
Abstract
Selection of input variables is a key stage in build-
ing predictive models, and an important form of
data mining. As exhaustive evaluation of potential
input sets using full non-linear models is impracti-
cal, it is necessary to use simple fast-evaluating
models and heuristic selection strategies. This pa-
per discusses a fast, efficient, and powerful non-
linear input selection procedure using a combina-
tion of Probabilistic Neural Networks and repeated
bitwise gradient descent. The algorithm is com-
pared with forward elimination, backward elimina-
tion and genetic algorithms using a selection of
real-world data sets. The algorithm has comparative
performance and greatly reduced execution time
with respect to these alternative approaches. It is
demonstrated empirically that reliable results can-
not be gained using any of these approaches with-
out the use of resampling.

1 Introduction
In many machine learning domains, the objective is to infer a
model that allows one or more output (dependent) variables
to be predicted given the values of input variables (inde-
pendent variables, or features – we will use the terms input
variable and feature interchangeably throughout this paper).
A wide variety of modeling techniques can be used to form
the prediction, including conventional statistical models
such as linear (least squares) models and logistic regression,
clustering algorithms, neural networks, fuzzy logic and
neuro-fuzzy techniques, and decision trees. Irrespective of
the modeling technique, a key issue is to determine which of
the available input variables should be used in modeling -
this is known as feature selection. Typically, the model must
be inferred from a set of historical data, D, that includes a
number, N, of cases (or vectors), cj, each containing values
for an output variable, o j, together with the associated vector
of V input variables, xj, and the feature subset must be se-
lected on the basis of this same data set.
Feature selection is non-trivial for a number of reasons. First,
variables are seldom entirely independent – there may be
redundancy (where two or more variables are correlated so

that it is not necessary to include all of them in modeling –
the most extreme example occurs when a variable is simply
replicated), and interdependence (where two or more vari-
ables between them convey important information that is
obscure if any of them is included on its own – the well-
known two-spirals problems demonstrates the case of two
interdependent variables). Second, it may actually be benefi-
cial to discard variables that have some low level of genuine
information, as the “curse of dimensionality” implies that
smaller models generalize better, and we often encounter the
problem where the number of cases available is small with
respect to the number of variables.
As a consequence of these problems, the only way to select
the optimal feature subset with certainly is to evaluate all
possible combinations, of which there are 2V for a V variable
problem. This means building 2V models, and if the modeling
process itself is subject to experimental variability (for exa m-
ple, knowing the input variables to a neural network, we
must still determine the number of hidden units, and train
many times to avoid local minima) then each of the 2V
evaluations of variable subsets may itself be extremely com-
putationally expensive. Even if exhaustive evaluation is pos-
sible, the variable subset selected may be dependent on the
training data used, which is itself a sample from an unknown
distribution, and therefore the results are unreliable.
In reality, exhaustive evaluation is not practical for more than
a few input variables. It is common practice to apply heuris-
tic algorithms based on a smaller number of evaluations,
such as forward stepwise and backward stepwise selection.
We may also reduce the computational burden by perform-
ing feature selection using some quick to evaluate model; for
example, by using a linear model for feature selection even if
the model that will ultimately be deployed is non-linear [Jain
and Zongker, 1997].
This paper discusses the application of a feature selection
algorithm using a combination of repeated bitwise gradient
descent and Probabilistic Neural Networks [Speckt, 1990].
The algorithm is compared with forward stepwise, backward
stepwise, and genetic algorithms. The algorithms are evalu-
ated using a selection of real-world data sets drawn from the
UCI machine learning repository [Blake et. al., 1998]. The
new algorithm is shown to be effective in selecting feature

Feature Selection using Genetic Algorithms and Probabilistic Neural Networks

Content Areas: neural networks, genetic algorithms, data mining
Tracking Number: A694

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/55609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

subsets, and extremely efficient. In addition, it can be used
to differentiate between important and ambiguous variables.

