability of hybrid
Neural-CBR systems to other business application
domains such as education, health, and finance where the
potential of Neural-CBR is yet to be fully explored.
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