2. Evaluation of Feature Subsets
The feature selection task can be conveniently represented
as a binary string search problem. A feature selection algo-
rithm searches for a binary string, S, with the number of bits
equal to the number of candidate input features, V; si=0 in-
dicates that a feature should not be used; si=1 indicates that
it should be used. Such a string is sometimes referred to as a
mask. Any given mask can be evaluated by building a model
using the indicated combination of inputs, and assessing its
performance. Feature selection algorithms therefore have
two key parts: a search algorithm that generates candidate
mask strings, and an evaluation algorithm that assigns a
performance rating to the strings (the performance may be
used by the search algorithm to guide the generation of new
candidate masks for evaluation).
This section describes the evaluation algorithm used in this
paper; the next section describes the new search algorithm
and the benchmark search algorithms.
Probabilistic neural networks (PNNs) are simple non-linear
modeling techniques that have modest computational re-
quirements for a reasonably small data set. Probabilistic neu-
ral networks are used for classification problems [Speckt,
1990], where the objective is to assign cases to one of a
number of discrete classes. The output of the model is an
estimate of the class membership probabilities. This paper
concentrates on the application of feature selection in classi-
fication problems; however, the techniques describe extend
trivially to the case of regression problems (where the output
is a continuous variable) using Generalized Regression Neu-
ral Networks [Speckt, 1991], a closely related technique with
similar performance characteristics.
Probabilistic Neural Networks estimate the probability den-
sity functions (p.d.f.s) using the training data set in a very
direct fashion, and then assign class membership probabili-
ties to new cases by using the p.d.f. estimates. The class
p.d.f.s are estimated by adding together kernel functions
(typically Gaussians) located at each case in the training set.
Intuitively, the presence of a case in the training set can be
taken as evidence of some probability density at that point,
and of (somewhat lower) probability density at nearby
points. Where there is a cluster of training cases belonging
to the same class, the probability estimate for that class will
be high as a number of overlapping kernel functions are
added together.
The PNN estimates the probability that a new case, x, belong
to class i as:

where xij is the jth training case belonging to class i, k i is the
number of training cases in class i, and ? is the smoothing
factor, which is determined experimentally.
The PNN is constructed as a neural network using three lay-
ers: input layer, pattern units, and summation/output units.
The input layer distributes inputs to the next layer. The pat-
tern units each contain a weight vector that is a copy of a
case from the training set. These units calculate the squared
Euclidean distance of the pattern unit vector from the input,
divide this by 2? 2, and then calculate the exponential of the
negative of this. They thus form a Gaussian function cen-
tered at the training case. The third layer contains one unit
for each class, and each of these units is connected only to
pattern units of that class. The weights on these connec-
tions are all one. At the output layer, the activations are
normalized to sum to one; thus, the constant in the formula
above can be ignored. Modifications may also be made to
account for known disparities between prior class distribu-
tions and the distribution in the training set, and to incorpo-
rate a loss matrix if the cost of misclassification varies from
class to class.
The only variable that needs to be optimized in a PNN is the
smoothing factor. This is easily done experimentally. The
data set, D, is divided into two subsets: a training set, T, and
a test set, X (typically with equal numbers of randomly se-
lected cases). A line search algorithm is used to select the
smoothing factor, by building a PNN for each smoothing
factor, and assessing its performance using a composite
error function applied to the test cases. The error function

might be the correct classification rate, the sum of the test
case cross-entropies, or the sum-squared error function.
This paper uses the latter, as it is commonly applied in the
neural network community:

PNNs are not too sensitive to the precise choice of smooth-
ing factor, and it is sufficient to optimize the parameter once
before commencing the feature selection process; the com-
putational burden is therefore negligible.
To evaluate a feature subset, we use the same error function,
in this case with a fixed smoothing factor, but with the input
variables varying.
From the point of view of feature selection, the PNN has
significant advantages over other forms of neural network,
and even over linear modeling. First, there is no “training
algorithm” to speak of. A PNN is “trained” by recording the
training cases in the hidden layer, and setting the connec-
tions to the output layer to indicate the class. It is not even
necessary to do this - execution of a PNN can be simulated
directly within the data set, so that there is no training phase

?
? ?

?
?

?

?
?
?

? ??
??

ik

j

ij
T

ij

i
vvi

xxxx

k
xf

1
22/ 2

)()(
exp

1
2

1
)(

???

? ? ??
X O

ii oxfE 2))((?

at all. This contrasts with neural networks such as standard
multilayer perceptrons, which require an extensive period of
training (Speckt [1990] quotes a 200,000 times speedup com-
pared with back propagation on one particular problem).
Second, once the smoothing factor has been fixed there are
no variable training parameters, so that repeated execution is
not necessary. Third, the PNN is non-linear and is capable of
modeling arbitrarily complex problems. It is therefore a more
intuitively appealing option than the commonly-selected
alternative, linear modeling, if the problem domain is known
or suspected to be non-linear.
The computational cost of evaluating a feature set using a
PNN is, however, quite high. The execution time of the net-
work is proportional to NTV, where NT is the number of train-
ing cases. To evaluate a feature set, the PNN is executed on
each of the test cases, so the total evaluation time is propor-
tional to NTNXV, where NX is the number of verification
cases. As NT and NX sum to N, the total number of cases
available (typically half are used in training and half in verifi-
cation), the execution time is proportional to N2V. This cost
becomes quite significant if the number of cases is large, and
is certainly much greater than the execution time for a linear
or multilayer perceptron model. Nonetheless, given that
training is the dominant element in the use of most neural
networks, the disadvantage in execution time is greatly out-
weighed by the advantage in training time.
One approach to reducing computational cost is to sub-
sample cases during evaluation. Execution speed may be
increased by selecting a sub-sample of the cases, dividing
this into a training and test set, and evaluating on that. As
the computational cost is proportion to N2, halving the sam-
ple size quarters the evaluation time, so the effect can be
very significant. This is a valuable alternative if the data set
contains many cases. Of course, reducing the number of
cases used to form the model will also make the selection
procedure more prone to random errors. However, the data
sets we have used in this paper have relatively few cases for
the number of variables, and we have not employed sub-
sampling.

3. Selection algorithms
The PNN can be used, as described in the previous section,
to evaluate an input variable mask. This evaluation capabil-
ity can be plugged into any algorithm that searches for bi-
nary strings. This paper compares a very simple approach –
bitwise gradient descent from a random starting point - with
three popular approaches to feature selection: forward step-
wise, backward stepwise, and the genetic algorithm.
In forward stepwise selection, a feature subset is iteratively
built up [Jain and Zongker, 1997]. On the first iteration, N
models are tested, each of which uses a single input variable
(corresponding to masking strings consisting of all zeros
with a one in a single position). The mask with the lowest
error is selected, indicating that the variable that gives the
best performance on its own should be selected first. On
each subsequent iteration, each of the unused variables is
added to the model in turn, and the variable that most im-

proves the model is selected. The algorithm terminates when
adding an extra variable results in no improvement in per-
formance (it is also possible to consider versions where the
algorithm terminates if the improvement falls below some
threshold, indicating an acceptable complexity/performance
trade-off).
In backward stepwise selection, the algorithm starts by
building a model that includes all available input variables.
On each iteration, the algorithm locates the variable that, if
removed, most improves the performance (or causes least
deterioration). The algorithm terminates when removing a
variable results in no deterioration in performance (it is also
possible to consider versions where the algorithm terminates
if the deterioration rises above some threshold).
A problem with forward selection is that it may fail to include
variables that are interdependent, as it adds variables one at
a time. However, it may locate small, effective, subsets quite
rapidly, as the early evaluations, involving relatively few
variables, are fast. In contrast, in backwards selection inter-
dependencies are well-handled, but early evaluations are
relatively expensive. In either case, the maximum number of
possible evaluations is V(V-1)/2, which is potentially quite
substantial.
The genetic algorithm [Goldberg, 1989] is a well-known ap-
proach for selecting binary strings, and a number of authors
have suggested its use for feature selection [Yang and Ho-
navar, 1998; Raymer et.al., 1996]. An important aspect of the
genetic algorithm is that it is explicitly designed to exploit
epistasis (that is, interdependencies between bits in the
string), and thus should be well-suited for this problem do-
main. However, Genetic Algorithms typically require a large
number of evaluations to reach a minimum (a population of
100 strings, evaluated over 100 generations, for a total 10,000
evaluations is commonplace). This implies that the Genetic
Algorithm is only likely to require less evaluations than for-
ward or backward stepwise algorithms if the number of vari-
ables is very large (100 or more). We also note that 10,000
evaluations is sufficient to exhaustively evaluate all possible
combinations of up to 13 variables. However, the genetic
algorithm might achieve better results than forward or back-
ward selection for feature sets of between 14 and 20 vari-
ables.
This paper introduces a simple and effective approach for
feature selection called bitwise gradient descent. The algo-
rithm starts with a randomly initialized string. It then “flips”
each bit in the string in turn, retaining the changed bit only if
the change causes a reduction in error. The total number of
evaluations is only V - substantially less than the other algo-
rithms described above. If the variables are not interdepend-
ent, then this approach will yield an optimum solution. Even
if they are some modest interdependencies involving a cou-
ple of variables, repeated application is likely to discover
these. In addition, repeated application of the algorithm
gives valuable information about the importance of the indi-
vidual variables, as will be described below.

4. Resampling
A key issue in all the feature selection algorithms is the divi-
sion of the available data into the training and test subsets.
Some variables may be of great individual importance, and
will be selected by any of the algorithms describe above.
However, if variables are of marginal importance, or are mu-
tually redundant, then their pre sence in the selected subset
may be strongly influenced by the division between the
training and test subsets. This problem is clearly present in
all the data sets used in these experiments - repeating any of
the feature selection algorithms with different training/test
subset selections invariably produces different results.
A practical solution to this problem is to repeat the fe ature
selection process a number of times, counting the number of
occasions on which each variable is selected, and to regard
the frequency distribution of the variables as the output of
the feature selection procedure. This is more informative and
more useful than a straightforward single evaluation, the
results of which are extremely suspect.
It is the combination with resampling that makes bitwise gra-
dient descent particularly effective. The algorithm is efficient
enough to be repeated a moderately large number of times,
and resampling helps to avoid problems where particular
interdependencies between variables are entirely missed.

5. Experiments
Four data sets were selected from the UCI machine learning
repository [Blake et. al., 1998]. These are all real-world prob-
lem domains, and all have a large number of input variables
and a relatively small number of cases. The data sets were
not artificially chosen to demonstrate particular issues such
as interdependency between fe atures, reflect a range of vari-
able types, and include missing value1. The data sets are
briefly described below:
Anneal. 798 cases, 37 variables (9 numeric, 29 nominal), 6
output classes, no missing values.
Horse colic. 368 cases, 27 variables (3 numeric, 24 nominal),
3 output classes, 30% missing values. Prediction of survival
of horses with colic.
Ionosphere. 351 cases, 34 variables (all continuous, 2 output
classes, no missing values. Distinguish radar measurements
which show structure. [Sigillito et. al., 1989]
Sonar. 208 cases, 60 variables, 2 output classes. Distinguish
rocks from mines on sea bed. [Gorman and Sejnowski, 1988]
All data sets are randomly divided into training and test
subsets of equal size. Nominal variables we re encoded using
standard binary encoding (two -state) or one-of-N encoding
(3 or more state) techniques. Numeric variables were normal-
ized into the range [0,1] using the minimax procedure.

1 Missing values are substituted using the mean training value
of numeric variables, and the training set distributions for
nominal variables.

 The bitwise gradient descent algorithm was repeated 20
times for each data set, with a random starting string and
random division into training and test cases on each execu-
tion; the variable selection frequencies are discussed below.
The forward and backward stepwise selection algorithms
were each repeated 5 times (the reduced number of experi-
ments is due to the greatly increased execution time) with
random division into training and test cases on each execu-
tion.
As the genetic algorithm is itself a stochastic population-
based algorithm, it was speculated that a similar frequency-
based approach could be applied to the final population of
the algorithm. The algorithm was repeated twice for each of
the Ionosphere and Horse Colic data sets (as a consequence
of the extreme execution time, only a limited number of ex-
periments were conducted), and the results compared for
consistency. There are a large number of control parameters
that can be altered in a genetic algorithm. For the purposes
of these experiments, the following factors were selected: a
standard genetic algorithm with elitism, mutation rate aver-
age 1.0 per string, crossover one-point, rate 0.3, selection by
expected value roulette method, fitness linearly norma lized
for constant bias (fittest member of each population 5 times
fitter than least fit member). These correspond to the SUGAL
settings [Hunter, 1998] replacement uniform, replace-
ment_condition unconditional, replacement_rate 1.0, elit-
ism on, mutation invert, mutation_rate 1.0, muta-
tion_rate_type per_chromosome, crossover onepoint,
crossover_rate 0.3, selection integral_roulette, normalisa-
tion reverse_scale, bias 5.0 . These settings were selected
“by eye” on the basis of some initial experiments.
Once completed, the individual runs of each algorithm were
assembled into frequency tables, giving the percentage of
runs of each algorithm that each feature was selected. These
frequency tables were examined in graphical format; see fig-
ure 1. Due to space considerations in this paper, only ex-
tracts from some of the frequency distributions have been
included in detail. Table 1 summarizes the overall perform-
ance, showing the average percentage disparities between
the feature selection frequencies of the forward and back-
ward stepwise algorithms, and of the forward and bitwise
algorithms. If the results of the algorithms were entirely unre-
lated, we would expect figures of approximately 50%. The
figures are substantially lower than this.

 Ionos H. Colic Sonar Anneal

Fwd-Bwd 25.3 23.0 25.7 2.6
Fwd-Bit 22.9 27.6 37.3 12.1
Bwd-Bit 17.9 23.1 20.9 11.1

Table 1: Average disparities in frequencies per bit

5.1. Comparative performance

Figure 1 shows the frequency of feature selection by forward
stepwise, backward stepwise and bitwise gradient descent
for the first ten features in the Ionosphere data set.

This is typical of most of the data sets – the algorithms give
consistent results on most of the features. The bitwise gra-
dient descent algorithm consistently selects features that are
selected by both of the other algorithms, and consistently
rejects features that they would also reject. Where there is a
noticeable difference between the bitwise gradient descent
frequencies and the stepwise algorithms, there also tend to
be differences between the stepwise algorithms. On the An-
neal data set, the agreement is striking, with the algorithms
selecting the same feature subset with close to 100% consis-
tency. Here, the bitwise gradient descent algorithm does
have significantly different frequencies to the other algo-
rithms, as marked by the disparity in table 1. However, on
closer analysis this disparity is due to the bitwise algorithm
selecting frequencies in the range below 20% or above 80%,
as opposed to consistent 0% and 100% from the other algo-
rithms. In practice, this would not affect the feature set se-
lected. The Horse Colic and So nar data sets are more chal-
lenging – there the choice of variables seems to be, to a sig-
nificant extent, arbitrary. This is indicated by a tendency for
the selection frequencies to be less markedly extreme (often
in the range 30-70%) and, unsurprisingly, this ambiguity is
reflected in disparities between the frequencies recorded by
the three methods; see figure 2.
It is difficult to find any evidence that the bitwise gradient
descent algorithm fails to find interdependent features in any
of the data sets. We would expect, in that case, to find fea-

tures that are selected with close to zero frequency by for-
ward and bitwise selection and with high frequency by
backward selection. This may reflect the fact that complete
interdependence is, in reality, very rarely encountered, so
that the putative advantage of backward selection in being
able to handle interdependence is largely theoretical.

5.2. Sensitivity to data set division
A far more pertinent issue is the sensitivity of all the algo-
rithms to the division of the data set into training and test
cases. For example, in the Sonar data set forward selection
chooses anywhere from 48 to 56 variables, in five tests, and
between 31 and 54 variables in backward selection! In the
Ionosphere data, forward selection yields between 13 and 32
variables, and backward selection from 25 to 33. This implies
that to apply any of the algorithms without resampling is
extremely deceptive.
However, if the feature selection algorithm is run repeatedly
with resampling, and a frequency table assembled, the infor-
mation yielded is extremely useful. It is possible to identify
definitely useful or useless variables, and to distinguish
these from the ambiguous variables. If a very large number
of the variables are ambiguous, then we may conclude that
there is a high level of correlation between variables, and
perhaps look to perform some feature extraction, such as
principal component analysis, before continuing with the
next stage of the analysis.

5.3. The genetic algorithm
The genetic algorithm is computationally extremely demand-
ing compared with the other techniques. A naive way to use
the genetic algorithm in feature selection is to run it for the
requisite number of generations, then to select the best
member of the final population as the result of the algorithm.
The entire algorithm can then be run a number of times, just
as with the other algorithms, to check for consistency.
However, this approach ignores the information available in
the final population, which contains a large number of can-
didate solutions. One might expect that the genetic algorithm
would heavily select bits for features that are definitely use-
ful or useless, while bits that are ambiguous would be sub-
ject to contrary selective pressures and thus remain more
diverse. To test this theory, the genetic algorithm was run on
two of the data sets, and the frequency distributions of the
bits in the final population compared between these two
runs.

FORWARD
BACKWARD
BITWISE

Figure 2: Feature selection frequency, Horse Colic

0

10

20

30

40

50

60

70

80

90

100

FORWARD
BACKWARD
BITWISE

Figure 1: Feature selection frequency, Ionosphere

0

20

40

60

80

100

Figure 3 shows the results on the Ionosphere data set, which
are clearly disappointing (the forward selection frequencies
from figure 1 are repeated, for ease of comparison). It is clear
that the two runs of the genetic algorithm produce quite
radically different frequency distributions for each bit, which
contrasts unfavorably with the consistent results produced
by the other three algorithms. This may be due to “parasit i-
cal” effects, where bits with a low fitness contribution are
propagated because they are located on strings which have
high fitness because of more influential bit settings, or it may
be a result of “genetic drift” (the tendency of unused bits to
drift towards the extremes over time).
Whatever the reason, the genetic algorithm is clearly less
useful as a frequency-based feature selection algorithm, al-
though it should be emphasized that if treated in the conven-
tional fashion (the best string being selected as the single
output of the algorithm) the results are comp arable with the
other algorithms – although with significantly greater execu-
tion time.

6. Conclusion
This paper has presented a new, efficient, feature sele ction
algorithm based on repeated bitwise gradient descent com-
bined with Probabilistic Neural Networks. The algorithm has
acceptable computational requirements (taking only a few
minutes for twenty runs on all the data sets used in this pa-
per, on a Pentium 266; this compares with up to an hour for
each run of the stepwise algorithms, and up to ten hours for
a single run of the genetic algorithm). Comparison with stan-
dard forward and backward stepwise algorithms shows that
the new algorithm yields equally good results, at far greater
speeds.
An analysis of resampling effects shows that it is critical to
perform feature selection a number of times, and to base fea-
ture selection on frequencies of feature selection rather than
a single run. The proposed algorithm is well-suited for this
task.

References
[Blake et. al., 1998] Blake, C., Keogh, E. and Merz, C.J. UCI
repository of machine learning databases.

http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine,
CA: University of California, Dept. Information and Com-
puter Science.

[Goldberg, 1989]. Goldberg, D. E. Genetic Algorithms. Read-
ing, MA: Addison Wesley, 1989.

[Jain and Zongker, 1997] Jain, A. and Zongker, D. Feature
Selection: Evaluation, Application and Small Sample Per-
formance IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 19 (2), 1997.

[Sigillito et. al., 1989] Sigillito, V. G., Wing, S. P., Hutton, L. V.
and Baker, K. B. Classification of radar returns from the
ionosphere using neural networks. Johns Hopkins APL
Technical Digest, 10, 262—266, 1989.

[Speckt, 1990] Speckt, D.F. Probabilistic Neural Networks.
Neural Networks 3 (1), 109--118, 1990.

[Speckt, 1991] Speckt, D.F. A Generalized Regression Neural
Network. IEEE Transactions on Neural Networks 2 (6),
568—576, 1991.

[Hunter, 1998]. Hunter, A. Crossing over Genetic Algorithms:
the SUGAL Generalised GA, Heuristics 4 (2), 179—192, 1998.

[Raymer et.al., 1997] Raymer, M.L., Punch, W.F., Goodman,
E.D., Sanschagrin, P.C. and Kuhn, L.A. Proc. Simultaneous
Feature Extraction and Selection Using a Masking Genetic
Algorithm. 7th Int. Conf. on Genetic Algorithms, 561—567,
Morgan Kaufmann, San Francisco, June 1997.

[Gorman and Sejnowski, 1988] Gorman, R.P. and Sejnowski,
T.J. Analysis of hidden units in a layered network trained to
classify sonar targets. Neural Networks 1 (1), 75—89, 1988.

[Yang and Honavar, 1998] Yang, J. and Honavar, V. Feature
Subset Selection Using a Genetic Algorithm. IEEE Int. Sys-
tems and their Applications 13 (2), 44—49, 1998.

FORWARD
GA (1)

GA (2)

Figure 3: Genetic Algorithm, Ionosphere

0

20

40

60

80

100

